Using a fixed network wireless data collection system to improve utility responsiveness to power outages

Abstract
A system for determining service outages and restorations includes an outage management server (OMS) that generates reports of outages and restoration information for metering endpoints. The outages may be caused by faults at various locations in the distribution network. The metering endpoint may include a transmitter having a battery backup that transmits the outage information upon a failure to detect a voltage at the endpoint. The transmission of the information may be filtered based on configurable criteria. The metering endpoints may also inform the OMS when power is restored.
Description
FIELD OF THE INVENTION

The present invention relates to wireless networks for collecting data, and more particularly, to systems and methods for monitoring utility system outages using a fixed network wireless data collection system to improve a utility's response thereto.


BACKGROUND OF THE INVENTION

The collection of meter data from electrical energy, water, and gas meters has traditionally been performed by human meter-readers. The meter-reader travels to the meter location, which is frequently on the customer's premises, visually inspects the meter, and records the reading. The meter-reader may be prevented from gaining access to the meter as a result of inclement weather or, where the meter is located within the customer's premises, due to an absentee customer. This methodology of meter data collection is labor intensive, prone to human error, and often results in stale and inflexible metering data.


Some meters have been enhanced to include a one-way radio transmitter for transmitting metering data to a receiving device. A person collecting meter data that is equipped with an appropriate radio receiver need only come into proximity with a meter to read the meter data and need not visually inspect the meter. Thus, a meter-reader may walk or drive by a meter location to take a meter reading. While this represents an improvement over visiting and visually inspecting each meter, it still requires human involvement in the process.


An automated means for collecting meter data involves a fixed wireless network. Devices such as, for example, repeaters and gateways are permanently affixed on rooftops and pole-tops and strategically positioned to receive data from enhanced meters fitted with radio-transmitters. Typically, these transmitters operate in the 902-928 MHz range and employ Frequency Hopping Spread Spectrum (FHSS) technology to spread the transmitted energy over a large portion of the available bandwidth.


Data is transmitted from the meters to the repeaters and gateways and ultimately communicated to a central location. While fixed wireless networks greatly reduce human involvement in the process of meter reading, such systems require the installation and maintenance of a fixed network of repeaters, gateways, and servers. Identifying an acceptable location for a repeater or server and physically placing the device in the desired location on top of a building or utility pole is a tedious and labor-intensive operation. Furthermore, each meter that is installed in the network needs to be manually configured to communicate with a particular portion of the established network. When a portion of the network fails to operate as intended, human intervention is typically required to test the effected components and reconfigure the network to return it to operation.


Thus, while existing fixed wireless systems have reduced the need for human involvement in the daily collection of meter data, such systems may provide benefits to utilities by monitoring for system outages. In so doing, fixed wireless systems may improve the utilities response to outages, improving customer service.


SUMMARY OF THE INVENTION

The present invention is directed to methods and systems for determining service outages and restorations that includes an outage management server (OMS) that generates reports of outages and restoration information for metering endpoints. The outages may be caused by faults at various locations in the distribution network. The metering endpoint may include a transmitter having a battery backup that transmits the outage information upon a failure to detect a voltage at the endpoint. The transmission of the information may be filtered based on configurable criteria. The metering endpoints may also inform the OMS when power is restored. Thus, a utility may better service its customers by focusing manpower efforts using the outage and restoration information generated by the OMS.


In accordance with the present invention, there is provided a system for determining outage and restoration information for meters operating within a fixed wireless metering network. The system includes a network configuration server that determines a network states; and an outage management system (OMS) that determines outage conditions and power restoration conditions. The OMS may provide a list of meters affected by the power outage and restoration conditions.


The system may also include a collector and non-collector metering points. The non-collector metering points may collect and forward the outage information to the collector. The collector and the non-collector metering points may perform filtering of the outage information. The filtering may comprise at least one of: configurable delays at the non-collector metering points prior to transmitting an outage message, configurable delays at the non-collector metering points prior to transmitting a restoration message, configurable options in the collector that allow data to be aggregated prior to a call-in to the outage management system, and configurable options in the collector that allow call-ins to be suppressed during a large-scale outage.


The non-collector metering points may also select a random transmit slot within a first transmit period, a second transmit period, and a third transmit period.


The non-collector metering points and the collector may be adapted to verify a presence of power by measuring a voltage.


A subset of affected metering points may be identified, and the subset of affected metering points assigned to a corresponding subset of collectors for verification of power outage or power restoration.


The collector may be adapted to ping the non-collector metering points to determine an extent of the outage, wherein the ping comprises one of: a ping of each non-collector metering point directly, a ping of non-collector metering points in a communication path to determine if the communication path is available, and a ping of non-collector metering points farthest from the collector first in an attempt to validate all non-collector metering points in the communication path with one message.


Additional features and advantages of the invention will be made apparent from the following detailed description of illustrative embodiments that proceeds with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of preferred embodiments, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings exemplary constructions of the invention; however, the invention is not limited to the specific methods and instrumentalities disclosed. In the drawings:



FIG. 1 is a diagram of a wireless system for collecting data from remote devices;



FIG. 2 expands upon the diagram of FIG. 1 and illustrates a system in which the present invention is embodied;



FIG. 3 illustrates a typical distribution circuit and potential fault locations; and



FIG. 4 is a flow chart illustrating one embodiment of a method of the present invention.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Exemplary systems and methods for gathering meter data are described below with reference to FIGS. 1-3. It will be appreciated by those of ordinary skill in the art that the description given herein with respect to those figures is for exemplary purposes only and is not intended in any way to limit the scope of potential embodiments.


Generally, a plurality of meter devices, which operate to track usage of a service or commodity such as, for example, electricity, water, and gas, are operable to wirelessly communicate with each other. A collector is operable to automatically identify and register meters for communication with the collector. When a meter is installed, the meter registers with a collector that can provide a communication path to the meter. The collectors receive and compile metering data from a plurality of meter devices via wireless communications. A communications server communicates with the collectors to retrieve the compiled meter data.



FIG. 1 provides a diagram of an exemplary metering system 110. System 110 comprises a plurality of meters 114, which are operable to sense and record usage of a service or commodity such as, for example, electricity, water, or gas. Meters 114 may be located at customer premises such as, for example, a home or place of business. Meters 114 comprise an antenna and are operable to transmit data, including service usage data, wirelessly. Meters 114 may be further operable to receive data wirelessly as well. In an illustrative embodiment, meters 114 may be, for example, electrical meters manufactured by Elster Electricity, LLC.


System 110 further comprises collectors 116. Collectors 116 are also meters operable to detect and record usage of a service or commodity such as, for example, electricity, water, or gas. Collectors 116 comprise an antenna and are operable to send and receive data wirelessly. In particular, collectors 116 are operable to send data to and receive data from meters 114. In an illustrative embodiment, collectors 116 may be, for example, an electrical meter manufactured by Elster Electricity, LLC.


A collector 116 and the meters 114 for which it is configured to receive meter data define a subnet/LAN 120 of system 110. As used herein, meters 114 and collectors 116 may be considered as nodes in the subnet 120. For each subnet/LAN 120, data is collected at collector 116 and periodically transmitted to a data collection server 206. The data collection server 206 stores the data for analysis and preparation of bills. The data collection server 206 may be a specially programmed general purpose computing system and may communicate with collectors 116 wirelessly or via a wire line connection such as, for example, a dial-up telephone connection or fixed wire network.


Generally, collector 116 and meters 114 communicate with and amongst one another using any one of several robust wireless techniques such as, for example, frequency hopping spread spectrum (FHSS) and direct sequence spread spectrum (DSSS). As illustrated, meters 114a are “first level” meters that communicate with collector 116, whereas meters 114b are higher level meters that communicate with other meters in the network that forward information to the collector 116.


Referring now to FIG. 2, there is illustrated a system 200 in which the present invention may be embodied. The system 200 includes a network management server (NMS)/metering automation server (MAS) 202 (the two terms are used interchangeably herein), a network management system (NMS) 204 and a data collection server 206 that together manage one or more subnets/LANs 120 and their constituent nodes. The NMS 204 tracks changes in network state, such as new nodes registering/unregistering with the system 200, node communication paths changing, etc. This information is collected for each subnet/LAN 120 and are detected and forwarded to the network management server 202 and data collection server 206.


In accordance with an aspect of the invention, communication between nodes and the system 200 is accomplished using the LAN ID, however it is preferable for customers to query and communicate with nodes using their own identifier. To this end, a marriage file 208 may be used to correlate a customer serial number, a manufacturer serial number and LAN ID for each node (e.g., meters 114a and collectors 116) in the subnet/LAN 120. A device configuration database 210 stores configuration information regarding the nodes. For example, in the metering system 110, the device configuration database may include data regarding time of use (TOU) switchpoints, etc. for the meters 114a and collectors 116 communicating to the system 200. A data collection requirements database 212 contains information regarding the data to be collected on a per node basis. For example, a user may specify that metering data such as load profile, demand, TOU, etc. is to be collected from particular meter(s) 114a. Reports 214 containing information on the network configuration may be automatically generated or in accordance with a user request.


The network management system (NMS) 204 maintains a database describing the current state of the global fixed network system (current network state 220) and a database describing the historical state of the system (historical network state 222). The current network state 220 contains data regarding current meter to collector assignments, etc. for each subnet/LAN 120. The historical network state 222 is a database from which the state of the network at a particular point in the past can be reconstructed. The NMS 204 is responsible for, amongst other things, providing reports 214 about the state of the network. The NMS 204 may be accessed via an API 220 that is exposed to a user interface 216 and a Customer Information System (CIS) 218. Other external interfaces may be implemented in accordance with the present invention. In addition, the data collection requirements stored in the database 212 may be set via the user interface 216 or CIS 218.


The data collection server 206 collects data from the nodes (e.g., collectors 116) and stores the data in a database 224. The data includes metering information, such as energy consumption and may be used for billing purposes, etc. by a utility provider.


The network management server 202, network management system 204 and data collection server 206 communicate with the nodes in each subnet/LAN 120 via a communication system 226. The communication system 226 may be a Frequency Hopping Spread Spectrum radio network, a mesh network, a Wi-Fi (802.11) network, a Wi-Max (802.16) network, a land line (POTS) network, etc., or any combination of the above and enables the system 200 to communicate with the metering system 110.


The mesh network automatically builds and re-configures itself, based on the most reliable communications paths, with each meter being able to function as a repeater if needed. While the mesh radio network provides robust communications to the end-point meters, and allows for communication paths to change if communications are obstructed, the communication network generally does not correspond to the physical distribution circuit.


The overall system of FIG. 2 includes such features as two-way communications to and from each electricity meter 114a/b. This enables on-request verification of communications to an individual meter or to a group of meters, on-request retrieval of meter data, remote meter re-configuration, critical tier pricing, and remote actions such as service disconnect. The system operates over an intelligent meter communications mesh network for path diversity and self healing. The Metering Automation Server (MAS) unifies the mesh communication network, schedules meter data collection and billing dates, and provides meter network management information. Billing data may be calculated by and stored in the meter 114a/b. The meter has data processing for functions such as Time-of-Use (TOU) metering, demand calculations, sum or net metering, and load profile data. The system architecture allows for new utility applications such as demand response or demand side management programs, energy management or home automation systems, and distribution automation.


The system 200 consists of three levels: the Metering Automation Server (MAS)/Network Management Server 202 for operation and data collection, the collectors 116, and electric meters with integrated two-way 900 MHz radios for residential and commercial metering. The system 200 may comprise the EnergyAxis system available from Elster Electricity LLC, Raleigh, N.C. The collectors 116 may comprise an A3 ALPHA Meter and the meters 114a/114b may comprise A3 ALPHA or REX meters, which are available from Elster Electricity LLC, Raleigh, N.C.


The system 200 may be used to determine an outage and aiding a utility's response thereto. Utilities continue to look for ways to improve customer service while reducing operating costs. The use of a wireless data collection system 200 can help achieve both goals. One area the utilities may seek to improve is customer service when an outage occurs. A second area is the efficient utilization of manpower to restore power. The present invention implants features in the system 200 to improve customer service and the efficiency of manpower utilization during outages.


The word “outage” may have different meanings depending on who is analyzing the event. IEEE 1159 defines an interruption in categories depending on the voltage variation (in per unit) and duration as shown in Table 1 below.













TABLE 1








Typical
Typical



Category
Duration
Voltage Variation









Interruption, Sustained
>1 min
 0.0 pu



Interruption, Temporary
3 s-1 m
<0.1 pu



Interruption, Momentary
0.5 s-3 s   
<0.1 pu










Utilities may also have their own definition for an outage. While momentary and temporary outages are useful in power quality analysis, they are not of interest to utility personnel responsible for power restoration. A sustained interruption occurs when a fault has been cleared by a fuse, recloser, or circuit breaker and it results in an outage for customers downstream of the protective device. It is the sustained outage that has the greatest impact on customers.


Sources of an Outage


A customer outage can be caused by several different events. While an outage is typically caused by the clearing of a fault on the distribution system, it may also be caused by a fault or open circuit on the customer premises. FIG. 3 shows a typical distribution circuit with various fault locations that could result in a customer outage. For each of the faults shown, the clearing mechanism and customer impact are summarized.


Fault at F1: For a fault at F1, the fault is on the customer premises 300 and is cleared by an in-home circuit breaker resulting in a loss of power for the customer. Only one customer is affected.


Fault at F2: For a fault at F2, the fault is on distribution line 302 between a fused transformer and the customer premises 300 and would be cleared by the transformer fuse. Typically one to three customers are affected.


Fault at F3: For a fault at F3, the fault is on the distribution lateral 304 and is cleared by a fuse on the distribution lateral 304. Typically, at least one hundred customers are affected.


Fault at F4: For a fault at F4, the fault is on the distribution line 306 and would be cleared by a line recloser or station breaker with reclosing relay. Typically, at least three hundred customers are affected.


Fault at F5: For a fault at F5, the fault is on the transmission line 308 and would be cleared by a station breaker. Typically, at least one thousand customers are affected.


Utility Response to an Outage


Following an outage on the distribution grid, utilities want to be able to restore power to customers in as timely a manner as possible. One of the major factors that may influence what type of data a utility wants during an outage is the number of affected customers.


As shown in FIG. 3, the location of the fault impacts the numbers of customers affected. When the number of affected customers is small, the likelihood of the outage being reported is small. This is particularly true of homes that are not occupied at the time of the outage (e.g. vacation homes or locations where no one is home at the time of the outage). Notification is therefore important so that the outage may be recognized and repair crews dispatched. For faults involving a large number of customers, the utility is more likely to receive calls from some of those customers. A large-scale outage often results in an overload of the trouble call system due to the large number of customers reporting the outage. In this case, the initial notification is less important, but it is important to verify that power has been restored to all customers.


The data for utilities as a function of fault location is summarized in Table 2.









TABLE 2







Utility Drivers Depending on Fault Location












Probability of Utility




Customers
Knowledge of Outage


Fault
Affected
Within 30 Minutes
Utility Driver





F1
  1
Variable*
Knowledge of outage


F2
  1-3
Variable*
Knowledge of outage


F3
>100
Good
Knowledge that all customers





restored


F4
>300
Very Good
Knowledge that all customers





restored


F5
>1000 
Near 100%
Knowledge that all customers





restored





*depending on customer being at home






System Response to Outages


In the system 200, the following outage/restoration features are implemented:


1. The collector 116 can provide an outage call to MAS 202 when the collector is affected by an outage.


2. The collector 116 can provide a restoration call to MAS 202 when power is restored to the collector.


3. The meters 114a/b can send a radio frequency (RF) message to notify the collector 116 that power has been restored to the meter site. The collector 116 can make one or more calls to report the restoration information to MAS 202.


4. Once notified of an outage or a restoration condition, the MAS 202 can provide this notification to an Outage Management System (OMS) 211 and to MAS operators.


When equipped with a means to hold up the power supply, an electricity meter end point 114a/b (REX Meter, A3 Node) in the system can transmit an outage message when power fails. The electricity meter 114a/b can be configured to send the message immediately, or after a configurable delay period. The configurable (e.g., 1-255 seconds) delay period would typically be set at the factory, or alternatively could be set via a download from MAS 202 or via customer programming software and an optical communication probe connected to the meter. The meter will only transmit an outage message if the outage lasts longer than the outage delay period. After the delay period, the meter 114a/b will transmit a number of outage messages (e.g., 3) where each outage message is transmitted in a randomly selected transmit slot. In the preferred embodiment, the meter can select from, e.g., 1 of 15 transmit slots.


The outage message transmitted by the electricity meter can be received by any other 2-way node in the system (e.g., 114a or 114b). Each 2-way node has the capability to store multiple messages (e.g., 8) and forward the message to the collector. Multiple nodes in the system may receive the same outage message, thereby increasing the probability that the message is forwarded to the collector. Nodes that receive an outage exception will attempt to forward the message to the collector in an exception window. The node will continue to transmit a message to the collector until the collector acknowledges receipt of the message.


The collector 116 can also detect exception conditions as part of the normal billing read process. When reading billing data from a node 114a/b, the collector 116 will check if the node has any exception data that needs to be forwarded to the collector. If data is available, the collector 116 will read the exception conditions from the node, clearing the condition from the node and causing the node to stop transmitting the condition to the collector 116.


It should be noted that the device transmitting the outage message does not need to be an electricity meter. The device could be a strategically located device, mounted near protective equipment or at a transformer location. It could also be a device installed inside a residence to signify that power has been lost to the site. In the preferred embodiment, the outage notification feature is included in the electricity meter to minimize cost to the utility if all accounts are equipped with the feature. A strategically placed outage notification deployment may be more cost effectively deployed with non-metering devices, and the present invention allows for a strategic deployment.


The collector 116 can be configured to respond in a variety of ways to the receipt of an outage message. The following options can be selected via collector configuration parameters per a particular utility's preferences:


1. Make an immediate call to the MAS 202 after receiving an outage message from an electric meter. While possible, this is not expected to be the likely operating mode for most utilities.


2. Delay for a configurable period of time to allow for the aggregation of outage information from multiple end points, then call to notify MAS 202 regardless of whether power has been restored to some or all of the meters affected by the outage.


3. Delay for a configurable period of time (e.g., 1 to 15 minutes) to allow for the aggregation and filtering of outage and restoration information from multiple end points. After the delay, the collector 116 may initiate a call to MAS 202 if a meter has reported an outage but not yet reported a restoration. To improve the filtering and to limit false alarms, the collector 116 can be configured to poll each meter 114a/b that reported an outage, using a lack of a response as an indication that the outage condition still exists.


4. Aggregate the outage and restoration information as described in options 2 and 3, above, but do not initiate an inbound call if the number of meters in an outage condition exceeds a configurable threshold. This scenario assumes that it is a widespread outage and that customer call-ins will be sufficient to notify of and determine the extent of the outage. The collector filter prevents an overload of information to an Outage Management System (OMS) 211.


The collector 116 may initiate an inbound communication to the MAS 202 to report the outage condition. The MAS 202 will forward the outage information to the outage management system (OMS) 211, which may also receive outage information through customer call-ins to a trouble call center. After receiving the initial report of an outage, either via outage messages from the AMR system or via a customer call, the OMS 211 can use the system 200 to determine the extent of the outage. To do so, the OMS or a distribution operator can provide a list of electric meters that it would like to check for outage conditions. Using a small number of outage reports, the OMS 211 can probe logical points to determine if the outage is of type F2, F3, F4, or F5. The list of meters may be derived from the distribution network topology (i.e., meters on the same feeder, lateral, or service transformer).


After receiving the list of meters from the OMS 211, the MAS 202 determines which collector(s) these meters communicate through and will instruct each identified collector to check for outage conditions on their subset of meters. The collector(s) involved will attempt to verify communications to each end point meter in the list. A lack of communications can be used to indicate a potential outage and communication to a meter will confirm the presence of power. The extent to which the system 200 can probe the outage condition is dependent on which meters in the communication path are powered. Since the network operates in a hierarchical repeater chain, an outage at a repeater/meter at a low level (closer to the collector 116), can affect communications to multiple downstream meters that may not be in an outage condition. As with any RF system, lack of communications to a given device will not always equate to an outage at that device.


If instructed to poll a large number of meters or all meters 114a/b served by the collector 116, the collector 1116 can use various algorithms to optimize the time required to check the list of meters. With a hierarchical system, if a collector 116 is able to communicate with a level farthest away from the collector, the collector 116 will know that all meters in the communication path are powered. Alternatively, the collector 116 could start from the level closest to the collector 116. If unable to communicate to the closest level, the collector knows that it cannot communicate to meters farther down the communication chain.


After polling the meters identified by the MAS 202, the collector 116 updates the list with status information to indicate whether the meter is powered. The status information will indicate that the meter responded (meter is powered), meter did not respond, or meter could not be checked due to a failure in the communication path ahead of the targeted end point. In the case of a communication path failure, the collector may identify the point in the communication path that is not responding, possibly identifying a meter in an outage condition. The MAS 202 may issue the polling request to the collector and wait for the response as soon as it is completed, or it may issue the command to the collector and disconnect the WAN session (i.e., the link between the communication system 226, subnet/LAN A, subnet/LAN B, etc.) without waiting for the response. In this scenario, the collector can be configured to initiate an inbound communication to the MAS 202 to report that the request has completed. The MAS 202 can retrieve the information and pass outage or powered status to the OMS 211 for each of the requested meters. The information available from the OMS 211 can be passed to utility operators and used to direct crews to the outage locations.


In addition to the outage exception message received from a meter, the collector may be configured to determine if an outage condition is present based on the communication success rate to a given meter. In normal operating conditions, the collector periodically communications with each meter to retrieve register (e.g. kWh) data and load profile data. Over time, the collector establishes a communication reliability rate, or performance rate, for each meter. After a minimum number of attempts to communicate to a meter have been made, the collector can determine typical performance rates for a meter flag abnormalities as a potential outage condition. This functionality is illustrated with the following example.


After at least 100 communication attempts to a meter, the collector will have a communication performance score (e.g. 90/100) that indicates the likelihood of successful two-way communications between the collector and the meter. If the collector then fails to communicate with the meter on successive attempts, the collector can set a “potential outage” flag to indicate that the meter may be in an outage condition. The number of failed communication attempts required to set the “potential outage” flag is configurable based on the collector to meter communication performance rate. If, for example, the communication performance rate was 100%, two failed communication attempts would cause the collector to set the “potential outage” flag. If, on the other hand, the communication performance rate was 80%, six successive failed communication attempts would be required to set the “potential outage” flag. FIG. 4 is a flow chart illustrating the steps of the foregoing method.


The collector may also delay between successive communication attempts to ensure that a momentary communication problem does not cause the “potential outage” flag to be falsely set. The collector's ability to warn of a potential outage condition provides an outage detection algorithm for cases where metering points are not equipped with a means to transmit outage exception messages. The collector's algorithm can also augment outage detection for systems with outage enabled meters.


When power is restored to the meter 114a/b, the meter may be configured to transmit a power restoration message to the collector 116. To avoid multiple restoration messages from a given meter, the meter can be programmed to delay for a configurable period of time (e.g., 1 to 10 minutes) prior to transmitting the restoration message to the collector 116. The delay in the end point meter prevents a false indication of power restoration, that may occur as reclosers are operating. The collector 116 can be configured to delay for a period of time after receiving the first restoration to allow additional messages to be aggregated prior to initiating a communication to the MAS 202.


Once power is believed to be restored to a site, the OMS in conjunction with MAS 202 can be used to verify that power has been restored to sites that were reported to be in an outage condition. The OMS 211 can use either the restoration information as reported by the end point meter or the OMS 211 can send a list of meters to the collector 116 and request that the collector confirm power restoration to the given list. The verification of power restoration is often times more important to a utility than is the outage reporting, as it allows the utility to optimize restoration crews and provide a positive confirmation to customers and to their systems that power has been restored.


In addition to the features described above, the MAS 202 may provide a Geographic Information System (GIS) based network management component that provides GIS overlay images (shape files) for: the mesh communication paths, event/alarm information, and outage/restoration information. This would provide the utility with geographic shapefile overlays that could be superimposed over their distribution network topology to gain better insight into what is actually happening during an outage event down to the level of each meter/residence. The geographic information that can be provided for visual overlay will include reported outages, reported restorations, polled information to show confirmed power on and probable power out locations. For utilities with an Outage Management System (OMS) 211, the geographic network image could augment the information provided by the OMS 211. For utilities without an OMS, a network image maintained by the system 200 may be used to assist the distribution operators with geographic information to augment other methods and tools used to diagnose outage and restoration efforts.


Exemplary Scenarios


The following examples of outages in the various scenarios help illustrate the outage and restoration process.


Fault at F1:


For a fault at F1, the meter may sense a decrease in voltage due to the fault, but the meter would remain powered after the fault is cleared by the house circuit breaker. If the customer calls the utility to report an outage, the utility may do an on-request read of the meter voltage. Since the REX meter is connected on the source side, it will indicate that voltage is present; allowing the utility to be aware the problem is on the customer site.


Fault at F2:


For a fault at F2, the REX meter would lose power, increment an outage counter, and stop responding to network RF messages. Normal, periodic reads from the collector are not sufficient to quickly signal an outage condition and report the outage to MAS. The probability of the utility becoming quickly aware of the fault due to customer call-ins is not good, unless the meter affected by the outage is equipped with outage notification hardware. If the utility is notified, the outage management system could then determine the extent of the outage by providing a list of suspect meters to MAS. The list of meters would be those around the meters identified by customer call-ins necessary to determine the extent of the outage. Then, MAS would distribute the meter list to the collector or collectors that serve the meters in the list. Each collector would receive a list consisting of only the meters that are a part of its local area network. The customer call-in information would be augmented by the outage information provided by the system, allowing crews to be dispatched in a logical and efficient manner.


Once the fault is cleared and power is restored, the meter transmits a restoration message to the collector and the collector will forward the restoration information to MAS. MAS can then provide this restoration information to an OMS for confirmation of power restoration. The restoration information can be used to confirm outage locations that have been cleared and allow work crews to be focused on areas that have not yet been confirmed restored. In addition to the restoration message from the meter, the OMS can be used to “ping” a meter to verify power restoration after a crew has completed a field repair. The ping to the target meter is made by the source of the ping (e.g., the OMS) to verify that the target meter is powered and responsive.


Fault at F3:


For a fault at F3 (distribution lateral), all meters past the fault point would register an outage and increment their outage counter. Using the assumptions of Table 2, more than 100 electric meters would experience the same event. The probability of the utility becoming quickly aware of the fault due to customer call-ins is good. As described for faults at F2, the OMS in conjunction with MAS could determine the extent of the outage and verify power restoration.


Fault at F4:


For a feeder fault at F4 past a recloser, the meters would sense multiple outages due to the voltage fluctuations caused by recloser operations. Note that the time between recloser operations is typically in the milliseconds to seconds range, but some units may be programmed for up to 200 seconds for 4 recloser operations. Thus the recloser cycle may not be complete until 3 recloser trip times and 600 seconds closing delay time. Also, the fault location and resistance will affect the voltage seen by the meters. Using the assumptions of Table 2, more than 1000 electric meters would experience the same event. The probability of the utility becoming quickly aware of the fault due to customer call-ins is very high, and the system can then be used to determine the extent of the outage as well as to monitor the progress in restoring power to affected customers.


Fault at F5:


For a fault at F5, the meters act the same as in the previous Fault at F4 analysis; however, over 3000 electric meters are affected and the utility would probably become aware of the outage very quickly via the OMS.


While systems and methods have been described and illustrated with reference to specific embodiments, those skilled in the art will recognize that modification and variations may be made without departing from the principles described above and set forth in the following claims. Accordingly, reference should be made to the following claims as describing the scope of disclosed embodiments.

Claims
  • 1. A system for assisting a utility in responding to a power outage, comprising: a plurality of metering points;a collector that communicates with each of the plurality of metering points to form a fixed wireless metering network, wherein said collector periodically communicates with each of said metering points to establish a communication performance rate for each metering point and wherein the collector sets a potential outage indication after a number of successive communication failures occur with a given metering point; andan outage management system that receives information from the fixed wireless metering network concerning power outage conditions to determine metering points affected by said outage conditions.
  • 2. The system of claim 1, wherein said metering points collect and forward power outage information to said collector.
  • 3. The system of claim 2, wherein said collector and said metering points perform filtering of said power outage information.
  • 4. The system of claim 3, wherein filtering comprises at least one of: configurable delays at said metering points prior to transmitting said power outage information, configurable delays at said metering points prior to transmitting a restoration message, configurable options in said collector that allow data to be aggregated prior to communicating with said outage management system, and configurable options in said collector that allow communications to be suppressed during a large-scale outage.
  • 5. The system of claim 2, wherein said metering points select a random transmit slot within a predetermined transmission period in which to transmit power outage information to the collector.
  • 6. The system of claim 2, wherein said metering points and said collector are adapted to verify a presence of power by measuring a voltage.
  • 7. The system of claim 2, wherein a subset of metering points affected by a power outage are identified, and wherein said subset of affected metering points are assigned to a corresponding subset of collectors for verification of power outage or power restoration.
  • 8. The system of claim 2, wherein said collector is adapted to ping said metering points to determine an extent of a power outage, wherein said ping comprises one of: a ping of each metering point directly, a ping of metering points in a communication path to determine if said communication path is available, and a ping of metering points farthest from said collector along a communication path to validate all metering points in the communication path with one message.
  • 9. The system of claim 2, wherein said collector communicates power restoration information to said outage management system and wherein said collector receives power restoration information from said metering points.
  • 10. The system of claim 1, wherein said fixed wireless metering network comprises a mesh network that enables said metering points to change communication paths.
  • 11. The system of claim 1, wherein the number of successive communication failures required to set the potential outage indication is determined based on the established communication performance rate between the collector and said given metering point.
  • 12. A method for use in a fixed wireless metering network for determining power outage conditions in an electrical distribution network, wherein the fixed wireless metering network comprises at least one collector that communicates wirelessly with a plurality of metering points, the method comprising, at said at least one collector: periodically communicating with each of the metering points and establishing a communication performance rate for each metering point;generating an indication of a potential power outage at a given metering point when a rate of success of subsequent communications with the given metering point deviates from the established communication performance rate for that given metering point; andproviding the indication to an operator of the electrical distribution network.
  • 13. The method recited in claim 12, wherein said generating step further comprises: detecting a number of successive communication failures with the given metering point; andgenerating the indication of a potential power outage if the detected number of successive communication failures exceeds a predetermined number.
  • 14. The method recited in claim 13, wherein the predetermined number is selected based on the established communication performance rate for the given metering point.
  • 15. The method recited in claim 12, further comprising transmitting the indication of a potential power outage to an outage management system that is in communication with the fixed wireless metering network.
  • 16. The method recited in claim 15, further comprising: delaying the transmission of the indication of a potential power outage for a configurable amount of time; andnot transmitting the indication of a potential outage if successful communications with the given metering point resume within the configurable amount of time.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority of U.S. Provisional Patent Application No. 60/664,042, filed Mar. 22, 2005.

US Referenced Citations (329)
Number Name Date Kind
3445815 Saltzberg et al. May 1969 A
3858212 Tompkins et al. Dec 1974 A
3878512 Kobayashi et al. Apr 1975 A
3973240 Fong Aug 1976 A
4031513 Simciak Jun 1977 A
4056107 Todd et al. Nov 1977 A
4066964 Costanza et al. Jan 1978 A
4132981 White Jan 1979 A
4190800 Kelly, Jr. et al. Feb 1980 A
4204195 Bogacki May 1980 A
4218737 Buscher et al. Aug 1980 A
4250489 Dudash et al. Feb 1981 A
4254472 Juengel et al. Mar 1981 A
4319358 Sepp Mar 1982 A
4321582 Banghart Mar 1982 A
4322842 Martinez Mar 1982 A
4328581 Harmon et al. May 1982 A
4361851 Asip et al. Nov 1982 A
4361890 Green, Jr. et al. Nov 1982 A
4396915 Farnsworth et al. Aug 1983 A
4405829 Rivest et al. Sep 1983 A
4415896 Allgood Nov 1983 A
4466001 Moore et al. Aug 1984 A
4504831 Jahr et al. Mar 1985 A
4506386 Ichikawa et al. Mar 1985 A
4513415 Martinez Apr 1985 A
4525861 Freeburg Jun 1985 A
4600923 Hicks et al. Jul 1986 A
4608699 Batlivala et al. Aug 1986 A
4611333 McCallister et al. Sep 1986 A
4614945 Brunius et al. Sep 1986 A
4617566 Diamond Oct 1986 A
4628313 Gombrich et al. Dec 1986 A
4631538 Carreno Dec 1986 A
4638298 Spiro Jan 1987 A
4644321 Kennon Feb 1987 A
4653076 Jerrim et al. Mar 1987 A
4672555 Hart et al. Jun 1987 A
4680704 Konicek et al. Jul 1987 A
4688038 Giammarese Aug 1987 A
4692761 Robinton Sep 1987 A
4707852 Jahr et al. Nov 1987 A
4713837 Gordon Dec 1987 A
4724435 Moses et al. Feb 1988 A
4728950 Hendrickson et al. Mar 1988 A
4734680 Gehman et al. Mar 1988 A
4749992 Fitzmeyer et al. Jun 1988 A
4749992 Fitzmeyer et al. Jun 1988 A
4757456 Benghiat Jul 1988 A
4769772 Dwyer Sep 1988 A
4783748 Swarztrauber et al. Nov 1988 A
4792946 Mayo Dec 1988 A
4799059 Grindahl et al. Jan 1989 A
4804938 Rouse et al. Feb 1989 A
4804957 Selph et al. Feb 1989 A
4811011 Sollinger Mar 1989 A
4827514 Ziolko et al. May 1989 A
4833618 Verma et al. May 1989 A
4839645 Lill Jun 1989 A
4841545 Endo et al. Jun 1989 A
4860379 Schoeneberger et al. Aug 1989 A
4862493 Venkataraman et al. Aug 1989 A
4868877 Fischer Sep 1989 A
4884021 Hammond et al. Nov 1989 A
4912722 Carlin Mar 1990 A
4922518 Gordon et al. May 1990 A
4939726 Flammer et al. Jul 1990 A
4940974 Sojka Jul 1990 A
4940976 Gastouniotis et al. Jul 1990 A
4958359 Kato Sep 1990 A
4964138 Nease et al. Oct 1990 A
4965533 Gilmore Oct 1990 A
4972507 Lusignan Nov 1990 A
5007052 Flammer Apr 1991 A
5018165 Sohner et al. May 1991 A
5022046 Morrow, Jr. Jun 1991 A
5032833 Laporte Jul 1991 A
5053766 Ruiz-del-Portal et al. Oct 1991 A
5053774 Schuermann et al. Oct 1991 A
5056107 Johnson et al. Oct 1991 A
5067136 Arthur et al. Nov 1991 A
5079715 Venkataraman et al. Jan 1992 A
5079768 Flammer Jan 1992 A
5086292 Johnson et al. Feb 1992 A
5086385 Launey Feb 1992 A
5090024 Vander Mey et al. Feb 1992 A
5111479 Akazawa May 1992 A
5115433 Baran et al. May 1992 A
5115448 Mori May 1992 A
5129096 Burns Jul 1992 A
5130987 Flammer Jul 1992 A
5132985 Hashimoto et al. Jul 1992 A
5136614 Hiramatsu et al. Aug 1992 A
5142694 Jackson et al. Aug 1992 A
5151866 Glaser et al. Sep 1992 A
5155481 Brennan, Jr. et al. Oct 1992 A
5160926 Schweitzer, III Nov 1992 A
5166664 Fish Nov 1992 A
5177767 Kato Jan 1993 A
5179376 Pomatto Jan 1993 A
5189694 Garland Feb 1993 A
5194860 Jones et al. Mar 1993 A
5197095 Bonnet Mar 1993 A
5204877 Endo et al. Apr 1993 A
5214587 Green May 1993 A
5225994 Arinobu et al. Jul 1993 A
5228029 Kotzin Jul 1993 A
5229996 Bäckström et al. Jul 1993 A
5239575 White et al. Aug 1993 A
5239584 Hershey et al. Aug 1993 A
5243338 Brennan, Jr. et al. Sep 1993 A
5252967 Brennan et al. Oct 1993 A
5260943 Comroe et al. Nov 1993 A
5270704 Sosa Quintana et al. Dec 1993 A
5280498 Tymes et al. Jan 1994 A
5280499 Suzuki Jan 1994 A
5285469 Vanderpool Feb 1994 A
5287287 Chamberlain et al. Feb 1994 A
5289497 Jacobson et al. Feb 1994 A
5295154 Meier et al. Mar 1994 A
5307349 Shloss et al. Apr 1994 A
5311541 Sanderford, Jr. May 1994 A
5311542 Eder May 1994 A
5315531 Oravetz et al. May 1994 A
5319679 Bagby Jun 1994 A
5329547 Ling Jul 1994 A
5345225 Davis Sep 1994 A
5359625 Vander Mey et al. Oct 1994 A
5377222 Sanderford, Jr. Dec 1994 A
5381462 Larson et al. Jan 1995 A
5383134 Wrzesinski Jan 1995 A
5384712 Oravetz et al. Jan 1995 A
5387873 Muller et al. Feb 1995 A
5390360 Scop et al. Feb 1995 A
5406495 Hill Apr 1995 A
5416917 Adair et al. May 1995 A
5420799 Peterson et al. May 1995 A
5428636 Meier Jun 1995 A
5430759 Yokev et al. Jul 1995 A
5432507 Mussino et al. Jul 1995 A
5432815 Kang et al. Jul 1995 A
5438329 Gastouniotis et al. Aug 1995 A
5448230 Schanker et al. Sep 1995 A
5448570 Toda et al. Sep 1995 A
5450088 Meier et al. Sep 1995 A
5452465 Geller et al. Sep 1995 A
5455533 Köllner Oct 1995 A
5455544 Kechkaylo Oct 1995 A
5455569 Sherman et al. Oct 1995 A
5455822 Dixon et al. Oct 1995 A
5457713 Sanderford, Jr. et al. Oct 1995 A
5461558 Patsiokas et al. Oct 1995 A
5463657 Rice Oct 1995 A
5473322 Carney Dec 1995 A
5475742 Gilbert Dec 1995 A
5475867 Blum Dec 1995 A
5479442 Yamamoto Dec 1995 A
5481259 Bane Jan 1996 A
5488608 Flammer, III Jan 1996 A
5491473 Gilbert Feb 1996 A
5493287 Ane Feb 1996 A
5495239 Ouellette Feb 1996 A
5497424 Vanderpool Mar 1996 A
5499243 Hall Mar 1996 A
5500871 Kato et al. Mar 1996 A
5511188 Pascucci et al. Apr 1996 A
5519388 Adair, Jr. May 1996 A
5521910 Matthews May 1996 A
5522044 Pascucci et al. May 1996 A
5524280 Douthitt et al. Jun 1996 A
5525898 Lee, Jr. et al. Jun 1996 A
5526389 Buell et al. Jun 1996 A
5528507 McNamara et al. Jun 1996 A
5528597 Gerszberg et al. Jun 1996 A
5539775 Tuttle et al. Jul 1996 A
5541589 Delaney Jul 1996 A
5544036 Brown, Jr. et al. Aug 1996 A
5546424 Miyake Aug 1996 A
5548527 Hemminger et al. Aug 1996 A
5548633 Kujawa et al. Aug 1996 A
5553094 Johnson et al. Sep 1996 A
5555508 Munday et al. Sep 1996 A
5559870 Patton et al. Sep 1996 A
5566332 Adair et al. Oct 1996 A
5570084 Ritter et al. Oct 1996 A
5572438 Ehlers et al. Nov 1996 A
5574657 Tofte Nov 1996 A
5590179 Shincovich et al. Dec 1996 A
5592470 Rudrapatna et al. Jan 1997 A
5594740 LaDue Jan 1997 A
5602744 Meek et al. Feb 1997 A
5617084 Sears Apr 1997 A
5619192 Ayala Apr 1997 A
5619685 Schiavone Apr 1997 A
5621629 Hemminer et al. Apr 1997 A
5627759 Bearden et al. May 1997 A
5631636 Bane May 1997 A
5636216 Fox et al. Jun 1997 A
5640679 Lundqvist et al. Jun 1997 A
5659300 Dresselhuys et al. Aug 1997 A
5668803 Tymes et al. Sep 1997 A
5668828 Sanderford, Jr. et al. Sep 1997 A
5673252 Johnson et al. Sep 1997 A
5684472 Bane Nov 1997 A
5684799 Bigham et al. Nov 1997 A
5691715 Ouellette Nov 1997 A
5692180 Lee Nov 1997 A
5696501 Ouellette et al. Dec 1997 A
5696765 Safadi Dec 1997 A
5696903 Mahany Dec 1997 A
5699276 Roos Dec 1997 A
5714931 Petite et al. Feb 1998 A
5715390 Hoffman et al. Feb 1998 A
5717604 Wiggins Feb 1998 A
5719564 Sears Feb 1998 A
5732078 Arango Mar 1998 A
5745901 Entner et al. Apr 1998 A
5748104 Argyroudis et al. May 1998 A
5748619 Meier May 1998 A
5751914 Coley et al. May 1998 A
5751961 Smyk May 1998 A
5754772 Leaf May 1998 A
5754830 Butts et al. May 1998 A
5757783 Eng et al. May 1998 A
5768148 Murphy et al. Jun 1998 A
5778368 Hogan et al. Jul 1998 A
5787437 Potterveld et al. Jul 1998 A
5790789 Suarez Aug 1998 A
5790809 Holmes Aug 1998 A
5801643 Williams et al. Sep 1998 A
5805712 Davis Sep 1998 A
5808558 Meek et al. Sep 1998 A
5809059 Souissi et al. Sep 1998 A
5822521 Gartner et al. Oct 1998 A
5850187 Carrender et al. Dec 1998 A
5862391 Salas et al. Jan 1999 A
5872774 Wheatley, III et al. Feb 1999 A
5874903 Shuey et al. Feb 1999 A
5875183 Nitadori Feb 1999 A
5875402 Yamawaki Feb 1999 A
5884184 Sheffer Mar 1999 A
5892758 Argyroudis Apr 1999 A
5896382 Davis et al. Apr 1999 A
5897607 Jenney et al. Apr 1999 A
5898387 Davis et al. Apr 1999 A
5907491 Canada et al. May 1999 A
5907540 Hayashi May 1999 A
5910799 Carpenter et al. Jun 1999 A
5923269 Shuey et al. Jul 1999 A
5926103 Petite Jul 1999 A
5926531 Petite Jul 1999 A
5943375 Veintimilla Aug 1999 A
5944842 Propp et al. Aug 1999 A
5953319 Dutta et al. Sep 1999 A
5959550 Giles Sep 1999 A
5960074 Clark Sep 1999 A
5963146 Johnson et al. Oct 1999 A
5974236 Sherman Oct 1999 A
5986574 Colton Nov 1999 A
6000034 Lightbody et al. Dec 1999 A
6028522 Petite Feb 2000 A
6034988 VanderMey et al. Mar 2000 A
6035201 Whitehead Mar 2000 A
6041056 Bigham et al. Mar 2000 A
6061604 Russ et al. May 2000 A
6067029 Durston May 2000 A
6073169 Shuey et al. Jun 2000 A
6073174 Montgomerie et al. Jun 2000 A
6078251 Landt et al. Jun 2000 A
6078785 Bush Jun 2000 A
6078909 Knutson Jun 2000 A
6088659 Kelley et al. Jul 2000 A
6091758 Ciccone et al. Jul 2000 A
6100817 Mason, Jr. et al. Aug 2000 A
6112192 Capek Aug 2000 A
6124806 Cunningham et al. Sep 2000 A
6128276 Agee Oct 2000 A
6137423 Glorioso et al. Oct 2000 A
6150955 Tracy et al. Nov 2000 A
6154487 Murai et al. Nov 2000 A
6160993 Wilson Dec 2000 A
6172616 Johnson et al. Jan 2001 B1
6195018 Ragle et al. Feb 2001 B1
6199068 Carpenter Mar 2001 B1
6208266 Lyons et al. Mar 2001 B1
6218953 Petite Apr 2001 B1
6233327 Petite May 2001 B1
6246677 Nap et al. Jun 2001 B1
6249516 Brownrigg et al. Jun 2001 B1
6259972 Sumic et al. Jul 2001 B1
6333975 Brunn et al. Dec 2001 B1
6363057 Ardalan et al. Mar 2002 B1
6393341 Lawrence et al. May 2002 B1
6396839 Ardalan et al. May 2002 B1
6421731 Ciotti, Jr. et al. Jul 2002 B1
6430268 Petite Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6446192 Narasimhan et al. Sep 2002 B1
6643278 Panasik et al. Nov 2003 B1
6657549 Avery Dec 2003 B1
6684245 Shuey et al. Jan 2004 B1
6751563 Spanier et al. Jun 2004 B2
6867707 Kelley et al. Mar 2005 B1
6963285 Fischer et al. Nov 2005 B2
20010002210 Petite May 2001 A1
20010024163 Petite Sep 2001 A1
20020012323 Petite et al. Jan 2002 A1
20020013679 Petite Jan 2002 A1
20020019712 Petite et al. Feb 2002 A1
20020019725 Petite Feb 2002 A1
20020026957 Reyman Mar 2002 A1
20020027504 Davis et al. Mar 2002 A1
20020031101 Petite et al. Mar 2002 A1
20020094799 Elliott et al. Jul 2002 A1
20020125998 Petite et al. Sep 2002 A1
20020145537 Mueller et al. Oct 2002 A1
20020169643 Petite et al. Nov 2002 A1
20030036810 Petite Feb 2003 A1
20030036822 Davis et al. Feb 2003 A1
20030123442 Drucker et al. Jul 2003 A1
20030202512 Kennedy Oct 2003 A1
20040001008 Shuey et al. Jan 2004 A1
20040061616 Fischer et al. Apr 2004 A1
20040113810 Mason, Jr. et al. Jun 2004 A1
20040236620 Chauhan et al. Nov 2004 A1
20050086341 Enga et al. Apr 2005 A1
20050184881 Dusenberry et al. Aug 2005 A1
20050270173 Boaz Dec 2005 A1
20060004679 Cahill-O'Brien et al. Jan 2006 A1
Foreign Referenced Citations (16)
Number Date Country
682196 Jul 1993 CH
0 395 495 Oct 1990 EP
0 446 979 Sep 1991 EP
0 629 098 Dec 1994 EP
2 118 340 Oct 1983 GB
2 157 448 Oct 1985 GB
2 186 404 Aug 1987 GB
02 222 898 Mar 1990 GB
2 237 910 May 1991 GB
4290593 Oct 1992 JP
8194023 Jul 1996 JP
9302515 Feb 1993 WO
9304451 Mar 1993 WO
9532595 Nov 1995 WO
9610856 Apr 1996 WO
WO2004003772 Jan 2004 WO
Related Publications (1)
Number Date Country
20060217936 A1 Sep 2006 US
Provisional Applications (1)
Number Date Country
60664042 Mar 2005 US