The present disclosure relates, in general, to wireless communications and, more particularly, systems and methods relating to user equipment positioning measurement procedures under active bandwidth part switching.
New Radio (NR), which may also be known as 55th Generation (5G) or Next Generation, architecture is being discussed in 3rd Generation Partnership Project (3GPP).
Location Management Function (LMF) is the location node in New Radio (NR). There are also interactions between the location node and the gNB via the NR Positioning Protocol A (NRPPa) (not illustrated in
The following NR positioning measurements performed by the UE have been specified:
Synchronization Signal Block (SSB) and Channel State Information-Reference Signal (CSI-RS) based measurements defined for mobility include, for example, Synchronization Signal-Reference Signal Received Power (SS-RSRP), Synchronization Signal-Reference Signal Received Quality (SS-RSRQ), Channel State Information-Reference Signal Received Power (CSI-RSRP), Channel State Information-Reference Signal Received Quality (CSI-RSRQ), etc.
Positioning Reference Signals
Positioning reference signals (PRS) are periodically transmitted on a positioning frequency layer in PRS resources in the downlink (DL) by the gNB. The information about the PRS resources is signaled to the UE by the positioning node via higher layers but may also be provided by base station such as by broadcast. Each positioning frequency layer comprises PRS resource sets, where each PRS resource set comprises one or more PRS resources. All the DL PRS resources within one PRS resource set are configured with the same periodicity. The PRS resource periodicity (TperPRS) comprises:
Each PRS resource can also be repeated within one PRS resource set and takes values TrepPRS∈{1,2,4,6,8,16,32}.
PRS are transmitted in consecutive number of symbols (LPRS) within a slot: LPRS∈{2,4,6,12}. The following DL PRS RE patterns, with comb size KPRS equal to number of symbols LPRS are supported
Maximum PRS BW is 272 PRBs. Minimum PRS BW is 24 PRBs. The configured PRS BW is always a multiple of 4.
Sounding Reference Signals (SRS)
For positioning measurement, the UE can be configured (typically by the serving base station) with SRS resource for SRS transmission in Ns∈{1,2,4,8,12} number of adjacent symbols anywhere within the slot. The periodic SRS resource can be configured with a periodicity (TSRS):
SRS BW is also configurable and can vary from 4 PRBs to 272 PRBs.
Bandwidth Part Operation
To enable the UE power saving and avoid interference, the UE can be configured by the higher layer with a set of bandwidth parts (BWPs) for receptions by the UE (DL BWP set e.g. up to 4 DL BWPs)) and a set of BWPs for transmissions by the UE (UL BWP set (e.g. up to 4 UL BWPs) in a serving cell, e.g. SpCell (e.g. Primary Cell (PCell), Primary Secondary Cell (PSCell)), Secondary Cell (SCell) etc. Generally, SpCell either refers to the PCell of the MCG or the PSCell of the SCG depending on if the MAC entity is associated to the MCG or the SCG, respectively
Each BWP can be associated with multiple parameters. Examples of such parameters are: BW (e.g. number of time-frequency resources (e.g. resource blocks such as 25 PRBs etc.), location of BWP in frequency (e.g. starting Resource Block (RB) index of BWP or center frequency, etc.), subcarrier spacing (SCS), cyclic prefix, any other baseband parameter (e.g. Multiple Input-Multiple Output (MIMO) layer, receivers, transmitters, Hybrid Automatic Repeat Request (HARQ) related parameters etc.) etc.
The UE is served (e.g. receive and transmits signals) only on the active BWP(s). At least one of the configured DL BWPs can be active for reception and at least one of the configured UL BWPs can be active for transmission in the serving cell. The UE can be configured to switch the active BWP based on a timer (e.g. BWP inactivity timer such as bwp-InactivityTimer), by receiving a command or a message from another node (e.g. from the BS) etc. Examples of command or messages are downlink control information (DCI) sent on Physical Downlink Control Channel (PDCCH), RRC message, Medium Access Control (MAC), etc. Any active BWP can be switched independently. For example, UL and DL active BWPs can be switched separately. The active BWP switching operation may involve change in one or more parameters associated with the BWP (described above e.g. BW, frequency location, etc.).
For example, when the timer (e.g. bwp-InactivityTimer) expires the UE may be required to switch to a reference active BWP, e.g., a default active BWP, one of the configured BWPs, etc.
In another example, when the UE receives a DCI command to switch an active BWP, then the UE may be required to switch its current active BWP to one of the configured BWPs indicated in the command.
In yet another example, when the UE receives a RRC message to switch an active BWP, then the UE may be required to switch its current active BWP to a new BWP indicated in the RRC message; this may also be called as reconfiguration of the active BWP. The switching may also comprise whereby the UE is first time configured with an active BWP e.g. when enters in RRC connected state.
Certain problems exist. For example, the UE performs positioning measurements such as, for example, RSTD, PRS-RSRP, UE Rx-Tx, etc., over a measurement period, which can span over several frames and can even be up to several seconds depending on reference signal (RS) configuration parameters (e.g. PRS and/or SRS configuration). Using a previously proposed method, a UE performs positioning measurements on cells of the serving carrier within the active BWP of the serving cell. This requires that the reference signal (RS) (e.g. PRS/SRS, etc.) used for positioning measurements are always within the active BWP over the entire measurement period. Apparently, one advantage of this solution is avoiding the use of measurement gaps for the positioning measurements; but one main problem with this approach is putting stringent constraint(s) on the network such as, for example, scheduling restrictions. The UE's serving base station manages the BWP operation of the UE. For example, the UE's serving base station configures the UE with parameters related to BWP switching (e.g. BWP inactivity timer) and/or switches the active BWP, etc. But, the UE is configured for doing positioning measurements (e.g. RSTD, etc.) by the positioning node (e.g. LMF, etc.) e.g. via LPP protocol. This means the UE's serving base station is not aware of when the and for how long the UE performs the positioning measurements. Therefore, another problem is that the serving base station constantly relies on the UE input for any operation related to the active BWP switching. This will impact scheduling of signals on, for example, the Physical Downlink Shared Channel (PDSCH) , Physical Uplink Shared Chanel (PUSCH), etc., which is done within the active BWP. For example, the scheduling constraints can degrade UE throughput, or cause increased UE power consumption through use of a larger BWP when no positioning measurement is being made.
Certain aspects of the present disclosure and their embodiments may provide solutions to these or other challenges. In an example scenario, a UE performing a positioning measurement may be triggered to perform an active BWP switching. During the active BWP switching delay time the UE may also cause interruption in the transmission/reception of a serving cell. According to certain embodiments, methods, systems, and techniques are provided for defining UE behavior if the active BWP switching impacts or is expected to impact one or more positioning measurement occasions.
According to certain embodiments, a method by a wireless device includes determining that switching from a first active BWP to a second BWP in a first cell will affect at least one PMO during which at least one positioning measurement is to be performed. The at least one positioning measurement is suspended while performing the active BWP switching from the first active BWP to the second active BWP in the first cell.
According to certain embodiments, a wireless device includes processing circuitry configured to determine that switching from a first active BWP to a second BWP in a first cell will affect at least one PMO during which at least one positioning measurement is to be performed. The processing circuitry is configured to suspend the at least one positioning measurement while performing the active BWP switching from the first active BWP to the second active BWP in the first cell.
According to certain embodiments, a method by a network node includes receiving a request for a measurement gap configuration for performing at least one positioning measurement by a wireless device while or in response to performing active BWP switching from a first active BWP to a second BWP in a first cell. The network node modifies a positioning measurement configuration to include a measurement gap configuration and transmits the modified positioning measurement configuration including the measurement gap configuration to the wireless device.
According to certain embodiments, a network node includes processing circuitry configured to receive a request for a measurement gap configuration for performing at least one positioning measurement by a wireless device while or in response to performing active BWP switching from a first active BWP to a second BWP in a first cell. The processing circuitry is configured to modify a positioning measurement configuration to include a measurement gap configuration and transmit the modified positioning measurement configuration including the measurement gap configuration to the wireless device.
Certain embodiments may provide one or more of the following technical advantages. For example, one technical advantage may be that certain embodiments define UE behavior if the active BWP switching is triggered while the UE is doing the positioning measurements. As another example, a technical advantage may be that certain embodiments ensure that the UE meets performance of positioning measurement if the active BWP switching is triggered while the UE is doing the positioning measurements.
As another example, a technical advantage may be that certain embodiments reduce or at least minimize the interruption of positioning RS (e.g. PRS, SRS, etc.) due to the active BWP switching.
As another example, a technical advantage may be that certain embodiments enable the network node (e.g. positioning node) to adapt positioning measurement configuration to ensure that the UE continues doing the positioning measurements even if the active BWP switching is triggered.
As another example, a technical advantage may be that certain embodiments enable the requirements for emergency call, which relies on critical positioning methods (e.g. OTDOA based on RSTD), to be met even if the active BWP switching occurs during the positioning measurement.
As another example, a technical advantage may be that certain embodiments allow network base station nodes to adjust active BWP to maintain UE throughput, or to save power at the UE without static limitations from the possibility that a positioning measurement is ongoing in the UE.
Other advantages may be readily apparent to one having skill in the art. Certain embodiments may have none, some, or all of the recited advantages.
For a more complete understanding of the disclosed embodiments and their features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Some of the embodiments contemplated herein will now be described more fully with reference to the accompanying drawings. Other embodiments, however, are contained within the scope of the subject matter disclosed herein, the disclosed subject matter should not be construed as limited to only the embodiments set forth herein; rather, these embodiments are provided by way of example to convey the scope of the subject matter to those skilled in the art.
Generally, all terms used herein are to be interpreted according to their ordinary meaning in the relevant technical field, unless a different meaning is clearly given and/or is implied from the context in which it is used. All references to a/an/the element, apparatus, component, means, step, etc. are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any methods disclosed herein do not have to be performed in the exact order disclosed, unless a step is explicitly described as following or preceding another step and/or where it is implicit that a step must follow or precede another step. Any feature of any of the embodiments disclosed herein may be applied to any other embodiment, wherever appropriate. Likewise, any advantage of any of the embodiments may apply to any other embodiments, and vice versa. Other objectives, features and advantages of the enclosed embodiments will be apparent from the following description.
In some embodiments, a more general term “network node” may be used and may correspond to any type of radio network node or any network node, which communicates with a UE (directly or via another node) and/or with another network node. Examples of network nodes are NodeB, MeNB, ENB, a network node belonging to MCG or SCG, base station (BS), multi-standard radio (MSR) radio node such as MSR base station (MSR BS), eNodeB, gNodeB, network controller, radio network controller (RNC), base station controller (BSC), relay, donor node controlling relay, base transceiver station (BTS), access point (AP), transmission points, transmission nodes, Remote Radio Unit (RRU), Remote Radio Head (RRH), nodes in distributed antenna system (DAS), core network node (e.g. Mobile Switching Center (MSC), Mobility Management Entity (MME), etc.), Operations & Maintenance (O&M), Operations Support System (OSS), Self-Optimized Network (SON), positioning node (e.g. evolved Serving Mobile Location Center (E-SMLC)), Minimization Drive Test (MDT), test equipment (physical node or software), etc.
In some embodiments, the non-limiting term user equipment (UE) or wireless device may be used and may refer to any type of wireless device communicating with a network node and/or with another UE in a cellular or mobile communication system. Examples of UE are target device, device to device (D2D) UE, machine type UE or UE capable of machine to machine (M2M) communication, Personal Data Assistant (PDA), Tablet, mobile terminals, smart phone, laptop embedded equipped (LEE), laptop mounted equipment (LME), Universal Serial Bus (USB) dongles, UE category M1, UE category M2, Proximity Services (ProSe) UE, Vehicle-to-vehicle (V2V) UE, Vehicle-to-anything (V2X) UE, etc.
Additionally, terminologies such as base station/gNodeB and UE should be considered non-limiting and do in particular not imply a certain hierarchical relation between the two; in general, “gNodeB” could be considered as device 1 and “UE” could be considered as device 2 and these two devices communicate with each other over some radio channel. And in the following the transmitter or receiver could be either gNB, or UE.
The term radio access technology (RAT), may refer to any RAT e.g. Universal Terrestrial Radio Access (UTRA), Evolved Universal Terrestrial Radio Access (E-UTRA), narrow band internet of things (NB-IoT), WiFi, Bluetooth, next generation RAT, New Radio (NR), 4G, 5G, etc. Any of the equipment denoted by the term node, network node or radio network node may be capable of supporting a single or multiple RATs.
The term signal or radio signal used herein can be any physical signal or physical channel. Examples of DL physical signals are reference signal such as Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), Channel State Information-Reference Signal (CSI-RS), Demodulation Reference Signal (DMRS), signals in SSB, DRS, CRS, PRS etc. Examples of UL physical signals are reference signal such as SRS, DMRS etc. The term physical channel refers to any channel carrying higher layer information e.g. data, control etc. Examples of physical channels are Physical Broadcast Channel (PBCH), Narrowband PBCH (NPBCH), Physical Downlink Control Channel (PDCCH), Physical Downlink Shared Channel (PDSCH), short PUCCH (sPUCCH), short PDSCH (sPDSCH), short Physical Uplink Control Channel (sPUCCH), short Physical Uplink Shared Channel (sPUSCH), MTC Physical Downlink Control Channel (MPDCCH), narrowband PDCCH (NPDCCH), narrowband PDSCH (NPDSCH), Evolved PDCCH (E-PDCCH), PUSCH, PUCCH, narrowband PUSCH (NPUSCH), etc.
The term time resource used herein may correspond to any type of physical resource or radio resource expressed in terms of length of time. Examples of time resources are: symbol, time slot, subframe, radio frame, TTI, interleaving time, slot, sub-slot, mini-slot, etc.
The scenario comprising a UE served by at least one serving cell (cell1) is configured to perform one or more positioning measurements on reference signals (RS) operated by one or more cells on one or more carrier frequencies. The cells for positioning measurements may belong to a set comprising all neighbor cells or comprising all serving cells or comprising serving and neighbor cells, the serving cell (if any) may or may not be the same as cell1. Examples of cell1 are special cell (SpCell), SCell etc. Examples of SpCell are PCell, PSCell etc. Examples of RS used for positioning measurements are PRS, SRS, SSB, CSI-RS etc. The positioning measurement can be performed on one type or multiple types of RS depending on the type of the measurement e.g. RSTD on PRS while UE Rx-Tx time difference on both PRS and SRS, etc.
According to certain embodiments, a UE is autonomously configured to perform positioning measurements such as, for example, for UE based positioning. In other embodiments, the UE is configured to perform the positioning measurements by a network node (NW). In one example embodiment, the NW is a positioning node such as a Location Management Function (LMF), for example. In another example embodiment, the NW is different than the positioning node. For example, it can be a base station serving the UE.
According to certain embodiments, the UE is further configured to switch at least one active bandwidth part (BWP) on at least one serving cell, which may be called a cell1, in an example embodiment. For example the UE may be configured to switch downlink (DL) active BWP on cell1. In another example, the UE may be configured to switch the uplink (UL) active BWP on cell1. In yet another example, the UE may be configured to switch both its DL active BWP and UL active BWP on cell1. The UE may be configured to switch the active BWP(s) based on any of the mechanisms that may include, for example, timer based, DCI based or RRC based BWP switching.
According to certain embodiments, methods, systems, and techniques are provided for defining UE behavior if the active BWP switching impacts or is expected to impact one or more positioning measurement occasions. For example, if the active BWP switching action overlaps or is expected to overlap in time or frequency with at least K (K>0) number of resources in the positioning measurement occasions (or a group of consecutive or closely configured slots with PRS), the UE may take one or more actions. Examples of such actions comprising:
According to certain embodiments, methods, systems, and techniques are provided for a network node receiving information (e.g., from a UE or another NW node, etc.) about an impact or expected impact of the active BWP switching on one or more positioning measurements being performed by the UE. The network node may use the obtained information for taking one or more actions. Examples of actions comprising:
The carrier, F1, may also be called as frequency layer, a positioning frequency layer etc. As shown in
In one example, the UE may be configured with measurement gaps for doing the positioning measurements. For example, the measurement gaps may include periodic gaps where each gap of X1 time resources (e.g. measurement gap length (MGL)) occurs periodically every X2 time resources (e.g. measurement gap repetition period (MGRP)) such as, for example, X1=6 ms and X2=40 ms. In order to enable the UE to perform the positioning measurements, at least M out of N PMOs at least partially lie within the measurement gaps. In a particular embodiment, M may equal N. The measurement gap (e.g. MGL) in a gap pattern may also be referred to as PMO.
In a particular embodiment, the UE may not be configured with measurement gaps for doing the positioning measurements. In this case, in one example, the BW of RS within PMO at least partially lie within the active BWP and, therefore, the UE can measure within the active BWP.
In another particular embodiment, the BW of RS within the active BWP is below threshold and gaps are also not configured. In this case, the UE may autonomously retune its receiver during one or multiple PMO occasions for performing the positioning measurements.
According to certain embodiments, the UE configured to perform positioning measurements determines or monitors if the active BWP switching is triggered or is expected to be triggered in at least one serving cell such as, for example, cell1. In a particular embodiment, the determination or monitoring may be based on receiving a message such as, for example, a DCI command and/or internally such as, for example, in response to expiration of a timer. The UE may monitor the triggering of the active BWP switching in one or more serving cells particularly over certain time periods such as, for example, during the PMOs.
In some example embodiments, the PMO may also comprise a transmission occasion where the UE needs to transmit in UL for positioning purpose such as for performing a positioning measurement on UL signals and/or for enabling a radio node (e.g. base station) to perform positioning measurement on signal received from the UE. Examples of transmission occasion comprising duration over which the UE transmits uplink signal, a time resource over the UE transmit UL signal for positioning measurements. UL signals for positioning purposes may include uplink reference signal (UL RS), which may include, for example, DMRS, SRS, etc.
In other example embodiments, the PMO may also comprise a measurement gap if measurement gaps are used by the UE for performing positioning measurements. In this case the signals used for positioning measurements are within the measurement gaps. For example, the measurement gaps are configured in a manner to ensure that reference signal (RS) for positioning such as PRS are within the measurement gaps. This enables the UE to measure the PRS in the gaps. If active BWP switching is triggered anywhere within a duration which is less than D1 time resources before the start of the PMO (e.g. less than 20 slots before the PMO starts), the active BWP switching may spill over or overlap at least partially over the PMO. This is because D1 may correspond to or is function of the time required by the UE to perform the active BWP switching. During the active BWP switching, the UE is not expected to receive and transmit any signal on the serving cell (cell1) where the active BWP is switched. The other cells on the carrier of cell1 and cells on other carriers are also interrupted at least partially during the active BWP switching. For example, assume D1=20 slots and PMO=10 slots. If the active BWP switching is triggered 15 slots before the start of the PMO, at least 5 initial slots of the PMO will be interrupted due to the active BWP switching. The active BWP switching may also involve interruption in one or more serving cells that occur within the active BWP switching delay.
According to certain embodiments, based on the outcome of the monitoring, the UE may take one or more actions. Different steps in the UE are described below with examples:
A. UE Determining Impact of Active BWP Switching on Positioning Measurement
If the UE determines or identifies that the active BWP switching is impacting or is expected to impact one or more PMOs, which the UE may use for the positioning measurements, the UE may adapt one or more procedures (such as those described in TR 3GPP section 5.2.2.1, for example). The impact on PMO due to the active BWP switching may be critical (e.g. severe) or non-critical (e.g. benign). Therefore, the UE may further determine the extent of the impact, in certain embodiments. If the impact is critical, the UE may adapt one or more procedures or certain procedures or take certain actions. If the impact is non-critical, the UE may not adapt any procedure or may not take any action or may take certain actions but without impacting the active BWP switching or positioning measurement procedures. Any impact which is not identified by the UE as critical is regarded as non-critical. Examples of scenarios in which the impact of the active BWP switching on the positioning measurement procedures is considered critical are:
In yet another particular example, the UE may also apply muting patterns configured for positioning measurements for determining the impact of the active BWP switching. For example, if the active BWP switching occurs during the time which overlaps with PMO which is muted, the UE may assume that the impact of then active BWP switching is non-critical. Otherwise, UE may assume that the impact is critical.
Conversely, when the UE is using measurement gaps and some PMO cannot be received due to gap sharing (e.g., receiving on another frequency), then the impact of active BWP switching to such PMO may be considered non-critical.
B. UE Actions Based on Impact of Active BWP Switching on Positioning Measurement
According to certain embodiments, if the impact of the active BWP switching is determined by the UE to be critical, the UE may perform one or more of the following actions or tasks or operations:
According to certain embodiments, the network node (e.g. first network node (NW1)) may receive information impact of the active BWP switching one or more positioning measurements performed or expected to be performed by the UE and/or information about the actions taken by the UE and based on the received information it may perform one or more tasks or operations. The network node such as, for example, first network node (NW1), may receive the above information from the UE or from another network node such as, for example, second network node (NW2). For example, if NW1 is a positioning node, it may receive information from the UE or from a base station (i.e. NW2) serving the UE. In another example, if NW1 is a base station serving the UE, it may receive information from the UE or the positioning node (i.e. NW2).
Examples of tasks which can be performed by NW1 comprising one or more of the following:
The wireless network may comprise and/or interface with any type of communication, telecommunication, data, cellular, and/or radio network or other similar type of system. In some embodiments, the wireless network may be configured to operate according to specific standards or other types of predefined rules or procedures. Thus, particular embodiments of the wireless network may implement communication standards, such as Global System for Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE), and/or other suitable 2G, 3G, 4G, or 5G standards; wireless local area network (WLAN) standards, such as the IEEE 802.11 standards; and/or any other appropriate wireless communication standard, such as the Worldwide Interoperability for Microwave Access (WiMax), Bluetooth, Z-Wave and/or ZigBee standards.
Network 106 may comprise one or more backhaul networks, core networks, IP networks, public switched telephone networks (PSTNs), packet data networks, optical networks, wide-area networks (WANs), local area networks (LANs), wireless local area networks (WLANs), wired networks, wireless networks, metropolitan area networks, and other networks to enable communication between devices.
Network node 160 and wireless device 110 comprise various components described in more detail below. These components work together in order to provide network node and/or wireless device functionality, such as providing wireless connections in a wireless network. In different embodiments, the wireless network may comprise any number of wired or wireless networks, network nodes, base stations, controllers, wireless devices, relay stations, and/or any other components or systems that may facilitate or participate in the communication of data and/or signals whether via wired or wireless connections.
In
Similarly, network node 160 may be composed of multiple physically separate components (e.g., a NodeB component and a RNC component, or a BTS component and a BSC component, etc.), which may each have their own respective components. In certain scenarios in which network node 160 comprises multiple separate components (e.g., BTS and BSC components), one or more of the separate components may be shared among several network nodes. For example, a single RNC may control multiple NodeB's. In such a scenario, each unique NodeB and RNC pair, may in some instances be considered a single separate network node. In some embodiments, network node 160 may be configured to support multiple radio access technologies (RATs). In such embodiments, some components may be duplicated (e.g., separate device readable medium 180 for the different RATs) and some components may be reused (e.g., the same antenna 162 may be shared by the RATs). Network node 160 may also include multiple sets of the various illustrated components for different wireless technologies integrated into network node 160, such as, for example, GSM, WCDMA, LTE, NR, WiFi, or Bluetooth wireless technologies. These wireless technologies may be integrated into the same or different chip or set of chips and other components within network node 160.
Processing circuitry 170 is configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being provided by a network node. These operations performed by processing circuitry 170 may include processing information obtained by processing circuitry 170 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored in the network node, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
Processing circuitry 170 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software and/or encoded logic operable to provide, either alone or in conjunction with other network node 160 components, such as device readable medium 180, network node 160 functionality. For example, processing circuitry 170 may execute instructions stored in device readable medium 180 or in memory within processing circuitry 170. Such functionality may include providing any of the various wireless features, functions, or benefits discussed herein. In some embodiments, processing circuitry 170 may include a system on a chip (SOC).
In some embodiments, processing circuitry 170 may include one or more of radio frequency (RF) transceiver circuitry 172 and baseband processing circuitry 174. In some embodiments, radio frequency (RF) transceiver circuitry 172 and baseband processing circuitry 174 may be on separate chips (or sets of chips), boards, or units, such as radio units and digital units. In alternative embodiments, part or all of RF transceiver circuitry 172 and baseband processing circuitry 174 may be on the same chip or set of chips, boards, or units.
In certain embodiments, some or all of the functionality described herein as being provided by a network node, base station, eNB or other such network device may be performed by processing circuitry 170 executing instructions stored on device readable medium 180 or memory within processing circuitry 170. In alternative embodiments, some or all of the functionality may be provided by processing circuitry 170 without executing instructions stored on a separate or discrete device readable medium, such as in a hard-wired manner. In any of those embodiments, whether executing instructions stored on a device readable storage medium or not, processing circuitry 170 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 170 alone or to other components of network node 160 but are enjoyed by network node 160 as a whole, and/or by end users and the wireless network generally.
Device readable medium 180 may comprise any form of volatile or non-volatile computer readable memory including, without limitation, persistent storage, solid-state memory, remotely mounted memory, magnetic media, optical media, random access memory (RAM), read-only memory (ROM), mass storage media (for example, a hard disk), removable storage media (for example, a flash drive, a Compact Disk (CD) or a Digital Video Disk (DVD)), and/or any other volatile or non-volatile, non-transitory device readable and/or computer-executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 170. Device readable medium 180 may store any suitable instructions, data or information, including a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 170 and, utilized by network node 160. Device readable medium 180 may be used to store any calculations made by processing circuitry 170 and/or any data received via interface 190. In some embodiments, processing circuitry 170 and device readable medium 180 may be considered to be integrated.
Interface 190 is used in the wired or wireless communication of signalling and/or data between network node 160, network 106, and/or wireless devices 110. As illustrated, interface 190 comprises port(s)/terminal(s) 194 to send and receive data, for example to and from network 106 over a wired connection. Interface 190 also includes radio front end circuitry 192 that may be coupled to, or in certain embodiments a part of, antenna 162. Radio front end circuitry 192 comprises filters 198 and amplifiers 196. Radio front end circuitry 192 may be connected to antenna 162 and processing circuitry 170. Radio front end circuitry may be configured to condition signals communicated between antenna 162 and processing circuitry 170. Radio front end circuitry 192 may receive digital data that is to be sent out to other network nodes or wireless devices via a wireless connection. Radio front end circuitry 192 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 198 and/or amplifiers 196. The radio signal may then be transmitted via antenna 162. Similarly, when receiving data, antenna 162 may collect radio signals which are then converted into digital data by radio front end circuitry 192. The digital data may be passed to processing circuitry 170. In other embodiments, the interface may comprise different components and/or different combinations of components.
In certain alternative embodiments, network node 160 may not include separate radio front end circuitry 192, instead, processing circuitry 170 may comprise radio front end circuitry and may be connected to antenna 162 without separate radio front end circuitry 192. Similarly, in some embodiments, all or some of RF transceiver circuitry 172 may be considered a part of interface 190. In still other embodiments, interface 190 may include one or more ports or terminals 194, radio front end circuitry 192, and RF transceiver circuitry 172, as part of a radio unit (not shown), and interface 190 may communicate with baseband processing circuitry 174, which is part of a digital unit (not shown).
Antenna 162 may include one or more antennas, or antenna arrays, configured to send and/or receive wireless signals. Antenna 162 may be coupled to radio front end circuitry 192 and may be any type of antenna capable of transmitting and receiving data and/or signals wirelessly. In some embodiments, antenna 162 may comprise one or more omni-directional, sector or panel antennas operable to transmit/receive radio signals between, for example, 2 GHz and 66 GHz. An omni-directional antenna may be used to transmit/receive radio signals in any direction, a sector antenna may be used to transmit/receive radio signals from devices within a particular area, and a panel antenna may be a line of sight antenna used to transmit/receive radio signals in a relatively straight line. In some instances, the use of more than one antenna may be referred to as MIMO. In certain embodiments, antenna 162 may be separate from network node 160 and may be connectable to network node 160 through an interface or port.
Antenna 162, interface 190, and/or processing circuitry 170 may be configured to perform any receiving operations and/or certain obtaining operations described herein as being performed by a network node. Any information, data and/or signals may be received from a wireless device, another network node and/or any other network equipment. Similarly, antenna 162, interface 190, and/or processing circuitry 170 may be configured to perform any transmitting operations described herein as being performed by a network node. Any information, data and/or signals may be transmitted to a wireless device, another network node and/or any other network equipment.
Power circuitry 187 may comprise, or be coupled to, power management circuitry and is configured to supply the components of network node 160 with power for performing the functionality described herein. Power circuitry 187 may receive power from power source 186. Power source 186 and/or power circuitry 187 may be configured to provide power to the various components of network node 160 in a form suitable for the respective components (e.g., at a voltage and current level needed for each respective component). Power source 186 may either be included in, or external to, power circuitry 187 and/or network node 160. For example, network node 160 may be connectable to an external power source (e.g., an electricity outlet) via an input circuitry or interface such as an electrical cable, whereby the external power source supplies power to power circuitry 187. As a further example, power source 186 may comprise a source of power in the form of a battery or battery pack which is connected to, or integrated in, power circuitry 187. The battery may provide backup power should the external power source fail. Other types of power sources, such as photovoltaic devices, may also be used.
Alternative embodiments of network node 160 may include additional components beyond those shown in
As illustrated, wireless device 110 includes antenna 111, interface 114, processing circuitry 120, device readable medium 130, user interface equipment 132, auxiliary equipment 134, power source 136 and power circuitry 137. Wireless device 110 may include multiple sets of one or more of the illustrated components for different wireless technologies supported by wireless device 110, such as, for example, GSM, WCDMA, LTE, NR, WiFi, WiMAX, or Bluetooth wireless technologies, just to mention a few. These wireless technologies may be integrated into the same or different chips or set of chips as other components within wireless device 110.
Antenna 111 may include one or more antennas or antenna arrays, configured to send and/or receive wireless signals, and is connected to interface 114. In certain alternative embodiments, antenna 111 may be separate from wireless device 110 and be connectable to wireless device 110 through an interface or port. Antenna 111, interface 114, and/or processing circuitry 120 may be configured to perform any receiving or transmitting operations described herein as being performed by a wireless device. Any information, data and/or signals may be received from a network node and/or another wireless device. In some embodiments, radio front end circuitry and/or antenna 111 may be considered an interface.
As illustrated, interface 114 comprises radio front end circuitry 112 and antenna 111. Radio front end circuitry 112 comprise one or more filters 118 and amplifiers 116. Radio front end circuitry 112 is connected to antenna 111 and processing circuitry 120 and is configured to condition signals communicated between antenna 111 and processing circuitry 120. Radio front end circuitry 112 may be coupled to or a part of antenna 111. In some embodiments, wireless device 110 may not include separate radio front end circuitry 112; rather, processing circuitry 120 may comprise radio front end circuitry and may be connected to antenna 111. Similarly, in some embodiments, some or all of RF transceiver circuitry 122 may be considered a part of interface 114. Radio front end circuitry 112 may receive digital data that is to be sent out to other network nodes or wireless devices via a wireless connection. Radio front end circuitry 112 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 118 and/or amplifiers 116. The radio signal may then be transmitted via antenna 111. Similarly, when receiving data, antenna 111 may collect radio signals which are then converted into digital data by radio front end circuitry 112. The digital data may be passed to processing circuitry 120. In other embodiments, the interface may comprise different components and/or different combinations of components.
Processing circuitry 120 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software, and/or encoded logic operable to provide, either alone or in conjunction with other wireless device 110 components, such as device readable medium 130, wireless device 110 functionality. Such functionality may include providing any of the various wireless features or benefits discussed herein. For example, processing circuitry 120 may execute instructions stored in device readable medium 130 or in memory within processing circuitry 120 to provide the functionality disclosed herein.
As illustrated, processing circuitry 120 includes one or more of RF transceiver circuitry 122, baseband processing circuitry 124, and application processing circuitry 126. In other embodiments, the processing circuitry may comprise different components and/or different combinations of components. In certain embodiments processing circuitry 120 of wireless device 110 may comprise a SOC. In some embodiments, RF transceiver circuitry 122, baseband processing circuitry 124, and application processing circuitry 126 may be on separate chips or sets of chips. In alternative embodiments, part or all of baseband processing circuitry 124 and application processing circuitry 126 may be combined into one chip or set of chips, and RF transceiver circuitry 122 may be on a separate chip or set of chips. In still alternative embodiments, part or all of RF transceiver circuitry 122 and baseband processing circuitry 124 may be on the same chip or set of chips, and application processing circuitry 126 may be on a separate chip or set of chips. In yet other alternative embodiments, part or all of RF transceiver circuitry 122, baseband processing circuitry 124, and application processing circuitry 126 may be combined in the same chip or set of chips. In some embodiments, RF transceiver circuitry 122 may be a part of interface 114. RF transceiver circuitry 122 may condition RF signals for processing circuitry 120.
In certain embodiments, some or all of the functionality described herein as being performed by a wireless device may be provided by processing circuitry 120 executing instructions stored on device readable medium 130, which in certain embodiments may be a computer-readable storage medium. In alternative embodiments, some or all of the functionality may be provided by processing circuitry 120 without executing instructions stored on a separate or discrete device readable storage medium, such as in a hard-wired manner. In any of those particular embodiments, whether executing instructions stored on a device readable storage medium or not, processing circuitry 120 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 120 alone or to other components of wireless device 110, but are enjoyed by wireless device 110 as a whole, and/or by end users and the wireless network generally.
Processing circuitry 120 may be configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being performed by a wireless device. These operations, as performed by processing circuitry 120, may include processing information obtained by processing circuitry 120 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored by wireless device 110, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
Device readable medium 130 may be operable to store a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 120. Device readable medium 130 may include computer memory (e.g., Random Access Memory (RAM) or Read Only Memory (ROM)), mass storage media (e.g., a hard disk), removable storage media (e.g., a Compact Disk (CD) or a Digital Video Disk (DVD)), and/or any other volatile or non-volatile, non-transitory device readable and/or computer executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 120. In some embodiments, processing circuitry 120 and device readable medium 130 may be considered to be integrated.
User interface equipment 132 may provide components that allow for a human user to interact with wireless device 110. Such interaction may be of many forms, such as visual, audial, tactile, etc. User interface equipment 132 may be operable to produce output to the user and to allow the user to provide input to wireless device 110. The type of interaction may vary depending on the type of user interface equipment 132 installed in wireless device 110. For example, if wireless device 110 is a smart phone, the interaction may be via a touch screen; if wireless device 110 is a smart meter, the interaction may be through a screen that provides usage (e.g., the number of gallons used) or a speaker that provides an audible alert (e.g., if smoke is detected). User interface equipment 132 may include input interfaces, devices and circuits, and output interfaces, devices and circuits. User interface equipment 132 is configured to allow input of information into wireless device 110 and is connected to processing circuitry 120 to allow processing circuitry 120 to process the input information. User interface equipment 132 may include, for example, a microphone, a proximity or other sensor, keys/buttons, a touch display, one or more cameras, a USB port, or other input circuitry. User interface equipment 132 is also configured to allow output of information from wireless device 110, and to allow processing circuitry 120 to output information from wireless device 110. User interface equipment 132 may include, for example, a speaker, a display, vibrating circuitry, a USB port, a headphone interface, or other output circuitry. Using one or more input and output interfaces, devices, and circuits, of user interface equipment 132, wireless device 110 may communicate with end users and/or the wireless network and allow them to benefit from the functionality described herein.
Auxiliary equipment 134 is operable to provide more specific functionality which may not be generally performed by wireless devices. This may comprise specialized sensors for doing measurements for various purposes, interfaces for additional types of communication such as wired communications etc. The inclusion and type of components of auxiliary equipment 134 may vary depending on the embodiment and/or scenario.
Power source 136 may, in some embodiments, be in the form of a battery or battery pack. Other types of power sources, such as an external power source (e.g., an electricity outlet), photovoltaic devices or power cells, may also be used. wireless device 110 may further comprise power circuitry 137 for delivering power from power source 136 to the various parts of wireless device 110 which need power from power source 136 to carry out any functionality described or indicated herein. Power circuitry 137 may in certain embodiments comprise power management circuitry. Power circuitry 137 may additionally or alternatively be operable to receive power from an external power source; in which case wireless device 110 may be connectable to the external power source (such as an electricity outlet) via input circuitry or an interface such as an electrical power cable. Power circuitry 137 may also in certain embodiments be operable to deliver power from an external power source to power source 136. This may be, for example, for the charging of power source 136. Power circuitry 137 may perform any formatting, converting, or other modification to the power from power source 136 to make the power suitable for the respective components of wireless device 110 to which power is supplied.
In
In
In the depicted embodiment, input/output interface 205 may be configured to provide a communication interface to an input device, output device, or input and output device. UE 200 may be configured to use an output device via input/output interface 205. An output device may use the same type of interface port as an input device. For example, a USB port may be used to provide input to and output from UE 200. The output device may be a speaker, a sound card, a video card, a display, a monitor, a printer, an actuator, an emitter, a smartcard, another output device, or any combination thereof. UE 200 may be configured to use an input device via input/output interface 205 to allow a user to capture information into UE 200. The input device may include a touch-sensitive or presence-sensitive display, a camera (e.g., a digital camera, a digital video camera, a web camera, etc.), a microphone, a sensor, a mouse, a trackball, a directional pad, a trackpad, a scroll wheel, a smartcard, and the like. The presence-sensitive display may include a capacitive or resistive touch sensor to sense input from a user. A sensor may be, for instance, an accelerometer, a gyroscope, a tilt sensor, a force sensor, a magnetometer, an optical sensor, a proximity sensor, another like sensor, or any combination thereof. For example, the input device may be an accelerometer, a magnetometer, a digital camera, a microphone, and an optical sensor.
In
RAM 217 may be configured to interface via bus 202 to processing circuitry 201 to provide storage or caching of data or computer instructions during the execution of software programs such as the operating system, application programs, and device drivers. ROM 219 may be configured to provide computer instructions or data to processing circuitry 201. For example, ROM 219 may be configured to store invariant low-level system code or data for basic system functions such as basic input and output (I/O), startup, or reception of keystrokes from a keyboard that are stored in a non-volatile memory. Storage medium 221 may be configured to include memory such as RAM, ROM, programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives. In one example, storage medium 221 may be configured to include operating system 223, application program 225 such as a web browser application, a widget or gadget engine or another application, and data file 227. Storage medium 221 may store, for use by UE 200, any of a variety of various operating systems or combinations of operating systems.
Storage medium 221 may be configured to include a number of physical drive units, such as redundant array of independent disks (RAID), floppy disk drive, flash memory, USB flash drive, external hard disk drive, thumb drive, pen drive, key drive, high-density digital versatile disc (HD-DVD) optical disc drive, internal hard disk drive, Blu-Ray optical disc drive, holographic digital data storage (HDDS) optical disc drive, external mini-dual in-line memory module (DIMM), synchronous dynamic random access memory (SDRAM), external micro-DIMM SDRAM, smartcard memory such as a subscriber identity module or a removable user identity (SIM/RUIM) module, other memory, or any combination thereof. Storage medium 221 may allow UE 200 to access computer-executable instructions, application programs or the like, stored on transitory or non-transitory memory media, to off-load data, or to upload data. An article of manufacture, such as one utilizing a communication system may be tangibly embodied in storage medium 221, which may comprise a device readable medium.
In
In the illustrated embodiment, the communication functions of communication subsystem 231 may include data communication, voice communication, multimedia communication, short-range communications such as Bluetooth, near-field communication, location-based communication such as the use of the global positioning system (GPS) to determine a location, another like communication function, or any combination thereof. For example, communication subsystem 231 may include cellular communication, Wi-Fi communication, Bluetooth communication, and GPS communication. Network 243b may encompass wired and/or wireless networks such as a local-area network (LAN), a wide-area network (WAN), a computer network, a wireless network, a telecommunications network, another like network or any combination thereof. For example, network 243b may be a cellular network, a Wi-Fi network, and/or a near-field network. Power source 213 may be configured to provide alternating current (AC) or direct current (DC) power to components of UE 200.
The features, benefits and/or functions described herein may be implemented in one of the components of UE 200 or partitioned across multiple components of UE 200. Further, the features, benefits, and/or functions described herein may be implemented in any combination of hardware, software or firmware. In one example, communication subsystem 231 may be configured to include any of the components described herein. Further, processing circuitry 201 may be configured to communicate with any of such components over bus 202. In another example, any of such components may be represented by program instructions stored in memory that when executed by processing circuitry 201 perform the corresponding functions described herein. In another example, the functionality of any of such components may be partitioned between processing circuitry 201 and communication subsystem 231. In another example, the non-computationally intensive functions of any of such components may be implemented in software or firmware and the computationally intensive functions may be implemented in hardware.
In some embodiments, some or all of the functions described herein may be implemented as virtual components executed by one or more virtual machines implemented in one or more virtual environments 300 hosted by one or more of hardware nodes 330. Further, in embodiments in which the virtual node is not a radio access node or does not require radio connectivity (e.g., a core network node), then the network node may be entirely virtualized.
The functions may be implemented by one or more applications 320 (which may alternatively be called software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc.) operative to implement some of the features, functions, and/or benefits of some of the embodiments disclosed herein. Applications 320 are run in virtualization environment 300 which provides hardware 330 comprising processing circuitry 360 and memory 390. Memory 390 contains instructions 395 executable by processing circuitry 360 whereby application 320 is operative to provide one or more of the features, benefits, and/or functions disclosed herein.
Virtualization environment 300, comprises general-purpose or special-purpose network hardware devices 330 comprising a set of one or more processors or processing circuitry 360, which may be commercial off-the-shelf (COTS) processors, dedicated Application Specific Integrated Circuits (ASICs), or any other type of processing circuitry including digital or analog hardware components or special purpose processors. Each hardware device may comprise memory 390-1 which may be non-persistent memory for temporarily storing instructions 395 or software executed by processing circuitry 360. Each hardware device may comprise one or more network interface controllers (NICs) 370, also known as network interface cards, which include physical network interface 380. Each hardware device may also include non-transitory, persistent, machine-readable storage media 390-2 having stored therein software 395 and/or instructions executable by processing circuitry 360. Software 395 may include any type of software including software for instantiating one or more virtualization layers 350 (also referred to as hypervisors), software to execute virtual machines 340 as well as software allowing it to execute functions, features and/or benefits described in relation with some embodiments described herein.
Virtual machines 340, comprise virtual processing, virtual memory, virtual networking or interface and virtual storage, and may be run by a corresponding virtualization layer 350 or hypervisor. Different embodiments of the instance of virtual appliance 320 may be implemented on one or more of virtual machines 340, and the implementations may be made in different ways.
During operation, processing circuitry 360 executes software 395 to instantiate the hypervisor or virtualization layer 350, which may sometimes be referred to as a virtual machine monitor (VMM). Virtualization layer 350 may present a virtual operating platform that appears like networking hardware to virtual machine 340.
As shown in
Virtualization of the hardware is in some contexts referred to as network function virtualization (NFV). NFV may be used to consolidate many network equipment types onto industry standard high volume server hardware, physical switches, and physical storage, which can be located in data centers, and customer premise equipment.
In the context of NFV, virtual machine 340 may be a software implementation of a physical machine that runs programs as if they were executing on a physical, non-virtualized machine. Each of virtual machines 340, and that part of hardware 330 that executes that virtual machine, be it hardware dedicated to that virtual machine and/or hardware shared by that virtual machine with others of the virtual machines 340, forms a separate virtual network elements (VNE).
Still in the context of NFV, Virtual Network Function (VNF) is responsible for handling specific network functions that run in one or more virtual machines 340 on top of hardware networking infrastructure 330 and corresponds to application 320 in
In some embodiments, one or more radio units 3200 that each include one or more transmitters 3220 and one or more receivers 3210 may be coupled to one or more antennas 3225. Radio units 3200 may communicate directly with hardware nodes 330 via one or more appropriate network interfaces and may be used in combination with the virtual components to provide a virtual node with radio capabilities, such as a radio access node or a base station.
In some embodiments, some signaling can be affected with the use of control system 3230 which may alternatively be used for communication between the hardware nodes 330 and radio units 3200.
With reference to
Telecommunication network 410 is itself connected to host computer 430, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm. Host computer 430 may be under the ownership or control of a service provider or may be operated by the service provider or on behalf of the service provider. Connections 421 and 422 between telecommunication network 410 and host computer 430 may extend directly from core network 414 to host computer 430 or may go via an optional intermediate network 420. Intermediate network 420 may be one of, or a combination of more than one of, a public, private or hosted network; intermediate network 420, if any, may be a backbone network or the Internet; in particular, intermediate network 420 may comprise two or more sub-networks (not shown).
The communication system of
Example implementations, in accordance with an embodiment, of the UE, base station and host computer discussed in the preceding paragraphs will now be described with reference to
Communication system 500 further includes base station 520 provided in a telecommunication system and comprising hardware 525 enabling it to communicate with host computer 510 and with UE 530. Hardware 525 may include communication interface 526 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of communication system 500, as well as radio interface 527 for setting up and maintaining at least wireless connection 570 with UE 530 located in a coverage area (not shown in
Communication system 500 further includes UE 530 already referred to. Its hardware 535 may include radio interface 537 configured to set up and maintain wireless connection 570 with a base station serving a coverage area in which UE 530 is currently located. Hardware 535 of UE 530 further includes processing circuitry 538, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. UE 530 further comprises software 531, which is stored in or accessible by UE 530 and executable by processing circuitry 538. Software 531 includes client application 532. Client application 532 may be operable to provide a service to a human or non-human user via UE 530, with the support of host computer 510. In host computer 510, an executing host application 512 may communicate with the executing client application 532 via OTT connection 550 terminating at UE 530 and host computer 510. In providing the service to the user, client application 532 may receive request data from host application 512 and provide user data in response to the request data. OTT connection 550 may transfer both the request data and the user data. Client application 532 may interact with the user to generate the user data that it provides.
It is noted that host computer 510, base station 520 and UE 530 illustrated in
In
Wireless connection 570 between UE 530 and base station 520 is in accordance with the teachings of the embodiments described throughout this disclosure. One or more of the various embodiments improve the performance of OTT services provided to UE 530 using OTT connection 550, in which wireless connection 570 forms the last segment. More precisely, the teachings of these embodiments may improve the data rate, latency, and/or power consumption and thereby provide benefits such as reduced user waiting time, relaxed restriction on file size, better responsiveness, and/or extended battery lifetime.
A measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring OTT connection 550 between host computer 510 and UE 530, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring OTT connection 550 may be implemented in software 511 and hardware 515 of host computer 510 or in software 531 and hardware 535 of UE 530, or both. In embodiments, sensors (not shown) may be deployed in or in association with communication devices through which OTT connection 550 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above or supplying values of other physical quantities from which software 511, 531 may compute or estimate the monitored quantities. The reconfiguring of OTT connection 550 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not affect base station 520, and it may be unknown or imperceptible to base station 520. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling facilitating host computer 510′s measurements of throughput, propagation times, latency and the like. The measurements may be implemented in that software 511 and 531 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using OTT connection 550 while it monitors propagation times, errors etc.
Virtual Apparatus 1100 may comprise processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs), special-purpose digital logic, and the like. The processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as read-only memory (ROM), random-access memory, cache memory, flash memory devices, optical storage devices, etc. Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein, in several embodiments. In some implementations, the processing circuitry may be used to cause determining module 1110, taking action module 1120, and any other suitable units of apparatus 1100 to perform corresponding functions according one or more embodiments of the present disclosure.
According to certain embodiments, determining module 1110 may perform certain of the determining functions of the apparatus 1100. For example, determining module 1110 may determine an impact of performing active BWP switching from a first active BWP to a second BWP in a first cell on at least one positioning measurement to be performed by the wireless device.
According to certain embodiments, taking action module 1120 may perform certain of the taking action functions of the apparatus 1100. For example, taking action module 1120 may take at least one action based on based on the determined impact of switching from the first active BWP to the second BWP in the first cell.
As used herein, the term unit may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.
In a particular embodiment, determining that switching from the first active BWP to the second BWP will affect at least one PMO during which at least one positioning measurement is to be performed includes determining that the wireless device will not meet at least one requirement associated with the at least one positioning measurement.
In a further particular embodiment, the at least one requirement includes one or more positioning measurement requirements for performing the at least one positioning measurement by the wireless device 110.
In a further particular embodiment, the wireless device 110 performs at least one of: adapting the at least one requirement associated with the at least one positioning measurement; relaxing the at least one requirement associated with the at least one positioning measurement; extending a measurement time associated with the at least one positioning measurement; and relaxing an accuracy requirement associated with the at least one positioning measurement.
In a particular embodiment, determining that switching from the first active BWP to the second BWP will affect at least one PMO during which at least one positioning measurement is to be performed includes determining that the switch from the first active BWP to the second active BWP occurs during at least a portion of the at least one PMO.
In a particular embodiment, prior to determining the effect of switching from the first active BWP to the second active BWP, the wireless device 110 determines that the active BWP switching from the first active BWP to the second BWP has been or will be triggered in the first cell based on: at least one message received from a network node, or an expiration of a timer.
In a particular embodiment, the wireless device 110 monitors the first cell during the at least one PMO. The determining step of step 1202 may be based on the monitoring of the first cell. In a further particular embodiment, the at least one PMO comprises at least one measurement gap for performing the at least one positioning measurement.
In a particular embodiment, determining that switching from the first active BWP to the second BWP in the first cell will affect at least one PMO includes determining a level of impact on the at least one PMO expected by switching from the first active BWP to the second BWP in the first cell. In a further particular embodiment, the level of impact is determined to be critical and/or severe in response to a determination of at least one of: the at least one at least one positioning measurement comprises an emergency positioning measurement that will not be triggered in response to the switch from the first active BWP to the second active BWP; an estimated accuracy of performing the at least one positioning measurement is below a first threshold; the wireless device will not meet at least one requirement associated with the at least one positioning measurement; the switch from the first active BWP to the second active BWP occurs during at least a portion of a PMO; the switch from the first active BWP to the second active BWP will interrupt at least one reference signal (RS) resource within a PMO; the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources; the second active BWP does not fully contain the bandwidth of a RS in a PMO associated with the first active BWP; the second active BWP contains a RS in a PMO with a bandwidth not larger than a second threshold; a bandwidth containing a RS for the first active BWP is different than a bandwidth containing a RS for the second active BWP; a bandwidth associated with the second active BWP is less than a bandwidth associated with the first active BWP by more than a third threshold (BW2<(BW1−T3); a bandwidth associated with the second active BWP differs from a bandwidth associated with the first active BWP by more than a fourth threshold (|BW2−BW1|>=T4); a bandwidth associated with the second active BWP is less than a fifth threshold (BW2<T5); the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources (R1) or X % of resources in at least one PMO; the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources (R2) or Y % of resources in at least one PMO and the periodicity of the at least one PMO is longer than a sixth threshold; and the switch from the first active BWP to the second active BWP will occur during a time period that overlaps with a muted PMO.
In a particular embodiment, the wireless device 110 transmits a request to a network node 160 for a measurement gap configuration for performing the at least one positioning measurement. In a further particular embodiment, the wireless device 110 restarts the at least one positioning measurement and meeting at least one requirement for performing the at least one positioning measurement with measurement gaps.
In a particular embodiment, the wireless device 110 transmits information indicating that the wireless device 110 has suspended the at least one positioning measurement while performing the active BWP switching from the first active BWP to the second active BWP.
In a particular embodiment, the wireless device 110 is served by at least one serving cell and the first cell is a cell within the at least one serving cell.
In a particular embodiment, the wireless device 110 is served by at least one serving cell and the first cell is not a cell within the at least one serving cell. In a particular embodiment, the wireless device 110 is configured to perform positioning measurements for a set of cells and the first cell is within the set of cells, and the set of cells comprises a set of serving cells or a set of neighboring cells.
In a particular embodiment, the at least one positioning measurement comprises at least one of: a RSTD, a PRS-RSRP, a PRS-RSRQ, a UE Rx-Tx time difference, a SS-RSRP, a SS-RSRQ, a CSI-RSRP; a CSI-RSRQ, and a RSSI.
Virtual Apparatus 1300 may comprise processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs), special-purpose digital logic, and the like. The processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as read-only memory (ROM), random-access memory, cache memory, flash memory devices, optical storage devices, etc. Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein, in several embodiments. In some implementations, the processing circuitry may be used to cause determining module 1310, suspending module 1320, and any other suitable units of apparatus 1300 to perform corresponding functions according one or more embodiments of the present disclosure.
According to certain embodiments, determining module 1310 may perform certain of the determining functions of the apparatus 1300. For example, determining module 1310 may determine that switching from a first active BWP to a second BWP in a first cell will affect at least one PMO during which at least one positioning measurement is to be performed.
According to certain embodiments, suspending module 1320 may perform certain of the suspending functions of the apparatus 1300. For example, suspending module 1320 may suspend the at least one positioning measurement while performing the active BWP switching from the first active BWP to the second active BWP in the first cell.
Virtual Apparatus 1500 may comprise processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs), special-purpose digital logic, and the like. The processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as read-only memory (ROM), random-access memory, cache memory, flash memory devices, optical storage devices, etc. Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein, in several embodiments. In some implementations, the processing circuitry may be used to cause receiving module 1510 and, optionally, taking action module 1520 and any other suitable units of apparatus 1500 to perform corresponding functions according one or more embodiments of the present disclosure.
According to certain embodiments, receiving module 1510 may perform certain of the receiving functions of the apparatus 1500. For example, receiving module 1510 may receive information associated with an impact of performing active BWP switching by a wireless device on at last one positioning measurement to be performed by the wireless device. The active BWP switching may be from a first active BWP to a second BWP in a first cell.
According to certain embodiments, optional taking action module 1520 may perform certain of the taking action functions of the apparatus 1500. For example, taking action module 1520 may take at least one action based on the information.
The term unit may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.
In a particular embodiment, the network node 160 takes at least one action, which may include at least one of: changing a RS bandwidth and/or a RS periodicity and/or a number of time resources containing RS within a PMO; increasing a bandwidth of RS above certain threshold; reducing a periodicity of RS below certain threshold; increasing a number of time resources containing RS within PMO above certain threshold; delaying a RS; triggering a RS early; triggering an additional RS instance to avoid or reduce the impact; changing a type of the at least one positioning measurement to avoid or reduce the impact; adapting the active BWP switching to a time period that does not contain any RS to be used by the wireless device for performing the at least one positioning measurement; adapting the active BWP switching assumed to be used by the wireless device; configuring the wireless device to repeat the at least one positioning measurement; configuring the wireless device to use aperiodic positioning resources to compensate for the impact; and adapting an adaptive BWP switching configuration to a PMO configuration to ensure that the active BWP switching does not occur later than a threshold amount before the PMO.
In a particular embodiment, the network node 160 transmits information associated with the at least one action taken by the network node to the wireless device 110.
In a particular embodiment, the request is received from the wireless device 110. In a further particular embodiment, the network node 160 is a positioning node or a base station serving the wireless device 110.
In a particular embodiment, the request is received from another network node. In a further particular embodiment, the network node 160 includes a positioning node and the other network node includes a base station serving the wireless device 110. In another particular embodiment, the network node 160 comprises a base station serving the wireless device 110 and the other network node comprises a positioning node.
In a particular embodiment, the network node 160 configures the wireless device 110 to: determine whether switching from the first active BWP to the second BWP will affect at least one PMO during which the at least one positioning measurement is to be performed; in response to determining that switching from the first active BWP to the second BWP will affect the at least one PMO, suspend the at least one positioning measurement while performing the active BWP switching from the first active BWP to the second active BWP; and transmit the request for the measurement gap configuration for performing at least one positioning measurement by a wireless device 110.
In a further particular embodiment, configuring the wireless device 110 to determine whether switching from the first active BWP to the second BWP will affect the at least one PMO during which the at least one positioning measurement is to be performed includes configuring the wireless device 110 to determine a level of impact on the at least one PMO expected by switching from the first active BWP to the second BWP in the first cell.
In a further particular embodiment, the level of impact is determined to be critical and/or severe in response to determining at least one of: the at least one at least one positioning measurement comprises an emergency positioning measurement that will not be triggered in response to the switch from the first active BWP to the second active BWP; an estimated accuracy of performing the at least one positioning measurement is below a first threshold; the wireless device will not meet at least one requirement associated with the at least one positioning measurement; the switch from the first active BWP to the second active BWP occurs during at least a portion of a PMO; the switch from the first active BWP to the second active BWP will interrupt at least one reference signal (RS) resource within a PMO; the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources; the second active BWP does not fully contain the bandwidth of a RS in a PMO associated with the first active BWP; the second active BWP contains a RS in a PMO with a bandwidth not larger than a second threshold; a bandwidth containing a RS for the first active BWP is different than a bandwidth containing a RS for the second active BWP; a bandwidth associated with the second active BWP is less than a bandwidth associated with the first active BWP by more than a third threshold (BW2<(BW1−T3); a bandwidth associated with the second active BWP differs from a bandwidth associated with the first active BWP by more than a fourth threshold (|BW2−BW1|>=T4); a bandwidth associated with the second active BWP is less than a fifth threshold (BW2<T5); the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources (R1) or X % of resources in at least one PMO; the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources (R2) or Y % of resources in at least one PMO and the periodicity of the at least one PMO is longer than a sixth threshold; and the switch from the first active BWP to the second active BWP will occur during a time period that overlaps with a muted PMO.
In a particular embodiment, the network node 160 transmits at least one message to the wireless device to trigger the active BWP switching. In a further particular embodiment, the at least one message comprises a downlink control information (DCI) message.
In a particular embodiment, the wireless device 110 is served by at least one serving cell and the first cell is a cell within the at least one serving cell.
In a particular embodiment, the wireless device 110 is served by at least one serving cell and the first cell is not a cell within the at least one serving cell.
In a particular embodiment, the wireless device 110 is configured to perform positioning measurements for a set of cells and the first cell is within the set of cells. In a further particular embodiment, the set of cells comprises a set of serving cells. In a further particular embodiment, the set of cells comprises a set of neighboring cells.
Virtual Apparatus 1700 may comprise processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs), special-purpose digital logic, and the like. The processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as read-only memory (ROM), random-access memory, cache memory, flash memory devices, optical storage devices, etc. Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein, in several embodiments. In some implementations, the processing circuitry may be used to cause receiving module 1710, modifying module 1720, transmitting module 1730, and any other suitable units of apparatus 1700 to perform corresponding functions according one or more embodiments of the present disclosure.
According to certain embodiments, receiving module 1710 may perform certain of the receiving functions of the apparatus 1700. For example, receiving module 1710 may receive a request for a measurement gap configuration for performing at least one positioning measurement by a wireless device 110 while or in response to performing active BWP switching from a first active BWP to a second BWP in a first cell.
According to certain embodiments, modifying module 1720 may perform certain of the modifying functions of the apparatus 1700. For example, modifying module 1720 may modify a positioning measurement configuration to include a measurement gap configuration.
According to certain embodiments, transmitting module 1730 may perform certain of the transmitting functions of the apparatus 1700. For example, transmitting module 1730 may transmit the modified positioning measurement configuration including the measurement gap configuration to the wireless device 110.
Example Embodiment 1. A method performed by a wireless device, the method comprising: determining an impact of performing active bandwidth part (BWP) switching from a first active BWP to a second BWP in a first cell on at least one positioning measurement to be performed by the wireless device; and taking at least one action based on based on the determined impact of switching from the first active BWP to the second BWP in the first cell.
Example Embodiment 2. The method of Example Embodiment 1, further comprising: prior to determining the impact, determining that the active BWP switching from the first active BWP to the second BWP has been or will be triggered in the first cell.
Example Embodiment 3. The method of Example Embodiment 2, wherein determining that the active BWP switching is or will be triggered is based on receiving at least one message from a network node.
Example Embodiment 4. The method of Example Embodiment 3, wherein the at least one message comprises a downlink control information (DCI) message.
Example Embodiment 5. The method of Example Embodiment 2, wherein determining that the active BWP switching is or will be triggered is based on an expiration of a timer.
Example Embodiment 6. The method of any one of Example Embodiments 1 to 5, further comprising monitoring the first cell and wherein the determining step is based on the monitoring of the first cell.
Example Embodiment 7. The method of Example Embodiment 6, wherein monitoring the first cell comprises monitoring the first cell during at least one positioning measurement occasion (PMO).
Example Embodiment 8. The method of Example Embodiment 7, wherein the PMO comprises a measurement gap for performing the at least one positioning measurement.
Example Embodiment 9. The method of any one of Example Embodiments 1 to 8, wherein determining the impact of switching from the first active BWP to the second BWP in the first cell comprises: determining that the switching from the first active BWP to the second BWP will affect at least one PMO during which the at least one positioning measurement is to be performed.
Example Embodiment 10. The method of any one of Example Embodiments 1 to 9, wherein determining the impact of switching from the first active BWP to the second BWP in the first cell comprises: determining a level of impact on the at least one PMO expected by switching from the first active BWP to the second BWP in the first cell.
Example Embodiment 11. The method of any one of Example Embodiments 1 to 10, wherein determining the impact of switching from the first active BWP to the second BWP in the first cell comprises: determining that that the impact on the at least one PMO of switching is expected to be critical and/or severe.
Example Embodiment 12. The method of any one of Example Embodiments 1 to 11, wherein taking the at least one action based on based on the determined impact comprises: in response to determining that the impact is expected to be critical and/or severe, adapting at least one procedure.
Example Embodiment 13. The method of any one of Example Embodiments 11 to 12, wherein the impact may be determined to be critical and/or severe in response to a determination of at least one of: the at least one at least one positioning measurement comprises an emergency positioning measurement that will not be triggered in response to the switch from the first active BWP to the second active BWP; an estimated accuracy of performing the at least one positioning measurement is below a first threshold; the wireless device will not meet at least one requirement associated with the at least one positioning measurement; the switch from the first active BWP to the second active BWP occurs during at least a portion of a PMO; the switch from the first active BWP to the second active BWP will interrupt at least one reference signal (RS) resource within a PMO; the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources; the second active BWP does not fully contain the bandwidth of a RS in a PMO associated with the first active BWP; the second active BWP contains a RS in a PMO with a bandwidth not larger than a second threshold; a bandwidth containing a RS for the first active BWP is different than a bandwidth containing a RS for the second active BWP; a bandwidth associated with the second active BWP is less than a bandwidth associated with the first active BWP by more than a third threshold (BW2<(BW1−T3); a bandwidth associated with the second active BWP differs from a bandwidth associated with the first active BWP by more than a fourth threshold (|BW2−BW1|>=T4); a bandwidth associated with the second active BWP is less than a fifth threshold (BW2<T5); the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources (R1) or X % of resources in at least one PMO; the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources (R2) or Y % of resources in at least one PMO and the periodicity of the at least one PMO is longer than a sixth threshold; and the switch from the first active BWP to the second active BWP will occur during a time period that overlaps with a muted PMO.
Example Embodiment 14. The method of any one of Example Embodiments 11 to 13, wherein taking the at least one action based on based on the determined impact of switching from the first active BWP to the second BWP in the first cell comprises: stopping and/or discarding the active BWP switching from the first active BWP to the second active BWP; stopping the active BWP switching from the first active BWP to the second active BWP during a PMO and resuming the active BWP switching from the first active BWP to the second active BWP after the PMO; suspending the at least one positioning measurement while performing the active BWP switching from the first active BWP to the second active BWP; transmitting a request to a network node for a measurement gap configuration for performing the at least one positioning measurement; adapting at least one measurement requirement associated with the at least one positioning measurement; relaxing at least one measurement requirement associated with the at least one positioning measurement; extending a measurement time associated with the at least one positioning measurement; relaxing an accuracy requirement associated with the at least one positioning measurement; transmitting information associated with the determined impact of performing the active BWP switching to a network node; and transmitting information associated with the at least one action taken by the wireless device in response to determining the impact of performing the active BWP switching from the first active BWP to the second active BWP part.
Example Embodiment 15. The method of any one of Example Embodiments 1 to 10, wherein determining the impact of switching from the first active BWP to the second BWP in the first cell comprises: determining that that the impact on the at least one PMO of switching is expected to be non-critical and/or non-severe.
Example Embodiment 16. The method of Example Embodiments 15, wherein the impact may be determined to be non-critical and/or non-severe in response to a determination that the wireless device is configured with at least one measurement gap and a PMO cannot be received due to gap sharing.
Example Embodiment 17. The method of any one of Example Embodiments 15 to 16, wherein taking the at least one action based on based on the determined impact of switching from the first active BWP to the second BWP in the first cell comprises determining not to adapt a procedure associated with the at least one positioning measurement to be performed by the wireless device.
Example Embodiment 18. The method of any one of Example Embodiments 15 to 16, wherein taking the at least one action based on based on the determined impact of switching from the first active BWP to the second BWP in the first cell comprises switching from the first active BWP to the second BWP without impacting the at least one positioning measurement.
Example Embodiment 19. The method of any one of Example Embodiments 1 to 18, wherein the wireless device is served by at least one serving cell and the first cell is a cell within the at least one serving cell.
Example Embodiment 20. The method of any one of Example Embodiments 1 to 18, wherein the wireless device is served by at least one serving cell and the first cell is not a cell within the at least one serving cell.
Example Embodiment 21. The method of any one of Embodiments 1 to 20, wherein the wireless device is configured to perform positioning measurements for a set of cells and the first cell is within the set of cells.
Example Embodiment 22. The method of Example Embodiment 21, wherein the set of cells comprises a set of serving cells.
Example Embodiment 23. The method of Example Embodiment 21, wherein the set of cells comprises a set of neighboring cells.
Example Embodiment 24. The method of Example Embodiments 1 to 23, wherein the wireless device is configured to perform at least one positioning measurement based on at least one reference signal for the first cell.
Example Embodiment 25. The method of Example Embodiment 24, wherein the at least one reference signal comprises at least one of: a positioning reference signal (PRS); a sounding reference signal (SRS); a synchronization signal block (SSB); and a channel state information-reference signal (CSI-RS).
Example Embodiment 26. The method of Example Embodiments 24 to 25, wherein the at least one positioning measurement comprises least one of: a Reference Signal Time Difference (RSTD); a Positioning Reference Signal-Reference Signal Received Power (PRS-RSRP); a Positioning Reference Signal-Reference Signal Received Quality (PRS-RSRQ); a User Equipment Receive-Transmit (UE Rx-Tx) time difference; a Synchronization Signal-Reference Signal Received Power (SS-RSRP); a Synchronization Signal-Reference Signal Received Quality (SS-RSRQ); a Channel State Information-Reference Signal Received Power (CSI-RSRP); a Channel State Information-Reference Signal Received Quality (CSI-RSRQ); a Reference Signal Strength Indication (RSSI).
Example Embodiment 27. The method of Example Embodiments 1 to 26, wherein the first cell comprises: a special cell (SpCell), a Secondary Cell (SCell), a Primary Cell (PCell), or a Primary Secondary Cell (PSCell).
Example Embodiment 28. A wireless device comprising processing circuitry configured to perform any of the methods of Example Embodiments 1 to 27.
Example Embodiment 29. A computer program comprising instructions which when executed on a computer perform any of the methods of Example Embodiments 1 to 27.
Example Embodiment 30. A computer program product comprising computer program, the computer program comprising instructions which when executed on a computer perform any of the methods of Example Embodiments 1 to 27.
Example Embodiment 31. A non-transitory computer readable medium storing instructions which when executed by a computer perform any of the methods of Example Embodiments 1 to 27.
Example Embodiment 32. A method performed by a network node, the method comprising: receiving information associated with an impact of performing active bandwidth part (BWP) switching by a wireless device on at last one positioning measurement to be performed by the wireless device, the active BWP switching from a first active BWP to a second BWP in a first cell.
Example Embodiment 33. The method of Example Embodiment 32, further comprising taking at least one action based on the information.
Example Embodiment 34. The method of Example Embodiment 33, wherein the at least one action comprises at least one of: adapting a positioning measurement configuration; modifying a parameter associated with a positioning measurement configuration and transmitting the parameter and/or the modified positioning measurement configuration to the wireless device; changing a reference signal (RS) bandwidth and/or a RS periodicity and/or a number of time resources containing RS within a Positioning Measurement Occasion (PMO); increase a bandwidth of RS above certain threshold; reduce a periodicity of RS below certain threshold; increase a number of time resources containing RS within PMO above certain threshold; delaying a RS; triggering a RS early; triggering an additional RS instance to avoid or reduce the impact; changing a type of the at least one positioning measurement to avoid or reduce the impact; adapting the active BWP switching to a time period that does not contain any RS to be used by the wireless device for performing the at least one positioning measurement; adapting the active BWP switching assumed to be used by the wireless device; configuring the wireless device to repeat the at least one positioning measurement; configuring the wireless device to use aperiodic positioning resources to compensate for the impact; and adapting an adaptive BWP switching configuration to a PMO configuration to ensure that the active BWP switching does not occur later than a threshold amount before the PMO.
Example Embodiment 35. The method of Example Embodiment 34, further comprising transmitting information associated with the at least one action taken by the network node to the wireless device.
Example Embodiment 36. The method of any one of Example Embodiments 32 to 35, wherein the information is received from the wireless device.
Example Embodiment 37. The method of Example Embodiment 36, wherein the network node is a positioning node or a base station serving the wireless device.
Example Embodiment 38. The method of any one of Example Embodiments 32 to 35, wherein the information is received from another network node.
Example Embodiment 39. The method of Example Embodiment 38, wherein the network node comprises a positioning node and the other network node comprises a base station serving the wireless device.
Example Embodiment 40. The method of Example Embodiment 38, wherein the network node comprises a base station serving the wireless device and the other network node comprises a positioning node.
Example Embodiment 41. The method of any one of Example Embodiments 32 to 40, further comprising configuring the wireless device to: determine the impact of performing the active BWP switching from a first active BWP to a second BWP in the first cell on the at least one positioning measurement to be performed by the wireless device; and take at least one user equipment (UE) action based on based on the determined impact of switching from the first active BWP to the second BWP in the first cell.
Example Embodiment 42. The method of Example Embodiment 41, further comprising configuring the wireless device to, determine that active BWP switching from the first active BWP to the second BWP has been or will be triggered in the first cell and determine the impact in response to determining that the active BWP switching has been or will be triggered.
Example Embodiment 43. The method of any one of Example Embodiments 41 to 42, wherein configuring the wireless device to determine the impact of switching from the first active BWP to the second BWP in the first cell comprises configuring the wireless device to: determine that the switching from the first active BWP to the second BWP will affect at least one PMO during which the at least one positioning measurement is to be performed.
Example Embodiment 44. The method of any one of Example Embodiments 41 to 43, wherein configuring the wireless device to determine the impact of switching from the first active BWP to the second BWP in the first cell comprises configuring the wireless device to determine a level of impact on the at least one PMO expected by switching from the first active BWP to the second BWP in the first cell.
Example Embodiment 45. The method of any one of Example Embodiments 41 to 44, wherein configuring the wireless device to determine the impact of switching from the first active BWP to the second BWP in the first cell comprises configuring the wireless device to: determine that that the impact on the at least one PMO of switching is expected to be critical and/or severe.
Example Embodiment 46. The method of any one of Example Embodiments 41 to 45, wherein configuring the wireless device to take the at least one action based on based on the determined impact comprises configuring the wireless device to: in response to determining that the impact is expected to be critical and/or severe, adapt at least one procedure.
Example Embodiment 47. The method of any one of Example Embodiments 45 to 46, wherein configuring the wireless device to determine that the impact is critical and/or severe comprises configuring the wireless device to determine at least one of: the at least one at least one positioning measurement comprises an emergency positioning measurement that will not be triggered in response to the switch from the first active BWP to the second active BWP; an estimated accuracy of performing the at least one positioning measurement is below a first threshold; the wireless device will not meet at least one requirement associated with the at least one positioning measurement; the switch from the first active BWP to the second active BWP occurs during at least a portion of a PMO; the switch from the first active BWP to the second active BWP will interrupt at least one reference signal (RS) resource within a PMO; the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources; the second active BWP does not fully contain the bandwidth of a RS in a PMO associated with the first active BWP; the second active BWP contains a RS in a PMO with a bandwidth not larger than a second threshold; a bandwidth containing a RS for the first active BWP is different than a bandwidth containing a RS for the second active BWP; a bandwidth associated with the second active BWP is less than a bandwidth associated with the first active BWP by more than a third threshold (BW2<(BW1−T3); a bandwidth associated with the second active BWP differs from a bandwidth associated with the first active BWP by more than a fourth threshold (|BW2−BW1|>=T4); a bandwidth associated with the second active BWP is less than a fifth threshold (BW2<T5); the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources (R1) or X % of resources in at least one PMO; the switch from the first active BWP to the second active BWP will overlap with at least a number of RS resources (R2) or Y % of resources in at least one PMO and the periodicity of the at least one PMO is longer than a sixth threshold; and the switch from the first active BWP to the second active BWP will occur during a time period that overlaps with a muted PMO.
Example Embodiment 48. The method of any one of Example Embodiments 41 to 47, wherein configuring the wireless device to take the at least one action based on based on the determined impact of switching from the first active BWP to the second BWP in the first cell comprises configuring the wireless device to: stop and/or discard the active BWP switching from the first active BWP to the second active BWP; stop the active BWP switching from the first active BWP to the second active BWP during a PMO and resume the active BWP switching from the first active BWP to the second active BWP after the PMO; suspend the at least one positioning measurement while performing the active BWP switching from the first active BWP to the second active BWP; transmit a request to a network node for a measurement gap configuration for performing the at least one positioning measurement; adapt at least one measurement requirement associated with the at least one positioning measurement; relax at least one measurement requirement associated with the at least one positioning measurement; extend a measurement time associated with the at least one positioning measurement; relax an accuracy requirement associated with the at least one positioning measurement; transmitting information associated with the determined impact of performing the active BWP switching to a network node; and transmit information associated with the at least one action taken by the wireless device in response to determining the impact of performing the active BWP switching from the first active BWP to the second active BWP part.
Example Embodiment 49. The method of any one of Example Embodiments 41 to 48, further comprising configuring the wireless device to determine the impact of performing the active BWP switching from a first active BWP to a second BWP in the first cell in response to an expiration of a timer.
Example Embodiment 50. The method of any one of Example Embodiments 41 to 48, further comprising configuring the wireless device to monitor the first cell and determine the impact of performing the active BWP switching based on the monitoring of the first cell.
Example Embodiment 51. The method of Example Embodiment 50, wherein configuring the wireless device to monitor the first cell comprises configuring the wireless device to monitor the first cell during at least one positioning measurement occasion (PMO).
Example Embodiment 52. The method of Example Embodiment 51, wherein the PMO comprises a measurement gap for performing the at least one positioning measurement.
Example Embodiment 53. The method of any one of Example Embodiments 41 to 52, wherein configuring the wireless device to determine the impact of switching from the first active BWP to the second BWP in the first cell comprises configuring the wireless device to: determine that that the impact on the at least one PMO of switching is expected to be non-critical and/or non-severe.
Example Embodiment 54. The method of Example Embodiments 53, wherein the impact may be determined to be non-critical and/or non-severe in response to a determination that the wireless device is configured with at least one measurement gap and a PMO cannot be received due to gap sharing.
Example Embodiment 55. The method of any one of Example Embodiments 53 to 54, wherein configuring the wireless device to take the at least one action based on based on the determined impact of switching from the first active BWP to the second BWP in the first cell comprises configuring the wireless device to determine not to adapt a procedure associated with the at least one positioning measurement to be performed by the wireless device.
Example Embodiment 56. The method of any one of Example Embodiments 53 to 54, wherein configuring the wireless device to take the at least one action based on based on the determined impact of switching from the first active BWP to the second BWP in the first cell comprises configuring the wireless device to switch from the first active BWP to the second BWP without impacting the at least one positioning measurement.
Example Embodiment 57. The method of any one of Example Embodiments 32 to 56, further comprising transmitting at least one message to the wireless device to trigger the active BWP switching.
Example Embodiment 58. The method of Example Embodiment 57, wherein the at least one message comprises a downlink control information (DCI) message.
Example Embodiment 59. The method of any one of Example Embodiments 32 to 58, wherein the wireless device is served by at least one serving cell and the first cell is a cell within the at least one serving cell.
Example Embodiment 60. The method of any one of Example Embodiments 32 to 58, wherein the wireless device is served by at least one serving cell and the first cell is not a cell within the at least one serving cell.
Example Embodiment 61. The method of any one of Example Embodiments 32 to 60, wherein the wireless device is configured to perform positioning measurements for a set of cells and the first cell is within the set of cells.
Example Embodiment 62. The method of Example Embodiment 61, wherein the set of cells comprises a set of serving cells.
Example Embodiment 63. The method of Example Embodiment 61, wherein the set of cells comprises a set of neighboring cells.
Example Embodiment 64. The method of any one of Example Embodiments 32 to 63, further comprising configuring the wireless device to perform the at least one positioning measurement based on at least one reference signal for the first cell.
Example Embodiment 65. The method of Example Embodiment 64, wherein the at least one reference signal comprises at least one of: a positioning reference signal (PRS); a sounding reference signal (SRS); a synchronization signal block (SSB); and a channel state information-reference signal (CSI-RS).
Example Embodiment 66. The method of any one of Example Embodiments 32 to 65, wherein the at least one positioning measurement comprises least one of: a Reference Signal Time Difference (RSTD); a Positioning Reference Signal-Reference Signal Received Power (PRS-RSRP); a Positioning Reference Signal-Reference Signal Received Quality (PRS-RSRQ); a User Equipment Receive-Transmit (UE Rx-Tx) time difference; a Synchronization Signal-Reference Signal Received Power (SS-RSRP); a Synchronization Signal-Reference Signal Received Quality (SS-RSRQ); a Channel State Information-Reference Signal Received Power (CSI-RSRP); a Channel State Information-Reference Signal Received Quality (CSI-RSRQ); and a Reference Signal Strength Indication (RSSI).
Example Embodiment 67. The method of Example Embodiments 32 to 66, wherein the first cell comprises: a special cell (SpCell), a Secondary Cell (SCell), a Primary Cell (PCell), or a Primary Secondary Cell (PSCell).
Example Embodiment 68. A network node comprising processing circuitry configured to perform any of the methods of Example Embodiments 32 to 67.
Example Embodiment 69. A computer program comprising instructions which when executed on a computer perform any of the methods of Example Embodiments 32 to 67.
Example Embodiment 70. A computer program product comprising computer program, the computer program comprising instructions which when executed on a computer perform any of the methods of Example Embodiments 32 to 67.
Example Embodiment 71. A non-transitory computer readable medium storing instructions which when executed by a computer perform any of the methods of Example Embodiments 32 to 67.
Example Embodiment 72. A wireless device comprising: processing circuitry configured to perform any of the steps of any of Example Embodiments 1 to 31; and power supply circuitry configured to supply power to the wireless device.
Example Embodiment 73. A network node comprising: processing circuitry configured to perform any of the steps of any of Example Embodiments 32 to 71; power supply circuitry configured to supply power to the wireless device.
Example Embodiment 74. A wireless device, the wireless device comprising: an antenna configured to send and receive wireless signals; radio front-end circuitry connected to the antenna and to processing circuitry, and configured to condition signals communicated between the antenna and the processing circuitry; the processing circuitry being configured to perform any of the steps of any of Example Embodiments 1 to 31; an input interface connected to the processing circuitry and configured to allow input of information into the wireless device to be processed by the processing circuitry; an output interface connected to the processing circuitry and configured to output information from the wireless device that has been processed by the processing circuitry; and a battery connected to the processing circuitry and configured to supply power to the wireless device.
Example Embodiment 75. A communication system including a host computer comprising: processing circuitry configured to provide user data; and a communication interface configured to forward the user data to a cellular network for transmission to a wireless device, wherein the cellular network comprises a network node having a radio interface and processing circuitry, the network node's processing circuitry configured to perform any of the steps of any of Example Embodiments 32 to 71.
Example Embodiment 76. The communication system of the pervious embodiment further including the network node.
Example Embodiment 77. The communication system of the previous 2 embodiments, further including the wireless device, wherein the wireless device is configured to communicate with the network node.
Example Embodiment 78. The communication system of the previous 3 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; and the wireless device comprises processing circuitry configured to execute a client application associated with the host application.
Example Embodiment 79. A method implemented in a communication system including a host computer, a network node and a wireless device, the method comprising: at the host computer, providing user data; and at the host computer, initiating a transmission carrying the user data to the wireless device via a cellular network comprising the network node, wherein the network node performs any of the steps of any of Example Embodiments 32 to 71.
Example Embodiment 80. The method of the previous embodiment, further comprising, at the network node, transmitting the user data.
Example Embodiment 81. The method of the previous 2 embodiments, wherein the user data is provided at the host computer by executing a host application, the method further comprising, at the wireless device, executing a client application associated with the host application.
Example Embodiment 82. A wireless device configured to communicate with a network node, the wireless device comprising a radio interface and processing circuitry configured to performs the of the previous 3 embodiments.
Example Embodiment 83. A communication system including a host computer comprising: processing circuitry configured to provide user data; and a communication interface configured to forward user data to a cellular network for transmission to a wireless device, wherein the wireless device comprises a radio interface and processing circuitry, the wireless device's components configured to perform any of the steps of any of Example Embodiments 1 to 31.
Example Embodiment 84. The communication system of the previous embodiment, wherein the cellular network further includes a network node configured to communicate with the wireless device.
Example Embodiment 85. The communication system of the previous 2 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; and the wireless device's processing circuitry is configured to execute a client application associated with the host application.
Example Embodiment 86. A method implemented in a communication system including a host computer, a network node and a wireless device, the method comprising: at the host computer, providing user data; and at the host computer, initiating a transmission carrying the user data to the wireless device via a cellular network comprising the network node, wherein the wireless device performs any of the steps of any of Example Embodiments 1 to 31.
Example Embodiment 87. The method of the previous embodiment, further comprising at the wireless device, receiving the user data from the network node.
Example Embodiment 88. A communication system including a host computer comprising: communication interface configured to receive user data originating from a transmission from a wireless device to a network node, wherein the wireless device comprises a radio interface and processing circuitry, the wireless device's processing circuitry configured to perform any of the steps of any of Example Embodiments 1 to 31.
Example Embodiment 89. The communication system of the previous embodiment, further including the wireless device.
Example Embodiment 90. The communication system of the previous 2 embodiments, further including the network node, wherein the network node comprises a radio interface configured to communicate with the wireless device and a communication interface configured to forward to the host computer the user data carried by a transmission from the wireless device to the network node.
Example Embodiment 91. The communication system of the previous 3 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application; and the wireless device's processing circuitry is configured to execute a client application associated with the host application, thereby providing the user data.
Example Embodiment 92. The communication system of the previous 4 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application, thereby providing request data; and the wireless device's processing circuitry is configured to execute a client application associated with the host application, thereby providing the user data in response to the request data.
Example Embodiment 93. A method implemented in a communication system including a host computer, a network node and a wireless device, the method comprising: at the host computer, receiving user data transmitted to the network node from the wireless device, wherein the wireless device performs any of the steps of any of Example Embodiments 1 to 31.
Example Embodiment 94. The method of the previous embodiment, further comprising, at the wireless device, providing the user data to the network node.
Example Embodiment 95. The method of the previous 2 embodiments, further comprising: at the wireless device, executing a client application, thereby providing the user data to be transmitted; and at the host computer, executing a host application associated with the client application.
Example Embodiment 96. The method of the previous 3 embodiments, further comprising: at the wireless device, executing a client application; and at the wireless device, receiving input data to the client application, the input data being provided at the host computer by executing a host application associated with the client application, wherein the user data to be transmitted is provided by the client application in response to the input data.
Example Embodiment 97. A communication system including a host computer comprising a communication interface configured to receive user data originating from a transmission from a wireless device to a network node, wherein the network node comprises a radio interface and processing circuitry, the network node's processing circuitry configured to perform any of the steps of any of Example Embodiments 32 to 71.
Example Embodiment 98. The communication system of the previous embodiment further including the network node.
Example Embodiment 99. The communication system of the previous 2 embodiments, further including the wireless device, wherein the wireless device is configured to communicate with the network node.
Example Embodiment 100. The communication system of the previous 3 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application; the wireless device is configured to execute a client application associated with the host application, thereby providing the user data to be received by the host computer.
Example Embodiment 101. A method implemented in a communication system including a host computer, a network node and a wireless device, the method comprising: at the host computer, receiving, from the base station, user data originating from a transmission which the network node has received from the wireless device, wherein the wireless device performs any of the steps of any of Example Embodiments 1 to 31.
Example Embodiment 102. The method of the previous embodiment, further comprising at the network node receiving the user data from the wireless device.
Example Embodiment 103. The method of the previous 2 embodiments, further comprising at the network node, initiating a transmission of the received user data to the host computer.
Example Embodiment 104. The method of any of the previous embodiments, wherein the network node comprises a base station.
Example Embodiment 105. The method of any of the previous embodiments, wherein the wireless device comprises a user equipment (UE).
Modifications, additions, or omissions may be made to the systems and apparatuses described herein without departing from the scope of the disclosure. The components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses may be performed by more, fewer, or other components. Additionally, operations of the systems and apparatuses may be performed using any suitable logic comprising software, hardware, and/or other logic. As used in this document, “each” refers to each member of a set or each member of a subset of a set.
Modifications, additions, or omissions may be made to the methods described herein without departing from the scope of the disclosure. The methods may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order.
Although this disclosure has been described in terms of certain embodiments, alterations and permutations of the embodiments will be apparent to those skilled in the art. Accordingly, the above description of the embodiments does not constrain this disclosure. Other changes, substitutions, and alterations are possible without departing from the spirit and scope of this disclosure.
In RAN4 #94-e meeting, the WF on impact of positioning measurements on RRM requirements was approved. See, R4-2002276, WF on NR Positioning measurement impact on RRM requirements, Qualcomm.
The following issue related to the active BWP switching and positioning measurements has been identified for further studies in the WF:
The UE positioning measurement can be performed without measurement gaps or with measurement gaps. The consequence of the BWP switching on the UE positioning measurements depend on whether the gaps are used or not. Therefore, we consider both cases in the following sections. The analysis in general apply to all the UE positioning measurements (RSTD, PRS-RSRP and UE Rx-Tx time difference) unless explicitly stated otherwise.
UE Positioning Measurement without Gaps
The definition of intra-frequency RSTD (and PRS-RSRP) is still under discussion. But regardless of the agreed definition, at least intra-frequency RSTD and intra-frequency PRS-RSRP measurement can be done without measurement gaps provided that the PRS BW of the measured PRS is within the UE's DL active BWP. Additional conditions for measurement without gaps may also apply e.g. SCS of PRS and that of the DL active BWP are the same.
UE Rx-Tx time difference measurement is done on at least the serving cell. So at least the UE Rx-Tx time difference measurement in the serving cell can be done provided that the PRS BW and SRS BW are within the UE's DL active BWP and UL active BWP, respectively. Also, in this case, additional conditions for measurement without gaps may also apply e.g. SCSs of PRS and SRS and those of DL and UL active BWPs, respectively, are the same.
It has also been proposed that, “PRS-RSTD and PRS-RSRP measurement requirements apply when UE's active DL BWP is not changed during the measurement period.” See, R4-2000737, On impact of NR positioning on existing RRM requirements, Qualcomm.
This implicitly means that the gNB is not allowed to perform any active BWP switching while the UE is performing PRS-RSTD and PRS-RSRP measurement. This is very strict condition imposing big limitation on the network especially on scheduling and interference management.
In NR, the BW can be very large BW. The positioning measurement period depends on PRS/SRS resources configured for the measurement and especially on their periodicities, which can be very long e.g. up to 20480 slots for PRS and 2560 slots for SRS. Therefore, both from UE power consumption and interference point of view it is not advisable for gNB to operate the active BWP over unnecessary larger BW i.e. more than the BW needed for scheduling the UE. Accordingly, the UE should be allowed to perform the positioning measurements within the UE's active BWP without impacting or influencing any active BWP switching operation in gNB.
The active BW switching during the positioning measurement period will not impact the PRS (or SRS) for example:
UE Positioning Measurement with Gaps
The requirements will be defined for positioning measurement with gaps. Both intra-frequency and inter-frequency positioning measurements may need to be defined with gaps. At least there is consensus that inter-frequency positioning measurements will be defined with gaps.
Currently, the UE behaviour for handling the BWP switching if it occurs just before or during the gaps (e.g. timer-based) is unclear in RAN4 specifications. For RRM measurements, which are fully managed by the gNB, the risk of collision between the BWP switching and gaps is low.
But positioning measurements are configured by the LMF and based on this the UE may request the gNB to configure the gaps for doing positioning measurements. RAN4 has also identified potential need for new gaps with MGL>6 ms for positioning measurements. A large measurement gap increases the potential risk of active BWP switching triggering before the gap. Especially the timer-based BWP switching if configured prior to receiving UE request for gaps for positioning measurements. Unlike SSB, the PRS resource and SRS resource (for positioning) will typically be transmitted very sparsely e.g. once every 2560 slots etc. Therefore, it is important to define UE behaviour to avoid a situation where the BWP switching does not impact any measurement gap. As such, the gaps should not be impacted. Therefore, if any active BWP switching will impact the gap then the UE should prioritize the gap and complete the active BWP switching immediately after the gap.
In Summary, the impact of active BWP switching on positioning measurements in NR. Following are the main observation and proposals:
Observations and Proposals for Positioning Measurements Without Gaps:
Observations and Proposals for Positioning Measurements with Gaps:
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/059311 | 4/9/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63007404 | Apr 2020 | US |