1. Technical Field
The present invention pertains to the art of controlling exoskeleton systems, and more particularly, to a control system which is adapted to be coupled to a person.
2. Discussion of the Prior Art
Patients who have difficulty walking often use wheelchairs for mobility. It is a common and well-respected opinion in the field that postponing the use of wheelchairs will retard the onset of other types of secondary disabilities and diseases. The ramifications of long-term wheelchair use are secondary injuries including hip, knee, and ankle contractures, heterotopic ossification of lower extremity joints, frequent urinary tract infection, spasticity, and reduced heart and circulatory function. These injuries must be treated with hospital care, medications, and several surgical procedures. Physicians strongly advocate the idea that it is essential for patients to forgo the use of wheelchairs and remain upright and mobile as much as possible.
Functional Electrical Stimulation (FES) is primarily used to restore function in people with disabilities. FES is a technique that uses electrical currents to activate muscles in lower extremities affected by paralysis resulting from spinal cord injury (SCI), head injury, stroke and other neurological disorders. The patient wears a set of orthosis for stability. An electrical stimulator is always in the “off” mode except when the patient decides to walk. By triggering a mini-switch mounted on each handlebar of a rolling walker, the patient activates one or some of the quadriceps and hamstrings and muscles. The trigger signal from the switch is transmitted to the stimulator via a cable from the walker. The pulsed current is applied to the patient via conventional carbon-impregnated rubber electrodes covered with solid gel. The book titled “Functional Electrical Stimulation: Standing and Walking After Spinal Cord Injury”, Alojz R. Kralj, Tadej Bajd, CRC Press 1989, describes various technologies associated with FES. Another informative reference is “Current Status of Walking Orthoses for Thoracic Paraplegics”, published in The Iowa Orthopedic Journal by D'Ambrosia.
Another ambulation method uses powered exoskeleton systems. Most powered medical exoskeletons include interface devices that allows a user to command the exoskeleton, such that the user's decision on which leg to move and how to move it is reflected in the motion of the exoskeletons through them.
Currently, there are different types of user interface for commanding exoskeletons. For instance, U.S. Patent Application Publication No. 2011/0066088 A1, incorporated herein by reference, discloses an exoskeleton with a mechanically connected interface device that consists of a joystick and a keypad, which are used as a user input means to input control instructions to the exoskeleton's control system. Drawbacks of this device are that it is bulky and it requires the user's arm to be coupled with part of the exoskeleton. U.S. Pat. No. 7,153,242, incorporated herein by reference, discloses a gait-locomotor apparatus with a Man-Machine Interface through which a user controls modes of operation and parameters of the device, and receives various indications. However, each motion of the apparatus is triggered by a control unit, not directly by a user, based on measurements from various sensors. This limits the user's control capability of the apparatus, and requires a number of sensors to be installed on the apparatus.
Accordingly, a need remains in the art for a simpler, more versatile interface device for control of various exoskeletons. One solution is to exploit an instrumented glove as an interface device. Currently, instrumented gloves are used in various applications. For example, attempts to use such gloves as computer mice are described in U.S. Pat. Nos. 7,057,604 B2, and 6,154,199. Moreover, U.S. Pat. No. 6,681,638 B2, discloses an instrumented glove device that is adapted to wireless material handling systems.
Yet, no prior art instrumented glove type device has been designed for exoskeleton interface devices. Further, many such devices are user input devices with actuating mechanisms on the palm of a user's hand, which would be undesirable if a user were required to utilize the palm of the hand for another purpose, such as leaning on a cane or other balancing aid. The present invention discloses an interface device that is worn on a user's hand. Furthermore, in the present invention, the instrumented glove is reduced to finger sleeve type signal generators. This structure of the present invention minimizes the hindrance of a user's hand movement caused by the glove. Furthermore, the present invention maximizes a user's capability to control an exoskeleton, as well as provides feedback signals from the exoskeleton.
This patent application describes an input device for commanding an exoskeleton worn by a person. The input device is adapted to be coupled to a person. The input device comprises at least one signal generator which is adapted to be coupled to a person's finger. The signal generator is capable of generating at least one electric signal when the signal generator gets contacted. The input device also comprises an input device controller which is adapted to be coupled to a person's body. In operation, an input device controller receives and processes at least one electric signal and transmits a command signal to the exoskeleton to perform a function. In some embodiments, at least one wire transmits at least one electric signal to the input device controller. In some embodiments of the invention two or more signal generators can be coupled to a finger. In some embodiments of the invention, the signal generator can be coupled to a practitioner's finger and the practitioner can generate at least one command signal to the exoskeleton to perform a function.
a depicts a user interface device of the present invention;
b depicts a rear perspective view of a powered exoskeleton system worn by a user, controlled by the present invention;
A first embodiment of an exoskeleton system for use with the present invention is generally indicated at 130 in
In some embodiments, the exoskeletons are powered electrically and some are powered hydraulically. U.S. Pat. No. 7,628,766 describes one example of a lower extremity exoskeleton system. Additionally, U.S. Patent Application Publication Nos. 2007/0056592 and 2006/0260620 teach various architectures of lower extremities.
In the embodiment depicted in
In the first embodiment, support device 112 is in the form of a set of first and second crutches, wherein each of the first and second crutches includes a handle indicated at 113. Although a set of crutches is depicted, it should be understood that a user could utilize only one crutch at a time.
In accordance with the present invention, a user input device signal generator 100 shown in
Input device 100 in
In some embodiments of the invention, an electric signal may be generated when the wearer contacts a signal generator 102 with a crutch 112, as shown in
Some individuals may like to use a walker 114 when operating an exoskeleton 130. In some embodiments of the invention, where walker 114 is used in conjunction with an exoskeleton 130, as shown in
In some embodiments of the invention, the command signal 111 generated by signal generator 102 represents a force between the wearer's finger and the contacting object, such as walker, crutches, or parallel bars.
The actuators of signal generators 102 may comprise an element or combination of elements selected from the group consisting of: pushbuttons, switches, including momentary switches, rocker switches, sliding switches, capacitive switches, and resistive switches, thumbwheels, thumb balls, roll wheels, track balls, keys, knobs, potentiometers, encoders, force sensors, strain gauge forces sensor and linear variable differential transformers (LVDTs).
In some embodiments of the invention, as shown in
In some embodiments of the invention, exoskeleton 130 is capable of sending a feedback signal to input device controller 104 for processing, wherein the feedback signal represents the exoskeleton's status. In some embodiments of the invention input device controller 104 further comprises a display 120. In operation, display 120 shows the status of input device controller 104 or exoskeleton 130 to the user. In some embodiments of the invention display 120 displays the status of input device controller 104 or exoskeleton 130 with an element or combination of elements selected from the group consisting of: text, still image, animation, and video clips.
In some embodiments of the invention input device controller 104 further comprises a vibrating motor 170. In operation, vibrating motor 170 provides tactile sensation related to the status of exoskeleton 130 or input device controller 104 to the user with an element or combination of elements selected from the group consisting of continuous, short term intermittent, and long term intermittent vibration.
In some embodiments of the invention input device controller 104 further comprises at least one speaker 171. In operation, speaker 171 generates audible sound related to the status of exoskeleton 130 or input device controller 104 to the user.
In some embodiments of the invention input device 100 comprises of at least one signal generator 102 and input device controller 104 can be coupled to a practitioner and the practitioner can generate at least one signal to command exoskeleton 130. In some embodiments of the invention, signal generator 102 can be coupled to a practitioner and input device controller 104 can be coupled to a person wearing exoskeleton 130.
In some embodiments of the invention, signal generator 102 coupled to a person's finger can generate at least one electric signal when signal generator 102 contacts another finger. Further embodiments of the invention contain components similar to those described previously.
Although described with reference to a preferred embodiment of the invention, it should be readily understood that various changes and/or modifications can be made to the invention without departing from the spirit thereof. For instance, it should be understood that exoskeleton 130 can be any known powered exoskeleton device adapted for use with the present invention. In general, the invention is only intended to be limited by the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6097369 | Wambach | Aug 2000 | A |
6128004 | McDowall et al. | Oct 2000 | A |
6154199 | Butler | Nov 2000 | A |
6681638 | Kazerooni et al. | Jan 2004 | B2 |
7042438 | McRae et al. | May 2006 | B2 |
7057604 | Bajramovic | Jun 2006 | B2 |
7153242 | Goffer | Dec 2006 | B2 |
7628766 | Kazerooni et al. | Dec 2009 | B1 |
7947004 | Kazerooni et al. | May 2011 | B2 |
8035629 | Daniel | Oct 2011 | B2 |
8622938 | Sankai | Jan 2014 | B2 |
8648805 | Bailen | Feb 2014 | B2 |
8681101 | Haney et al. | Mar 2014 | B1 |
20020067342 | Proper | Jun 2002 | A1 |
20020175894 | Grillo | Nov 2002 | A1 |
20060260620 | Kazerooni et al. | Nov 2006 | A1 |
20070056592 | Angold et al. | Mar 2007 | A1 |
20090036804 | Horst | Feb 2009 | A1 |
20100094188 | Goffer et al. | Apr 2010 | A1 |
20110066088 | Little et al. | Mar 2011 | A1 |
20130158445 | Kazerooni et al. | Jun 2013 | A1 |
20130231595 | Zoss et al. | Sep 2013 | A1 |
20130237884 | Kazerooni et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
WO 2012027336 | Mar 2012 | WO |
WO 2012037555 | Mar 2012 | WO |
WO 2012048123 | Apr 2012 | WO |
Entry |
---|
Hasegawa, Y.; Junho Jang; Sankai, Y., “Cooperative walk control of paraplegia patient and assistive system,” Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on , pp. 4481,4486, Oct. 10-15, 2009. |
Caldwell, D.G.; Kocak, O.; Andersen, U., “Multi-armed dexterous manipulator operation using glove/exoskeleton control and sensory feedback,” Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on , vol. 2, pp. 567,572 vol. 2, Aug. 5-9, 1995. |
Caldwell, D.G.; Gosney, C., “Enhanced tactile feedback (tele-taction) using a multi-functional sensory system,” Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on , pp. 955,960 vol. 1, May 2-6, 1993. |
Kazerooni, H.; Fairbanks, D.; Chen, A.; Shin, G., “The magic glove,” Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on , vol. 1, No., pp. 757-763, vol. 1, Apr. 26-May 1, 2004. |
Eun-Hye Jang et al., Development of a Bio/Kinesthetic Sensor Fusion System for Walking-Support Exoskeletons, Nov. 2010, pp. 227-230, http://www.dbpia.co.kr/Journal/ArticleDetail/2929670. |
Number | Date | Country | |
---|---|---|---|
20140358290 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61828885 | May 2013 | US |