Using Reduced Instruction Set Cores

Abstract
A processor may be built with cores that only execute some partial set of the instructions needed to be fully backwards compliant. Thus, in some embodiments power consumption may be reduced by providing partial cores that only execute certain instructions and not other instructions. The instructions not supported may be handled in other, more energy efficient ways, so that, the overall processor, including the partial core, may be fully backwards compliant.
Description
BACKGROUND

This relates generally to computing and particularly processing.


In order to be compatible with previous generations of processors, a subsequent generation generally includes support for legacy features. Over time, some of these legacy features become less and less commonly used since developers tend to revise their programs to work with the most current instruction sets. As time goes on, the number of legacy instructions that need to be supported continually increases. Nonetheless these legacy instructions may be executed less and less often.





BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments are described with respect to the following figures:



FIG. 1
FIG. 1 is a flow chart for one embodiment of the present invention;



FIG. 2 is a schematic depiction of one embodiment to the present invention;



FIG. 3 is a flow chart for another embodiment to the present invention;



FIG. 4 is a flow chart for still another embodiment to the present invention; and



FIG. 5 is a hardware depiction for yet another embodiment to the present invention.





DETAILED DESCRIPTION

In accordance with some embodiments, a processor may be built with a partial core that only executes a partial set of the total instructions, by eliminating some instructions needed to be fully backwards compliant. Thus, in some embodiments power consumption may be reduced by providing partial cores that only execute certain instructions and not other instructions needed to be backwards compliant. The instructions not supported may be handled in other, more energy efficient ways, so that, the overall processor, including the partial core, may be fully backwards compliant. But the processor core may operate on the bulk of the instructions that are used in current generations of processors without having to support legacy instructions. This may mean that in some cases, the partial core processors may be more energy efficient.


For example, a partial core may eliminate a variety of different instructions. In one embodiment, a partial core may eliminate microcode read-only memory dependencies. In such case, the partial core instructions are implemented as a single operation instruction. Thus, the instructions get directly translated in hardware without needing to fetch corresponding microoperations from the microcode read-only memory as is commonly done with complete or non-partial processors. This may save a significant amount of microcode read-only memory space.


In addition, only a subset of those instructions that are available on complete cores are actually used by modern compilers. As a result of architecture evolution over the last couple of decades, commercial instructions set architectures have many obsolete or non-useful instructions that can be eliminated for efficiency but at the cost of some lack of backwards compatibility.


Features from previous generations like 16-bit real mode from the Microsoft Disk Operating System (DOS) days and segmentation based memory protection architecture, local and global descriptor tables are being carried forward for backward compatibility reasons. But most modern operating systems do not need or use these features anymore. Thus, in some embodiments these features may simply be eliminated from partial cores.


Thus, in one embodiment, the partial core may be legacy-free or non-backwards compliant. This may make the core more energy efficient and particularly suitable for embedded applications. Other examples may include reducing the number of floating point and single-instruction multiple data instructions as well as support for caches. Only integer and scalar instructions set architecture subsets may be implemented in one embodiment of a partial core. The same idea can be extended to floating point and vector (single instruction multiple data) instruction sets as well as to features typically implemented by full cores. The partial core is simply an implementation of a subset architecture that in some embodiments may be targeted to embedded applications. Other implementations of a subset architecture include different numbers of pipelined stages and other performance features like out-of-order, super scalar, caches to make these partial cores suitable for particular market segments such as personal computers, tablets or servers.


Thus referring to FIG. 1, an instruction memory 12 provides instructions to an instructions fetch unit 14 in a pipeline 10. Those instructions are then decoded at the decode unit 16. Operand fetch 18 fetches operands from a data memory 24 for execution at execute unit 20. And the data is written back to the data memory 24 at write-back 22.


In order to achieve full backwards compatibility, unsupported instructions may be handled in different ways. According to one embodiment, shown in FIG. 2, a full decoder 16 may be provided in the pipeline 10. This decoder, at the time of full instruction decoding, detects unimplemented instructions and invokes prebuilt handlers 34 in execution unit 20 for those instructions. These pre-built handlers are dedicated designs that handle a particular instruction or instruction type. These pre-built handlers can be software or hardware based.


This approach may use a full-blown or complete decoder that speeds up detection of unsupported instructions and execution of execution handles. These pre-built handlers can be software or hardware based.


This full blown decoder speeds up detection of unsupported instructions and execution of execution handlers. The decoder may be divided into two parts. One part decodes commonly executed instructions and the second part decodes less frequently used instructions.


Thus referring to FIG. 2, the instructions are received by decode unit 16. In this embodiment, the decode unit 16 may include an instruction parser 26 that detects which instructions are supported by the partial core 32 (which may be described as commonly executed instructions) and which instructions are not supported (which may be called less commonly or uncommonly executed instructions). The instructions that are supported by the partial core are decoded by a commonly executed decoder 28 and passed to the partial core 32. Instructions that are uncommonly executed or unsupported are decoded by the decoder 30 and handled by pre-built handlers 34 in the execute unit 20 in one embodiment.


In some embodiments, a sequence 36 shown in FIG. 3, may be implemented in software, firmware and/or hardware. In software and firmware embodiments the sequence may be implemented by computer readable instructions stored in a non-transitory computer readable medium such as an optical, semiconductor or magnetic storage.


The sequence 36, shown in FIG. 3 begins by parsing the instructions as indicated in block 38. Namely the instructions may be parsed based on identifying instructions that are supported by the partial core and instructions that are not supported by the partial core. In one embodiment the supported instructions are the commonly executed instructions. In other embodiments, particular instructions may be parsed out because they are ones that are supported by the partial core.


As indicated in block 40 the instructions of one type are sent to the first decoder and instructions of the second type are sent to the second decoder 30. Then the decoded instructions of the first type are sent to the partial core and the decoded instructions of the second type are sent to the prebuilt handlers 34 as shown in block 42.


According to another embodiment, a core may generate an undefined instruction exception. This may be an existing exception or a newly defined special exception. The exception may be generated when an instruction is encountered that is unsupported by the partial core. Then a software or binary translation layer may get control of execution or resolve the exception. For example, in one embodiment the binary translation layer may execute a handler program that emulates the unsupported instruction.


In some embodiments, a hybrid of this approach and the previously described approach, shown in FIGS. 2 and 3 may be used. Thus referring to FIG. 4, a sequence 44 may be implemented in software, firmware and/or hardware. In software and firmware embodiments the sequence may be implemented by computer readable instructions stored on a non-transitory computer readable medium such as a magnetic, optical or semiconductor storage.


The sequence 44 begins by determining whether the instruction is supported as indicated in diamond 46. If so, the instruction may be executed in the partial core as indicated in block 48. Otherwise an exception is issued as indicated in block 50.


In accordance with yet another embodiment, a processor may have one or two cores that include the full and complete instruction set and some number of partial cores that only implement a certain feature of the completed instruction set such as commonly executed features. Whenever a partial core comes across an unsupported instruction, the partial core transfers that task to one of the complete cores. The complete core in the mixed or heterogeneous environment can be hidden or exposed to operating systems. This approach does not involve any binary translation layer, either software or hardware in some embodiments, and differences in core features can be hidden from the operating system in other software layers.


Thus, referring to FIG. 5, the architecture may include at least one complete core 50 and at least one partial core 52. Instructions are checked by the partial core 52. Instructions are checked by the partial core 52. If the instructions are unsupported then they are transferred to the complete core 50. Other cases where instructions are transferred, may also be contemplated.


In accordance with one embodiment of a partial core processor, the following instructions may be supported:

















Data Transfer



bswap, xchg, xadd, cmpxchg,



mov, push, pop, movsx, movzx,



cbw, cwd, cmovcc



Arithmetic



add, ade, sub, sbb, imul, mul,



idiv, div, inc, dec. neg, cmp



Logical



and, or, xor, not



Shift and Rotate



sar, shr, sal, shl, ror, rol,



rer, rcl



Bit and Byte



bt, bts, btr, btc, test



Control Transfer



jmp, jcc, call, ret, iret,



int, into



Flag Control



stc, clc, cmc, pushf, popf,



sti, cli



Miscellaneous



lea, nop, ud2



System



lidt, lock, sidt, hlt, rdmsr,



wrmsr










The following instructions may not be supported in accordance with one embodiment:

















Data Transfer



cmpxchg8b, pusha, popa



Decimal Arithmetric



daa, das, aaa, aas, aam, aad



Shift and Rotate



shrd, shld



Bit and Byte



setee, bound, bsf, bsr



Control Transfer



enter, leave



String



movsb, movsw, movsd, cmpsb,



cmpsb, cmpsw, cmpsd, scash,



scasw, scads, loadsb, loadsw,



loaded, stosb, stows, stosd,



rep, repz, repnz



I/O



in, out, insb, insw, insd,



outsb, outsw, outsb



Flag Control



eld, std, lahf, sahf



Segment Register



lds, les, lfs, lgs, lss



Miscellaneous



xlat, cupid, movebe



System



lgdt, sgdt, lldt, sldt, ltr,



str, lmsw, smsw, clts, arpl,



lar, lsl, verr, verw, invd,



wbinvd, invlpg, rsun, rdpmc,



rdtsep, sysenter, sysexit,



xsave, xrestr, xgetbv, xsetbv










References throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.


While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

Claims
  • 1. A method comprising: determining if an instruction is supported by a partial core; andonly if the instruction is supported, providing said instruction for execution by the partial core.
  • 2. The method of claim 1 including executing an instruction not supported by the partial core by a complete core.
  • 3. The method of claim 1 including executing an instruction not supported by the partial core by a pre-built handler.
  • 4. The method of claim 1 including issuing an exception if an instruction is not supported by the partial core.
  • 5. The method of claim 1 including excluding instructions from the instruction set of the partial core for handling read-only dependencies.
  • 6. The method of claim 1 including translating instructions in hardware without fetching corresponding microoperations from microcode read-only.
  • 7. A non-transitory computer readable medium storing instructions to: determine if an instruction is supported by a core that only executes some of the instructions of an instruction set; andonly if the instruction is supported, provide said instruction for execution by the core.
  • 8. The medium of claim 7 further storing instructions to execute an instruction not supported by the core by a complete core.
  • 9. The medium of claim 7 further storing instructions to execute an instruction not supported by the core by a pre-built handler.
  • 10. The medium of claim 7 further storing instructions to issue an exception if an instruction is not supported by the partial core.
  • 11. The medium of claim 7 further storing instructions to exclude instructions from the instruction set of the core for handling read-only dependencies.
  • 12. The medium of claim 7 further storing instructions to translate instructions in hardware without fetching corresponding microoperations from microcode read-only memory.
  • 13. An apparatus comprising: a core; andan instruction parser, coupled to the core, to determine if an instruction is supported by a core and only if the instruction is supported, provide said instruction for execution by the core.
  • 14. The apparatus of claim 13 including another core to execute an instruction not supported by the core.
  • 15. The apparatus of claim 13 including a pre-built handler to execute an instruction not supported by the core.
  • 16. The apparatus of claim 13, said parser to issue an exception if an instruction is not supported by the core.
  • 17. The apparatus of claim 13, said parser to exclude instructions from the instruction set of the core for handling read-only dependencies.
  • 18. The apparatus of claim 13, said parser to translate instructions in hardware without fetching corresponding microoperations from microcode read-only.
  • 19. An apparatus comprising: a core;an instruction parser, coupled to the core, to determine if an instruction is supported by a core and only if the instruction is supported, providing said instruction for execution by the core; anda device to execute instructions not supported by the core.
  • 20. The apparatus of claim 19 wherein said device is another core.
  • 21. The apparatus of claim 19 wherein said device is a prebuilt handler.
  • 22. The apparatus of claim 19 wherein said core does not execute an instruction needed to be backwards compliant with another core that also executes all the instructions said core executes.
  • 23. The apparatus of claim 19, said parser to issue an exception if an instruction is not supported by the core.
  • 24. The apparatus of claim 19, said parser to exclude instructions from the instruction set of the core for handling read-only dependencies.
  • 25. The apparatus of claim 19, said parser to translate instructions in hardware without fetching corresponding microoperations from microcode read-only.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US11/68015 12/30/2011 WO 00 5/30/2014