The present invention relates to a UV (ultraviolet) light disinfectant apparatus useful with a biofilm flow cell or other bioreactor for in-line, non-invasive disinfecting of influent medium to the biofilm flow cell.
Bioflim flow cells (biofilm culturing devices) have been used to grow surface-attached microbial communities (biofilms) under pre-specified, complex flow conditions including both spatial and temporal variability in influent flows, nutrient levels, substrates, etc. as a result of workers recongizing that microbial communities on interfaces, termed biofilms, are extemely important in a wide variety of environmental, engineered, and biomedical uses.
Biofilms are responsible for more than half of microbial infections, and these infections are highly problematic because cells in bioflims are typcailly more than 500 times resistant to antimicrobial therapy than planktonic cells. Moreover, bioflims play a significant role in global biogeochemical cycling and in bioreactor systems by changing properties of interfaces, comsuming nutrients, degrading hazardous organic compounds, and immobilizing metals.
Normally, in-line filters or flow breaks are used to prevent growth of bacteria upstream of laboratory culturing devices, such as flow cells. However, these sorts of in-line devices are prone to clogging because of either microbial colonization or deposition of material from the influent growth medium. This normally restricts the duration of laboratory experiments involving bioflms to a few days, or a week at most. Such filters or in-line controls have been found to adversely affected flow conditions, especially when used in connection with planar (two-dimensional) flow cells.
The present invention provides an in-line, non-invasive UV light disinfectant apparatus and method useful with a biofilm flow cell or other bioreactor for in-line, non-invasive disinfecting of influent medium to the biofilm flow cell.
In an illustrative embodiment of the invention, the UV light disinfectant apparatus comprises a UV chamber having a UV (ultraviolet) light source therein and one or more UV light-transmissive tubes, such as capillary tubes, that extend through the UV chamber and through which the influent medium flows through the UV chamber for exposure to UV light. The apparatus includes light reflecting walls that define the UV chamber to expose the influent medium in the capillary tubes to direct and reflected UV light.
A plurality of capillary tube assemblies can be employed above and below the UV light source with each capillary tube assembly being configured to provide multiple passes of the influent medium through the UV chamber. For example, each capillary tube assembly can include mulitple glass capillary tubes and one or more U-bend connector tubing sections that redirect the influent medium to flow back through the UV chamber in the opposite direction from the directon in which the fluid medium entered the UV chamber.
The present invention envisions a disinfection system including a combination of a biofilm reactor, such as a biofilm flow cell, placed in-line with the inflow tubing and optionally outflow tubing that goes to/from the flow cell. The flow cell receives the influent medium from the UV disinfectant apparatus described above that is effective in preventing growth of bacteria (non-invasively kill bacteria) without inducing any disruption of the influent (inflow) or effluent (outflow). The UV disinfection system is effective to non-invasively kill bacteria in the inflow and outflow tubing. The in-line UV disinfection system is advantageous to enable continuous operation of small-scale, flow-through microbial culture systems. No filters or similar devices are required such that precise flow control can be maintained to the flow cell.
Other advantages of the present invention will become more readily apparent from the following drawings taken with the following detailed description.
Referring to
In an illustrative embodiment of the invention shown in
The UV chamber 30 is formed in a housing 40 having a pair of upstanding sidewalls 40a, an apertured top wall 40b, a solid bottom wall 40c an apertured end wall 40d, and solid end wall 40e. An apertured divider or support frame 43 is provided on opposite ends of the UV chamber. End wall 40d includes a cylindrical pen light support hub 42 that receives the elongated UV light source 32 in the form an elongated UV pen light 32 and air inlet apertures 44. The pen light extends through a passage 45p of a pen light support block 44 attached in the UV chamber and then into the UV chamber 30,
For purposes of illustration and not limitation, the UV pen light can comprise a Pen-Ray® Mercury lamp (254 nm wavelength) from McMaster Carr (part no. 90-0012-01). The walls and covers 50 of the housing 40 can be made of 0.25 inch thick acrylic plates with the walls glued or otherwise fastened together. The walls and cover(s) of the housing are painted with flat, black acrylic paint to make them non-transmissive to light. Also, the walls and covers can be made of 0.25 inch thick black, opaque acrylic, which does not have to be painted, as it already blocks UV light (McMaster Carr part no. 8650K321).
The inside surfaces of the UV chamber 30 are lined with light reflective material 51, such as Mylar film or laser-cut mirrored acrylic material (McMaster Carr part no. 1518T52), in order to refect the UV light so as to expose the influent medium in the capillary tubes 34t to direct and reflected UV light for increased efficiency in killing bacteria. The inner surfaces of the bottom wall, sidewalls, and end walls of the housing 40 can be lined to this end. The inner surface of the covers 50 can be lined to this same end. The reflective material is laser-cut (using a computer-controlled laser cutting machine) to match the dimension of the internal surfaces and to provide additional reflection of scattered light. Also, the inner surfaces of the reducer plates 41 described below are lined to this end as well. The reflective material is laser-cut to match the dimensions of the reducer plates. The objective is to make any internal surface, except holes and cut-outs, exposed to UV light capable of reflecting light.
An air outlet chamber 60 is formed in the end region of the housing closed off by end wall 40e. An exhaust fan 70 is mounted on the top wall 40b of the housing 40 above the chamber 60 using four fan mounting screw holes 40s to draw air through end wall air inlets 44, through the UV chamber 30 and out of the chamber 60 as directed by a fixed diagonal air deflector 72 to control temperature within the UV chamber 30 in a desired range. The top housing wall 40b includes an aperture 40g to provide an air flow opening out of the chamber 60. The other two apertures shown in the housing top wall 40a are access openings, which are closed off by the covers 50. The covers correspond to the dimensions of the respective apertures. when they are attached on top of the housng.
The sidewalls 40a of the housing include holes 40p that receive the larger outer diameter inflow tubing from a respective bubble trap 14 and outflow tubing to the respective flow cell 18. Reducer plates 41 are disposed on and fastened by adhesive or other means to the inner side of each sidewall 40a and include holes 41p of smaller outer diameter than hole 40p to receive tubing reducer fittings 74 that have a smaller inner diameter to receive the ends of the tube assemblies as shown best in
Each capillary tube assembly 34 comprises three transparent glass capillary tubes 34t connected at ends by two flexible U-bend connector tubing 34c as shown in
The two U-bend connector tubing sections 34c of each capillary tube assembly 34 redirect the influent fluid medium to flow back through the UV chamber 30 in the opposite direction from the directon in which the fluid medium entered the UV chamber. Referring to
After the capillary tubes 34 are assembled on the housing, the covers 50 are attached by screws or other releasble fastening devices with its middle light reflective section overlying the UV chamber 30. A protecive rubber sheet can be cut with appropriate apertures and fitted between the covers 50 and the top wall 40a of the housing.
In addition to the research uses, the invention can find use in biofilm control in industrial settings and also in treating biofilm-based infections. As a result, there is a broad applicablity for testing devices capable of simulating various environments where biofilms are found in order to evaluate the effectiveness of new biocides and other control measures. In addition, bioreactors are used to achieve desirable chemical transformations in a wide variety of applications, including wastewater treatment, bioremediation, chemical processing, pharmaceuticals, and others.
Although the present invention has been described in connection with certain illustrative embodiments therof, those skilled in the art will appreciate that changes and modificatioins can be made thereto within the scope of the invention as set forth in the appended claims.
This application claims benefits and priority of provisional application Ser. No. 61/277,659 filed Sep. 28, 2009, the disclosure of which is incorporated herein by reference.
This invention was made with government support under Grant No. CBET-0730976 awarded by the National Science Foundation. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61277659 | Sep 2009 | US |