The present invention relates generally to the field of flow cytometers, and more particularly to user interfaces in the field of flow cytometers.
A typical flow cytometer detector has a limited collection range. In quantitative terms, the collection range for a typical flow cytometer with a photomultiplier tube is approximately four decades, whereas the signal range of the objects may span more than five decades across experiments. In simple terms, the collection range of a typical flow cytometer is smaller than the signal range of the objects. For this reason, the typical detector is supplied with a gain level for the photomultiplier tubes and/or an amplifier. Detectors typically collect data relative to an object's size (light scatter) or brightness (fluorescence); both types of data are often collected on each object detected. To collect signals from small or faint objects, the gain level is increased. With an increased gain level, however, the signals from large or bright objects are too intense to be collected. To collect signals from large or bright objects, the gain level is decreased. With a decreased gain level, however, the signals from small or faint objects are too weak to be collected.
As shown in
The limitations of the user interface of typical flow cytometer systems have at least four disadvantages: (1) the expenditure of valuable user time spent on the gain-setting process to ensure it is set correctly; (2) the requirement of significantly more sample to determine the proper gain settings (i.e. more sample is used setting the gain than is actually used in the data collection run), (3) the potential loss of valuable data because the user incorrectly anticipated the actual signal range and a portion or more of the input signals are outside the user-set “active” dynamic collection range and are not collected; and (4) the inability to observe and “undo” changes in user-set gain/scaling settings without running additional samples.
As flow cytometer systems incorporate features that significantly increase the collection ranges to a range that approaches the object signal ranges (e.g. broad dynamic range flow cytometers), there will be a need in the flow cytometer field to create a new and improved flow cytometer user interface that avoids or minimizes one or more of these disadvantages. This invention provides such new and improved flow cytometer user interface.
FIGS. 2 and 3A-3C are schematic block diagrams of a flow cytometer user interface in accordance with the preferred embodiment of the present invention.
The following description of the preferred embodiment of the invention is not intended to limit the invention to this preferred embodiment, but rather to enable any person skilled in the art of flow cytometers to make and use this invention.
The preferred embodiment of the invention extracts data from the full dynamic range of a flow cytometer in a single run, and then manipulates scaling and/or culling factors across the full dynamic range after the data have been collected. The data of the full dynamic range are collected and stored in raw or unmodified form during the acquisition step and the user interface can display the unmodified data and/or modified data. Because scaling and/or culling factors can be applied after the acquisition step is complete, the user interface facilitates real-time comparisons between the raw and modified data on a single, unique sample run. Scaling and/or culling can be adjusted or undone without the need to re-run pilot samples, which saves time, reduces the amount of sample required, and eliminates the potential of lost data due to incorrect gain settings.
As shown in
The user interface of the preferred embodiment may be coupled to any suitable diagnostic and/or analysis system. In the preferred embodiment, the user interface is in electronic communication with an advanced flow cytometer that has a collection range that approaches the total detected object signal range (e.g. broad dynamic range flow cytometers). While the advanced flow cytometer may be any suitable flow cytometer system, it is preferably an advanced flow cytometer as described in U.S. Patent Publication Number 2006/0219873, entitled “Detection System for a Flow Cytometer” and filed on 31 Mar. 2006, which is incorporated in its entirety by this reference. In an alternative embodiment, the user interface is in electronic communication with a composite of several narrow dynamic range flow cytometers.
In the preferred embodiment, the first step of ‘running the sample and saving all collected data’ (102) includes the collection (i.e., acquisition) (103a) and electronic storage (103b) of the full dynamic range of input signals (in raw, unmodified format) from a flow cytometer sample. The full dynamic range of input signals is preferably defined as the range of input signals that provides a 1:100,000 ratio, and more preferably a 1:1,000,000 ratio, between the faintest objects and the brightest objects. The full dynamic range of input signals is preferably captured by a 24bit process, which translates to roughly 16,700,000 levels of information, but may alternatively be captured by any suitable process. Preferably, the captured data includes an error rate induced by electric noise of less than one-percent. In the preferred embodiment, the data are collected in a raw, unmodified format without the use of, or the adjustment in, the gain level of the detector. The collection of the data in this manner eliminates the expenditure of valuable user time and avoids the potential loss of valuable data through misconfiguration of the system.
The second step of ‘viewing the raw data’ (104) permits the user to observe the raw data (105a) that has been collected and stored from the sample run and identify the anticipated appropriate modifications (105b) for the sample. In the preferred embodiment, the user interface presents the raw data (105) after the acquisition is complete. In an alternative embodiment, the user interface presents the raw data (105) during the acquisition step. In a first “local” variation of the preferred embodiment, the original, raw data set to be viewed is acquired from a flow cytometer coupled to the user interface; in a second “remote” variation, the original data set is acquired from an electronic storage medium. When the user interface is coupled to a broad dynamic range flow cytometer, as in the preferred embodiment, the user interface can display data (105) from greater than four decades of signal.
The third step of ‘modifying the raw data’ (106) permits the user (107) to manipulate (e.g. scale and/or cull) the data collected across the full dynamic range of input signals (112) from the flow cytometer sample. In this step, the user interface permits the user to perform real-time comparisons between the raw and modified data (114) on a single, unique sample run. Additionally, scaling and/or culling can be adjusted or undone without the need to re-run pilot samples allowing multiple adjustments on the same initial data set.
In the preferred embodiment, the user scales and/or culls the raw data to select a subset of signals that corresponds to the desired sample population. The user is permitted to apply gain and scaling factors to the acquired data. This is performed independently of the acquisition step and permits the user to adjust the bounds of the data (116). In an alternative embodiment, the user interface automatically scales and/or culls the raw data based on an appropriate algorithm. In this alternative embodiment, the user interface may accept a user command that corresponds to, or identifies, the desired sample population. The modifying of raw data preferably occurs after data acquisition is complete, and multiple signal gain/scaling adjustments can be made on a single, unique data set.
The user interface of the preferred embodiment may be virtual, physical, or any suitable combination. In the virtual variation, the knobs, sliders, and other controls are shown only on a display and not in a physical unit. The controls, whether virtual or physical, permit the single, unique data set to be modified in a step-wise, sequential fashion. Alternatively, the user interface may permit the single, unique data to be repeatedly or iteratively modified. Scaling is preferably applied hierarchically based on forward scatter, which can be expanded to include any or all of the available data channels (scatter and fluorescent) in a progressive fashion. Scaling may, however, be applied in any suitable manner.
Any number of subsets of data can be generated that correspond to one or more sample populations (118) contained within the raw data set. Preferably, the user interface permits each subset (i.e. modification) of the raw data and the settings used to generate the desired subset of data to be individually saved, recorded, and identified. Alternatively, the user interface may permit subsets of raw data that are generated by sequential or iterative modifications and the settings used to generate the desired subset of data to be saved and identified at each iteration and in their totality.
In the preferred embodiment, the user interface utilizes one or more graphical, menu-driven formats (120) that can accept and display data sets, such as those from a flow cytometer with broad dynamic range. In an alternative embodiment, the user interface utilizes a numerical display format (122). The user interface permits the application of scaling and/or culling factors to the original data set to modify its display representation. In a first variation, the user interface simultaneously presents modified and raw representations of a single data set. In a second variation, the user interface simultaneously presents multiple data sets that can be simultaneously viewed, compared, and analyzed. The user can undo or otherwise alter the modifications (124) of one or more data sets using the menu-driven options.
The user interface of the preferred embodiment represents raw data and modified data using any suitable format, including graphically and numerically. The user interface enables observation of the consequences of scaling and/or culling modifications on a unique data set by simultaneous representation of raw and modified data. In one variation, separate graphs are generated from the raw and modified data and are displayed in separate frames, which preferably represents a preview of the export/print version of the viewed data. In an alternative variation, the raw and modified data are superimposed on one another in the same graph frame, with each data set preferably distinguished by color and/or shading. In yet another variation, the consequences of each modification applied to the raw data in the generation of the modified data are represented in independent planes of the same graph frame, and all modifications can be superimposed.
The fourth step of ‘reviewing and saving the modified settings’ (108) permits the user to identify the modifications made to the original data set (126) and to store the setting(s) used to generate the desired subset of data, thus allowing the user to save both the data and the corresponding scaling and/or culling parameters. The user interface provides virtual instrument settings (128) that can be adjusted, which generate a corresponding subset of data from the raw (i.e. original) data set. The user can repeat the steps of modifying the raw data and saving the desired subset of data and modified settings as many times as necessary and/or desirable, without the need for running additional sample through the flow cytometer. If the user generates the subset of data by making one or more alterations in the virtual settings, the user can access the previously saved alterations made to the subset of data and retrace or “undo” the alterations sequentially. In the preferred embodiment, the user interface will prompt the user to save the modified subset of data (l09), the settings used to generate the data (130), and any other pertinent information regarding the sample or data acquisition; in an alternative embodiment, the data settings are saved automatically. The user interface can apply hierarchical scaling factors (132) to independent data channels (e.g. scatter channels and fluorescent channels).
The fifth step of ‘exporting the saved data’ (110) permits the user to transfer the original (raw) data set and/or the modified subset of data from the flow cytometer system to a different medium, such as a printout or an electronic file. The data may be transferred to any suitable medium for subsequent viewing, analysis, and/or storage, and the settings used to generate the data and other pertinent information regarding the sample or data acquisition may also be included.
As a person skilled in the art of flow cytometry will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiment of the invention without departing from the scope of this invention defined in the following claims.
This application is a continuation of prior application Ser. No. 11/466,391 filed 22 Aug. 2006, now U.S. Pat. No. 7,996,188, which claims the benefit of U.S. Provisional Patent Application No. 60/710,102 filed on 22 Aug. 2005. Both applications are incorporated in their entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3672402 | Bloemer | Jun 1972 | A |
4112735 | McKnight | Sep 1978 | A |
4138879 | Liebermann | Feb 1979 | A |
4371786 | Kramer | Feb 1983 | A |
4448538 | Mantel | May 1984 | A |
4559454 | Kramer | Dec 1985 | A |
4691829 | Aue | Sep 1987 | A |
4755021 | Dyott | Jul 1988 | A |
4790653 | North, Jr. | Dec 1988 | A |
4818103 | Thomas et al. | Apr 1989 | A |
4844610 | North, Jr. | Jul 1989 | A |
4933813 | Berger | Jun 1990 | A |
5028127 | Spitzberg | Jul 1991 | A |
5040890 | North, Jr. | Aug 1991 | A |
5043706 | Oliver | Aug 1991 | A |
5083862 | Rusnak | Jan 1992 | A |
5139609 | Fields et al. | Aug 1992 | A |
5150313 | van den Engh et al. | Sep 1992 | A |
5155543 | Hirako | Oct 1992 | A |
5204884 | Leary et al. | Apr 1993 | A |
5224058 | Mickaels et al. | Jun 1993 | A |
5230026 | Ohta et al. | Jul 1993 | A |
5270548 | Steinkamp | Dec 1993 | A |
5301685 | Guirguis | Apr 1994 | A |
5308990 | Takahashi et al. | May 1994 | A |
5367474 | Auer et al. | Nov 1994 | A |
5395588 | North, Jr. et al. | Mar 1995 | A |
5403552 | Pardikes | Apr 1995 | A |
5469375 | Kosaka | Nov 1995 | A |
5539386 | Elliott | Jul 1996 | A |
5552885 | Steen | Sep 1996 | A |
5684480 | Jansson | Nov 1997 | A |
5739902 | Gjelsnes et al. | Apr 1998 | A |
5798222 | Goix | Aug 1998 | A |
5883378 | Irish et al. | Mar 1999 | A |
5920388 | Sandberg et al. | Jul 1999 | A |
5981180 | Chandler et al. | Nov 1999 | A |
6016376 | Ghaemi et al. | Jan 2000 | A |
6039078 | Tamari | Mar 2000 | A |
6091502 | Weigl et al. | Jul 2000 | A |
6097485 | Lievan | Aug 2000 | A |
6108463 | Herron et al. | Aug 2000 | A |
6110427 | Uffenheimer | Aug 2000 | A |
6115065 | Yadid-Pecht et al. | Sep 2000 | A |
6139800 | Chandler | Oct 2000 | A |
6154276 | Mariella, Jr. | Nov 2000 | A |
6156208 | Desjardins et al. | Dec 2000 | A |
6181319 | Fujita et al. | Jan 2001 | B1 |
6183697 | Tanaka et al. | Feb 2001 | B1 |
6288783 | Auad | Sep 2001 | B1 |
6377721 | Walt et al. | Apr 2002 | B1 |
6382228 | Cabuz et al. | May 2002 | B1 |
6403378 | Phi-Wilson et al. | Jun 2002 | B1 |
6427521 | Jakkula et al. | Aug 2002 | B2 |
6469787 | Meyer et al. | Oct 2002 | B1 |
6473171 | Buttry et al. | Oct 2002 | B1 |
6519355 | Nelson | Feb 2003 | B2 |
6522775 | Nelson | Feb 2003 | B2 |
6568271 | Shah et al. | May 2003 | B2 |
6602469 | Maus et al. | Aug 2003 | B1 |
6636623 | Nelson et al. | Oct 2003 | B2 |
6675835 | Gerner et al. | Jan 2004 | B2 |
6694799 | Small | Feb 2004 | B2 |
6700130 | Fritz | Mar 2004 | B2 |
6710871 | Goix | Mar 2004 | B1 |
6778910 | Vidal et al. | Aug 2004 | B1 |
6809804 | Yount et al. | Oct 2004 | B1 |
6816257 | Goix | Nov 2004 | B2 |
6825926 | Turner et al. | Nov 2004 | B2 |
6852284 | Holl et al. | Feb 2005 | B1 |
6859570 | Walt et al. | Feb 2005 | B2 |
6869569 | Kramer | Mar 2005 | B2 |
6872180 | Reinhardt et al. | Mar 2005 | B2 |
6890487 | Sklar et al. | May 2005 | B1 |
6897954 | Bishop et al. | May 2005 | B2 |
6908226 | Siddiqui et al. | Jun 2005 | B2 |
6912904 | Storm, Jr. et al. | Jul 2005 | B2 |
6936828 | Saccomanno | Aug 2005 | B2 |
6941005 | Lary et al. | Sep 2005 | B2 |
6944322 | Johnson et al. | Sep 2005 | B2 |
7009189 | Saccomanno | Mar 2006 | B2 |
7012689 | Sharpe | Mar 2006 | B2 |
7019834 | Sebok et al. | Mar 2006 | B2 |
7024316 | Ellison et al. | Apr 2006 | B1 |
7061595 | Cabuz et al. | Jun 2006 | B2 |
7075647 | Christodoulou | Jul 2006 | B2 |
7105355 | Kurabayashi et al. | Sep 2006 | B2 |
7106442 | Silcott et al. | Sep 2006 | B2 |
7113266 | Wells | Sep 2006 | B1 |
7130046 | Fritz et al. | Oct 2006 | B2 |
7232687 | Lary et al. | Jun 2007 | B2 |
7262838 | Fritz | Aug 2007 | B2 |
7274316 | Moore | Sep 2007 | B2 |
7362432 | Roth | Apr 2008 | B2 |
7471393 | Trainer | Dec 2008 | B2 |
7486387 | Fritz | Feb 2009 | B2 |
7738099 | Morrell et al. | Jun 2010 | B2 |
7739060 | Goebel et al. | Jun 2010 | B2 |
7843561 | Rich | Nov 2010 | B2 |
7996188 | Olson et al. | Aug 2011 | B2 |
8004674 | Ball et al. | Aug 2011 | B2 |
8077310 | Olson et al. | Dec 2011 | B2 |
20010014477 | Pelc et al. | Aug 2001 | A1 |
20020028434 | Goix et al. | Mar 2002 | A1 |
20020049782 | Herzenberg | Apr 2002 | A1 |
20020059959 | Qatu et al. | May 2002 | A1 |
20020080341 | Kosaka | Jun 2002 | A1 |
20020097392 | Minneman et al. | Jul 2002 | A1 |
20020123154 | Burshteyn et al. | Sep 2002 | A1 |
20020192113 | Uffenheimer et al. | Dec 2002 | A1 |
20030035168 | Qian et al. | Feb 2003 | A1 |
20030048539 | Oostman et al. | Mar 2003 | A1 |
20030054558 | Kurabayashi | Mar 2003 | A1 |
20030062314 | Davidson et al. | Apr 2003 | A1 |
20030072549 | Facer et al. | Apr 2003 | A1 |
20030078703 | Potts et al. | Apr 2003 | A1 |
20030129090 | Farrell | Jul 2003 | A1 |
20030134330 | Ravkin et al. | Jul 2003 | A1 |
20030148379 | Roitman et al. | Aug 2003 | A1 |
20030151741 | Wolleschensky et al. | Aug 2003 | A1 |
20030175157 | Micklash et al. | Sep 2003 | A1 |
20030202175 | van den Engh et al. | Oct 2003 | A1 |
20030211009 | Buchanan | Nov 2003 | A1 |
20030223061 | Sebok | Dec 2003 | A1 |
20030235919 | Chandler | Dec 2003 | A1 |
20040031521 | Vrane et al. | Feb 2004 | A1 |
20040048362 | Trulson et al. | Mar 2004 | A1 |
20040112808 | Takagi et al. | Jun 2004 | A1 |
20040119974 | Bishop et al. | Jun 2004 | A1 |
20040123645 | Storm et al. | Jul 2004 | A1 |
20040131322 | Ye et al. | Jul 2004 | A1 |
20040143423 | Parks et al. | Jul 2004 | A1 |
20040175837 | Bonne et al. | Sep 2004 | A1 |
20040201845 | Quist et al. | Oct 2004 | A1 |
20040246476 | Bevis et al. | Dec 2004 | A1 |
20050044110 | Herzenberg | Feb 2005 | A1 |
20050047292 | Park et al. | Mar 2005 | A1 |
20050057749 | Dietz et al. | Mar 2005 | A1 |
20050069454 | Bell | Mar 2005 | A1 |
20050073686 | Roth et al. | Apr 2005 | A1 |
20050078299 | Fritz et al. | Apr 2005 | A1 |
20050105091 | Lieberman et al. | May 2005 | A1 |
20050162648 | Auer et al. | Jul 2005 | A1 |
20050163663 | Martino et al. | Jul 2005 | A1 |
20050195605 | Saccomanno et al. | Sep 2005 | A1 |
20050195684 | Mayer | Sep 2005 | A1 |
20050252574 | Khan et al. | Nov 2005 | A1 |
20060002634 | Riley et al. | Jan 2006 | A1 |
20060015291 | Parks et al. | Jan 2006 | A1 |
20060023219 | Meyer et al. | Feb 2006 | A1 |
20060161057 | Weber | Jul 2006 | A1 |
20060219873 | Martin et al. | Oct 2006 | A1 |
20060240411 | Mehrpouyan et al. | Oct 2006 | A1 |
20060281143 | Liu et al. | Dec 2006 | A1 |
20060286549 | Sohn et al. | Dec 2006 | A1 |
20070003434 | Padmanabhan et al. | Jan 2007 | A1 |
20070041013 | Fritz et al. | Feb 2007 | A1 |
20070096039 | Kapoor et al. | May 2007 | A1 |
20070124089 | Jochum et al. | May 2007 | A1 |
20070134089 | Lee et al. | Jun 2007 | A1 |
20070188737 | Fritz | Aug 2007 | A1 |
20070212262 | Rich | Sep 2007 | A1 |
20070224684 | Olson et al. | Sep 2007 | A1 |
20080055595 | Olson et al. | Mar 2008 | A1 |
20080152542 | Ball et al. | Jun 2008 | A1 |
20080215297 | Goebel et al. | Sep 2008 | A1 |
20080228444 | Olson et al. | Sep 2008 | A1 |
20080263468 | Cappione Amedeo et al. | Oct 2008 | A1 |
20090104075 | Rich | Apr 2009 | A1 |
20090202130 | George et al. | Aug 2009 | A1 |
20090216478 | Estevez | Aug 2009 | A1 |
20100012853 | Parks | Jan 2010 | A1 |
20100032584 | Dayong et al. | Feb 2010 | A1 |
20100118298 | Bair et al. | May 2010 | A1 |
20100271620 | Goebel et al. | Oct 2010 | A1 |
20100302536 | Ball et al. | Dec 2010 | A1 |
20110008816 | Ball et al. | Jan 2011 | A1 |
20110204259 | Rogers et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
1396736 | Mar 2004 | EP |
356169978 | Dec 1981 | JP |
04086546 | Mar 1992 | JP |
10227737 | Aug 1998 | JP |
2005017499 | Feb 2005 | WO |
2005068971 | Jul 2005 | WO |
2005073694 | Aug 2005 | WO |
2005091893 | Oct 2005 | WO |
2006055722 | May 2006 | WO |
2007103969 | Sep 2007 | WO |
2007100723 | Sep 2007 | WO |
2008058217 | May 2008 | WO |
2010101623 | Sep 2010 | WO |
2011106402 | Sep 2011 | WO |
2011159708 | Dec 2011 | WO |
2012030740 | Mar 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20120004859 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
60710102 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11466391 | Aug 2006 | US |
Child | 13175926 | US |