User controller with user presence detection and related systems and methods

Information

  • Patent Grant
  • 11284958
  • Patent Number
    11,284,958
  • Date Filed
    Tuesday, June 9, 2020
    3 years ago
  • Date Issued
    Tuesday, March 29, 2022
    2 years ago
Abstract
The present invention is relates to a user controller having a thumb sheath with an open side defined in the thumb sheath. Further embodiments relate to thumb presence sensors and sensory feedback components associated with the thumb sheath. Additional embodiments relate to an adjustable thumb sheath. Still other embodiments relate to systems comprising such user controllers.
Description
FIELD OF THE INVENTION

The various embodiments herein relate to user presence detection on a multi-degree-of-freedom (DOF) user input device for use in systems such as, for example, robotic medical device systems.


BACKGROUND OF THE INVENTION

User input devices with many degrees of freedom require the user to support the mass of the input device.


One example of such a known input device is depicted in FIGS. 1-2B. FIG. 1 depicts the multi-DOF user input device 8 for the left hand of the user. To interface with the device 8, the user places the left palm on the main body 10 of the user controller 8, the forefinger on the forefinger interface 12 that is able to move relative to the main body 10 via a rotary link 14, and the thumb in the thumb groove 16. The main body 10 of the user interface 8 is connected to a multi-DOF positioning or sensing system through a linkage 18. In order to supply forces and torques to move the user interface 8 both a thumb restraint 20 and forefinger restraint 22 to constrain the users hand to the device 8.



FIG. 2A and 2B depict the ability of the user to further input an open/close motion of the forefinger interface 12, which is connected to the main body 10 using a link 14 and rotary joint 30. The minimum displacement 32 (as shown in FIG. 2A) and maximum displacement 34 (as shown in FIG. 2B) can be measured and used as an additional control signal. The thumb restraint 20 and forefinger restraint 22 supply constraints such that the user maintains control of the main body 10 while moving the grasper throughout its range of motion. Such restraints, while enabling the user to input another control signal, make it difficult for the user to disengage with the device 8 in a controlled manner.


Further, in order for the user to exit the device in a controlled fashion, support of the input device must transferred to the input device itself or the signal being output by the device must cease. That is, during use, the input device is supported or maintained in its operable position by the hand of the user, but removal of the user's hand from the input device without any mechanical force applied by the system itself causes the input device to be pulled downward by gravity, which can result in the robotic device or component operably coupled to the input device to move or be actuated in an undesirable fashion.


There is a need in the art for improved methods and devices for detecting the presence of a user at, on, or using a user input device.


BRIEF SUMMARY OF THE INVENTION

Discussed herein are various user controllers for use with various systems, including robotic surgical systems.


In Example 1, a user controller comprises a controller body and a thumb sheath coupled to the controller body. The thumb sheath comprises a first sheath section extending from the controller body, and a second sheath section extending from the first sheath section, wherein the second sheath section is transverse to the first sheath segment. The first sheath section, the second sheath section, and the controller body define a thumb opening and an open side.


Example 2 relates to the user controller according to Example 1, wherein the first sheath section, the second sheath section, and the controller body do not form a 360° enclosure around the thumb opening.


Example 3 relates to the user controller according to Example 1, further comprising a light sensor disposed within the thumb opening.


Example 4 relates to the user controller according to Example 1, further comprising a light emitter disposed on an inner wall of the thumb sheath and a light receiver disposed on the controller body, wherein the light receiver is positioned to receive light transmitted by the light emitter.


Example 5 relates to the user controller according to Example 1, further comprising a light emitter disposed on the controller body and a light receiver disposed on an inner wall of the thumb sheath, wherein the light receiver is positioned to receive light transmitted by the light emitter.


Example 6 relates to the user controller according to Example 1, further comprising a light emitter and a light receiver, wherein the light emitter and light receiver are disposed on the controller body.


Example 7 relates to the user controller according to Example 1, further comprising a capacitive sensor disposed on the controller body within the thumb sheath.


Example 8 relates to the user controller according to Example 1, further comprising a mechanical sensor disposed on the controller body within the thumb sheath.


Example 9 relates to the user controller according to Example 1, wherein the thumb sheath is adjustable between a retracted position and an extended position.


Example 10 relates to the user controller according to Example 1, further comprising a feedback signal component disposed on an outer surface of the thumb sheath, wherein the feedback signal component is visible to a user.


Example 11 relates to the user controller according to Example 1, wherein a user's thumb is removable from the thumb sheath via the thumb opening or the open side.


In Example 12, a robotic surgical system comprises a system controller, a robotic surgical device operably coupled to the system controller, and a user controller operably coupled to the system controller. The robotic surgical device comprises a device body, at least one robotic arm operably coupled to the device body, and at least one end effector operably coupled to the robotic arm. The user controller comprises a controller body, and a thumb sheath coupled to the controller body, wherein the thumb sheath and the controller body define a thumb opening and a side opening.


Example 13 relates to the robotic surgical system according to Example 12, wherein the thumb sheath comprises a first sheath section extending from the controller body and defining a first wall of the thumb opening, a second sheath section extending from the first sheath second and defining a second wall of the thumb opening, and a third wall of the thumb opening defined by the controller body.


Example 14 relates to the robotic surgical system according to Example 13, wherein the side opening is defined between the second wall and the third wall.


Example 15 relates to the robotic surgical system according to Example 12, wherein the thumb sheath does not form a 360° enclosure around the thumb opening.


Example 16 relates to the robotic surgical system according to Example 12, further comprising a thumb presence sensor disposed within the thumb opening.


Example 17 relates to the robotic surgical system according to Example 16, wherein the thumb presence sensor comprises a light sensor, a capacitive sensor, or a mechanical sensor.


Example 18 relates to the robotic surgical system according to Example 12, wherein the thumb sheath is adjustable between a retracted position and an extended position.


Example 19 relates to the robotic surgical system according to Example 12, further comprising a feedback signal component disposed on an outer surface of the thumb sheath, wherein the feedback signal component is visible to a user.


Example 20 relates to the robotic surgical system according to Example 12, wherein a user's thumb is removable from the thumb sheath via the thumb opening or the side opening.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a known user input device.



FIG. 2A is a top view of the known user input device of FIG. 1.



FIG. 2B is another top view of the known user input device of FIG. 1.



FIG. 3 is a perspective view of a user input device with a thumb sheath, according to one embodiment.



FIG. 4 is a perspective view of a user input device with a thumb sheath and a light-based sensor, according to one embodiment.



FIG. 5 is a perspective view of a user input device with a thumb sheath and another light-based sensor, according to a further embodiment.



FIG. 6 is a schematic depiction of a known circuit configuration for use with a light-based sensor, according to one embodiment.



FIG. 7 is a perspective view of a user input device with a thumb sheath and a capacitive sensor, according to one embodiment.



FIG. 8 is a schematic depiction of a known circuit configuration for use with a capacitive sensor, according to one embodiment.



FIG. 9 is a schematic depiction of a known circuit configuration for use with a mechanical sensor, according to one embodiment.



FIG. 10 is a perspective view of a user input device with a thumb sheath and a sensory signal, according to one embodiment.



FIG. 11A is a perspective view of a user input device with an adjustable thumb sheath in a retracted position, according to a further embodiment.



FIG. 11B is a perspective view of a user input device with an adjustable thumb sheath in an extended position, according to a further embodiment.



FIG. 12 is a perspective view of a user input device with a thumb sheath and a mechanical sensor, according to one embodiment.





DETAILED DESCRIPTION

The various embodiments herein relate to methods and devices for detecting the presence of a user at, on, or using a multi-DOF user input device in which the user grasps the device using a pincer grasp. That is, the various embodiments have a sheath mounted on the input device that is configured to detect the presence of the user's hand. If the user's hand (or more specifically the thumb, according to certain embodiments) is detected by the sheath, the device transmits a signal (“the presence signal”) to the system (such as, for example, the system controller component of the system) that the user is in position and control should be enabled. When the hand is removed, the absence of the “presence signal” can be used to cease use of the device output or, if it is haptically enabled, lock the device in place.


It is understood that the various user controller embodiments herein can be used with various robotic surgical systems in which the user controller is the user interface and is coupled to the surgical system such that the user controller can be used to control a robotic surgical device positioned into or within a cavity of a patient. That is, the various user controller embodiments and related systems and methods disclosed herein can be incorporated into, used in conjunction with, or used as part of any other known robotic surgical systems, devices, or methods. For example, the various embodiments disclosed herein may be incorporated into or used with any of the medical devices and systems disclosed in U.S. Pat. No. 8,968,332 (issued on Mar. 3, 2015 and entitled “Magnetically Coupleable Robotic Devices and Related Methods”), U.S. Pat. No. 8,834,488 (issued on Sep. 16, 2014 and entitled “Magnetically Coupleable Surgical Robotic Devices and Related Methods”), U.S. patent application Ser. No. 14/617,232 (filed on Feb. 9, 2015 and entitled “Robotic Surgical Devices and Related Methods”), U.S. Pat. No. 9,579,088 (issued on Feb. 28, 2017 and entitled “Methods, Systems, and Devices for Surgical Visualization and Device Manipulation”), U.S. Pat. No. 8,343,171 (issued on Jan. 1, 2013 and entitled “Methods and Systems of Actuation in Robotic Devices”), U.S. Pat. No. 8,828,024 (issued on Sep. 9, 2014 and entitled “Methods and Systems of Actuation in Robotic Devices”), U.S. patent application Ser. No. 14/454,035 (filed Aug. 7, 2014 and entitled “Methods and Systems of Actuation in Robotic Devices”), U.S. patent application Ser. No. 12/192,663 (filed Aug. 15, 2008 and entitled Medical Inflation, Attachment, and Delivery Devices and Related Methods”), U.S. patent application Ser. No. 15/018,530 (filed Feb. 8, 2016 and entitled “Medical Inflation, Attachment, and Delivery Devices and Related Methods”), U.S. Pat. No. 8,974,440 (issued on Mar. 10, 2015 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), U.S. Pat. No. 8,679,096 (issued on Mar. 25, 2014 and entitled “Multifunctional Operational Component for Robotic Devices”), U.S. Pat. No. 9,179,981 (issued on Nov. 10, 2015 and entitled “Multifunctional Operational Component for Robotic Devices”), U.S. patent application 14/936,234 (filed on Nov. 9, 2015 and entitled “Multifunctional Operational Component for Robotic Devices”), U.S. Pat. No. 8,894,633 (issued on Nov. 25, 2014 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), U.S. Pat. No. 8,968,267 (issued on Mar. 3, 2015 and entitled “Methods and Systems for Handling or Delivering Materials for Natural Orifice Surgery”), U.S. Pat. 9,060,781 (issued on Jun. 23, 2015 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors”), U.S. patent application Ser. No. 14/745,487 (filed on Jun. 22, 2015 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors”), U.S. Pat. No. 9,089,353 (issued on Jul. 28, 2015 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 14/800,423 (filed on Jul. 15, 2015 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 13/573,849 (filed Oct. 9, 2012 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 13/738,706 (filed Jan. 10, 2013 and entitled “Methods, Systems, and Devices for Surgical Access and Insertion”), U.S. patent application Ser. No. 13/833,605 (filed Mar. 15, 2013 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 14/661,465 (filed Mar. 18, 2015 and entitled “Methods, Systems, and Devices for Surgical Access and Insertion”), U.S. Pat. No. 9,498,292 (issued on Nov. 22, 2016 and entitled “Single Site Robotic Devices and Related Systems and Methods”), U.S. patent application Ser. No. 15/357,663 (filed Nov. 21, 2016 and entitled “Single Site Robotic Devices and Related Systems and Methods”), U.S. Pat. No. 9,010,214 (issued on Apr. 21, 2015 and entitled “Local Control Robotic Surgical Devices and Related Methods”), U.S. patent application Ser. No. 14/656,109 (filed on Mar. 12, 2015 and entitled “Local Control Robotic Surgical Devices and Related Methods”), U.S. patent application Ser. No. 14/208,515 (filed Mar. 13, 2014 and entitled “Methods, Systems, and Devices Relating to Robotic Surgical Devices, End Effectors, and Controllers”), U.S. patent application Ser. No. 14/210,934 (filed Mar. 14, 2014 and entitled “Methods, Systems, and Devices Relating to Force Control Surgical Systems), U.S. patent application Ser. No. 14/212,686 (filed Mar. 14, 2014 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 14/334,383 (filed Jul. 17, 2014 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 14/853,477 (filed Sep. 14, 2015 and entitled “Quick-Release End Effectors and Related Systems and Methods”), U.S. patent application Ser. No. 14/938,667 (filed Nov. 11, 2015 and entitled “Robotic Device with Compact Joint Design and Related Systems and Methods”), U.S. patent application Ser. No. 15/227,813 (filed Aug. 3, 2016 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 15/599,231 (filed May 18, 2017 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 15/691,087 (filed Aug. 30, 2017 and entitled “Robotic Device with Compact Joint Design and an Additional Degree of Freedom and Related Systems and Methods”), U.S. patent application Ser. No. 62/425,149 (filed Nov. 22, 2016 and entitled “Improved Gross Positioning Device and Related Systems and Methods”), U.S. patent application 62/433,837 (filed Dec. 14, 2016 and entitled “Releasable Attachment Device for Coupling to Medical Devices and Related Systems and Methods”), and U.S. Pat. No. 7,492,116 (filed on Oct. 31, 2007 and entitled “Robot for Surgical Applications”), U.S. Pat. No. 7,772,796 (filed on Apr. 3, 2007 and entitled “Robot for Surgical Applications”), and U.S. Pat. No. 8,179,073 (issued May 15, 2011, and entitled “Robotic Devices with Agent Delivery Components and Related Methods”), all of which are hereby incorporated herein by reference in their entireties.


Thus, the various user controller 8 embodiments disclosed or contemplated herein can be used with any robotic surgical system to operate a robotic device or a component thereof, including such a device that is positioned in or through an incision into a target cavity or tissue of a patient. As such, the user utilizes her thumb and forefinger to manipulate the user controller 8, which thereby actuates the device or components thereof to perform a desired procedure.



FIG. 3 depicts a user controller 8 according to one embodiment having a thumb sheath (also referred to as a “enclosure,” “sleeve,” or “shroud”) 40, instead of a thumb restraint as discussed above in relation to FIGS. 1-2B. As used herein, “sheath,” “enclosure,” “sleeve,” or “shroud” is intended to mean any structure that encloses the user's thumb on three sides while defining an opening on the fourth side through which the user can remove her thumb. The thumb sheath 40 surrounds the thumb on two sides, with the main body 10 restraining on a third side, leaving a single side open. More specifically, the sheath 40 has a first section 40A extending from the body 10 and a second section 40B extending from the first section 40A in a direction substantially transverse to the first section 40A, thereby enclosing two sides around the thumb opening 48 such that the thumb opening 48 is defined by the first section 40A, the second section 40B, and the thumb groove 16. Alternatively, the device 8 need not have a thumb groove—the body 10 can define the third side in such implementations. As a result, the thumb sheath 40 and the thumb groove 16 or body 10 further define an open side 49 as shown. In contrast, the known thumb restraint 20 discussed above operates in conjunction with the thumb groove 16 to entirely surround or enclose the thumb on four sides—the entire 360° around the thumb.


In one embodiment, the thumb sheath 40 can sufficiently constrains the user's thumb when it is positioned within the thumb opening 48 such that the thumb can be used to perform a “pinching motion” in conjunction with the forefinger to cause the forefinger restraint 22 to move away from or closer to the body 10 in the directions represented by arrow 42. As such, the thumb sheath 40 can operate in a fashion similar to the known thumb restraint 20 discussed above. In contrast to that restraint 20, however, the sheath 40 also allows two methods of egress for the thumb. That is, the user's thumb can not only be retracted proximally in the direction represented by arrow 46 in the same fashion as possible with the known thumb restraint 20, but can also be moved out of the thumb opening 48 in the direction represented by arrow 44 through the open side 49. As can be seen in FIG. 3, the two directions of potential egress are normal to the direction of pinching (represented by arrow 42) and each other. As such, this configuration of the sheath 40 allows for both fine control of pinching motion while enabling the user to disengage from the device 8 by removing her thumb in a controlled and simple manner.


To clarify, the term “user controller” as used herein will refer to the various embodiments of a user input device to be manipulated by a user to provide input to and thereby operate some portion of a robotic system. In contrast, the term “system controller” will refer to any processor, computer or other system controller component (such as a microprocessor or the like) that can be used to operate a system.



FIG. 4 depicts a further implementation of a user controller 8 having a sensor 51 configured to detect the presence of the user's thumb. It is understood that this embodiment of the controller 8 has a thumb sheath 40 substantially similar to the sheath 40 described above, including the features and benefits as described. Further, in this exemplary implementation, a user presence sensor 51 is incorporated into the sheath 40. The device 8 has a matched light emitter 50 disposed on the sheath 40 and a receiver 52 disposed on the body 10. Alternatively, the emitter can be on the body 10 and the receiver can be on the sheath 40. In a further alternative, two or more such sensors can be incorporated into the device 8. The emitter 50 and receiver 52 are positioned in a manner which generally aligns the path of light 54 transmitted by the emitter 50 with the direction of motion of the pinching motion as represented by arrow 42. In use, the emitter 50 and receiver 52 are placed such that when the user's thumb is not present, light (visible or otherwise) from the emitter 50 reaches the receiver 52. In contrast, when the user's thumb is present within the thumb opening 48, the path of the light 54 is blocked. The absence of this signal can then be used as an indicator of user presence (that is, the presence of the user's thumb within the thumb opening 48), thereby indicating that the user is grasping the user controller 8. Once the light path is blocked by the user's thumb, restoration of this signal, an indicator of user absence, is achieved by retracting the thumb in either of two directions as represented by arrows 44 and 46, which are normal to the direction of pinching represented by arrow 42 and the path of light 54 (as discussed above). This configuration of sheath 40 and sensor 51 allows for motion of the thumb in the direction of pinching (as represented by arrow 42) without allowing light to pass. This allows for the sheath 40 to be sufficiently loose such that egress is easily achieved. That is, the size of the thumb opening 48 in relation to the user's thumb does not impact the ability of the sensor 51 to detect the presence therein or the ability of the user to utilize the sheath 40 to allow the user to utilize the pinching motion to move the forefinger restraint as discussed above.


Alternatively, any known sensor or sensor technology can be used with the user controller 8 to detect the presence (and absence) of the user's thumb within the sheath 40.


The sensor 51 allows for the user controller 8 (and the system to which the controller 8 is coupled) to utilize the information about the presence or absence of the user's thumb to activate or deactivate mechanical support of the user controller 8. That is, the sensor 51 can be configured to transmit a “presence” signal to the system controller (not shown) of the system (not shown) when the thumb is inserted into the sheath 40 such that the system controller deactivates any mechanical support of the user controller 8. Similarly, the sensor 51 can also be configured to transmit an “absence” signal to the system controller (not shown) when the thumb is retracted from the sheath 40 such that the system controller activates mechanical support of the user controller 8, thereby preventing gravity from causing the user controller 8 from moving in an undesirable fashion that causes the controlled robotic device to also move in an undesirable fashion.



FIG. 5 depicts an alternative embodiment of a user controller 8 having a reflected light sensor 61. That is, the user controller 8 has an emitter 60 and a receiver 62 that are both embedded in the main body 10 as shown such that the emitted light 64 from the emitter 60 returns to the receiver 62 as reflected light 66 by the nearest occlusion. In this configuration, the presence of the user's thumb within the sheath 40 provides a much shorter path than the sheath 40 and thus a corresponding stronger return signal than would be detected in the absence of the thumb. This signal can then be thresholded to determine the binary presence/absence of the user's thumb. That is, a predetermined threshold can be established above which it is understood that a user's thumb is present in the sheath 40 such that a presence signal is transmitted to the system controller (not shown). In one implementation, it is understood that this embodiment has substantially the same features, modes of egress, and advantages, including insensitivity to motion in the direction of pinching motion, as the previously described embodiments.



FIG. 6 depicts an exemplary known circuit for use in conjunction with a sensor such as either of the sensors 51, 61 discussed above with respect to FIGS. 4 and 5 for detecting the presence of a user's thumb within the sheath 40. In this embodiment, one or more pairs of infrared (IR) emitters and detectors are provided that are similar to those described in FIG. 4 or FIG. 5. The presence of the user's thumb blocks the IR light from the emitter from reaching the detector, changing the output state of the circuit. Each emitter/detector pair described uses the circuit in FIG. 6 to detect presence. When the user's thumb is absent from the device, phototransistor Q1 receives IR light from LED1. This turns the transistor on, causing a current to flow through resistor R1, and a non-zero voltage to appear on the non-inverting input (pin 5) of the comparator U1. If this voltage is higher than the inverting input of U1, set by the voltage divider of R2 and R3, the output of the comparator is switched on, lowering the output voltage to 0. When the detector Q1 is blocked, the transistor is off, and the output of the circuit is 5 volts. Alternatively, any known circuit or circuit configuration can be used for this purpose.



FIG. 7 depicts a further embodiment of a sensor 70 for use in a user controller 8. In this specific implementation, instead of a light-based technology, the sensor 70 is a known capacitive sensor 70 positioned in the main body 10 as shown. The capacitive sensor 70 functions as a known capacitive sensor 70 operates to detect the presence of the user's thumb within the sheath 40. According to one embodiment, it is understood that this embodiment has substantially the same features, modes of egress, and advantages, including insensitivity to motion in the direction of pinching motion, as the previously described embodiments.



FIG. 8 depicts an exemplary known circuit for use in conjunction with a capacitive sensor such as the sensor 70 discussed above with respect to FIG. 7 for detecting the presence of a user's thumb within the sheath 40, according to another implementation. One or more capacitive sensors are placed on the inner surface of the thumb sheath, such as the sensor 70 in FIG. 7. In use, when the user's thumb is placed in the sheath 40, the change in capacitance changes the output state of the circuit. Alternatively, any known circuit or circuit configuration that operates in conjunction with a capacitive sensor can be used for this purpose.



FIG. 12 depicts a further embodiment of a sensor 120 for use in a user controller 8. In this specific implementation, instead of a light- or capacitive-based technology, the sensor 120 is a known mechanical sensor 120 positioned in the main body 10 as shown. The mechanical sensor 120 functions as a known mechanical sensor 120 operates to detect the presence of the user's thumb within the sheath 40. For example, the mechanical sensor 120 can be actuated by the user's thumb depressing the sensor 120, thereby indicating that the thumb is present within the sheath 40. According to one embodiment, it is understood that this embodiment has substantially the same features, modes of egress, and advantages, including insensitivity to motion in the direction of pinching motion, as the previously described embodiments.



FIG. 9 depicts an exemplary known circuit for use in conjunction with a mechanical sensor such as sensor 120 discussed above with respect to FIG. 12 for detecting the presence of a user's thumb within the sheath 40, according to a further embodiment. In this embodiment, a mechanical switch (such as switch 120) is placed inside of the thumb sheath 40. In use, when the user's thumb is in place, the switch is actuated and the output state of the circuit changes. When the user's thumb is not in the sheath, the switch is open, and the output of the switch is pulled up to 5 volts. V1 inverts this signal to a 0 volt output. When the thumb is placed in the sheath, the switch is depressed, which changes the output of the circuit to 5 V. The switch debouncing circuitry is a circuit which filters out short duration transitions of the output when the mechanical switch is engaged and disengaged. Alternatively, any known circuit or circuit configuration that operates in conjunction with a mechanical sensor can be used for this purpose.



FIG. 10 depicts a user controller 8 having a user sensory feedback signal component 100, according to one embodiment. That is, this specific implementation has a signal component 100 that provides some type of sensory feedback to the user about whether the user's thumb is positioned within the sheath 40. In the specific embodiment depicted in FIG. 10, the feedback signal component 100 is a visual feedback component 100 in the form of an LED 100 that is disposed on the thumb sheath 40. Alternatively, any form of sensory feedback signal can be used. This feedback component 100 provides feedback to the user regarding whether the system (not shown) detects the presence of the user's thumb within the sheath 40. Feedback may be provided by multiple LEDs, auditory, or other visual signals. In use, according to this embodiment, the LED 100 would illuminate if the user's thumb is detected, thereby indicating that the thumb is positioned within the sheath 40. It is understood that the user controller 8 with the user feedback signal component 100 can have any of the various sensor components disclosed or contemplated herein. In addition, it is understood that the user feedback signal component 100 can be incorporated into any other embodiment disclosed or contemplated herein.



FIGS. 11A and 11B depict an adjustable sheath 40, according to one embodiment. More specifically, the sheath 40 in this specific implementation can move between a retracted position as shown in FIG. 11A and an extended position as shown in FIG. 11B. As such, the sheath 40 can be adjusted to be positioned with respect to the main body 10 in the retracted positioned in which the thumb opening 48 has a minimum width represented by arrow 110 (as shown in FIG. 11A) or can be extended out away from the body 10 up to the extended position in which the thumb opening 48 has a maximum width represented by arrow 112 (as shown in FIG. 11B). This adjustability enables the sheath 40 to conform to a wide array of user thumb sizes while supplying sufficient control authority to the user while still enabling the user to disengage in a controlled manner. It is further understood that the user controller 8 with the adjustable sheath 40 can have any of the various sensor or sensory feedback components disclosed or contemplated herein. In addition, it is understood that the adjustable sheath 40 can be incorporated into any other embodiment disclosed or contemplated herein.


Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. A user controller comprising: (a) a controller body;(b) a forefinger restraint operably coupled to the controller body such that the forefinger restraint is movable in relation to the controller body between an open position and a closed position via a pinching motion of a user;(c) a thumb sheath coupled to the controller body, wherein the thumb sheath and the controller body define a thumb opening and a side opening, and wherein the thumb opening is defined by a side of the controller body, a first section of the thumb sheath extending from the controller body, and a second section of the thumb sheath extending from the first section of the thumb sheath; and(d) a thumb presence sensor disposed within the thumb sheath, wherein the thumb presence sensor is configured to detect a presence of a thumb of the user disposed in the thumb opening, including during the pinching motion.
  • 2. The user controller of claim 1, wherein the thumb sheath and the controller body do not form a 360° enclosure around the thumb opening.
  • 3. The user controller of claim 1, wherein the thumb presence sensor comprises a light sensor disposed within the thumb opening.
  • 4. The user controller of claim 1, wherein the thumb presence sensor comprises a light emitter disposed on an inner wall of the thumb sheath and a light receiver disposed on the controller body, wherein the light receiver is positioned to receive light transmitted by the light emitter.
  • 5. The user controller of claim 1, wherein the thumb presence sensor comprises a light emitter disposed on the controller body and a light receiver disposed on an inner wall of the thumb sheath, wherein the light receiver is positioned to receive light transmitted by the light emitter.
  • 6. The user controller of claim 1, wherein the thumb presence sensor comprises a light emitter and a light receiver, wherein the light emitter and light receiver are disposed on the controller body.
  • 7. The user controller of claim 1, wherein the thumb presence sensor comprises a capacitive sensor disposed on the controller body within the thumb sheath.
  • 8. The user controller of claim 1, wherein the thumb presence sensor comprises a mechanical sensor disposed on the controller body within the thumb sheath.
  • 9. The user controller of claim 1, wherein the thumb sheath is adjustable between a retracted position and an extended position.
  • 10. The user controller of claim 1, wherein the thumb presence sensor comprises a feedback signal component disposed on an outer surface of the thumb sheath, wherein the feedback signal component is visible to a user.
  • 11. The user controller of claim 1, wherein a user's thumb is removable from the thumb sheath via the thumb opening or the side opening.
  • 12. A robotic surgical system comprising: (a) a system controller;(b) a robotic surgical device operably coupled to the system controller; and(c) a user controller operably coupled to the system controller, the user controller comprising: (i) a controller body;(ii) a forefinger restraint operably coupled to the controller body such that the forefinger restraint is movable in relation to the controller body between an open position and a closed position via a pinching motion of a user;(iii) a thumb sheath coupled to the controller body, wherein the thumb sheath and the controller body define a thumb opening and a side opening, and wherein the thumb sheath comprises: (A) a first sheath section extending from the controller body and defining a first wall of the thumb opening;(B) a second sheath section extending from the first sheath second and defining a second wall of the thumb opening; and(C) a third wall of the thumb opening defined by the controller body; and(iv) a thumb presence sensor disposed within the thumb sheath, wherein the thumb presence sensor is configured to detect a presence of a thumb of the user disposed in the thumb opening, including during the pinching motion.
  • 13. The robotic surgical system of claim 12, wherein the side opening is defined between the second wall and the third wall.
  • 14. The robotic surgical system of claim 12, wherein the thumb sheath does not form a 360° enclosure around the thumb opening.
  • 15. The robotic surgical system of claim 12, wherein the thumb presence sensor comprises a light sensor, a capacitive sensor, or a mechanical sensor.
  • 16. The robotic surgical system of claim 12, wherein the thumb sheath is adjustable between a retracted position and an extended position.
  • 17. The robotic surgical system of claim 12, further comprising a feedback signal component disposed on an outer surface of the thumb sheath, wherein the feedback signal component is visible to a user.
  • 18. The robotic surgical system of claim 12, wherein a user's thumb is removable from the thumb sheath via the thumb opening or the side opening.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority as a continuation to U.S. patent application Ser. No. 15/826,166, filed Nov. 29, 2017, and entitled “User Controller with User Presence Detection and Related Systems and Methods,” which claims priority to U.S. Provisional Application 62/427,357, filed Nov. 29, 2016, and entitled “Controller with User Presence Detection and Related Systems and Methods,” all of which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (532)
Number Name Date Kind
3870264 Robinson Mar 1975 A
3989952 Timberlake et al. Nov 1976 A
4258716 Sutherland Mar 1981 A
4278077 Mizumoto Jul 1981 A
4538594 Boebel et al. Sep 1985 A
4568311 Miyaki Feb 1986 A
4736645 Zimmer Apr 1988 A
4771652 Zimmer Sep 1988 A
4852391 Ruch et al. Aug 1989 A
4896015 Taboada et al. Jan 1990 A
4922755 Oshiro et al. May 1990 A
4922782 Kawai May 1990 A
4990050 Tsuge et al. Feb 1991 A
5019968 Wang et al. May 1991 A
5172639 Wiesman et al. Dec 1992 A
5195388 Zona et al. Mar 1993 A
5201325 McEwen et al. Apr 1993 A
5271384 McEwen et al. Dec 1993 A
5284096 Pelrine et al. Feb 1994 A
5297443 Wentz Mar 1994 A
5297536 Wilk Mar 1994 A
5304899 Sasaki et al. Apr 1994 A
5307447 Asano et al. Apr 1994 A
5353807 DeMarco Oct 1994 A
5363935 Schempf et al. Nov 1994 A
5382885 Salcudean et al. Jan 1995 A
5441494 Oritz Jan 1995 A
5388528 Pelrine et al. Feb 1995 A
5436542 Petelin et al. Jul 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5471515 Fossum et al. Nov 1995 A
5515478 Wang May 1996 A
5524180 Wang et al. Jun 1996 A
5553198 Wang et al. Sep 1996 A
5562448 Mushabac Oct 1996 A
5588442 Scovil et al. Dec 1996 A
5617075 Worth Apr 1997 A
5620417 Jang et al. Apr 1997 A
5623582 Rosenberg Apr 1997 A
5624380 Takayama et al. Apr 1997 A
5624398 Smith et al. Apr 1997 A
5632761 Smith et al. May 1997 A
5645520 Nakamura et al. Jul 1997 A
5657429 Wang et al. Aug 1997 A
5657584 Hamlin Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5674030 Sigel Oct 1997 A
5728599 Rosteker et al. Mar 1998 A
5736821 Suyama et al. Apr 1998 A
5754741 Wang et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5807377 Madhani et al. Sep 1998 A
5808665 Green Sep 1998 A
5815640 Wang et al. Sep 1998 A
5825982 Wright et al. Oct 1998 A
5841425 Zenz, Sr. Nov 1998 A
5841950 Wang et al. Nov 1998 A
5845646 Lemelson Dec 1998 A
5855583 Wang et al. Jan 1999 A
5876325 Mizuno et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878783 Smart Mar 1999 A
5894302 Scenna Apr 1999 A
5895417 Pomeranz et al. Apr 1999 A
5906591 Dario et al. May 1999 A
5907664 Wang et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911036 Wright et al. Jun 1999 A
5971976 Wang et al. Oct 1999 A
5993467 Yoon Nov 1999 A
6001108 Wang et al. Dec 1999 A
6007550 Wang et al. Dec 1999 A
6030365 Laufer Feb 2000 A
6031371 Smart Feb 2000 A
6058323 Lemelson May 2000 A
6063095 Wang et al. May 2000 A
6066090 Yoon May 2000 A
6086529 Arndt Jul 2000 A
6102850 Wang et al. Aug 2000 A
6107795 Smart Aug 2000 A
6132368 Cooper Oct 2000 A
6132441 Grace Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6156006 Brosens et al. Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6162171 Ng et al. Dec 2000 A
D438617 Cooper et al. Mar 2001 S
6206903 Ramans Mar 2001 B1
D441076 Cooper et al. Apr 2001 S
6223100 Green Apr 2001 B1
D441862 Cooper et al. May 2001 S
6238415 Sepetka et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6241730 Alby Jun 2001 B1
6244809 Wang et al. Jun 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
D444555 Cooper et al. Jul 2001 S
6286514 Lemelson Sep 2001 B1
6296635 Smith et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309403 Minoret et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6321106 Lemelson Nov 2001 B1
6327492 Lemelson Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6346072 Cooper Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6398726 Ramans et al. Jun 2002 B1
6400980 Lemelson Jun 2002 B1
6408224 Lemelson Jun 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6436107 Wang et al. Aug 2002 B1
6441577 Blumenkranz et al. Aug 2002 B2
6450104 Grant et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6454758 Thompson et al. Sep 2002 B1
6459926 Nowlin et al. Oct 2002 B1
6463361 Wang et al. Oct 2002 B1
6468203 Belson Oct 2002 B2
6468265 Evans et al. Oct 2002 B1
6470236 Ohtsuki Oct 2002 B2
6491691 Morley et al. Dec 2002 B1
6491701 Nemeyer et al. Dec 2002 B2
6493608 Niemeyer et al. Dec 2002 B1
6496099 Wang et al. Dec 2002 B2
6497651 Kan et al. Dec 2002 B1
6508413 Bauer et al. Jan 2003 B2
6512345 Borenstein Jan 2003 B2
6522906 Salisbury, Jr. et al. Feb 2003 B1
6544276 Azizi Apr 2003 B1
6548982 Papanikolopoulos et al. Apr 2003 B1
6554790 Moll Apr 2003 B1
6565554 Niemeyer May 2003 B1
6574355 Green Jun 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6591239 McCall et al. Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6610007 Belson et al. Aug 2003 B2
6620173 Gerbi et al. Sep 2003 B2
6642836 Wang et al. Nov 2003 B1
6645196 Nixon et al. Nov 2003 B1
6646541 Wang et al. Nov 2003 B1
6648814 Kim et al. Nov 2003 B2
6659939 Moll et al. Dec 2003 B2
6661571 Shioda et al. Dec 2003 B1
6671581 Niemeyer et al. Dec 2003 B2
6676684 Morley et al. Jan 2004 B1
6684129 Salisbury, Jr. et al. Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6685698 Morley et al. Feb 2004 B2
6687571 Byme et al. Feb 2004 B1
6692485 Brock et al. Feb 2004 B1
6699177 Wang et al. Mar 2004 B1
6699235 Wallace et al. Mar 2004 B2
6702734 Kim et al. Mar 2004 B2
6702805 Stuart Mar 2004 B1
6714839 Salisbury, Jr. et al. Mar 2004 B2
6714841 Wright et al. Mar 2004 B1
6719684 Kim et al. Apr 2004 B2
6720988 Gere et al. Apr 2004 B1
6726699 Wright et al. Apr 2004 B1
6728599 Wright et al. Apr 2004 B2
6730021 Vassiliades, Jr. et al. May 2004 B2
6731988 Green May 2004 B1
6746443 Morley et al. Jun 2004 B1
6764441 Chiel et al. Jul 2004 B2
6764445 Ramans et al. Jul 2004 B2
6766204 Niemeyer et al. Jul 2004 B2
6770081 Cooper et al. Aug 2004 B1
6774597 Borenstein Aug 2004 B1
6776165 Jin Aug 2004 B2
6780184 Tanrisever Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6785593 Wang et al. Aug 2004 B2
6788018 Blumenkranz Sep 2004 B1
6792663 Krzyzanowski Sep 2004 B2
6793653 Sanchez et al. Sep 2004 B2
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6801325 Farr et al. Oct 2004 B2
6804581 Wang et al. Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6817972 Snow Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6817975 Farr et al. Nov 2004 B1
6820653 Schempf et al. Nov 2004 B1
6824508 Kim et al. Nov 2004 B2
6824510 Kim et al. Nov 2004 B2
6832988 Sprout Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6836703 Wang et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6852107 Wang et al. Feb 2005 B2
6858003 Evans et al. Feb 2005 B2
6860346 Burt et al. Mar 2005 B2
6860877 Sanchez et al. Mar 2005 B1
6866671 Tiemey et al. Mar 2005 B2
6870343 Borenstein et al. Mar 2005 B2
6871117 Wang et al. Mar 2005 B2
6871563 Choset et al. Mar 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892112 Wang et al. May 2005 B2
6899705 Niemeyer May 2005 B2
6902560 Morley et al. Jun 2005 B1
6905460 Wang et al. Jun 2005 B2
6905491 Wang et al. Jun 2005 B1
6911916 Wang et al. Jun 2005 B1
6917176 Schempf et al. Jul 2005 B2
6933695 Blumenkranz Aug 2005 B2
6936001 Snow Aug 2005 B1
6936003 Iddan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6943663 Wang et al. Sep 2005 B2
6949096 Davison et al. Sep 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6965812 Wang et al. Nov 2005 B2
6974411 Belson Dec 2005 B2
6974449 Niemeyer Dec 2005 B2
6979423 Moll Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994703 Wang et al. Feb 2006 B2
6994708 Manzo Feb 2006 B2
6997908 Carrillo, Jr. et al. Feb 2006 B2
7025064 Wang et al. Apr 2006 B2
7027892 Wang et al. Apr 2006 B2
7033344 Imran Apr 2006 B2
7039453 Mullick May 2006 B2
7042184 Oleynikov et al. May 2006 B2
7048745 Tierney et al. May 2006 B2
7053752 Wang et al. May 2006 B2
7063682 Whayne et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066926 Wallace et al. Jun 2006 B2
7071920 Bohn Jul 2006 B2
7074179 Wang et al. Jul 2006 B2
7077446 Kameda et al. Jul 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7098893 Rogers Aug 2006 B2
7105000 McBrayer Sep 2006 B2
7107090 Salisbury, Jr. et al. Sep 2006 B2
7109678 Kraus et al. Sep 2006 B2
7118582 Wang et al. Oct 2006 B1
7121781 Sanchez et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7147650 Lee Dec 2006 B2
7155315 Niemeyer et al. Dec 2006 B2
7169141 Brock et al. Jan 2007 B2
7182025 Ghorbel et al. Feb 2007 B2
7182089 Ries Feb 2007 B2
7199545 Oleynikov et al. Apr 2007 B2
7206626 Quaid, III Apr 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7210364 Ghorbel et al. May 2007 B2
7214230 Brock et al. May 2007 B2
7217240 Snow May 2007 B2
7239940 Wang et al. Jul 2007 B2
7250028 Julian et al. Jul 2007 B2
7259652 Wang et al. Aug 2007 B2
7273488 Nakamura et al. Sep 2007 B2
7311107 Harel et al. Dec 2007 B2
7339341 Oleynikov et al. Mar 2008 B2
7372229 Farritor et al. May 2008 B2
7447537 Funda et al. Nov 2008 B1
7492116 Oleynikov et al. Feb 2009 B2
7566300 Devierre et al. Jul 2009 B2
7574250 Niemeyer Aug 2009 B2
7637905 Saadat et al. Dec 2009 B2
7645230 Mikkaichi et al. Jan 2010 B2
7655004 Long Feb 2010 B2
7670329 Flaherty et al. Mar 2010 B2
7731727 Sauer Jun 2010 B2
7762825 Burbank et al. Jul 2010 B2
7772796 Farritor et al. Aug 2010 B2
7785251 Wilk Aug 2010 B2
7785333 Miyamoto et al. Aug 2010 B2
7789825 Nobis et al. Sep 2010 B2
7794494 Sahatjian et al. Sep 2010 B2
7865266 Moll et al. Jan 2011 B2
7960935 Farritor et al. Jun 2011 B2
8021358 Doyle et al. Sep 2011 B2
8179073 Farritor et al. May 2012 B2
8231610 Jo et al. Jul 2012 B2
8343171 Farritor et al. Jan 2013 B2
8353897 Doyle et al. Jan 2013 B2
8679096 Farritor et al. Mar 2014 B2
8828024 Farritor et al. Sep 2014 B2
8834488 Farritor et al. Sep 2014 B2
8894633 Farritor et al. Nov 2014 B2
8968267 Nelson et al. Mar 2015 B2
8968332 Farritor et al. Mar 2015 B2
8974440 Farritor et al. Mar 2015 B2
9010214 Markvicka et al. Apr 2015 B2
9060781 Farritor et al. Jun 2015 B2
9089353 Farritor et al. Jul 2015 B2
9179981 Farritor et al. Nov 2015 B2
9498292 Mondry et al. Nov 2016 B2
9579088 Farritor et al. Feb 2017 B2
9649020 Finlay May 2017 B2
9743987 Farritor et al. Aug 2017 B2
9757187 Farritor et al. Sep 2017 B2
9770305 Farritor et al. Sep 2017 B2
9883911 Farritor et al. Feb 2018 B2
9888966 Farritor et al. Feb 2018 B2
9956043 Farritor et al. May 2018 B2
10111711 Farritor et al. Oct 2018 B2
10219870 Mondry et al. Mar 2019 B2
10307199 Farritor et al. Jun 2019 B2
10335024 Rentschler et al. Jul 2019 B2
10342561 Farritor et al. Jul 2019 B2
10376322 Frederick et al. Aug 2019 B2
10470828 Markvicka et al. Nov 2019 B2
10582973 Wilson et al. Mar 2020 B2
10667883 Farritor et al. Jun 2020 B2
10675110 Farritor Jun 2020 B2
10702347 Farritor et al. Jul 2020 B2
10751136 Farritor et al. Aug 2020 B2
10806538 Farritor et al. Oct 2020 B2
10966700 Farritor et al. Apr 2021 B2
20010018591 Brock et al. Aug 2001 A1
20010049497 Kalloo et al. Dec 2001 A1
20020003173 Bauer et al. Jan 2002 A1
20020013601 Nobles et al. Jan 2002 A1
20020026186 Woloszko et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020065507 Zando-Azizi May 2002 A1
20020091374 Cooper Jun 2002 A1
20020103417 Gazdzinski Aug 2002 A1
20020111535 Kim et al. Aug 2002 A1
20020120254 Julian et al. Aug 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20020140392 Borenstein et al. Oct 2002 A1
20020147487 Sundquist et al. Oct 2002 A1
20020151906 Demarais et al. Oct 2002 A1
20020156347 Kim et al. Oct 2002 A1
20020171385 Kim et al. Nov 2002 A1
20020173700 Kim et al. Nov 2002 A1
20020190682 Schempf et al. Dec 2002 A1
20030020810 Takizawa et al. Jan 2003 A1
20030045888 Brock et al. Mar 2003 A1
20030065250 Chiel et al. Apr 2003 A1
20030089267 Ghorbel et al. May 2003 A1
20030092964 Kim et al. May 2003 A1
20030097129 Davison et al. May 2003 A1
20030100817 Wang et al. May 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030135203 Wang et al. Jun 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030144656 Ocel et al. Jul 2003 A1
20030159535 Grover et al. Aug 2003 A1
20030167000 Mullick Sep 2003 A1
20030172871 Scherer Sep 2003 A1
20030179308 Zamorano et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030229268 Uchiyama et al. Dec 2003 A1
20030229338 Irion et al. Dec 2003 A1
20030230372 Schmidt Dec 2003 A1
20040024311 Quaid Feb 2004 A1
20040034282 Quaid Feb 2004 A1
20040034283 Quaid Feb 2004 A1
20040034302 Abovitz et al. Feb 2004 A1
20040050394 Jin Mar 2004 A1
20040070822 Shioda et al. Apr 2004 A1
20040099175 Perrot et al. May 2004 A1
20040102772 Baxter et al. May 2004 A1
20040106916 Quaid et al. Jun 2004 A1
20040111113 Nakamura et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138552 Harel et al. Jul 2004 A1
20040140786 Borenstein Jul 2004 A1
20040153057 Davison Aug 2004 A1
20040173116 Ghorbel et al. Sep 2004 A1
20040176664 Iddan Sep 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040225229 Viola Nov 2004 A1
20040254680 Sunaoshi Dec 2004 A1
20040267326 Ocel et al. Dec 2004 A1
20050014994 Fowler et al. Jan 2005 A1
20050021069 Feuer et al. Jan 2005 A1
20050029978 Oleynikov et al. Feb 2005 A1
20050043583 Killmann et al. Feb 2005 A1
20050049462 Kanazawa Mar 2005 A1
20050054901 Koshino Mar 2005 A1
20050054902 Konno Mar 2005 A1
20050064378 Toly Mar 2005 A1
20050065400 Banik et al. Mar 2005 A1
20050083460 Hattori et al. Apr 2005 A1
20050095650 Julius et al. May 2005 A1
20050096502 Khalili May 2005 A1
20050143644 Gilad et al. Jun 2005 A1
20050154376 Riviere et al. Jul 2005 A1
20050165449 Cadeddu et al. Jul 2005 A1
20050234435 Layer Oct 2005 A1
20050283137 Doyle et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20050288665 Woloszko Dec 2005 A1
20060020272 Gildenberg Jan 2006 A1
20060046226 Bergler et al. Mar 2006 A1
20060100501 Berkelman et al. May 2006 A1
20060119304 Farritor et al. Jun 2006 A1
20060149135 Paz Jul 2006 A1
20060152591 Lin Jul 2006 A1
20060155263 Lipow Jul 2006 A1
20060195015 Mullick et al. Aug 2006 A1
20060196301 Oleynikov et al. Sep 2006 A1
20060198619 Oleynikov et al. Sep 2006 A1
20060241570 Wilk Oct 2006 A1
20060241732 Denker et al. Oct 2006 A1
20060253109 Chu Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20070032701 Fowler et al. Feb 2007 A1
20070043397 Ocel et al. Feb 2007 A1
20070055342 Wu et al. Mar 2007 A1
20070080658 Farritor et al. Apr 2007 A1
20070106113 Ravo May 2007 A1
20070123748 Meglan May 2007 A1
20070135803 Belson Jun 2007 A1
20070142725 Hardin et al. Jun 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070156211 Ferren et al. Jul 2007 A1
20070167955 De La Menardiere et al. Jul 2007 A1
20070225633 Ferren et al. Sep 2007 A1
20070225634 Ferren et al. Sep 2007 A1
20070241714 Oleynikov et al. Oct 2007 A1
20070244520 Ferren et al. Oct 2007 A1
20070250064 Darois et al. Oct 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20080004634 Farritor et al. Jan 2008 A1
20080015565 Davison Jan 2008 A1
20080015566 Livneh Jan 2008 A1
20080033569 Ferren et al. Feb 2008 A1
20080045803 Williams et al. Feb 2008 A1
20080058835 Farritor et al. Mar 2008 A1
20080058989 Oleynikov et al. Mar 2008 A1
20080103440 Ferren et al. May 2008 A1
20080109014 de la Pena May 2008 A1
20080111513 Farritor et al. May 2008 A1
20080119870 Williams et al. May 2008 A1
20080132890 Woloszko et al. Jun 2008 A1
20080161804 Rioux et al. Jun 2008 A1
20080164079 Ferren et al. Jul 2008 A1
20080183033 Bern et al. Jul 2008 A1
20080221591 Farritor et al. Sep 2008 A1
20080269557 Marescaux et al. Oct 2008 A1
20080269562 Marescaux et al. Oct 2008 A1
20090012532 Quaid et al. Jan 2009 A1
20090020724 Paffrath Jan 2009 A1
20090024142 Ruiz Morales Jan 2009 A1
20090048612 Farritor et al. Feb 2009 A1
20090054909 Farritor et al. Feb 2009 A1
20090069821 Farritor et al. Mar 2009 A1
20090076536 Rentschler et al. Mar 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090143787 De La Pena Jun 2009 A9
20090163929 Yeung et al. Jun 2009 A1
20090171373 Farritor et al. Jul 2009 A1
20090234369 Bax et al. Sep 2009 A1
20090236400 Cole et al. Sep 2009 A1
20090240246 Devill et al. Sep 2009 A1
20090247821 Rogers Oct 2009 A1
20090248038 Blumenkranz et al. Oct 2009 A1
20090281377 Newell et al. Nov 2009 A1
20090305210 Guru et al. Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100016659 Weitzner et al. Jan 2010 A1
20100016853 Burbank Jan 2010 A1
20100042097 Newton et al. Feb 2010 A1
20100056863 Dejima et al. Mar 2010 A1
20100069710 Yamatani et al. Mar 2010 A1
20100069940 Miller et al. Mar 2010 A1
20100081875 Fowler et al. Apr 2010 A1
20100139436 Kawashima et al. Jun 2010 A1
20100185212 Sholev Jul 2010 A1
20100198231 Manzo et al. Aug 2010 A1
20100204713 Ruiz Morales Aug 2010 A1
20100245549 Allen et al. Sep 2010 A1
20100250000 Blumenkranz et al. Sep 2010 A1
20100262162 Omori Oct 2010 A1
20100292691 Brogna Nov 2010 A1
20100318059 Farritor et al. Dec 2010 A1
20110020779 Hannaford et al. Jan 2011 A1
20110071347 Rogers et al. Mar 2011 A1
20110071544 Steger et al. Mar 2011 A1
20110077478 Freeman et al. Mar 2011 A1
20110098529 Ostrovsky et al. Apr 2011 A1
20110224605 Farritor et al. Sep 2011 A1
20110230894 Simaan et al. Sep 2011 A1
20110237890 Farritor et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110264078 Lipow et al. Oct 2011 A1
20110270443 Kamiya et al. Nov 2011 A1
20110276046 Heimbecker et al. Nov 2011 A1
20120029727 Sholev Feb 2012 A1
20120035582 Nelson et al. Feb 2012 A1
20120041595 Greeley et al. Feb 2012 A1
20120109150 Quaid et al. May 2012 A1
20120116362 Kieturakis May 2012 A1
20120179168 Farritor et al. Jul 2012 A1
20120253515 Coste-Maniere et al. Oct 2012 A1
20130063351 Talasani Mar 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130197697 Schaible et al. Aug 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20140039515 Mondry et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140058205 Frederick et al. Feb 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20150051446 Farritor et al. Feb 2015 A1
20150190170 Frederick et al. Jul 2015 A1
20180168758 Lutzow Jun 2018 A1
Foreign Referenced Citations (60)
Number Date Country
102821918 Dec 2012 CN
102010040405 Mar 2012 DE
0105656 Apr 1984 EP
0279591 Aug 1988 EP
1354670 Oct 2003 EP
2286756 Feb 2011 EP
2286756 Feb 2011 EP
2329787 Jun 2011 EP
2563261 Mar 2013 EP
2684528 Jan 2014 EP
2815705 Dec 2014 EP
2881046 Oct 2015 EP
2937047 Oct 2015 EP
63241626 Oct 1988 JP
05-115425 May 1993 JP
2006508049 Sep 1994 JP
07-016235 Jan 1995 JP
07-136173 May 1995 JP
7306155 Nov 1995 JP
08-224248 Sep 1996 JP
2001500510 Jan 2001 JP
2001505810 May 2001 JP
2003220065 Aug 2003 JP
2004144533 May 2004 JP
2004-180781 Jul 2004 JP
2004322310 Nov 2004 JP
2004329292 Nov 2004 JP
2006507809 Mar 2006 JP
2009106606 May 2009 JP
2010533045 Oct 2010 JP
2010536436 Dec 2010 JP
2011504794 Feb 2011 JP
2011045500 Mar 2011 JP
2011115591 Jun 2011 JP
199221291 May 1991 WO
2001089405 Nov 2001 WO
2002082979 Oct 2002 WO
2002100256 Dec 2002 WO
2005009211 Jul 2004 WO
2005044095 May 2005 WO
2006052927 Aug 2005 WO
2006005075 Jan 2006 WO
2006079108 Jan 2006 WO
2006079108 Jul 2006 WO
2007011654 Jan 2007 WO
2007111571 Oct 2007 WO
2007149559 Dec 2007 WO
2009023851 Feb 2009 WO
2009144729 Dec 2009 WO
2010050771 May 2010 WO
2011060187 May 2011 WO
2011075693 Jun 2011 WO
2011118646 Sep 2011 WO
2011135503 Nov 2011 WO
2013009887 Jan 2013 WO
2014011238 Jan 2014 WO
2015088655 Jun 2015 WO
2016114090 Jul 2016 WO
2016126334 Aug 2016 WO
2016114090 Aug 2017 WO
Non-Patent Literature Citations (38)
Entry
Abbott et al., “Design of an Endoluminal NOTES Robotic System,” from the Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007, pp. 410-416.
Allendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy 1997; 11:427-430.
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery,” Doctoral Dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon Unviersity, May 2004, 167pp.
Atmel 80C5X2 Core, http://www.atmel.com, 2006, 186pp.
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995, 25pp.
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002; 16: 1389-1402.
Bauer et al., “Case Report: Remote Percutaneous Renal Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347.
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330.
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg.
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001; 40(1): 84-91.
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; vol. 126, pp. 1-5.
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004, pp. 1-7.
Calafiore et al., Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,: Ann Thorac Surg, 1999; 67: 450-456.
Camarillo et al., “Robotic Technology in Surgery: Past, Present and Future,” The American Journal of Surgery, 2004; 188: 2S-15.
Cavusoglu et al., “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” In McLaughliin, M.L., Hespanha, J.P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001, 28pp.
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp.
Green, “Telepresence Surgery”, Jan. 1, 1995, Publisher: IEEE Engineering in Medicine and Biology.
Cleary et al., “State of the Art in Surgical Rooties: Clinical Applications and Technology Challenges”, “Computer Aided Surgery”, Jan. 1, 2002, pp. 312-328, vol. 6.
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Jan. 1, 2002, pp. 1-17.
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg Clin North Am, 2003 83(6): 1317-1320.
Franklin et al.,“Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46.
Flynn et al., “Tomorrow's surgery: micromotors and microrobots for minimally invasive procedures,” Minimally Invasive Surgery & Allied Technologies, 1998; 7(4): 343-352.
Fireman et al., “Diagnosing small bowel Crohn's desease with wireless capsule endoscopy,” Gut 2003; 52: 390-392.
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference to Robotics & Automation, Apr. 2000; 1509-1516.
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimaly Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13pp.
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003, 46(1): 37-13.
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002, 47 Suppl. 1, Pt. 1: 12-15.
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994: 814-819.
Fukuda et al., “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994, pp. 2290-2295.
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committe,” U.S. Food and Drug Adminstration, available at http://www.fdaJ:?;ov, Finalized: Nov. 7, 2003 Updated: Jun. 24, 2005, 11 pp.
Dumpert et al., “Improving in Vivo Robot Visioin Quality,” from the Proceedings of Medicine Meets Virtual Realtiy, Long Beach, CA, Jan. 26-29, 2005. 1 pg.
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579.
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999, 319: 1-6.
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007, 3 pp.
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005, 4pp.
Chanthasopeephan et al., (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimenal Results,” Annals of Biomedical Engineering 31: 1372-1382.
Cavusoglu et al.,“Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29.
Guber et al., “Miniaturized Instrument Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinische Technic. 2002, Band 47, Erganmngsband 1: 198-201.
Related Publications (1)
Number Date Country
20200297448 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62427357 Nov 2016 US
Continuations (1)
Number Date Country
Parent 15826166 Nov 2017 US
Child 16896678 US