Vaccines Against Neisseria Meningitidis

Information

  • Patent Application
  • 20080138357
  • Publication Number
    20080138357
  • Date Filed
    December 23, 2005
    19 years ago
  • Date Published
    June 12, 2008
    16 years ago
Abstract
Various polypeptides, or a variant or fragment thereof or a fusion of these are described which are useful in a vaccine. The polypeptide may be a polypeptide comprising the amino acid sequence selected from any one of SEQ ID Nos (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68); or a fragment or variant thereof or a fusion of such fragment or variant, and is useful in a vaccine against Neisseira meningitidis.
Description

The present invention relates to vaccines and their use, and in particular to vaccines for meningococcal disease.


The listing or discussion of a prior-published document in this specification should not necessarily be taken as an acknowledgement that the document is part of the state of the art or is common general knowledge. The documents listed in the specification are hereby incorporated by reference.


Microbial infections remain a serious risk to human and animal health, particularly in light of the fact that many pathogenic microorganisms, particularly bacteria, are or may become resistant to anti-microbial agents such as antibiotics.


Vaccination provides an alternative approach to combating microbial infections, but it is often difficult to identify suitable immunogens for use in vaccines which are safe and which are effective against a range of different isolates of a pathogenic microorganism, particular a genetically diverse microorganism. Although it is possible to develop vaccines which use as the immunogen substantially intact microorganisms, such as live attenuated bacteria which typically contain one or mutations in a virulence-determining gene, not all microorganisms are amenable to this approach, and it is not always desirable to adopt this approach for a particular microorganism where safety cannot always be guaranteed. Also, some microorganisms express molecules which mimic host proteins, and these are undesirable in a vaccine.


A particular group of microorganisms for which it is important to develop further vaccines is Neisseria meningitidis which causes meningococcal disease, a life threatening infection which in the Europe, North America, developing countries and elsewhere remains an important cause of childhood mortality despite the introduction of the conjugate serogroup C polysaccharide vaccine. This is because infections caused by serogroup B strains (NmB), which express an α2-8 linked polysialic acid capsule, are still prevalent. The term “serogroup” in relation to N. meningitidis refers to the polysaccharide capsule expressed on the bacterium. The common serogroup in the UK causing disease is B, while in Africa it is A. Meningococcal septicaemia continues to carry a high case fatality rate; and survivors are often left with major psychological and/or physical disability. After a non-specific prodromal illness, meningococcal septicaemia can present as a fulminant disease that is refractory to appropriate anti-microbial therapy and full supportive measures. Therefore, the best approach to combating the public health menace of meningococcal disease is through prophylactic vaccination.


The non-specific early clinical signs and fulminant course of meningococcal infection mean that therapy is often ineffective. Therefore vaccination is considered the most effective strategy to diminish the global disease burden caused by this pathogen (Feavers (2000) ABC of meningococcal diversity. Nature 404, 451-2). Existing vaccines to prevent serogroup A, C, W135, and Y N. meningitidis infections are based on the polysaccharide capsule located on the surface of bacterium (Anderson et al (1994) Safety and immunogenicity of meningococcal A and C polysaccharide conjugate vaccine in adults. Infect Immun. 62, 3391-33955; Leach et al (1997) Induction of immunologic memory in Gambian children by vaccination in infancy with a group A plus group C meningococcal polysaccharide-protein conjugate vaccine. J Infect Dis. 175, 200-4; Lieberman et al (1996). Safety and immunogenicity of a serogroups A/C Neisseria meningitidis oligosaccharide-protein conjugate vaccine in young children. A randomized controlled trial. J. American Med. Assoc. 275, 1499-1503). Progress toward a vaccine against serogroup B infections has been more difficult as its capsule, a homopolymer of α2-8 linked sialic acid, is a relatively poor immunogen in humans. This is because it shares epitopes expressed on a human cell adhesion molecule, N-CAM1 (Finne et al (1983) Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 2, 355-357). Indeed, generating immune responses against the serogroup B capsule might actually prove harmful. Thus, there remains a need for new vaccines to prevent serogroup B N. meningitidis infections.


The most validated immunologic correlate of protection against meningococcal disease is the serum bactericidal assay (SBA). The SBA evaluates the ability of antibodies (usually IgG2a subclass) in serum to mediate complement deposition on the bacterial cell surface, assembly of the membrane attack complex, and bacterial lysis. In the SBA, a known number of bacteria are exposed serial dilutions of the sera with a defined complement source. The number of surviving bacteria is determined, and the SBA is defined as the reciprocal of the highest dilution of serum that mediates 50% killing. The SBA is predictive of protection against serogroup C infections, and has been widely used as a surrogate for immunity against NmB infections. Importantly the SBA is a ready marker of immunity for the pre-clinical assessment of vaccines, and provides a suitable endpoint in clinical trials.


Most efforts at NmB vaccine development are directed toward defining effective protein subunits. There has been a major investment in ‘Reverse vaccinology’, in which genome sequences are interrogated for potentially surface expressed proteins which are expressed as heterologous antigens and tested for their ability to generate meaningful responses in animals. However, this approach is limited by 1) the computer algorithms for predicting surface expressed antigens, 2) failure to express many of potential immunogens, and 3) the total reliance on murine immune responses.


The key to a successful vaccine is to define antigen(s) that elicit protection against a broad range of disease isolates irrespective of serogroup or clonal group. A genetic screening method (which we have termed Genetic Screening for Immunogens or GSI) was used to isolate antigens that are conserved across the genetic diversity of microbial strains and this is exemplified in relation to meningococcal strains. This was done by identifying microbial antigens, such as N. meningitidis antigens, by GSI as described in more detail below; and validated by assessing the function of the immune response elicited by the recombinant antigens and by evaluating the protective efficacy of antigens (see Examples and see PCT/GB2004/005441 (published as WO 2005/060995 on 7 Jul. 2005) incorporated herein by reference). In essence, the GSI method relates to a method for identifying a polypeptide of a microorganism which polypeptide is associated with an immune response in an animal which has been subjected to the microorganism, the method comprising the steps of (1) providing a plurality of different mutants of the microorganism; (2) contacting the plurality of mutant microorganisms with antibodies from an animal which has raised an immune response to the microorganism or a part thereof, under conditions whereby if the antibodies bind to the mutant microorganism the mutant microorganism is killed; (3) selecting surviving mutant microorganisms from step (2); (4) identifying the gene containing the mutation in any surviving mutant microorganism; and (5) identifying the polypeptide encoded by the gene. It will be appreciated that by the way in which the polypeptides have been identified, they are highly relevant as antigenic polypeptides.


As described in more detail in the Examples, particular genes identified by the GSI method are the NBM0341 (TspA), NMB0338, NMB1345, NMB0738, NBM0792 (NadC family), NMB0279, NMB2050, NMB1335 (CreA), NMB2035, NMB1351 (Fmu and Fmv), NMB1574 (IIvC), NMB1298 (rsuA), NMB1856 (LysR family), NMB0119, NMB1705 (rfak), NMB2065 (HemK), NMB0339, NMB0401 putA), NMB1467 (PPX), NMB2056, NMB0808, NMB0774 (upp), NMA0078, NMB0337 (branched-chain amino acid transferase), NMB0191 (ParA family), NMB1710 (glutamate dehydrogenase (gdhA), NMB0062 (rfbA-1), NMB1583 (hisB), NMB0377, NMB0264, NMB1333, NMB1036, NMB1176, NMB1359 and NMB1138 genes of Neisseria meningitidis. The genome sequence for N. meningitidis is available, for example from The Institute of Genome Research (TIGR); www.tigr.org.


Although these genes form part of the genome that has been sequenced, as far as the inventors are aware, they have not been isolated, the polypeptides they encode have not been produced (and have not been isolated), and there is no indication that the polypeptides they encode may be useful as a component of a vaccine.


Thus, the invention includes the isolated genes as above and in the Examples and variants and fragments and fusions of such variants and fragments, and includes the polypeptides that the genes encode as described above, along with variants and fragment thereof, and fusions of such fragments and variants. Variants, fragments and fusions are described in more detail below. Preferably, the variants, fragments and fusions of the given genes above are ones which encode a polypeptide which gives rise to neutralizing antibodies against N. meningitidis. Similarly, preferably, the variants, fragments and fusions of the polypeptide whose sequence is given above are ones which gives rise to neutralizing antibodies against N. meningitidis. The neutralising antibodies may be produced in any animal with an immune system, for example a rat, mouse or rabbit. The invention also includes isolated polynucleotides encoding the polypeptides whose sequences are given in the Example (preferably the isolated coding region) or encoding the variants, fragments or fusions. The invention also includes expression vectors comprising such polynucleotides and host cells comprising such polynucleotides and vectors (as is described in more detail below). The polypeptides described in the Examples are antigens identified by the method of the invention.


Molecular biological methods for use in the practice of the method of the invention are well known in the art, for example from Sambrook & Russell (2001) Molecular Cloning, a laboratory manual, third edition, Cold Spring Harbor laboratory Press, Cold Spring Harbor, N.Y., incorporated herein by reference.


Variants of the gene may be made, for example by identifying related genes in other microorganisms or in other strains of the microorganism, and cloning, isolating or synthesizing the gene. Typically, variants of the gene are ones which have at least 70% sequence identity, more preferably at least 85% sequence identity, most preferably at least 95% sequence identity with the genes as given above. Of course, replacements, deletions and insertions may be tolerated. The degree of similarity between one nucleic acid sequence and another can be determined using the GAP program of the University of Wisconsin Computer Group.


Variants of the gene are also ones which hybridise under stringent conditions to the gene. By “stringent” we mean that the gene hybridises to the probe when the gene is immobilised on a membrane and the probe (which, in this case is >200 nucleotides in length) is in solution and the immobilised gene/hybridised probe is washed in 0.1×SSC at 65° C. for 10 min. SSC is 0.15 M NaCl/0.015 M Na citrate.


Fragments of the gene (or the variant gene) may be made which are, for example, 20% or 30% or 40% or 50% or 60% or 70% or 80% or 90% of the total of the gene. Preferred fragments include all or part of the coding sequence. The variant and fragments may be fused to other, unrelated, polynucleotides.


The polynucleotide encodes a polypeptide which is immunogenic and is reactive with the antibodies from an animal which has been subjected to the microorganism from which the gene was identified.


The antigen may be the polypeptide as encoded by the gene identified above, and the sequence of the polypeptide may readily be deduced from the gene sequence. In further embodiments, the antigen may be a fragment of the identified polypeptide or may be a variant of the identified polypeptide or may be a fusion of the polypeptide or fragment or variant.


Thus, a particular aspect of the invention provides a polypeptide comprising the amino acid sequence selected from any one of SEQ ID Nos 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68; or a fragment or variant thereof or a fusion of such a fragment or variant. Thus, the invention provides the following isolated proteins, or fragments or variants thereof, or fusion of these: NMB0341, NMB1583, NMB1345, NMB0738, NMB0792, NMB0279, NMB2050, NMB1335, NMB2035, NMB1351, NMB1574, NMB1298, NMB1856, NMB0119, NMB1705, NMB2065, NMB0339, NMB0401, NMB1467, NMB2056, NMB0808, NMB0774, NMA0078, NMB0337, NMB0191, NMB1710, NMB0062, NMB1333, NMB0377, NMB0264, NMB1036, NMB1176, NMB1359 and NMB1138 as described below.


Fragments of the identified polypeptide may be made which are, for example, 20% or 30% or 40% or 50% or 60% or 70% or 80% or 90% of the total of the polypeptide. Typically, fragments are at least 10, 15, 20, 30, 40, 50, 100 or more amino acids, but less than 500, 400, 300 or 200 amino acids. Variants of the polypeptide may be made. By “variants” we include insertions, deletions and substitutions, either conservative or non-conservative, where such changes do not substantially alter the normal function of the protein. By “conservative substitutions” is intended combinations such as Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr. Such variants may be made using the well known methods of protein engineering and site-directed mutagenesis.


A particular class of variants are those encoded by variant genes as discussed above, for example from related microorganisms or other strains of the microorganism. Typically the variant polypeptides have at least 70% sequence identity, more preferably at least 85% sequence identity, most preferably at least 95% sequence identity with the polypeptide identified using the method of the invention.


The percent sequence identity between two polypeptides may be determined using suitable computer programs, for example the GAP program of the University of Wisconsin Genetic Computing Group and it will be appreciated that percent identity is calculated in relation to polypeptides whose sequence has been aligned optimally.


The alignment may alternatively be carried out using the Clustal W program (Thompson et al., (1994) Nucleic Acids Res 22, 4673-80). The parameters used may be as follows:


Fast pairwise alignment parameters: K-tuple(word) size; 1, window size; 5, gap penalty; 3, number of top diagonals; 5. Scoring method: x percent.


Multiple alignment parameters: gap open penalty; 10, gap extension penalty; 0.05.


Scoring matrix: BLOSUM.


The fusions may be fusions with any suitable polypeptide. Typically, the polypeptide is one which is able to enhance the immune response to the polypeptide it is fused to. The fusion partner may be a polypeptide that facilitates purification, for example by constituting a binding site for a moiety that can be immobilised in, for example, an affinity chromatography column. Thus, the fusion partner may comprise oligo-histidine or other amino acids which bind to cobalt or nickel ions. It may also be an epitope for a monoclonal antibody such as a Myc epitope.


As discussed above, the variant polypeptides or polypeptide fragments, or fusions of these, are typically ones which give rise to neutralizing antibodies against N. meningitidis.


The invention also includes, therefore, a method of making an antigen as described above, and antigens obtainable or obtained by the method.


The polynucleotides of the invention may be cloned into vectors, such as expression vectors, as is well known on the art. Such vectors may be present in host cells, such as bacterial, yeast, mammalian and insect host cells. The antigens of the invention may readily be expressed from polynucleotides in a suitable host cell, and isolated therefrom for use in a vaccine.


Typical expression systems include the commercially available pET expression vector series and E. coli host cells such as BL21. The polypeptides expressed may be purified by any method known in the art. Conveniently, the antigen is fused to a fusion partner that binds to an affinity column as discussed above, and the fusion is purified using the affinity column (eg such as a nickel or cobalt affinity column).


It will be appreciated that the antigen or a polynucleotide encoding the antigen (such as a DNA molecule) is particularly suited for use as in a vaccine. In that case, the antigen is purified from the host cell it is produced in (or if produced by peptide synthesis purified from any contaminants of the synthesis). Typically the antigen contains less that 5% of contaminating material, preferably less than 2%, 1%, 0.5%, 0.1%, 0.01%, before it is formulated for use in a vaccine. The antigen desirably is substantially pyrogen free. Thus, the invention further includes a vaccine comprising the antigen, and method for making a vaccine comprising combining the antigen with a suitable carrier, such as phosphate buffered saline. Whilst it is possible for an antigen of the invention to be administered alone, it is preferable to present it as a pharmaceutical formulation, together with one or more acceptable carriers. The carrier(s) must be “acceptable” in the sense of being compatible with the antigen of the invention and not deleterious to the recipients thereof. Typically, the carriers will be water or saline which will be sterile and pyrogen free.


The vaccine may also conveniently include an adjuvant. Active immunisation of the patient is preferred. In this approach, one or more antigens are prepared in an immunogenic formulation containing suitable adjuvants and carriers and administered to the patient in known ways. Suitable adjuvants include Freund's complete or incomplete adjuvant, muramyl dipeptide, the “Iscoms” of EP 109 942, EP 180 564 and EP 231 039, aluminium hydroxide, saponin, DEAE-dextran, neutral oils (such as miglyol), vegetable oils (such as arachis oil), liposomes, Pluronic polyols or the Ribi adjuvant system (see, for example GB-A-2 189 141). “Pluronic” is a Registered Trade Mark. The patient to be immunised is a patient requiring to be protected from infection with the microorganism.


The invention also includes a pharmaceutical composition comprising a polypeptide of the invention or variant or fragment thereof, or fusion of these, or a polynucleotide of the invention or a variant or fragment thereof or fusion of these, and a pharmaceutically acceptable carrier as discussed above.


The aforementioned antigens of the invention (or polynucleotides encoding such antigens) or a formulation thereof may be administered by any conventional method including oral and parenteral (eg subcutaneous or intramuscular) injection. The treatment may consist of a single dose or a plurality of doses over a period of time.


It will be appreciated that the vaccine of the invention, depending on its antigen component (or polynucleotide), may be useful in the fields of human medicine and veterinary medicine.


Diseases caused by microorganisms are known in many animals, such as domestic animals. The vaccines of the invention, when containing an appropriate antigen or polynucleotide encoding an antigen, are useful in man but also in, for example, cows, sheep, pigs, horses, dogs and cats, and in poultry such as chickens, turkeys, ducks and geese.


Thus, the invention also includes a method of vaccinating an individual against a microorganism, the method comprising administering to the individual an antigen (or polynucleotide encoding an antigen) or vaccine as described above. The invention also includes the use of the antigen (or polynucleotide encoding an antigen) as described above in the manufacture of a vaccine for vaccinating an individual.


The antigen of the invention may be used as the sole antigen in a vaccine or it may be used in combination with other antigens whether directed at the same or different disease microorganisms. In relation to N. menigitidis, the antigen obtained which is reactive against NmB may be combined with components used in vaccines for the A and/or C serogroups. It may also conveniently be combined antigenic components which provide protection against Haemophilus and/or Streptococcus pneumoniae. The additional antigenic components may be polypeptides or they may be other antigenic components such as a polysaccharide. Polysaccharides may also be used to enhance the immune response (see, for example, Makela et al (2002) Expert Rev. Vaccines 1, 399-410).


It is particularly preferred in the above vaccines and methods of vaccination if the antigen is the polypeptide encoded by any of the genes as described above (and in the Examples), or a variant or fragment or fusion as described above (or a polynucleotide encoding said antigen), and that the disease to be vaccinated against is Neisseria meningitidis infection (meningococcal disease).


The invention will now be described in greater detail by reference to the following non-limiting Examples.







EXAMPLE 1
Genetic Screening for Immunogens (GSI) in N. meningitidis

The application of GSI in this example involves screening libraries of insertional mutants of N. meningitidis for strains which are less susceptible to killing by bactericidal antibodies. GSI is described in more detail in PCT/GB2005/005441 (published as WO 2005/060995 on 7 Jul. 2005).


We have demonstrated the effectiveness of GSI by screening a library of mutants of the sequenced NmB isolate, MC58, with sera raised in mice against a capsule minus of the same strain. A total of 40,000 mutants was analysed with sera raised in mice by intraperitoneal immunisation with the homologous strain; the SBA of this sera is around 2,000 against the wild-type strain. Surviving mutants were detected when the library was exposed to serum at a 1:560 dilution (which kills all wild-type bacteria). To establish whether the transposon insertion in the surviving mutants was responsible for the ability to withstand killing, the mutations were backcrossed into the parental strain, and the backcrossed mutants were confirmed as being more resistant to killing than the wild-type in the SBA. The sequence of the gene affected by the transposon was examined by isolating the transposon insertion site by marker rescue. We found that two of the genes affected were TspA and NMB0338. TspA is a surface antigen which elicits strong CD4+ T cell responses and is recognized by sera from patients (Kizil et al (1999) Infect Immun. 67, 3533-41). NMB0338 is a gene of previously unknown function which encodes a polypeptide that is predicted to contain two transmembrane domains, and is located at the cell surface. The amino acid sequence encoded by NMB0338 is:










MERNGVFGKIVGNRILRMSSEHAAASYPKPCKSFKLAQSWFRVRSCLGGV






FIYGANMKLIYTVIKIIILLLFLLLAVINTDAVTFSYLPGQKFDLPLIVV





LFGAFVVGIIFGMFALFGRLLSLRGENGRLRAEVKKNARLTGKELTAPPA





QNAPESTKQP






There are several practical advantages of using NmB for GSI aside from the public health imperative: a) the bacterium is genetically tractable; b) killing of the bacterium by effector immune mechanism is straightforward to assay; c) the genome sequences are available for three isolates of different serogroups and clonal lineages (IV-A, ET-5, and ET-37 for serogroups A, B, and C, respectively); and d) well-characterised clinical resources are available for this work.


GSI has two potential limitations. First, targets of bactericidal antibodies may be essential. This is unlikely as all known targets of bactericidal antibodies in NmB are non-essential, and no currently licensed bacterial vaccine targets an essential gene product. Second, sera will contain antibodies to multiple antigens, and, loss of a single antigen may not affect the survival of mutants. We have already shown that even during selection with sera raised against the homologus strain, relevant antigens were still identified using appropriate dilutions of sera.


The major advantages of GSI are that 1) the high throughput steps do not involve technically demanding or costly procedures (such as protein expression/purification and immunisation), and 2) human samples can be used in the assay rather than relying solely on animal data. GSI will rapidly pinpoint the subset of surface proteins that elicit bactericidal activity, allowing more detailed analysis of a smaller number of candidates.


1. Identification of Targets of Bactericidal Antibodies Using GSI

Murine sera raised against heterologous strains, and human sera, are used to identify cross-reactive antigens. The sera are obtained from:

    • i) mice immunised by the systemic route with heterologous strains: the strains will be selected and/or constructed to avoid isolates with the same immunotype and sub-serotype.
    • ii) acute and convalescent sera from patients infected with known isolates of N. meningitidis (provided by Dr R. Wall, Northwick Park) iii) pre- and post-immunisation samples provided by the Meningococcal Reference Laboratory) from volunteers receiving defined outer membrane vesicle (OMVs) vaccines derived from the NmB isolate, H44/76.


Each of these sources of sera has specific advantages and disadvantages.














Serum source
Advantages
Disadvantages







Murine
1) Defined antigenic exposure.
1) Animal source of



2) Use of genetically modified strains to
material



generate immune response.



3) Naïve samples available



4) Examine individuals responses


Patient sera
1) Human material
1) Background immunity



2) Known strain exposure
2) Limited material



3) Acute and convalescent sera available


Sera following
1) Human material
1) Background immunity


immunisation
2) Defined antigenic exposure
2) Limited material


with H4476
3) Pre and post immunisation sera


OMVs
available



4) Examine individuals responses










a) Sera from animals immunised with heterologous strains (ie the sequenced serogroup A or C strains) are used in GSI to select the library of MC58 mutants. We have shown that immunisation with live, attenuated NmB elicits cross-reactive bactericidal antibody responses against serogroup A and C strains. The antigen absent in mutants with enhanced survival in the face of human sera are identified by marker rescue of the disrupted gene.


b) Mutations are identified that confer resistance against killing by heterologous sera, and it is determined whether the gene product is also a target for killing of the sequenced, serogroup A and C strains, Z2491 and FAM18 respectively. The genome databases are inspected for homologues of the genes. If a homologue is present, the transposon insertion is amplified from the MC58 mutant and introduced into the serogroup A and C strains by transformation. The relative survival of the mutant and wild-type strain of each serogroup are compared. Thus, GSI can quickly give information whether the targets of bactericidal activity are conserved and accessible in diverse strains of N. meningitidis, irrespective of sero group, immunotype and subserotype.


c) Mutants with enhanced survival against sera raised in mice are tested using human sera from either convalescent patients or vaccinees receiving heterologous OMV vaccines (derived from H44/76). This addresses the important question of whether the targets are capable of eliciting bactericidal antibodies in human. With other vaccine approaches, this information is only gained at the late, expensive stage of clinical trials that requires GMP manufacture of vaccine candidates.


The advantages are that GSI is a high-throughput analysis performed using simple, available techniques. Antigens which elicit bactericidal antibodies in humans and which mediate killing of multiple strains can be identified rapidly as GSI is flexible with respect to the bacterial strain and sera used. Mutants selected using human sera are analysed in the same way as those selected by murine sera.


2. Assessment of the Antibody Response of Recombinant GSI Antigens

Proteins which are targets of bactericidal antibodies that are recognised by sera from convalescent patients and vaccines are expressed in E. coli using commercially available vectors. The corresponding open reading frames are amplified by PCR from MC58, and ligated into vectors such as pCR Topo CT or pBAD/H is, to allow protein expression under the control of a T7 or arabinose-inducible promoter, respectively. Purification of the recombinant proteins from total cellular protein is performed via the His Tag fused to the C terminus of the protein on a Nickel or Cobalt column.


Adult New Zealand White rabbits are immunized on two occasions separated by four weeks by subcutaneous injection with 25 μg of purified protein with Freund's incomplete adjuvant. Sera from animals will be checked Drior to immunisation for pre-existing anti-Nm antibodies by whole cell ELISA. Animals which have an initial serum titre of <1:2 are used for immunisation experiments. Post-immunisation serum are obtained two weeks after the second immunisation. To confirm that specific antibodies have been raised, pre- and post-immunisation serum is tested by i) Western analysis against the purified protein and ii) ELISA using cells from the wild-type and the corresponding mutant (generated by GSI).


SBAs will be performed against MC58 (the homologous strain), and the sequenced serogroup A and C strains with the rabbit immune serum. The assay will be performed in triplicate on at least two occasions. SBAs of >8 will be considered significant. The results provide evidence of whether the protein candidates can elicit bactericidal antibodies as recombinant proteins.


3. Establishing the Protective Efficacy of GSI Antigens

All the candidates are tested for their ability to protect animals against live bacterial challenge as this allows any aspect of immunity (cellular or humoral) to be assessed in a single assay. We have established a model of active immunisation and protection against live bacterial infection. In this model, adult mice are immunised on days 0 and 21, and on day 28 receive live bacterial challenge of 106 or 107 CFU of MC58 intraperitoneally in iron dextran (as the supplemental iron source). The model is similar to that described for evaluation of the protective efficacy of immunisation with Tbps Danve et al (1993) Vaccine 11, 1214-1220. Non-immunised animals develop bacteraemia within 4 hours of infection, and show signs of systemic illness by 24 hours. We have already been able to demonstrate the protective efficacy of both attenuated Nm strains and a protein antigen against live meningococcal challenge; PorA is an outer membrane protein that elicits bactericidal antibodies, but which is not a lead vaccine candidate because of extensive antigenic variation (Bart et al (1999) Ifect Immun. 67, 3832-3846.


Six week old, BALB/c mice (group size, 35 animals) receive 25 μg of recombinant protein with Freund's incomplete adjuvant subcutaneously on days day 0 and 21, then are challenged with 106 (15 animals) or 107 (15 animals) CFU of MC58 intraperitoneally on day 28. Two challenge doses are used to examine the vaccine efficacy at a high and low challenge dose; sera are obtained on day 28 from the remaining five animals in each group, and from five animals before the first immunisation and stored at −70° C. for further immunological assays. Animals in control groups receive either i) adjuvant alone, ii) recombinant refolded PorA, and iii) a live, attenuated Nm strain. To reduce the overall number of animals in control groups, sets of five candidates will be tested at one time (number of groups=5 candidates+3 controls). Survival of animals in the groups is compared by Mann Whitney U Test. With group sizes of 15 mice/dose, the experiments are powered to show a 25% difference in survival between groups.


For vaccines which show significant protection against challenge, a repeat experiment is performed to confirm the finding. Furthermore, to establish that vaccination with a candidate also elicits protection against bacteraemia, levels of bacteraemia are determined during the second experiment; blood is sampled at 22 hr post-infection in immunised and un-immunised animals (bacteraemia is maximal at this time). The results are analysed using a two-tailed Student-T test to determine if there is a significant reduction in bacteraemia in vaccinated animals.


Further Materials and Methods Used

Mutagenesis of Neisseria meningitidis


For work with Neisseria meningitidis, mutants were constructed by in vitro mutagenesis. Genomic DNA from N. meningitidis was subjected to mutagenesis with a Tn5 derivative containing a marker encoding resistance to kanarnycin, and an origin of replication which is functional in E. coli. These elements are bound by composite Tn5 ends. Transposition reactions were carried out with a hyperactive variant of Tn5 and the DNA repaired with T4 DNA polymerase and ligase in the presence of ATP and nucleotides. The repaired DNA was used to transform N. meningitidis to kanamycin resistance. Southern analysis confirmed that each mutant contained a single insertion of the transposon only.


Serum Bactericidal Assays (SBAs)

Bacteria were grown overnight on solid media (brain heart infusion media with Levanthals supplement) and then re-streaked to solid media for four hours on the morning of experiments. After this time, bacteria were harvested into phosphate buffered saline and enumerated. SBAs were performed in a 1 ml volume, containing a complement source (baby rabbit or human) and approximately 105 colony forming units. The bacteria were collected at the end of the incubation and plated to solid media to recover surviving bacteria.


Isolating the Transposon Insertion Sites

Genomic DNA will be recovered from mutants of interest by standard methods and digested with PvuII, EcoRV, and DraI for three hours, then purified by phenol extraction. The DNA will then be self-ligated in a 100 microlitre volume overnight at 16° C. in the presence of T4 DNA ligase, precipitated, then used to transform E. coli to kanamycin resistance by electroporation.


EXAMPLE 2
Further Screening and Results Thereof

GSI has been used to screen a library of approximately 40,000 insertional mutants of MC58. The library was constructed by in vitro Tn5 mutagenesis, using a transposon harbouring the origin of replication from pACYC184.


MC58 was chosen as it is a serogroup β isolate of N. meningitidis, and the complete genome sequence of this strain is known.


The library is always screened in parallel with the wild-type strain as a control, and the number of colonies recovered from the library and the wild-type is shown.


Selection with Murine Sera


Initially the library was analysed using sera from animals immunised with the attenuated strain YH102. Adult mice (Balb/C) received 108 colony forming units intra-peritoneally on three occasions, and sera was collected 10 days after the final immunisation,


The screen identified several mutants with enhanced resistance to serum killing: This was confirmed by isolating individual mutants, reconstructing the mutation in the original genetic background, and re-testing the individual mutants for their susceptibility to complement mediated lysis against the wild-tye. The transposon insertions are in the following gene:










NMB0341 (TspA) DNA sequence



ATGCCCGCCGGCCGACTGCCCCGCCGATGCCCGATGATGACGAAATTTACAGACTGTACG





CGGTCAAACCGTATTCAGCCGCCAACCCACAGGGGATACATCTTGAAAAACAACAGACAA





ATCAAACTGATTGCCGCCTCCGTCGCAGTTGCCGCATCCTTTCAGGCACATGCTGGACTG





GGCGGACTGAATATCCAGTCCAACCTTGACGAACCCTTTTCCGGCAGCATTACCGTAACC





GGCGAAGAAGCCAAAGCCCTGCTAGGCGGCGGCAGCGTTACCGTTTCCGAAAAAGGCCTG





ACCGCCAAAGTCCACAAGTTGGGCGACAAAGCCGTCATTGCCGTTTCTTCCGAACAGGCA





GTCCGCGATCCCGTCCTGGTGTTCCGCATCGGCGCAGGCGCACAGGTACGCGAATACACC





GCCATCCTCGATCCTGTCGGCTACTCGCCCAAAACCAAATCTGCACTTTCAGACGGCAAG





ACACACCGCAAAACCGCTCCGACAGCAGAGTCCCAAGAAAATCAAAACGCCAAAGCCCTC





CGCAAAACCGATAAAAAAGACAGCGCGAACGCAGCCGTCAAACCGGCATACAACGGCAAA





ACCCATACCGTCCGCAAAGGCGAAACGGTCAAACAGATTGCCGCCGCCATCCGCCCGAAA





CACCTGACGCTCGAACAGGTTGCCGATGCGCTGCTGAAGGCAAACCCAAATGTTTCCGCA





CACGGCAGACTGCGTGCGGGCAGCGTGCTTCACATTCCGAATCTGAACAGGATCAAAGCG





GAACAACCCAAACCGCAAACGGCGAAACCCAAAGCCGAAACCGCATCCATGCCGTCCGAA





CCGTCCAAACAGGCAACGGTAGAGAAACCGGTTGAAAAACCTGAAGCAAAAGTTGCCGCG





CCCGAAGCAAAAGCGGAAAAACCGGCCGTTCGACCCGAACCTGTACCCGCTGCAAATACT





GCCGCATCGGAAACCGCTGCCGAATCCGCCCCCCAAGAAGCCGCCGCTTCTGCCATCGAC





ACGCCGACCGACGAAACCGGTAACGCCGTTTCCGAACCTGTCGAACAGGTTTCTGCCGAA





GAAGAAACCGAAAGCGGACTGTTTGACGGTCTGTTCGGCGGTTCGTACACCTTGCTGCTT





GCCGGCGGAGGCGCGGCATTAATCGCCCTGCTGCTGCTTTTGCGCCTTGCCCAATCCAAA





CGCGCGCGCCGTACCGAAGAATCCGTCCCTGAGGAAGAGCCTGACCTTGACGACGCGGCA





GACGACGGCATAGAAATCACCTTTGCCGAAGTCGAAACTCCGGCAACGCCCGAACCCGCT





CCGAAAAACGATGTAAACGACACACTTGCCTTAGATGGGGAATCTGAAGAAGAGTTATCG





GCAAAACAAACGTTCGATGTCGAAACCGATACGCCTTCCAACCGCATCGACTTGGATTTC





GACAGCCTGGCAGCCGCGCAAAACGGCATTTTATCCGGCGCACTTACGCAGGATGAAGAA





ACCCAAAAACGCGCGGATGCCGATTGGAACGCCATCGAATCCACAGACAGCGTGTACGAG





CCCGAGACCTTCAACCCGTACAACCCTGTCGAAATCGTCATCGACACGCCCGAACCGGAA





TCTGTCGCCCAAACTGCCGAAAACAAACCGGAAACCGTCGATACCGATTTCTCCGACAAC





CTGCCCTCAAACAACCATATCGGCACAGAAGAAACAGCTTCCGCAAAACCTGCCTCACCC





TCCGGACTGGCAGGCTTCCTGAAGGCTTCCTCGCCCGAAACCATCTTGGAAAAAACAGTT





GCCGAAGTCCAAACACCGGAAGAGTTGCACGATTTCCTGAAAGTGTACGAAACCGATGCC





GTCGCGGAAACTGCGCCTGAAACGCCCGATTTCAACGCCGCCGCAGACGATTTGTCCGCA





TTGCTTCAACCTGCCGAAGCACCGTCCGTTGAGGAAAATATAACGGAAACCGTTGCCGAA





ACACCCGACTTCAACGCCACCGCAGACGATTTGTCCGCATTACTTCAACCTTCTAAAGTA





CCTGCCGTTGAGGAAAATGCAGCGGAAACCGTTGCCGATGATTTGTCCGCACTGTTGCAA





CCTGCTGAAGCACCGGCCGTTGAGGAAAATGTAACGGAAACCGTTGCCGAAACACCCGAT





TTCAACGCCACCGCAGACGATTTGTCCGCATTACTTCAACCTTCTGAAGCACCTGCCGTT





GAGGAAAATGCAGCGGAAACCGTTGCCGATGATTTGTCCGCACTGTTGCAACCTGCTGAA





GCACCGGCCGTTGAGGAAAATGCAGCGGAAATCACTTTGGAAACGCCTGATTCCAACACC





TCTGAGGCAGACGCTTTGCCCGACTTCCTGAAAGACGGCGAGGAGGAAACGGTAGATTGG





AGCATCTACCTCTCGGAAGAAAATATCCCAAATAATGCAGATACCAGTTTCCCTTCGGAA





TCTGTAGGTTCTGACGCGCCTTCCGAAGCGAAATACGACCTTGCCGAAATGTATCTCGAA





ATCGGCGACCGCGATGCCGCTGCCGAGACAGTGCAGAAATTGCTGGAAGAAGCGGAAGGC





GACGTACTCAAACGTGCCCAAGCATTGGCGCAGGAATTGGGTATTTGA





NBM0341 Protein sequence


MPAGRLPRRCPMMTKFTDCTRSNRIQPPTHRGYILKNNRQIKLIAASVAVAASFQAHAGL





GGLNIQSNLDEPFSGSITVTGEEAKALLGGGSVTVSEKGLTAKVHKLGDKAVIAVSSEQA





VRDPVLVFRIGAGAQVREYTAILDPVGYSPKTKSALSDGKTHRKTAPTAESQENQNAKAL





RKTDKKDSANAAVKPAYNGKTHTVRKGETVKQIAAAIRPKHLTLEQVADALLKANPNVSA





HGRLRAGSVLHIPNLNRIKAEQPKPQTAKPKAETASMPSEPSKQATVEKPVEKPEAKVAA





PEAKAEKPAVRPEPVPAANTAASETAAESAPQEAAASAIDTPTDETGNAVSEPVEQVSAE





EETESGLFDGLFGGSYTLLLAGGGAALIALLLLLRLAQSKRARRTEESVPEEEPDLDDAA





DDGIEITFAEVETPATPEPAPKNDVNDTLALDGESEEELSAKQTFDVETDTPSNRIDLDF





DSLAAAQNGILSGALTQDEETQKRADADWNAIESTDSVYEPETFNPYNPVEIVIDTPEPE





SVAQTAENKPETVDTDFSDNLPSNNHIGTEETASAKPASPSGLAGFLKASSPETILEKTV





AEVQTPEELHDFLKVYETDAVAETAPETPDFNAAADDLSALLQPAEAPSVEENITETVAE





TPDFNATADDLSALLQPSKVPAVEENAAETVADDLSALLQPAEAPAVEENVTETVAETPD





FNATADDLSALLQPSEAPAVEENAAETVADDLSALLQPAEAPAVEENAAEITLETPDSNT





SEADALPDFLKDGEEETVDWSIYLSEENIPNNADTSFPSESVGSDAPSEAKYDLAEMYLE





IGDRDAAAETVQKLLEEAEGDVLKRAQALAQELGI





NMB0338 DNA sequence


ATGGAAAGGAACGGTGTATTTGGTAAAATTGTCGGCAATCGCATACTCCGTATGTCGTCC





GAACACGCTGCCGCATCCTATCCGAAACCGTGCAAATCGTTTAAACTAGCGCAATCTTGG





TTCAGAGTGCGAAGCTGTCTGGGCGGCGTTTTTATTTACGGAGCAAACATGAAACTTATC





TATACCGTCATCAAAATCATTATCCTGCTGCTCTTCCTGCTGCTTGCCGTCATTAATACG





GATGCCGTTACCTTTTCCTACCTGCCGGGGCAAAAATTCGATTTGCCGCTGATTGTCGTA





TTGTTCGGCGCATTTGTAGTCGGTATTATTTTTGGAATGTTTGCCTTGTTCGGACGGTTG





TTGTCGTTACGTGGCGAGAACGGCAGGTTGCGTGCCGAAGTAAAGAAAAATGCGCGTTTG





ACGGGGAAGGAGCTGACCGCACCACCGGCGCAAAATGCGCCCGAATCTACCAAACAGCCT





TAA





NMB0338 Protein sequence


MERNGVFGKIVGNRILRMSSEHAAASYPKPCKSFKLAQSWFRVRSCLGGVFIYGANMKLI





YTVIKIIILLLFLLLAVINTDAVTFSYLPGQKFDLPLIVVLFGAFVVGIIFGMFALFGRL





LSLRGENGRLRAEVKKNARLTGKELTAPPAQNAPESTKQP






Analysis of the polypeptide indicates that it is predicted to have two membrane spanning domains, from residues 54 to 70 and 88 to 107. Thus, fragments from the regions 1 to 53, and 108 to the end (C-terminal) may be particularly useful as immunogens.










NMB1345 DNA sequence



ATGAAAAAACCTTTGATTTCGGTTGCGGCAGCATTGCTCGGCGTTGCTTTGGGCACGCCT





TATTATTTGGGTGTCAAAGCCGAAGAAAGCTTGACGCAGCAGCAAAAAATATTGCAGGAA





ACGGGCTTCTTGACCGTCGAATCGCACCAATATGAGCGCGGCTGGTTTACCTCTATGGAA





ACGACGGTCATCCGTCTGAAACCCGAGTTGCTGAATAATGCCCGAAAATACCTGCCGGAT





AACCTGAAAACAGTGTTGGAACAGCCGGTTACGCTGGTTAACCATATCACGCACGGCCCT





TTCGCCGGCGGATTCGGCACGCAGGCGTACATTGAAACCGAGTTCAAATACGCGCCTGAA





ACGGAAAAAGTTCTGGAACGCTTTTTTGGAAAACAAGTCCCGGCTTCCCTTGCCAATACC





GTTTATTTTAACGGCAGCGGTAAAATGGAAGTCAGTGTTCCCGCCTTCGATTATGAAGAG





CTGTCGGGCATCAGGCTGCACTGGGAAGGCCTGACGGGAGAAACGGTTTATCAAAAAGGT





TTCAAAAGCTACCGGAACGGCTATGATGCCCCCTTGTTTAAAATCAAGCTGGCAGACAAA





GGCGATGCCGCGTTTGAAAAAGTGCATTTCGATTCGGAAACTTCAGACGGCATCAATCCG





CTTGCTTTGGGCAGCAGCAATCTGACCTTGGAAAAATTCTCCCTAGAATGGAAAGAGGGT





GTCGATTACAACGTCAAGTTAAACGAACTGGTCAATCTTGTTACCGATTTGCAGATTGGC





GCGTTTATCAATCCCAACGGCAGCATCGCACCTTCCAAAATCGAAGTCGGCAAACTGGCT





TTTTCAACCAAGACCGGGGAATCAGGCGCGTTTATCAACAGTGAAGGGCAGTTCCGTTTC





GATACACTGGTGTACGGCGATGAAAAATACGGCCCGCTGGACATCCATATCGCTGCCGAA





CACCTCGATGCTTCTGCCTTAACCGTATTGAAACGCAAGTTTGCACAAATTTCCGCCAAA





AAAATGACCGAGGAACAAATCCGCAATGATTTGATTGCCGCCGTCAAAGGAGAGGCTTCC





GGACTGTTCACCAACAATCCCGTATTGGACATTAAAACTTTCCGATTCACGCTGCCATCG





GGAAAAATCGATGTGGGCGGAAAAATCATGTTTAAAGACATGAAGAAGGAAGATTTGAAT





CAATTGGGTTTGATGCTGAAGAAAACCGAAGCCGACATCAGAATGAGTATTCCCCAAAAA





ATGCTGGAAGACTTGGCGGTCAGTCAAGCAGGCAATATTTTCAGCGTCAATGCCGAAGAT





GAGGCGGAAGGCAGGGCAAGTCTTGACGACATCAACGAGACCTTGCGCCTGATGGTGGAC





AGTACGGTTCAGAGTATGGCAAGGGAAAAATATCTGACTTTGAACGGCGACCAGATTGAT





ACTGCCATTTCTCTGAAAAACAATCAGTTGAAATTGAACGGTAAAACGTTGCAAAACGAA





CCGGAGCCGGATTTTGATGAAGGCGGTATGGTTTCAGAGCCGCAGCAGTAA





NMB1345 Protein sequence


MKKPLISVAAALLGVALGTPYYLGVKAEESLTQQQKILQETGFLTVESHQYERGWFTSME





TTVIRLKPELLNNARKYLPDNLKTVLEQPVTLVNHITHGPFAGGFGTQAYIETEFKYAPE





TEKVLERFFGKQVPASLANTVYFNGSGKMEVSVPAFDYEELSGIRLHWEGLTGETVYQKG





FKSYRNGYDAPLFKIKLADKGDAAFEKVHFDSETSDGINPLALGSSNLTLEKFSLEWKEG





VDYNVKLNELVNLVTDLQIGAFINPNGSIAPSKIEVGKLAFSTKTGESGAFINSEGQFRF





DTLVYGDEKYGPLDIHIAAEHLDASALTVLKRKFAQISAKKMTEEQIRNDLIAAVKGEAS





GLFTNNPVLDIKTFRFTLPSGKIDVGGKIMFKDMKKEDLNQLGLMLKKTEADIRMSIPQK





MLEDLAVSQAGNIFSVNAEDEAEGRASLDDINETLRLMVDSTVQSMAREKYLTLNGDQID





TAISLKNNQLKLNGKTLQNEPEPDFDEGGMVSEPQQ







Selection with Vaccinees Sera


Sera from the Meningococcal Reference Laboratory in Manchester has been made available to us. This sera has come from a clinical trial of OMV immunisation of volunteers.


Mutants Selected by Vaccinee C1 Sera (Screened Once)

The following sequences were isolated


NMB0338 (as above)










NMB0738 DNA sequence



ATGAAGATCGTCCTGATTAGCGGCCTGTCCGGTTCGGGCAAGTCCGTCGCACTGCGCCAA





ATGGAAGATTCGGGTTATTTCTGCGTGGACAATTTGCCTTTGGAAATGTTGCCCGCGCTG





GTGTCGTATCATATCGAACGTGCGGACGAAACCGAATTGGCGGTCAGCGTCGATGTGCGT





TCCGGCATTGACATCGGACAGGCGCGGGAACAGATTGCCTCTCTGCGCAGACTGGGGCAC





AGGGTTGAAGTTTTGTTTGTCGAGGCGGAAGAAAGCGTGTTGGTCCGCCGGTTTTCCGAA





ACCAGGCGAGGACATCCTCTGAGCAATCAGGATATGACCTTGTTGGAAAGCTTAAAGAAA





GAACGGGAATGGCTGTTCCCGCTTAAAGAAATCGCCTATTGTATCGACACTTCCAAGATG





AATGCCCAACAGCTCCGCCATGCAGTCCGGCAGTGGCTGAAGGTCGAACGTACCGGGCTG





CTGGTGATTTTGGAGTCCTTCGGGTTCAAATACGGTGTGCCGAACAACGCGGATTTTATG





TTCGATATGCGCAGCCTGCCCAACCCGTATTACGATCCCGAGTTGAGGCCTTACACCGGT





ATGGACAAGCCCGTTTGGGATTATTTGGACGGACAGCCGCTTGTGCAGGAAATGGTTGAC





GACATCGAAAGGTTTGTTACGCATTGGTTACCGCGTTTGGAGGATGAAAGCAGGAGCTAC





GTTACCGTCGCCATCGGTTGCACGGGAGGACAGCACCGTTCGGTCTATATTGTCGAAAAA





CTCGCCCGAAGGTTGAAAGGGCGTTATGAATTGCTGATACGGCACAGACAGGCGCAAAAC





CTGTCAGACCGCTAA





NMB0738 Protein sequence


MKIVLISGLSGSGKSVALRQMEDSGYFCVDNLPLEMLPALVSYHIERADETELAVSVDVR





SGIDIGQAREQIASLRRLGHRVEVLFVEAEESVLVRRFSETRRGHPLSNQDMTLLESLKK





EREWLFPLKEIAYCIDTSKMNAQQLRHAVRQWLKVERTGLLVILESFGFKYGVPNNADFM





FDMRSLPNPYYDPELRPYTGMDKPVWDYLDGQPLVQEMVDDIERFVTHWLPRLEDESRSY





VTVAIGCTGGQHRSVYIVEKLARRLKGRYELLIRHRQAQNLSDR





NMB0792 NadC family (transporter) DNA sequence


ATGAACCTGCATGCAAAGGACAAAACCCAGCATCCCGAAAACGTCGAGCTGCTCAGTGCG





CAGAAGCCGATTACCGACTTTAAGGGCCTGCTGACCACCATTATTTCCGCCGTCGTCTGT





TTCGGCATTTACCACATCCTGCCTTACAGCCCCGATGCCAATAAAGGTATCGCGCTGCTG





ATTTTCGTTGCCGCACTTTGGTTTACCGAGGCCGTCCACATTACCGTAACCGCACTGATG





GTGCCGATTCTCGCCGTCGTACTCGGTTTCCCCGACATGGACATCAAAAAGGCGATGGCT





GATTTTTCCAACCCGATTATCTACATTTTTTTCGGCGGCTTCGCGCTTGCCACCGCCCTG





CATATGCAGCGGCTGGACCGTAAAATCGCCGTCAGCCTGTTGCGCCTGTCGCGCGGCAAT





ATGAAAGTGGCGGTTTTGATGTTGTTCCTCGTTACCGCCTTTCTGTCCATGTGGATCAGC





AACACCGCCACCGCCGCGATGATGCTGCCTCTAGCAATGGGTATGCTGAGCCACCTCGAC





CAGGAAAAAGAACACAAAACCTACGTCTTCCTCCTGCTCGGCATCGCCTATTGCGCCAGC





ATCGGCGGCTTGGGCACGCTCGTCGGCTCGCCGCCCAACCTGATTGCCGCCAAAGCCCTA





AATCTGGACTTCGTCGGCTGGATGAAGCTCGGCCTGCCGATGATGCTGTTGATTCTGCCC





TTGATGCTGCTCTCCCTGTACGTCATCCTCAAACCTAATTTGAACGAACGCGTGGAAATC





AAAGCCGAATCCATCCCTTGGACGCTGCACCGCGTGATCGCGCTGTTGATTTTCCTTGCC





ACAGCCGCCGCGTGGATATTCAGCTCCAAAATCAAAACCGCCTTCGGCATTTCCAATCCC





GACACCGTTATCGCCCTGAGTGCCGCCGTCGCCGTCGTCGTCTTCGGCGTGGCGCAATGG





AAGGAAGTCGCCCGCAATACCGACTGGGGCGTGTTGATGCTCTTCGGCGGCGGCATCAGC





CTGAGCACGCTGTTGAAAACATCCGGCGCGTCCGAAGCCTTGGGACAGCAGGTTGCCGCC





ACCTTTTCCGGCGCGCCCGCATTTTTGGTGATACTCATCGTCGCCGCCTTCATTATTTTT





CTGACCGAGTTCACCAGCAACACCGCCTCCGCCGCATTGCTTGTACCGATTTTCTCCGGC





ATCGCTATGCAGATGGGGCTGCCCGAACAAGTCTTGGTATTCGTCATCGGCATCGGCGCA





TCTTGTGCCTTCATGCTGCCGGTTGCCACACCGCCTAACGCGATTGTGTTCGGCACGGGC





TTAATCAAGCAACGCGAAATGATGAATGTCGGCATACTGCTGAACATCCTCTGCGTAGTA





TTGGTTGCTCTGTGGGCTTATGCTGTACTGATGTAA





NMB0792 Protein sequence


MNLHAKDKTQHPENVELLSAQKPITDFKGLLTTIISAVVCFGIYHILPYSPDANKGIALL





IFVAALWFTEAVHITVTALMVPILAVVLGFPDMDIKKAMADFSNPIIYIFFGGFALATAL





HMQRLDRKIAVSLLRLSRGNMKVAVLMLFLVTAFLSMWISNTATAAMMLPLAMGMLSHLD





QEKEHKTYVFLLLGIAYCASIGGLGTLVGSPPNLIAAKALNLDFVGWMKLGLPMMLLILP





LMLLSLYVILKPNLNERVEIKAESIPWTLHRVIALLIFLATAAAWIFSSKIKTAFGISNP





DTVIALSAAVAVVVFGVAQWKEVARNTDWGVLMLFGGGISLSTLLKTSGASEALGQQVAA





TFSGAPAFLVILIVAAFIIFLTEFTSNTASAALLVPIFSGIAMQMGLPEQVLVFVIGIGA





SCAFMLPVATPPNAIVFGTGLIKQREMMNVGILLNILCVVLVALWAYAVLM





NMB0279 DNA sequence


ATGCAACGACAAATCAAACTGAAAAATTGGCTTCAGACCGTTTATCCCGAACGGGACTTC





GATCTGACTTTTGCGGCGGCGGATGCTGATTTCCGCCGCTATTTCCGTGCAACGTTTTCA





GACGGCAGCAGTGTCGTCTGCATGGATGCACCGCCCGACAAGATGAGTGTCGCACCTTAT





TTGAAAGTGCAGAAACTGTTTGACATGGTCAATGTGCCGCAGGTATTGCACGCGGACACG





GATCTGGGGTTTGTGGTATTGAACGACTTGGGCAATACGACGTTTTTGACCGCAATGCTT





CAGGAACAGGGCGAAACGGCGCACAAAGCCCTGCTTTTGGAGGCAATCGGCGAGTTGGTC





GAATTGCAGAAGGCGAGCCGTGAAGGGGTTTTGCCCGAATATGACCGTGAAACGATGTTG





CGCGAAATCAACCTGTTCCCGGAATGGTTTGTCGCAAAAGAATTGGGGCGCGAATTAACA





TTCAAACAACGCCAACTTTGGCAGCAAACCGTCGATACGCTGCTGCCGCCCCTGTTGGCG





CAGCCCAAAGTCTATGTGCACCGCGACTTTATCGTCCGCAACCTGATGCTGACGCGCGGC





AGGCCGGGCGTTTTAGACTTCCAAGACGCGCTTTACGGCCCGATTTCCTACGATTTGGTG





TCGCTGTTGCGCGATGCCTTTATCGAATGGGAAGAAGAATTTGTCTTGGACTTGGTTATC





CGCTACTGGGAAAAGGCGCGGGCTGCCGGCTTGCCCGTCCCCGAAGCGTTTGACGAGTTT





TACCGCTGGTTCGAATGGATGGGCGTGCAGCGGCACTTGAAGGTTGCAGGCATCTTCGCA





CGCCTGTACTACCGCGACGGCAAAGACAAATACCGTCCGGAAATCCCGCGTTTCTTAAAC





TATCTGCGCCGCGTATCGCGCCGTTATGCCGAACTCGCCCCGCTCTACGCGCTCTTGGTC





GAACTGGTCGGCGATGAAGAACTGGAAACGGGCTTTACGTTTTAA





NMB0279 Protein sequence


MQRQIKLKNWLQTVYPERDFDLTFAAADADFRRYFRATFSDGSSVVCMDAPPDKMSVAPY





LKVQKLFDMVNVPQVLHADTDLGFVVLNDLGNTTFLTAMLQEQGETAHKALLLEAIGELV





ELQKASREGVLPEYDRETMLREINLFPEWFVAKELGRELTFKQRQLWQQTVDTLLPPLLA





QPKVYVHRDFIVRNLMLTRGRPGVLDFQDALYGPISYDLVSLLRDAFIEWEEEFVLDLVI





RYWEKARAAGLPVPEAFDEFYRWFEWMGVQRHLKVAGIFARLYYRDGKDKYRPEIPRFLN





YLRRVSRRYAELAPLYALLVELVGDEELETGFTF





NMB2050 DNA sequence


ATGGAACTGATGACTGTTTTGCTGCCTTTGGCGGCGTTGGTGTCGGGCGTGTTGTTTACA





TGGTTGCTGATGAAGGGCCGGTTTCAGGGCGAGTTTGCCGGTTTGAACGCGCACCTGGCG





GAAAAGGCGGCAAGATGTGATTTTGTCGAACAGGCACACGGCAAAACCGTGTCGGAATTG





GCGGTGTTGGACGGGAAATACCGGCATTTGCAGGACGAAAATTATGCTTTGGGCAACCGT





TTTTCCGCAGCCGAAAAGCAGATTGCCCATTTGCAGGAAAAAGAGGCGGAGTCGGCGCGG





CTGAAGCAGTCGTATATCGAGTTGCAGGAAAAGGCACAGGGTTTGGCGGTTGAAAACGAA





CGTTTGGCAACGCAGCTCGGACAGGAACGGAAGGCGTTTGCCGACCAATATGCCTTGGAA





CGCCAAATCCGCCAAAGAATCGAAACCGATTTGGAAGAAAGCCGCCAAACTGTCCGCGAC





GTGCAAAACGACCTTTCCGATGTCGGCAACCGTTTTGCCGCAGCCGAAAAACAGATTGCC





CATTTGCAGGAAAAAGAGGCGGAAGCGGAGCGGTTGAGGCAGTCGCATACCGAGTTGCAG





GAAAAGGCACAGGGTTTGGCGGTTGAAAACGAACGTTTGGCAACGCAAATCGAACAGGAA





CGCCTTGCTTCTGAAGAGAAGCTGTCCTTGCTGGGCGAGGCGCGCAAAAGTTTGAGCGAT





CAGTTTCAAAATCTTGCCAACACGATTTTGGAAGAAAAAAGCCGCCGTTTTACCGAGCAG





AACCGCGAGCAGCTCCATCAGGTTTTGAACCCGCTAAACGAACGCATCCACGGTTTCGGC





GAGTTGGTCAAGCAAACCTATGATAAAGAATCGCGCGAGCGGCTGACGTTGGAAAACGAA





TTGAAACGGCTTCAGGGGTTGAACGCGCAGCTGCACAGCGAGGCAAAGGCCCTGACCAAC





GCGCTGACCGGTACGCAGAATAAGGTTCAGGGCAATTGGGGCGAGATGATTCTGGAAACG





GTTTTGGAAAATTCCGGCCTTCAGAAAGGGCGGGAATATGTGGTTCAGGCGGCATCCGTC





CGAAAAGAGGAAGACGGCGGCACGCGCCGCCTCCAGCCCGACGTTTTGGTCAACCTGCCC





GACAACAAGCAGATTGTGATTGATTCCAAGGTCTCGCTGACAGCTTATGTGCGCTACACG





CAGGCGGCGGATGCGGATACGGCGGCACGCGAACTGGCGGCACACGTTGCCAGCATCCGT





GCACACATGAAAGGCTTGTCGCTGAAGGATTACACCGATTTGGAAGGTGTGAACACATTG





GATTTCGTCTTTATGTTTATCCCTGTCGAACCGGCCTACCTGTTGGCGTTGCAGAATGAC





GCGGGCTTGTTCCAAGAGTGTTTCGACAAACGGATTATGCTGGTCGGCCCCAGTACGCTG





CTGGCGACTTTGAGGACGGTGGCGAATATTTGGCGCAACGAACAGCAAAATCAGAACGCA





CTGGCGATTGCGGACGAAGGCGGCAAGCTGTACGACAAGTTTGTCGGCTTCGTACAGACG





CTCGAAAGCGTCGGCAAAGGCATCGATCAGGCGCAAAGCAGTTTTCAGACGGCATTCAAG





CAACTTGCCGAAGGGCGCGGGAATCTGGTCGGACGCGCCGAGAAACTGCGTCTGTTGGGC





GTGAAGGCAGGCAAACAACTTCAACGGGATTTGGTCGAGCGTTCCAATGAAACAACGGCG





TTGTCGGAATCTTTGGAATACGCGGCAGAAGATGAAGCAGTCTGA





NMB2050 Protein sequence


MELMTVLLPLAALVSGVLFTWLLMKGRFQGEFAGLNAHLAEKAARCDFVEQAHGKTVSEL





AVLDGKYRHLQDENYALGNRFSAAEKQIAHLQEKEAESARLKQSYIELQEKAQGLAVENE





RLATQLGQERKAFADQYALERQIRQRIETDLEESRQTVRDVQNDLSDVGNRFAAAEKQIA





HLQEKEAEAERLRQSHTELQEKAQGLAVENERLATQIEQERLASEEKLSLLGEARKSLSD





QFQNLANTILEEKSRRFTEQNREQLHQVLNPLNERIHGFGELVKQTYDKESRERLTLENE





LKRLQGLNAQLHSEAKALTNALTGTQNKVQGNWGEMILETVLENSGLQKGREYVVQAASV





RKEEDGGTRRLQPDVLVNLPDNKQIVIDSKVSLTAYVRYTQAADADTAARELAAHVASIR





AHMKGLSLKDYTDLEGVNTLDFVFMFIPVEPAYLLALQNDAGLFQECFDKRIMLVGPSTL





LATLRTVANIWRNEQQNQNALAIADEGGKLYDKFVGFVQTLESVGKGIDQAQSSFQTAFK





QLAEGRGNLVGRAEKLRLLGVKAGKQLQRDLVERSNETTALSESLEYAAEDEAV





NMB1335 CreA protein DNA sequence


ATGAACAGACTGCTACTGCTGTCTGCCGCCGTCCTGCTGACTGCCTGCGGCAGCGGCGAA





ACCGATAAAATCGGACGGGCAAGTACCGTTTTCAACATACTGGGCAAAAACGACCGTATC





GAAGTGGAAGGATTCGACGATCCCGACGTTCAAGGGGTTGCCTGTTATATTTCGTATGCA





AAAAAAGGCGGCTTGAAGGAAATGGTCAATTTGGAAGAGGACGCGTCCGACGCATCGGTT





TCGTGCGTTCAGACGGCATCTTCGATTTCTTTTGACGAAACCGCCGTGCGCAAACCGAAA





GAAGTTTTCAAACACGGTGCGAGCTTCGCGTTCAAGAGCCGGCAGATTGTCCGTTATTAC





GACCCCAAACGCAAAACCTTCGCCTATTTGGTGTACAGCGATAAAATCATCCAAGGCTCG





CCGAAAAATTCCTTAAGCGCGGTTTCCTGTTTCGGCGGCGGCATACCGCAAACCGATGGG





GTGCAAGCCGATACTTCCGGCAACCTGCTTGCCGGCGCCTGCATGATTTCCAACCCGATA





GAAAATCTCGACAAACGCTGA





NMB1335 Protein sequence


MNRLLLLSAAVLLTACGSGETDKIGRASTVFNILGKNDRIEVEGFDDPDVQGVACYISYA





KKGGLKEMVNLEEDASDASVSCVQTASSISFDETAVRKPKEVFKHGASFAFKSRQIVRYY





DPKRKTFAYLVYSDKIIQGSPKNSLSAVSCFGGGIPQTDGVQADTSGNLLAGACMISNPI





ENLDKR





NMB2035 DNA sequence


ATGACCGCCTTTGTCCACACCCTTTCAGACGGCATGGAACTGACCGTCGAAATCAAGCGC





CGTGCCAAGAAAAACCTGATTATCCGCCCCGCCGGCACACATACCGTCCGCATCAGCGTC





CCACCCTGCTTCTCCGTCTCCGCTCTAAACCGCTGGCTGTATGAAAACGAAGCCGTCCTG





CGGCAAACACTGGCGAAAACACCGCCGCCGCAAACTGCCGAAAACCGGCTGCCCGAATCC





ATCCTCTTCCACGGCAGACAGCTTGCCCTCACCGCCCATCAAGACACGCAAATCCTGCTG





ATGCCGTCTGAAATCCGTGTTCCCGAAGGCGCACCCGAAAAACAGCTTGCGCTGCTGCGG





GACTTTTTGGAACGGCAGGCGCACAGTTACCTGATTCCCCGCCTCGAACGCCACGCCCGC





ACCACACAACTGTTCCCCGCCTCCTCCTCGCTGACCTCTGCCAAAACCTTCTGGGGCGTG





TGCCGCAAAACCACAGGCATACGCTTCAACTGGCGGCTGGTCGGCGCACCGGAATACGTT





GCCGACTATGTCTGCATACACGAACTCTGCCACCTCGCCCATCCCGACCACAGCCCCGCC





TTTTGGGAACTGACCCGCCGCTTCGCCCCCTACACGCCCAAAGCGAAACAGTGGCTCAAA





ATCCACGGCAGGGAACTTTTCGCCTTAGGCTGA





NMB2035 Protein sequence


MTAFVHTLSDGMELTVEIKRRAKKNLIIRPAGTHTVRISVPPCFSVSALNRWLYENEAVL





RQTLAKTPPPQTAENRLPESILFHGRQLALTAHQDTQILLMPSEIRVPEGAPEKQLALLR





DFLERQAHSYLIPRLERHARTTQLFPASSSLTSAKTFWGVCRKTTGIRFNWRLVGAPEYV





ADYVCIHELCHLAHPDHSPAFWELTRRFAPYTPKAKQWLKIHGRELFALG





NMB1351 Fmu and Fmv protein DNA sequence


ATGAACGCCGCACAACTCGACCATACCGCCAAAGTTTTGGCTGAAATGCTGACTTTCAAA





CAGCCTGCCGATGCCGTCCTCTCCGCCTATTTCCGCGAACACAAAAAGCTCGGCAGTCAA





GATCGCCACGAAATCGCCGAAACCGCCTTTGCCGCGCTGCGCCACTATCAAAAAATCAGT





ACCGCCCTACGCCGTCCGCACGCGCAGCCGCGCAAAGCCGCTCTCGCCGCACTGGTTCTC





GGCAGAAGCACCAACATCAGCCAAATCAAAGACCTGCTTGATGAAGAAGAAACAGCGTTC





CTCGGCAATTTGAAAGCCCGTAAAACCGAGTTTTCAGACAGCCTGAATACCGCCGCAGAA





TTGCCGCAATGGCTGGTGGAACAACTGAAACAGCATTGGCGCGAAGAAGAAATCCTCGCT





TTCGGCCGCAGCATCAACCAGCCTGCCCCGCTCGACATCCGCGTCAACACTTTGAAAGGC





AAACGCGATAAAGTGCTGCCGCTGTTGCAAGCCGAAAGTGCCGATGCAGAGGCAACGCCT





TATTCGCCTTGGGGCATCCGCCTGAAAAACAAAATCGCGCTTAACAAACACGAACTGTTT





TTAGACGGCACACTGGAAGTCCAAGACGAAGGCAGCCAGCTGCTTGCCTTATTGGTGGGC





GCAAAACGAGGCGAAATCATTGTCGATTTCTGTGCCGGTGCCGGCGGTAAAACCTTGGCT





GTCGGTGCGCAAATGGCGAACAAAGGCAGAATCTACGCCTTCGATATCGCCGAAAAACGC





CTTGCCAACCTCAAACCGCGTATGACCCGCGCCGGACTGACCAATATCCACCCCGAACGC





ATCGGCAGCGAACACGATGCCCGTATCGCCCGACTGGCAGGCAAAGCCGACCGTGTGTTG





GTGGACGCGCCCTGCTCCGGTTTGGGCACTTTACGCCGCAATCCCGACCTCAAATACCGC





CAATCCGCCGAAACCGTCGCCAACCTTTTGGAACAGCAACACAGCATCCTCGATGCCGCC





TCCAAACTGGTAAAACCGCAAGGACGTTTGGTGTACGCCACTTGCAGCATCCTGCCCGAA





GAAAACGAGCTGCAAGTCGAACGTTTCCTGTCCGAACATCCCGAATTTGAACCCGTCAAC





TGCGCCGAACTGCTTGCCGGTTTGAAAATCGATTTGGATACCGGCAAATACCTGCGCCTC





AACTCCGCCCGACACCAAACCGACGGCTTCTTCGCCGCCGTATTGCAACGCAAATAA





NMB1351 Protein sequence


MNAAQLDHTAKVLAEMLTFKQPADAVLSAYFREHKKLGSQDRHEIAETAFAALRHYQKIS





TALRRPHAQPRKAALAALVLGRSTNISQIKDLLDEEETAFLGNLKARKTEFSDSLNTAAE





LPQWLVEQLKQHWREEEILAFGRSINQPAPLDIRVNTLKGKRDKVLPLLQAESADAEATP





YSPWGIRLKNKIALNKHELFLDGTLEVQDEGSQLLALLVGAKRGEIIVDFCAGAGGKTLA





VGAQMANKGRIYAFDIAEKRLANLKPRMTRAGLTNIHPERIGSEHDARIARLAGKADRVL





VDAPCSGLGTLRRNPDLKYRQSAETVANLLEQQHSILDAASKLVKPQGRLVYATCSILPE





ENELQVERFLSEHPEFEPVNCAELLAGLKIDLDTGKYLRLNSARHQTDGFFAAVLQRK





NMB1574 IlvC DNA sequence


ATGCAAGTCTATTACGATAAAGATGCCGATCTGTCCCTAATCAAAGGCAAAACCGTTGCC





ATCATCGGTTACGGTTCGCAAGGTCATGCCCATGCCGCCAACCTGAAAGATTCGGGTGTA





AACGTGGTGATTGGTCTGCGCCAAGGTTCTTCTTGGAAAAAAGCCGAAGCAGCCGGTCAT





GTCGTCAAAACCGTTGCTGAAGCGACCAAAGAAGCCGATGTCGTTATGCTGCTGCTGCCT





GACGAAACCATGCCTGCCGTCTATCACGCCGAAGTTACAGCCAATTTGAAAGAAGGCGCA





ACGCTGGCATTTGCACACGGCTTCAACGTGCACTACAACCAAATCGTTCCGCGTGCCGAC





TTGGACGTGATTATGGTTGCCCCCAAAGGTCCGGGCCATACCGTACGCAGTGAATACAAA





CGCGGCGGCGGCGTGCCTTCTCTGATTGCCGTTTACCAAGACAATTCCGGCAAAGCCAAA





GACATCGCCCTGTCTTATGCGGCTGCCAACGGCGGCACCAAAGGCGGTGTGATTGAAACC





ACTTTCCGCGAAGAAACCGAAACCGATCTGTTCGGCGAACAAGCCGTATTGTGCGGCGGC





GTGGTCGAGTTGATCAAGGCGGGTTTTGAAACCCTGACCGAAGCCGGTTACGCGCCTGAA





ATGGCTTACTTCGAATGTCTGCACGAAATGAAACTGATCGTTGACCTGATTTTCGAAGGC





GGTATTGCCAATATGAACTACTCCATTTCCAACAATGCGGAGTACGGCGAATACGTTACC





GGCCCTGAAGTGGTCAATGCTTCCAGCAAAGAAGCCATGCGCAATGCCCTGAAACGCATT





CAAACCGGCGAATACGCAAAAATGTTTATCCAAGAGGGTAATGTCAACTATGCGTCTATG





ACTGCCCGCCGCCGTCTGAATGCCGACCACCAAGTTGAAAAAGTCGGCGCACAACTGCGT





GCCATGATGCCTTGGATTACTGCCAACAAATTGGTTGACCAAGACAAAAACTGA





NMB1574 Protein sequence


MQVYYDKDADLSLIKGKTVAIIGYGSQGHAHAANLKDSGVNVVIGLRQGSSWKKAEAAGH





VVKTVAEATKEADVVMLLLPDETMPAVYHAEVTANLKEGATLAFAHGFNVHYNQIVPRAD





LDVIMVAPKGPGHTVRSEYKRGGGVPSLIAVYQDNSGKAKDIALSYAAANGGTKGGVIET





TFREETETDLFGEQAVLCGGVVELIKAGFETLTEAGYAPEMAYFECLHEMKLIVDLIFEG





GIANMNYSISNNAEYGEYVTGPEVVNASSKEAMRNALKRIQTGEYAKMFIQEGNVNYASM





TARRRLNADHQVEKVGAQLRAMMPWITANKLVDQDKN





NMB1298 rsuA DNA sequence


ATGAAACTTATCAAATACCTGCAATATCAAGGCATAGGAAGCCGCAAGCAGTGCCAATGG





CTGATTGCCGGCGGTTATGTTTTCATCAACGGAACCTGCATGGACGACACCGATGCAGAC





ATCGATTCCTCATCCGTCGAAACGTTGGATATTGACGGGGAAGCAGTAACCGTCGTTCCC





GAACCCTATTTCTACATCATGCTCAACAAGCCTGAAGATTACGAAACTTCGCACAAACCC





AAGCACTACCGCAGCGTATTCAGCCTGTTCCCCGACAATATGCGGAACATCGATATGCAG





GCGGTCGGCAGGCTGGATGCAGATACGACCGGCGTATTGCTGATTACCAACGACGGCAAA





CTGAACCACAGCCTGACTTCGCCGAGCAGAAAAATTCCCAAGCTGTACGAAGTAACGCTC





AAACACCCCACAGGAGAAACGCTCTGCGAAACCTTGAAAAACGGCGTGCTGCTCCACGAC





GAAAACGAAACCGTTTGTGCCGCCGATGCCGTTTTGAAAAACCCGACCACCCTGCTGCTG





ACCATTACCGAAGGAAAATACCACCAAGTCAAACGCATGATCGCCGCCGCCGGCAACCGC





GTGCAACACCTTCATCGCCGGCGATTCGCACATCTGGAAACAGAAAACCTCAAACCCGGG





GAATGGAAATTTATCGAATGTCCAAAATTCTGA





NMB1298 Protein sequence


MKLIKYLQYQGIGSRKQCQWLIAGGYVFINGTCMDDTDADIDSSSVETLDIDGEAVTVVP





EPYFYIMLNKPEDYETSHKPKHYRSVFSLFPDNMRNIDMQAVGRLDADTTGVLLITNDGK





LNHSLTSPSRKIPKLYEVTLKHPTGETLCETLKNGVLLHDENETVCAADAVLKNPTTLLL





TITEGKYHQVKRMIAAAGNRVQHLHRRRFAHLETENLKPGEWKFIECPKF





NMB1856 Lys R family (transcription regulator) DNA sequence


ATGAAAACCAATTCAGAAGAACTGACCGTATTTGTTCAAGTGGTGGAAAGCGGCAGCTTC





AGCCGTGCGGCGGAGCAGTTGGCGATGGCAAATTCTGCCGTAAGCCGCATCGTCAAACGG





CTGGAGGAAAAGTTGGGTGTGAACCTGCTCAACCGCACCACGCGGCAACTCAGTCTGACG





GAAGAAGGCGCGCAATATTTCCGCCGCGCGCAGAGAATCCTGCAAGAAATGGCAGCGGCG





GAAACCGAAATGCTGGCAGTGCACGAAATACCGCAAGGCGTGTTGAGCGTGGATTCCGCG





ATGCCGATGGTGCTGCATCTGCTGGCGCCGCTGGCAGCAAAATTCAACGAACGCTATCCG





CATATCCGACTTTCGCTCGTTTCTTCCGAAGGCTATATCAATCTGATTGAACGCAAAGTC





GATATTGCCTTACGGGCCGGAGAATTGGACGATTCCGGGCTGCGTGCACGCCATCTGTTT





GACAGCCGCTTCCGCGTAATCGCCAGTCCTGAATACCTGGCAAAACACGGCACGCCGCAA





TCTACAGAAGAGCTTGCCGGCCACCAATGTTTAGGCTTCACCGAACCCGGTTCTCTAAAT





ACATGGGCGGTTTTAGATGCGCAGGGAAATCCCTATAAGATTTCACCGCACTTTACCGCC





AGCAGCGGTGAAATCTTACGCTCGTTGTGCCTTTCAGGTTGCGGTATTGTTTGCTTATCA





GATTTTTTGGTTGACAACGACATCGCTGAAGGAAAGTTAATTCCCCTGCTCGCCGAACAA





ACCTCCGATAAAACACACCCCTTTAATGCTGTTTATTACAGCGATAAAGCCGTCAATCTC





CGCTTACGCGTATTTTTGGATTTTTTAGTGGAGGAACTGGGAAACAATCTCTGTGGATAA





NMB1856 Protein sequence


MKTNSEELTVFVQVVESGSFSRAAEQLAMANSAVSRIVKRLEEKLGVNLLNRTTRQLSLT





EEGAQYFRRAQRILQEMAAAETEMLAVHEIPQGVLSVDSAMPMVLHLLAPLAAKFNERYP





HIRLSLVSSEGYINLIERKVDIALRAGELDDSGLRARHLFDSRFRVIASPEYLAKHGTPQ





STEELAGHQCLGFTEPGSLNTWAVLDAQGNPYKISPHFTASSGEILRSLCLSGCGIVCLS





DFLVDNDIAEGKLIPLLAEQTSDKTHPFNAVYYSDKAVNLRLRVFLDFLVEELGNNLCG





NMB0119 DNA sequence


ATGATGAAGGATTTGAATTTGAGCAACAGCCTGTTCAAAGGCTACAACGACAAACATGGC





TTAATGATTTGTGGCTATGAATGGGGTTGGAGTAAAGCCGATGAGGCTGCTTATGTAGCA





GGTGAATACAAACTCCCTGAAAACAAAATCGACCATACATTTGCAAACAAATCCCTCTAT





TTCGGAGAGCAGGCAAAAAAGTGGCGTTACGACAATACGATAAAAAATTGGTTTGAAATG





TGGGGACACCCCTTAGACGAAAATGGATTGGGCGGTGCATTTGAAAAATCCCTGGTTCAA





ACCAACTGGGCTGCTACACAGGGCAACACTATCGACAATCCCGACAAGTTCACACAACCC





GAGCACATCGATAATTTTCTCTACCACATCGAAAAACTGCGTCCGAAAGTCATCCTCTTC





ATGGGCAGCAGGTTGGCGGATTTTCTGAACAACCAAAATGTACTGCCACGCTTCGAGCAG





TTGGTCGGTAAGCAGACCAAACCGCTGGAGACGGTGCAAAAAGAATTTGACGGTACACGT





TTCAATGTCAAATTCCAATCGTTTGAAGATTGCGAAGTCGTCTGCTTTCCCCATCCCAGT





GCCAGTCGCGGTCTATCTTACGATTACATCGCCTTGTTTGCGCCTGAAATGAACCGGATT





TTATCGGACTTTAAAACAACACGCGGATTCAAATAA





NMB0119 Protein sequence


MMKDLNLSNSLFKGYNDKHGLMICGYEWGWSKADEAAYVAGEYKLPENKIDHTFANKSLY





FGEQAKKWRYDNTIKNWFEMWGHPLDENGLGGAFEKSLVQTNWAATQGNTIDNPDKFTQP





EHIDNFLYHIEKLRPKVILFMGSRLADFLNNQNVLPRFEQLVGKQTKPLETVQKEFDGTR





FNVKFQSFEDCEVVCFPHPSASRGLSYDYIALFAPEMNRILSDFKTTRGFK





NMB1705 rfaK DNA sequence


ATGGAAAAAGAATTCAGGATATTAAATATCGTATCGGCCAAGATTTGGGGTGGAGGCGAA





CAATATGTCTATGATGTTTCAAAAGCATTGGGGCTTCGGGGCTGCACAATGTTTACCGCC





GTCAATAAAAATAATGAATTGATGCACAGGCGATTTTCCGAAGTTTCTTCCGTTTTCACA





ACGCGCCTTCACACGCTCAACGGGCTGTTTTCGCTCTACGCACTTACCCGCTTTATCCGG





AAAAACCGCATTTCCCACCTGATGATACACACCGGCAAAATTGCCGCCTTATCCATACTT





TTGAAAAAACTGACCGGGGTGCGCCTGATATTTGTCAAACATAATGTCGTCGCCAACAAA





ACCGATTTTTACCACCGCCTGATACAGAAAAACACAGACCGCTTTATTTGCGTTTCCCGT





CTGGTTTACGATGTGCAAACCGCCGACAATCCCTTTAAAGAAAAATACCGGATTGTTCAT





AACGGTATCGATACCGGCCGTTTCCCTCCCTCTCAAGAAAAACCCGACAGCCGTTTTTTT





ACCGTCGCCTACGCCGGCAGGATCAGTCCAGAAAAAGGATTGGAAAACCTGATTGAAGCC





TGTGTGATACTGCATCGGAAATATCCTCAAATCAGGCTGAAATTGGCAGGGGACGGACAT





CCGGATTATATGTGCCGCCTGAAGCGGGACGTATCTGCTTCAGGAGCAGAACCATTTGTT





TCTTTTGAAGGGTTTACCGAAAAACTTGCTTCGTTTTACCGCCAAAGCGATGTCGTGGTT





TTGCCCAGCCTCGTCCCGGAGGCATTCGGTTTGTCATTATGCGAGGCGATGTACTGCCGA





ACGGCGGTGATTTCCAATACTTTGGGGGCGCAAAAGGAAATTGTCGAACATCATCAATCG





GGGATTCTGCTGGACAGGCTGACACCTGAATCTTTGGCGGACGAAATCGAACGCCTCGTC





TTGAACCCTGAAACGAAAAACGCACTGGCAACGGCAGCTCATCAATGCGTCGCCGCCCGT





TTTACCATCAACCATACCGCCGACAAATTATTGGATGCAATATAA





NMB1705 Protein sequence


MEKEFRILNTVSAKIWGGGEQYVYDVSKALGLRGCTMFTAVNKNNELMHRRFSEVSSVFT





TRLHTLNGLFSLYALTRFIRKNRISHLMIHTGKIAALSILLKKLTGVRLIFVKHNVVANK





TDFYHRLIQKNTDRFICVSRLVYDVQTADNPFKEKYRIVHNGIDTGRFPPSQEKPDSRFF





TVAYAGRISPEKGLENLIEACVILHRKYPQIRLKLAGDGHPDYMCRLKRDVSASGAEPFV





SFEGFTEKLASFYRQSDVVVLPSLVPEAFGLSLCEAMYCRTAVISNTLGAQKEIVEHHQS





GILLDRLTPESLADEIERLVLNPETKNALATAAHQCVAARFTINHTADKLLDAI





NMB2065 Hemk protein DNA sequence


ATGCAGGAACAGAATCGGAAACCAAGTTTTCCCATAGTGATGTTGCTGGTGTCGGTTGCC





CTGTGGATAGCGTCTTTATCCAATGTTGCATTTTATTTGGGCAATCATGGAAGCATGGAG





GGTTTGACCGTTTTGATTTTGGGGTCGATATTTGCTTCTTTGGATATCAGGTATTGTGCG





GTCTATGCGAATTATGTTTGGTTGGCGGCCATTGTTTTGCTGGCGTTGCGGAAGAAGGTC





GTGCCTGTCCATGCGGCACTTTGGGGCTTGGCGTTGGTGGCTTTCAGTGTGAAAGCCGTA





TACGTCGATGAAGCAGGGAATACATCGGATATTGTGCGCTACGGTGCAGGATTTTATTTG





TGGTATGCCGCATTTGCGGTTGCCACCATCGGTACGTTTGCCGGAAAGAATAAGGAAAGA





AAAGCCGCATCAGCGGCAGACGGGATAAAAATGACGTTTGATAAATGGTTGGGCTTGTCA





AAACTGCCTAAAAATGAAGCAAGAATGCTGCTACAATATGTTTCGGAATATACGCGCGTG





CAGTTGTTGACGCGGGGCGGGGAAGAAATGCCGGACGAAGTCCGACAGCGGGCGGACAGG





CTGGCGCAACGCCGTCTGAACGGCGAGCCGGTTGCCTATATTTTAGGTGTGCGCGAATTT





TATGGCAGACGCTTTACAGTCAATCCGAGCGTGCTGATTCCGCGCCCCGAAACCGAACAT





TTGGTCGAAGCCGTATTGGCGCCCCTGCCCGAAAACGGGCGCGTGTGGGATTTGGGGACG





GGCAGCGGCGCGGTTGCCGTAACCGTCGCGCTCGAACGCCCCGATGCCTTTGTGCGCGCA





TCCGACATCAGCCCGCCCGCCCTTGAAACGGCGCGGAAAAATGCGGCGGATTTGGGCGCG





CGGGTCGAATTTGCACACGGTTCGTGGTTCGACACCGATATGCCGTCTGAAGGGAAATGG





GACATCATCGTGTCCAACCCGCCCTATATCGAAAACGGCGATAAACATTTGTTGCAAGGC





GATTTGCGGTTTGAGCCGCAAATCGCGCTGACCGACTTTTCAGACGGCCTAAGCTGCATC





CGCACCTTGGCGCAAGGCGCGCCCGACCGTTTGGCGGAAGGCGGTTTTTTATTGCTGGAA





CACGGTTTCGATCAGGGCGCGGCGGTGCGCGGCGTGTTGGCGGAGAATGGTTTTTCAGGA





GTGGAAACCCTGCCGGATTTGGCGGGTTTGGACAGGGTTACGCTGGGGAAGTATATGAAG





CATTTGAAATAA





NMB2065 Protein sequence


MQEQNRKPSFPIVMLLVSVALWIASLSNVAFYLGNHGSMEGLTVLILGSIFASLDIRYCA





VYANYVWLAAIVLLALRKKVVPVHAALWGLALVAFSVKAVYVDEAGNTSDIVRYGAGFYL





WYAAFAVATIGTFAGKNKERKAASAADGIKMTFDKWLGLSKLPKNEARMLLQYVSEYTRV





QLLTRGGEEMPDEVRQRADRLAQRRLNGEPVAYILGVREFYGRRFTVNPSVLIPRPETEH





LVEAVLARLPENGRVWDLGTGSGAVAVTVALERPDAFVRASDISPPALETARKNAADLGA





RVEFAHGSWFDTDMPSEGKWDIIVSNPPYIENGDKHLLQGDLRFEPQIALTDFSDGLSCI





RTLAQGAPDRLAEGGFLLLEHGFDQGAAVRGVLAENGFSGVETLPDLAGLDRVTLGKYMK





HLK





Mutants selected by vacinee's 17 D sera (Screened once only)





NMB0339 DNA sequence


ATGGACAACGAATTGTGGATTATCCTGCTGCCGATTATCCTTTTGCCCGTCTTCTTCGCG





ATGGGCTGGTTTGCCGCCCGCGTGGATATGAAAACCGTATTGAAGCAGGCAAAAAGCATC





CCTTCGGGATTTTATAAAAGCTTGGACGCTTTGGTCGACCGCAACAGCGGGCGCGCGGCA





AGGGAGTTGGCGGAAGTCGTCGACGGCCGGCCGCAATCGTATGATTTGAACCTCACCCTC





GGCAAACTTTACCGCCAGCGTGGCGAAAACGACAAAGCCATCAACATACACCGGACAATG





CTCGATTCTCCCGATACGGTCGGCGAAAAGCGCGCGCGCGTCCTGTTTGAATTGGCGCAA





AACTACCAAAGTGCGGGGTTGGTCGATCGTGCCGAACAGATTTTTTTGGGGCTGCAAGAC





GGTAAAATGGCGCGTGAAGCCAGACAGCACCTGCTCAATATCTACCAACAGGACAGGGAT





TGGGAAAAAGCGGTTGAAACCGCCCGGCTGCTCAGCCATGACGATCAGACCTATCAGTTT





GAAATCGCCCAGTTTTATTGCGAACTTGCCCAAGCCGCGCTGTTCAAGTCCAATTTCGAT





GTCGCGCGTTTCAATGTCGGCAAGGCACTCGAAGCCAACAAAAAATGCACCCGCGCCAAC





ATGATTTTGGGCGACATCGAACACCGACAAGGCAATTTCCCTGCCGCCGTCGAAGCCTAT





GCCGCCATCGAGCAGCAAAACCATGCATACTTGAGCATGGTCGGCGAGAAGCTTTACGAA





GCCTATGCCGCGCAGGGAAAACCTGAAGAAGGCTTGAACCGTCTGACAGGATATATGCAG





ACGTTTCCCGAACTTGACCTGATCAATGTCGTGTACGAGAAATCCCTGCTGCTTAAGTGC





GAGAAAGAAGCCGCGCAAACCGCCGTCGAGCTTGTCCGCCGCAAGCCCGACCTTAACGGC





GTGTACCGCCTGCTCGGTTTGAAACTCAGCGATATGAATCCGGCTTGGAAAGCCGATGCC





GACATGATGCGTTCGGTTATCGGACGGCAGCTACAGCGCAGCGTGATGTACCGTTGCCGC





AACTGCCACTTCAAATCCCAAGTCTTTTTCTGGCACTGCCCCGCCTGCAACAAATGGCAG





ACGTTTACCCCGAATAAAATCGAAGTTTAA





NMB0339 Protein sequence


MDNELWIILLPIILLPVFFAMGWFAARVDMKTVLKQAKSIPSGFYKSLDALVDRNSGRAA





RELAEVVDGRPQSYDLNLTLGKLYRQRGENDKAINIHRTMLDSPDTVGEKRARVLFELAQ





NYQSAGLVDRAEQIFLGLQDGKMAREARQHLLNIYQQDRDWEKAVETARLLSHDDQTYQF





EIAQFYCELAQAALFKSNFDVARFNVGKALEANKKCTRANMILGDIEHRQGNFPAAVEAY





AAIEQQNHAYLSMVGEKLYEAYAAQGKPEEGLNRLTGYMQTFPELDLINVVYEKSLLLKC





EKEAAQTAVELVRRKPDLNGVYRLLGLKLSDMNPAWKADADMMRSVIGRQLQRSVMYRCR





NCHFKSQVFFWHCPACNKWQTFTPNKIEV







Selection with Patient's Sera


We have a collection of acute and convalescent sera available to us for screening. This is from individuals infected with different serogroup of N. meningitidis. Screens have been performed with acute (A) or convalescent (C) sera. The period between the acute infection and collection of sera was from 2 weeks to 3 months.










NMB0401 putA DNA sequence



ATGTTTCATTTTGCATTTCCGGCACAAACTGCCCTGCGCCAAGCGATAACCGATGCCTAC





CGCCGTAATGAAATCGAAGCCGTACAGGATATGTTGCAACGTGCACAGATGAGCGACGAA





GAGCGCAACGCCGCCTCCGAGCTTGCCCGCCGTTTGGTTACCCAAGTCCGCGCCGGCCGC





ACCAAAGCCGGCGGCGTGGATGCGCTGATGCACGAGTTTTCACTCTCCAGCGAAGAAGGC





ATCGCGCTGATGTGTCTGGCAGAAGCCCTGCTGCGTATCCCCGACAACGCCACGCGCGAC





CGCCTGATTGCCGACAAGATTTCAGACGGCAACTGGAAAAGCCATTTGAACAACAGCCCT





TCCCTCTTCGTCAATGCTGCCGCCTGGGGCCTGCTGATTACCGGCAAACTGACCGCCACA





AACGACAAACAAATGAGTTCCGCACTCAGCCGCCTGATCAGCAAAGGCGGCGCACCGCTC





ATCCGCCAAGGCGTAAATTACGCCATGCGGCTTCTGGGCAAACAGTTCGTAACCGGACAG





ACCATTGAAGAAGCCCTGCAAAACGGCAAAGAACGCGAAAAAATGGGCTACCGCTTCTCC





TTCGATATGTTGGGCGAAGCCGCCTACACCCAAGCCGATGCCGACCGCTACTACCGCGAC





TATGTCGAAGCCATCCACGCCATCGGCAAAGATGCGGCAGGACAAGGCGTTTACGAAGGT





AACGGTATTTCCGTCAAACTTTCCGCCATCCATCCGCGCTACTCGCGCACCCAACACGGC





CGCGTGATGGGCGAACTGTTGCCGCGCCTGAAAGAGCTGTTCCTTTTGGGTAAAAAATAC





GATATCGGTATCAACATCGATGCCGAAGAAGCCAACCGTCTGGAGCTGTCTTTGGATTTG





ATGGAGGCTTTGGTTTCAGACCCTGACTTGGCTGGCTACAAAGGTATCGGTTTCGTTGTC





CAAGCCTACCAAAAACGTTGTCCGTTCGTTATCGACTACCTGATCGACCTTGCCCGCCGC





AACAACCAAAAACTAATGATCCGCCTCGTCAAAGGCGCGTATTGGGACAGCGAAATCAAA





TGGGCGCAAGTGGACGCCTTGAACGGCTATCCGACCTACACCCGCAAAGTCCACACCGAC





ATCTCCTACCTCGCCTGCGCGCGCAAACTGCTTTCCGCGCAAGACGCGGTATTCCCGCAA





TTTGCCACCCACAACGCCTACACTTTGGGCGCAATCTACCAAATGGGTAAAGGCAAAGAT





TTTGAACACCAATGCCTGCACGGTATGGGCGAAACCCTGTACGACCAAGTCGTCGGCCCG





CAAAACTTAGGCCGCCGCGTGCGCGTGTACGCCCCAGTCGGCACACACGAAACCCTGCTC





GCCTACTTGGTGCGCCGCCTGTTGGAAAACGGCGCGAACTCGTCTTTCGTCAACCAAATC





GTCGATGAAAACATCAGCATCGACACGCTCATCCGCAGCCCGTTCGACACCATCGCCGAA





CAAGGCATCCACCTGCACAACGCCCTGCCGCTGCCGCGCGATTTGTACGGCAAATGCCGT





CTGAACTCGCAAGGCGTGGACTTGAGCAACGAAAACGTATTGCAGCAGCTTCAAGAACAG





ATGAACAAAGCCGCCGCGCAAGACTTCCACGCCGCATCCATCGTCAACGGCAAAGCCCGC





GATGTCGGCGAAGCGCAACCGATTAAAAACCCTGCCGACCACGACGACATCGTCGGCACA





GTCAGCTTTGCCGATGCCGCGCTTGCCCAAGAAGCGGTTGGCGCAGCCGTTGCCGCGTTC





CCCGAATGGAGTGCGACACCTGCCGCCGAACGCGCCGCCTGCCTGCGCCGTTTTGCCGAT





TTGCTGGAGCAGCACACCCCAGCACTGATGATGCTTGCCGTGCGCGAAGCAGGCAAAACG





CTGAACAACGCCATTGCCGAAGTGCGCGAAGCCGTCGATTTCTGCCGCTACTACGCAAAC





GAAGCCGAACATACCCTGCCTCAAGACGCAAAAGCCGTCGGCGCGATTGTCGCCATCAGC





CCGTGGAACTTCCCGCTCGCCATCTTTACGGGCGAAGTCGTTTCCGCATTGGCGGCAGGC





AACACCGTCATCGCCAAACCCGCCGAACAAACCAGCCTGATTGCCGGTTATGCCGTTTCC





CTCATGCACGAAGCCGGCATCCCGACTTCCGCCCTGCAACTCGTCCTCGGCGCAGGCGAC





GTGGGTGCGGCATTGACCAACGATGCCCGCATCGGCGGCGTGATTTTCACCGGCTCGACC





GAAGTGGCGCGCCTGATCAACAAAGCCCTTGCCAAACGCGGCGACAATCCCGTCCTGATT





GCCGAAACCGGCGGACAAAACGCCATGATTGTCGATTCCACCGCACTTGCCGAGCAAGTC





TGCGCCGACGTATTGAACTCCGCCTTCGACAGCGCGGGACAACGCTGCTCCGCCCTGCGC





ATTTTGTGCGTCCAAGAAGACGTTGCCGACCGTATGCTCGACATGATCAAAGGCGCTATG





GACGAACTCGTCGTCGGCAAACCGATTCAGCTCACTACCGATGTCGGCCCCGTCATCGAT





GCCGAAGCACAGCAAAACCTGTTGAACCACATCAACAAAATGAAAGGTGTTGCCAAGTCC





TACCACGAAGTCAAAACCGCCGCCGATGTCGATTCCAAAAAATCCACGTTCGTTCGCCCC





ATCCTGTTTGAATTGAACAACCTCAACGAACTGCAACGCGAAGTCTTCGGTCCCGTCCTG





CACGTCGTCCGCTACCGCGCCGACGAACTCGACAACGTCATCGACCAAATCAACAGCAAA





GGCTACGCCCTGACCCACGGCGTACACAGCCGCATCGAAGGCACGGTACGCCACATCCGC





AGCCGCATCGAAGCCGGCAACGTTTACGTCAACCGCAACATCGTCGGCGCAGTCGTCGGC





GTACAGCCCTTCGGCGCACACGGTCTGTCCGGCACAGGCCCCAAAGCAGGCGGTTCGTTC





TACCTGCAAAAACTGACCCGCGCGGGCGAATGGGTTGCCCCGACCCTGAGCCAAATCGGA





CAGGCGGACGAAGCCGCACTCAAACGCCTCGAAGCACTGGTTCACAAACTACCGTTCAAC





GCCGAAGAGAAAAAAGCCGCAGCGGCCGCTTTGGGACACGCCCGCATCCGCACCCTGCGC





CGTGCCGAAACCGTCCTTACCGGACCGACCGGCGAGCGCAACAGCATCTCATGGCACGCG





CCCAAACGCGTTTGGATACACGGCGGCAGCACGGTTCAAGCCTTTGCCGCACTGACCGAA





CTTGCCGCCTCCGGCATACAGGCAGTGGTCGAACCCGACAGCCCCTTGGCTTCCTACACT





GCCGACTTGGAAGGTCTGCTGCTGGTCAACGGCAAACCCGAAACCGCCGGCATCAGCCAC





GTTGCCGCCCTGTCGCCTTTGGACAGCGCGCGCAAACAGGAACTTGCCGCCCACGACGGC





GCACTCATCCGCATCCTCCCTTCGGAAAACGGACTCGACATCCTGCAAGTGTTTGAAGAA





ATCTCTTGCAGCGTCAACACCACAGCCGCCGGCGGCAACGCCAGCCTGATGGCGGTCGCC





GACTGA





NMB0401 Protein sequence


MFHFAFPAQTALRQAITDAYRRNEIEAVQDMLQRAQMSDEERNAASELARRLVTQVRAGR





TKAGGVDALMHEFSLSSEEGIALMCLAEALLRIPDNATRDRLIADKISDGNWKSHLNNSP





SLFVNAAAWGLLITGKLTATNDKQMSSALSRLISKGGAPLIRQGVNYAMRLLGKQFVTGQ





TIEEALQNGKEREKMGYRFSFDMLGEAAYTQADADRYYRDYVEAIHAIGKDAAGQGVYEG





NGISVKLSAIHPRYSRTQHGRVMGELLPRLKELFLLGKKYDIGINIDAEEANRLELSLDL





MEALVSDPDLAGYKGIGFVVQAYQKRCPFVIDYLIDLARRNNQKLMIRLVKGAYWDSEIK





WAQVDGLNGYPTYTRKVHTDISYLACARKLLSAQDAVFPQFATHNAYTLGAIYQMGKGKD





FEHQCLHGMGETLYDQVVGPQNLGRRVRVYAPVGTHETLLAYLVRRLLENGANSSFVNQI





VDENISIDTLIRSPFDTIAEQGIHLHNALPLPRDLYGKCRLNSQGVDLSNENVLQQLQEQ





MNKAAAQDFHAASIVNGKARDVGEAQPIKNPADHDDIVGTVSFADAALAQEAVGAAVAAF





PEWSATPAAERAACLRRFADLLEQHTPALMMLAVREAGKTLNNAIAEVREAVDFCRYYAN





EAEHTLPQDAKAVGAIVAISPWNFPLAIFTGEVVSALAAGNTVIAKPAEQTSLIAGYAVS





LMHEAGIPTSALQLVLGAGDVGAALTNDARIGGVIFTGSTEVARLINKALAKRGDNPVLI





AETGGQNAMIVDSTALAEQVCADVLNSAFDSAGQRCSALRILCVQEDVADRMLDMIKGAM





DELVVGKPIQLTTDVGPVIDAEAQQNLLNHINKMKGVAKSYHEVKTAADVDSKKSTFVRP





ILFELNNLNELQREVFGPVLHVVRYPADELDNVIDQINSKGYALTHGVHSRIEGTVRHIR





SRIEAGNVYVNRNIVGAVVCVQPFGGHGLSGTGPKAGGSFYLQKLTRAGEWVAPTLSQIG





QADEAALKRLEALVHKLPFNAEEKKAAAAALGHARIRTLRRAETVLTGPTGERNSISWHA





PKRVWIHGGSTVQAFAALTELAASGIQAVVEPDSPLASYTADLEGLLLVNGKPETAGISH





VAALSPLDSARKQELAAHDGALIRILPSENGLDILQVFEEISCSVNTTAAGGNASLMAVA





D





NMB1335 CreA







DNA and Protein sequences given above










NMB1467 PPX DNA sequence



ATGACCACCACCCCCGCAAACGTCCTCGCCTCCGTCGATTTGGGTTCCAACAGTTTCCGC





CTCCAGATTTGCGAAAACAACAACGGACAATTAAAAGTCATCGATTCGTTCAAACAGATG





GTGCGCTTCGCCGCCGGACTGGACGAACAGAAAAATCTGAGTGCCGCTTCCCAAGAACAG





GCTTTGGACTGTCTGGCAAAATTCGGCGAACGCCTGCGCGGCTTCCGCCCTGAACAGGTA





CGCGCCGTGGCAACCAACACATTCCGCGTTGCCAAAAACATCGCAGATTTCCTTCCCAAA





GCCGAAGCGGCATTGGGTTTCCCCATCGAAATCATCGCCGGGCGCGAAGAGGCGCGGCTG





ATTTATACCGGCGTGATCCACACCCTCCCCCCGGGCGGCGGCAAAATGCTGGTTATCGAC





ATCGGCGGCGGTTCGACAGAATTTGTCATCGGCTCGACGCTGAATCCCGACATTACCGAA





AGCCTGCCCTTGGGCTGCGTAACCTACAGCCTGCGCTTCTTCCAAAACAAAATCACCGCC





AAAGACTTCCAATCTGCCATTTCCGCCGCCCGCAACGAAATCCAGCGTATCAGCAAAAAT





ATGAGGCGCGAAGGTTGGGATTTCGCCGTCGGCACATCGGGTTCGGCAAAATCCATCCGC





GACGTGCTTGCCGCCGAAATGCCCCAAGAGGCGGACATTACCTACAAAGGCATGCGCGCC





CTCGCCGAACGCATCATCGAAGCCGGTTCGGTCAAAAAAGCCAAATTTGAAAACCTGAAA





CCGGAACGCATCGAAGTTTTTGCCGGCGGACTTGCCGTGATGATGGCGGCGTTTGAGGAA





ATGAAACTCGACAGGATGACCGTAACCGAAGCCGCCCTGCGCGACGGCGTGTTTTACGAT





TTGATCGGGCGCGGTTTAAACGAAGATATGCGCGGACAAACGGTTGCCGAGTTCCAACAC





CGCTACCACGTCAGCCTCAATCAGGCGAAACGCACCGCCGAGACCGCGCAAACCTTTATG





GACAGCCTCTGCCACGCTAAAAACGTTACAGTTCAAGAGCTTGCCTTGTGGCAACAGTAT





CTCGGACGCGCCGCCGCGCTGCACGAAATCGGTTTGGACATCGCCCACACCGGCTATCAC





AAGCATTCCGCCTACATCCTCGAAAACGCCGATATGCCGGGTTTCTCACGCAAAGAACAG





ACCATACTTGCCCAACTGGTCATCGGTCATCGCGGCGATATGAAAAAAATGAGCGGCATC





ATCGGCACCAACGAAATGTTGTGGTATGCCGTTTTGTCCCTGCGCCTTGCCGCACTGTTC





TGCCGTTCGCGCCAAGACCTGTCTTTCCCGAAAAATATGCAGTTGCGCACGGATACGGAA





AGCTGCGGCTTCATCCTGCGTATTGACAGGGAATGGCTGGAACGCCATCCCCTGATTGCC





GACGCATTGGAATATGAAAGCGTCCAATGGCAAAAAATCAATATGCCGTTCAAAGTCGAG





GCCGTCTGA





NMB1467 Protein sequence


MTTTPANVLASVDLGSNSFRLQICENNNGQLKVIDSFKQMVRFAAGLDEQKNLSAASQEQ





ALDCLAKFGERLRGFRPEQVRAVATNTFRVAKNIADFLPKAEAALGFPIEIIAGREEARL





IYTGVIHTLPPGGGKMLVIDIGGGSTEFVIGSTLNPDITESLPLGCVTYSLRFFQNKITA





KDFQSAISAARNEIQRISKNMRREGWDFAVGTSGSAKSIRDVLAAEMPQEADITYKGMRA





LAERIIEAGSVKKAKFENLKPERIEVFAGGLAVMMAAFEEMKLDRMTVTEAALRDGVFYD





LIGRGLNEDMRGQTVAEFQHRYHVSLNQAKRTAETAQTFMDSLCHAKNVTVQELALWQQY





LGRAAALHEIGLDIAHTGYHKHSAYILENADMPGFSRKEQTILAQLVTGHRGDMKKMSGI





IGTNEMLWYAVLSLRLAALFCRSRQDLSFPKNMQLRTDTESCGFILRTDREWLERHPLIA





DALEYESVQWQKINMPFKVEAV





NMB2056 HemK


ATGAACGGTAAATACTACTACGGCACAGGCCGCCGCAAAAGTTCAGTGGCTCGTGTATTC





CTGATTAAAGGTACAGGTCAAATCATCGTAAACGGTCGTCCCGTTGACGAATTCTTCGCA





CGGGAAACCAGCCGAATGGTTGTTCGCCAACCCTTGGTTCTGACTGAAAACGCCGAATCT





TTCGACATCAAAGTCAATGTTGTTGGCGGCGGCGAAACCGGCCAGTCCGGCGCAATCCGC





CACGGCATTACCCGTGCCCTGATCGACTTCGATGCCGCGTTGAAACCCGCCTTGTCTCAA





GCTGGTTTTGTTACCCGCGATGCCCGCGAAGTCGAACGTAAAAAACCGGGTCTGCGCAAA





GCACGCCGTGCAAAACAATTCTCCAAACGTTAA





NMB2056 Protein sequence


MNGKYYYGTGRRKSSVARVFLIKGTGQIIVNGRPVDEFFARETSRMVVRQPLVLTENAES





FDIKVNVVGGGETGQSGAIRHGITRALIDFDAALKPALSQAGFVTRDAREVERKKPGLRK





ARRAKQFSKR





NMB0808 DNA sequence


ATGTCCGCCCTCCTCCCCATCATCAACCGCCTGATTCTGCAAAGCCCGGACAGCCGCTCG





GAACTTGCCGCCTTTGCAGGCAAAACACTGACCCTGAACATTGCCGGGCTGAAACTGGCG





GGACGCATCACGGAAGACGGTTTGCTCTCGGCGGGAAACGGCTTTGCAGACACCGAAATT





ACCTTCCGCAACAGCGCGGTACAGAAAATCCTCCAAGGAGGCGAACCCGGGGCGGGCGAC





ATCGGGCTCGAAGGCGACCTCATCCTCGGCATCGCGGTACTGTCCCTGCTCGGCAGCCTG





CGTTCCCGCGCATCGGACGAATTGGCACGGATTTTCGGCACGCAGGCAGACATCGGCAGC





CGTGCCGCCGACATCGGACACGGCATCAAACAAATCGGCAGGAACATCGCCGAACAAATC





GGCGGATTTTCCCGCGAATCCGAGTCCGCAAACATCGGCAACGAAGCCCTTGCCGACTGC





CTCGACGAAATAAGCAGACTGCGCGACGGCGTGGAACGCCTCAACGAACGCCTCGACCGG





CTCGAACGCCACATTTGGATAGACTAA





NMB0808 Protein sequence


MSALLPIINRLILQSPDSRSELAAFAGKTLTLNIAGLKLAGRITEDGLLSAGNGFADTEI





TFRNSAVQKILQGGEPGAGDIGLEGDLILGIAVLSLLGSLRSRASDELARIFGTQADIGS





RAADIGHGIKQTGRNIAEQIGGFSRESESANIGNEALADCLDEISRLRDGVERLNERLDR





LERDIWID





NMB0774 upp DNA sequence


ATGAACGTTAATGTTATCAACCATCCGCTCGTCCGCCACAAATTAACCCTGATGAGGGAG





GCGGATTGCAGCACCTACAAATTCCGGACGCTTGCCACCGAGCTGGCGCGCCTGATGGCA





TACGAGGCAAGCCGTGATTTTGAAATCGAAAAATACCTTATCGACGGATGGTGCGGTCAG





ATTGAAGGCGACCGCATCAAGGGCAAAACATTGACCGTCGTTCCCATACTGCGTGCAGGT





TTGGGTATGCTTGACGGTGTGCTCGACCTGATTCCGACTGCCAAAATCAGTGTAGTCGGA





CTGCAGCGCGACGAAGAAACGCTGAAGCCTATTTCCTATTTTGAGAAATTTGTGGACAGT





ATGGACGAACGTCCGGCTTTGATTATCGATCCTATGCTGGCGACAGGCGGTTCGATGGTT





GCCACCATCGACCTTTTGAAAGCCAAGGGCTGCAAAAATATCAAGGCACTGGTGCTGGTT





GCCGCGCCCGAGGGTGTGAAGGCGGTCAACGACGCGCACCCTGACGTTACGATTTACACC





GCCGCGCTCGACAGCCACTTGAACGAGAACGGCTACATCATCCCCGGCTTGGGCGATGCG





GGCGACAAGATTTTCGGCACGCCCTAA





NMB0774 Protein sequence


MNVNVINHPLVRHKLTLMREADCSTYKFRTLATELARLMAYEASRDFEIEKYLIDGWCGQ





IEGDRIKGKTLTVVPILRAGLGMLDGVLDLIPTAKISVVGLQRDEETLKPISYFEKFVDS





MDERPALIIDPMLATGGSMVATIDLLKAKGCKNIKALVLVAAPEGVKAVNDAHPDVTIYT





AALDSHLNENGYIIPGLGDAGDKIFGTR





NMA0078 putative integral membrance protein DNA sequence


TTGGCGTTTACTTTAATGCGTCGCGCCATGATACGTAAAATGCCCTATACGGAAGATATG





CGCCCAGGCGATACCGCTAATCCTTATGGTGCGTCCAAAGCGATGGTGGAACGCATGTTA





ACCGACATCCAAAAAGCCGATCCGCGCTGGAGCATGATTTTGTTGCGTTATTTCAATCCG





ATTGGCGCGCATGAAAGCGGCTTGATTGGCGAGCAGCCAAACGGCATCCCGAATAATTTG





TTGCCTTATATCTGCCAAGTGGCGGCAGGCAAACTGCCGCAATTGGCGGTATTTGGCGAT





GACTACCCTACCCCCGACGGCACGGGGATGCGTGACTATATTCATGTGATGGATTTGGCA





GAAGGCCATGTCGCGGCTATGCAGGCAAAAAGTAATGTAGCAGGCACGCATTTGCTGAAC





TTAGGCTCCGGCCGCGCTTCTTCGGTGTTGGAAATCATCCGCGCATTTGAAGCAGCTTCG





GGTTTGACGATTCCGTATGAAGTCAAACCGCGCCGTGCCGGTGATTTGGCGTGCTTCTAT





GCCGACCCTTCCTATACAAAGGCGCAAATCGGCTGGCAAACCCAGCGTGATTTAACCCAA





ATGATGGAAGACTCATGGCGCTGGGTGAGTAATAATCCGAATGGCTACGACGATTAA





NMA0078 Protein sequence


MAFTLMRRAMIRKMPYTEDMRPGDTANPYGASKAMVERMLTDIQKADPRWSMILLRYFNP





IGAHESGLIGEQPNGIPNNLLPYICQVAAGKLPQLAVFGDDYPTPDGTGMRDYIHVMDLA





EGHVAAMQAKSNVAGTHLLNLGSGRASSVLEIIRAFEAASGLTIPYEVKPRRAGDLACFY





ADPSYTKAQIGWQTQRDLTQMMEDSWRWVSNNPNGYDD





NMB0337 Branched-chain amino acid aminotransferase DNA


sequence


ATGAGCAGACCCGTACCCGCCGTATTCGGCAGCGTTTTTCACAGTCAAATGCCCGTCCTC





GCCTACCGCGAAGGCAAATGGCAGCCGACCGAATGGCAATCTTCCCAAGACCTCTCCCTC





GCACCGGGCGCGCACGCCCTGCACTACGGCAGCGAATGTTTCGAGGGACTGAAAGCCTTC





CGTCAGGCAGACGGCAAAATCGTGCTGTTCCGTCCGACTGCCAATATCGCGCGTATGCGG





CAAAGTGCGGACATTTTGCACCTGCCGCGCCCCGAAACCGAAGCTTATCTTGACGCGCTA





ATCAAATTGGTCAAACGTGCCGCCGATGAAATTCCCGATGCGCCTGCCGCCCTGTACCTG





CGTCCGACCTTAATCGGTACCGATCCCGTTATCGGCAAGGCCGGTTCTCCTTCCGAAACC





GCCCTGCTGTATATTTTGGCTTCCCCCGTCGGCGACTATTTCAAAGTCGGATCGCCCGTC





AAAATTTTGGTGGAAACCGAACACATCCGCTGCGCCCCGCATATGGGCCGCGTCAAATGC





GGCGGCAACTACGCTTCCGCCATGCACTGGGTGCTGAAGGCGAAAGCCGAATATGGCGCA





AATCAAGTCCTGTTCTGCCCGAACGGCGACGTGCAGGAAACCGGCGCGTCCAACTTTATC





CTGATTAACGGCGATGAAATCATTACCAAACCGCTGACCGACGAGTTTTTGCACGGCGTA





ACCCGCGATTCCGTACTGACGGTTGCCAAAGATTTGGGCTATACCGTCAGCGAACGCAAT





TTCACGGTTGACGAACTCAAAGCTGCGGTGGAAAACGGTGCGGAAGCCATTTTGACCGGT





ACGGCAGCCGTCATCTCGCCCGTTACTTCCTTCGTCATCGGCGGCAAAGAAATCGAAGTG





AAAAGCCAAGAACGCGGCTATGCCATCCGTAAGGCGATTACCGACATCCAGTATGGTTTG





GCGGAAGACAAATACGGCTGGCTGGTTGAAGTGTGCTGA





NMB0337 Protein sequence


MSRPVPAVFGSVFHSQMPVLAYREGKWQPTEWQSSQDLSLAPGAHALHYGSECFEGLKAF





RQADGKIVLFRPTANIARMRQSADILHLPRPETEAYLDALIKLVKRAADEIPDAPAALYL





RPTLIGTDPVIGKAGSPSETALLYILASPVGDYFKVGSPVKILVETEHIRCAPHMGRVKC





GGNYASAMHWVLKAKAEYGANQVLFCPNGDVQETGASNFILINGDEIITKPLTDEFLHGV





TRDSVLTVAKDLGYTVSERNFTVDELKAAVENGAEAILTGTAAVISPVTSFVIGGKEIEV





KSQERGYAIRKAITDIQYGLAEDKYGWLVEVC





NMB0191 ParA family protein DNA sequence


ATGAGTGCGAACATCCTTGCCATCGCCAATCAGAAGGGCGGTGTGGGCAAAACGACGACG





ACGGTAAATTTGGCGGCTTCGCTGGCATCGCGCGGCAAACGCGTCCTGGTGGTCGATTTG





GATCCGCAGGGCAATGCGACGACGGGCAGCGGCATCGACAAGGCCGGTTTGCAGTCCGGC





GTTTATCAGGTCTTATTGGGCGATGCGGACGTGCAGTCGGCGGCGGTACGCAGCAAAGAG





GGCGGATACGCTGTGTTGGGTGCGAACCGCGCGCTGGCCGGCGCGGAAATCGAACTGGTG





CAGGAAATCGCCCGGGAAGTGCGTTTGAAAAACGCGCTCAAGGCAGTGGAAGAAGATTAC





GACTTTATCCTGATCGACTGCCCGCCTTCGCTGACGCTGTTGACGCTTAACGGGCTGGTG





GCGGCGGGCGGCGTGATTGTGCCGATGTTGTGCGAATATTACGCGCTGGAAGGGATTTCC





GATTTGATTGCGACCGTGCGCAAAATCCGTCAGGCGGTCAATCCCGATTTGGACATCACG





GGCATCGTGCGCACGATGTACGACAGCCGCAGCAGGCTGGTTGCCGAAGTCAGCGAACAG





TTGCGCAGCCATTTCGGGGATTTGCTTTTTGAAACCGTCATCCCGCGCAATATCCGCCTT





GCGGAAGCGCCGAGCCACGGTATGCCGGTGATGGCTTACGACGCGCAGGCAAAGGGTACC





AAGGCGTATCTTGCCTTGGCGGACGAGCTGGCGGCGAGGGTGTCGGGAAATAG





NMB0191 Protein sequence


MSANILAIANQKGGVGKTTTTVNLAASLASRGKRVLVVDLDPQGNATTGSGIDKAGLQSG





VYQVLLGDADVQSAAVRSKEGGYAVLGANRALAGAEIELVQEIAREVRLKNALKAVEEDY





DFILIDCPPSLTLLTLNGLVAAGGVIVPMLCEYYALEGISDLIATVRKIRQAVNPDLDIT





GIVRTMYDSRSRLVAEVSEQLRSHFGDLLFETVIPRNIRLAEAPSHGMPVMAYDAQAKGT





KAYLALADELAARVSGK





NMB1710 Glutamate dehydrogenase(gdhA) DNA sequence


ATGACTGACCTGAACACCCTGTTTGCCAACCTCAAACAACGCAATCCCAATCAGGAGCCG





TTCCATCAGGCGGTTGAAGAAGTCTTCATGAGTCTCGATCCGTTTTTGGCAAAAAATCCG





AAATACACCCAGCAAAGCCTGCTGGAACGCATCGTCGAACCCGAACGCGTCGTGATGTTC





CGCGTAACCTGGCAGGACGATAAAGGGCAAGTCCAAGTCAACCGGGGCTACCGCGTGCAA





ATGAGTTCCGCCATCGGTCCTTACAAAGGCGGCCTGCGCTTCCATCCGACCGTCGATTTG





GGCGTATTGAAATTCCTCGCTTTTGAACAAGTGTTCAAAAACGCCTTGACCACCCTGCCT





ATGGGCGGCGGCAAAGGCGGTTCCGACTTCGACCCCAAAGGCAAATCCGATGCCGAAGTA





ATGCGCTTCTGCCAAGCCTTTATGACCGAACTCTACCGCCACATCGGCGCGGACACCGAT





GTTCCGGCCGGCGACATCGGCGTAGGCGGGCGCGAAATCGGCTACCTGTTCGGACAATAC





AAAAAAATCCGCAACGAGTTTTCTTCCGTCCTGACCGGCAAAGGTTTGGAATGGGGCGGC





AGCCTCATCCGTCCCGAAGCGACCGGCTACGGCTGCGTCTATTTCGCCCAAGCGATGCTG





CAAACCCGCAACGATAGTTTTGAAGGCAAACGCGTCCTGATTTCCGGCTCCGGCAATGTG





GCGCAATACGCCGCCGAAAAAGCCATCCAACTGGGTGCGAAAGTACTGACCGTTTCCGAC





TCCAACGGCTTCGTCCTCTTCCCCGACAGCGGTATGACCGAAGCGCAACTCGCCGCCTTG





ATCGAATTGAAAGAAGTCCGCCGCGAACGCGTTGCCACCTACGCCAAAGACCAAGGTCTG





CAATACTTTGAAAAACAAAAACCGTGGGGCGTCGCCGCCGAAATCGCCCTGCCCTGCGCG





ACCCAGAACGAATTGGACGAAGAAGCCGCCAAAACCCTGTTGGCAAACGGCTGCTACGTC





GTTGCCGAAGGTGCGAATATGCCGTCGACTTTGGGCGCGGTCGAGCAATTTATCAAAGCC





GGCATCCTCTACGCCCCGGGAAAAGCCTCCAATGCCGGCGGCGTGGCAACTTCAGGTTTG





GAAATGAGCCAAAACGCCATCCGCCTGTCTTGGACTCGTGAAGAAGTCGACCAACGCCTG





TTCGGCATCATGCAAAGCATCCACGAATCCTGTCTGAAATACGGCAAAGTCGGCGACACA





GTAAACTACGTCAATGGTGCGAACATTGCCGCTTTCGTCAAAGTTGCCGATGCGATGCTG





GCGCAAGGCTTCTAA





NMB1710 Protein sequence


MTDLNTLFANLKQRNPNQEPFHQAVEEVFMSLDPFLAKNPKYTQQSLLERIVEPERVVMF





RVTWQDDKGQVQVNRGYRVQMSSAIGPYKGGLRFHPTVDLGVLKFLAFEQVFKNALTTLP





MGGGKGGSDFDPKGKSDAEVMRFCQAFMTELYRHIGADTDVPAGDIGVGGREIGYLFGQY





KKIRNEFSSVLTGKGLEWGGSLIRPEATGYGCVYFAQAMLQTRNDSFEGKRVLISGSGNV





AQYAAEKAIQLGAKVLTVSDSNGFVLFPDSGMTEAQLAALIELKEVRRERVATYAKEQGL





QYFEKQKPWGVAAEIALPCATQNELDEEAAKTLLANGCYVVAEGANMPSTLGAVEQFIKA





GILYAPGKASNAGGVATSGLEMSQNAIRLSWTREEVDQRLFGIMQSIHESCLKYGKVGDT





VNYVNGANIAGFVKVADAMLAQGF





NMB0062 Glucose-1-phosphate thymidylytransferase(rfbA-1)


DNA sequence


ATGAAAGGCATCATACTGGCAGGCGGCAGCGGCACGCGCCTCTACCCCATCACGCGCGGC





GTATCCAAACAGCTCCTGCCCGTGTACGACAAACCGATGATTTATTACCCCTTGTCGGTT





TTGATGCTGGCGGGAATCCGCGATATTTTGGTGATTACCGCGCCTGAAGACAACGCCTCT





TTCAAACGCCTGCTTGGCGACGGCAGCGATTTCGGCATTTCCATCAGTTATGCCGTGCAA





CCCAGTCCGGACGGCTTGGCACAGGCATTTATCATCGGCGAAGAATTTATCGGCAACGAC





AATGTTTGCTTGGTTTTGGGCGACAATATTTTTTACGGTCAGTCGTTTACGCAAACATTG





AAACAGGCGGCAGCGCAAACGCACGGCGCAACCGTGTTTGCTTATCAGGTCAAAAACCCC





GAACGTTTCGGCGTGGTTGAATTTAACGAAAACTTCCGCGCCGTTTCCATCGAAGAAAAA





CCGCAACGGCCCAAATCCGATTGGGCGGTAACCGGCTTGTATTTCTACGACAACCGCGCC





GTCGAGTTCGCCAAACAGCTCAAACCGTCCGCACGCGGCGAATTGGAAATTACCGACCTC





AACCGGATGTATTTGGAAGACGGCTCGCTCTCCGTTCAAATATTGGGACGCGGTTTCGCG





TGGCTGGACACCGGCACCCACGAGAGCCTGCACGAAGCCGCTTCATTCGTCCAAACCGTG





CAAAATATCCAAAACCTGCACATCGCCTGCCTCGAAGAAATCGCTTGGCGCAACGGTTGG





CTTTCCGATGAAAAACTGGAAGAATTGGCGCGCCCGATGGCGAAAAACCAATACGGCCAA





TATTTGCTGCGCCTGTTGAAAAAATAA





NMB0062 Protein sequence


MKGIILAGGSGTRLYPITRGVSKQLLPVYDKPMIYYPLSVLMLAGIRDILVITAPEDNAS





FKRLLGDGSDFGISISYAVQPSPDGLAQAFIIGEEFIGNDNVCLVLGDNIFYGQSFTQTL





KQAAAQTHGATVFAYQVKNPERFGVVEFNENFRAVSIEEKPQRPKSDWAVTGLYFYDNRA





VEFAKQLKPSARGELEITDLNRMYLEDGSLSVQILGRGFAWLDTGTHESLHEAASFVQTV





QNIQNLHIACLEEIAWRNGWLSDEKLEELARPMAKNQYGQYLLRLLKK





NMB1583 Imidazoleglycerol-phosphate dehydratase(hisB)


DNA sequence


ATGAATTTGACTAAAACACAACGCCAACTGCACAACTTTCTGACCCTCGCCCAAGAAGCA





GGTTCGCTGTCCAAGCTCGCCAAACTCTGCGGCTACCGTACCCCCGTCGCACTCTACAAA





CTCAAACAACGCCTTGAAAAGCAGGCAGAAGACCCAGATGCACGCGGCATCCGTCCCAGC





CTGATGGCAAAACTCGAAAAACACACCGGCAAACCCAAAGGCTGGCTCGACAGAAAACAC





CGCGAACGCACTGTCCCCGAAACCGCCGCAGAAAGCACCGGAACTGCCGAAACCCAAATT





GCCGAAACCGCATCTGCTGCCGGCTGCCGCAGCGTTACCGTCAACCGCAATACCTGCGAA





ACCCAAATCACCGTCTCCATCAACCTCGACGGCAGCGGCAAAAGCAGGCTGGATACCGGC





GTACCCTTCCTCGAACACATGATCGATCAAATCGCCCGCCACGGCATGATTGACATCGAC





ATCAGCTGCAAAGGCGACCTGCACATCGACGACCACCACACCGCCGAAGACATCGGCATC





ACACTCGGACAAGCAATCCGGCAGGCACTCGGCGACAAAAAAGGCATCCGCCGTTACGGA





CATTCCTACGTCCCGCTCGACGAAGCCCTCAGCCGCGTCGTCATCGACCTTTCCGGCCGC





CCCGGACTCGTGTACAACATCGAATTTACCCGCGCACTAATCGGACGTTTCGATGTCGAT





TTGTTTGAAGAATTTTTCCACGGCATCGTCAACCACAGTATGATGACCCTGCACATCGAC





AACCTCAGCGGCAAAAACGCCCACCATCAGGCGGAAACCGTATTCAAAGCCTTCGGGCGC





GCCCTGCGTATGGCAGTCGAACACGACCCGCGCATGGCAGGACAGACCCCCTCGACCAAA





GGCACGCTGACCGCATAA





NMB1583 Protein sequence


MNLTKTQRQLHNFLTLAQEAGSLSKLAKLCGYRTPVALYKLKQRLEKQAEDPDARGIRPS





LMAKLEKHTGKPKGWLDRKHRERTVPETAAESTGTAETQIAETASAAGCRSVTVNRNTCE





TQITVSINLDGSGKSRLDTGVPFLEHMIDQIARHGMIDIDISCKGDLHIDDHHTAEDIGI





TLGQAIRQALGDKKGIRRYGHSYVPLDEALSRVVIDLSGRPGLVYNIEFTRALIGRFDVD





LFEEFFHGIVNHSMMTLHIDNLSGKNAHHQAETVFKAFGRALRMAVEHDPRMAGQTPSTK





GTLTA






The following additional antigens were identified using essentially the methodology described above:










NMB1333 Nucleic acid sequence



ATGCGCTACAAACCCCTTCTGCTTGCCCTGATGCTCGTTTTTTCCACGCCCGCCGTTGCC





GCCCACGACGCGGCACACAACCGTTCCGCCGAAGTGAAAAAACAGACGAAGAACAAAAAA





GAACAGCCCGAAGCGGCGGAAGGCAAAAAAGAAAAAGGCAAAAATGGCGCAGTGAAAGAT





AAAAAAACAGGCGGCAAAGAGGCGGCAAAAGAGGGCAAAGAGTCCAAAAAAACCGCCAAA





AACCGCAAAGAAGCAGAGAAGGAGGCGACATCCAGGCAGTCTGCGCGCAAAGGACGCGAA





GGGGATAAGAAATCGAAGGCGGAACACAAAAAGGCACATGGCAAGCCCGTGTCCGGATCC





AAAGAAAAAAACGCAAAAACACAGCCTGAAAACAAACAAGGCAAAAAAGAGGCAAAAGGA





CAGGGCAATCCGCGCAAGGGCGGCAAGGCGGAAAAAGACACTGTTTCTGCAAATAAAAAA





GTCCGTTCCGACAAGAACGGCAAAGCAGTGAAACAGGACAAAAAATACAGGGAAGAGAAA





AATGCCAAAACCGATTCCGACGAATTGAAAGCCGCCGTTGCCGCTGCCACCAATGATGTC





GAAAACAAAAAAGCCCTGCTCAAACAAAGCGAAGGAATGCTGCTTCATGTCAGCAATTCC





CTCAAACAGCTTCAGGAAGAGCGTATCCGCCAAGAGCGTATCCGTCAGGCGCGCGGCAAC





CTTGCTTCCGTCAACCGCAAACAGCGCGAGGCTTGGGACAAGTTCCAAAAACTCAATACC





GAGCTGAACCGTTTGAAAACGGAAGTCGCCGCTACGAAAGCGCAGATTTCCCGTTTCGTA





TCGGGGAACTATAAAAACAGCCAGCCGAATGCGGTTGCCCTGTTCCTGAAAAACGCCGAA





CCGGGTCAGAAAAACCGCTTTTTGCGTTATACGCGTTATGTAAACGCCTCCAATCGGGAA





GTTGTCAAGGATTTGGAAAAACAGCAGAAGGCTTTGGCGGTACAAGAGCAGAAAATCAAC





AATGAGCTTGCCCGTTTGAAGAAAATTCAGGCAAACGTGCAATCTCTGCTGAAAAAACAG





GGTGTAACCGATGCGGCGGAACAGACGGAAAGCCGCAGACAGAATGCCAAAATCGCCAAA





GATGCCCGAAAACTGCTGGAACAGAAAGGGAACGAGCAGCAGCTGAACAAGCTCTTGAGC





AATTTGGAGAAGAAAAAGGCCGAACACCGCATTCAGGATGCGGAAGCAAAAAGAAAATTG





GCTGAAGCCAGACTGGCGGCAGCCGAAAAAGCCAGAAAAGAAGCGGCGCAGCAGAAGGCT





GAAGCACGACGTGCGGAAATGTCCAACCTGACCGCCGAAGACAGGAACATCCAAGCGCCT





TCGGTTATGGGTATCGGCAGTGCCGACGGTTTCAGCCGCATGCAAGGACGTTTGAAAAAA





CCGGTTGACGGTGTGCCGACCGGACTTTTCGGGCAGAACCGGAGCGGCGGCGATATTTGG





AAAGGCGTGTTCTATTCCACTGCACCGGCAACGGTTGAAAGCATTGCGCCGGGAACGGTA





AGCTATGCGGACGAGTTGGACGGCTACGGCAAAGTGGTCGTGGTCGATCACGGCGAGAAC





TACATCAGCATCTATGCCGGTTTGAGCGAAATTTCCGTCGGCAAGGGTTATATGGTCGCG





GCAGGAAGCAAAATCGGCTCGAGCGGGTCGCTGCCGGACGGGGAAGAGGGGCTTTACCTG





CAAATACGTTATCAAGGTCAGGTATTGAACCCTTCGAGCTGGATACGTTGA





NMB1333 Amino acid sequence


MRYKPLLLALMLVFSTPAVAAHDAAHNRSAEVKKQTKNKKEQPEAAEGKKEKGKNGAVKD





KKTGGKEAAKEGKESKKTAKNRKEAEKEATSRQSARKGREGDKKSKAEHKKAHGKPVSGS





KEKNAKTQPENKQGKKEAKGQGNPRKGGKAEKDTVSANKKVRSDKNGKAVKQDKKYREEK





NAKTDSDELKAAVAAATNDVENKKALLKQSEGMLLHVSNSLKQLQEERIRQERIRQARGN





LASVNRKQREAWDKFQKLNTELNRLKTEVAATKAQISRFVSGNYKNSQPNAVALFLKNAE





PGQKNRFLRYTRYVNASNREVVKDLEKQQKALAVQEQKINNELARLKKIQANVQSLLKKQ





GVTDAAEQTESRRQNAKIAKDARKLLEQKGNEQQLNKLLSNLEKKKAEHRIQDAEAKRKL





AEARLAAAEKARKEAAQQKAEARRAEMSNLTAEDRNIQAPSVMGIGSADGFSRMQGRLKK





PVDGVPTGLFGQNRSGGDIWKGVFYSTAPATVESIAPGTVSYADELDGYGKVVVVDHGEN





YISIYAGLSEISVGKGYMVAAGSKIGSSGSLPDGEEGLYLQIRYQGQVLNPSSWIR





NMB0377 Nucleic acid sequence


ATGGCGTTTTGCACCAGTTTGGGAGTGATGATGGAAACACAGCTTTACATCGGCATCATG





TCGGGAACCAGCATGGACGGGGCGGATGCCGTACTGATACGGATGGACGGCGGCAAATGG





CTGGGCGCGGAAGGGCACGCCTTTACCCCCTACCCCGGCAGGTTACGCCGCCAATTGCTC





GATTTGCAGGACACAGGCGCAGACGAACTGCACCGCAGCAGGATTTTGTCGCAAGAACTC





AGCCGCCTATATGCGCAAACCGCCGCCGAACTGCTGTGCAGTCAAAACCTCGCACCGTCC





GACATTACCGCCCTCGGCTGCCACGGGCAAACCGTCCGACACGCGCCGGAACACGGTTAC





AGCATACAGCTTGCCGATTTGCCGCTGCTGGCGGAACGGACGCGGATTTTTACCGTCGGC





GACTTCCGCAGCCGCGACCTTGCGGCCGGCGGACAAGGCGCGCCACTCGTCCCCGCCTTT





CACGAAGCCCTGTTCCGCGACAACAGGGAAACACGCGCGGTACTGAACATCGGCGGGATT





GCCAACATCAGCGTACTCCCCCCCGACGCACCCGCCTTCGGCTTCGACACAGGGCCGGGC





AATATGCTGATGGACGCGTGGACGCAGGCACACTGGCAGCTTCCTTACGACAAAAACGGT





GCAAAGGCGGCACAAGGCAACATATTGCCGCAACTGCTCGACAGGCTGCTCGCCCACCCG





TATTTCGCACAACCCCACCCTAAAAGCACGGGGCGCGAACTGTTTGCCCTAAATTGGCTC





GAAACCTACCTTGACGGCGGCGAAAACCGATACGACGTATTGCGGACGCTTTCCCGTTTT





ACCGCGCAAACCGTTTGCGACGCCGTCTCACACGCAGCGGCAGATGCCCGTCAAATGTAC





ATTTGCGGCGGCGGCATCCGCAATCCTGTTTTAATGGCGGATTTGGCAGAATGTTTCGGC





ACACGCGTTTCCCTGCACAGCACCGCCGACCTGAACCTCGATCCGCAATGGGTGGAAGCC





GCCGCATTTGCGTGGTTGGCGGCGTGTTGGATTAATCGCATTCCCGGTAGTCCGCACAAA





GCAACCGGCGCATCCAAACCGTGTATTCTGGGCGCGGGATATTATTATTGA





NMB0377 Amino acid sequence


MAFCTSLGVMMETQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLL





DLQDTGADELHRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGY





SIQLADLPLLAERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGI





ANISVLPPDAPAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHP





YFAQPHPKSTGRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMY





ICGGGIRNPVLMADLAECFGTRVSLHSTADLNLDPQWVEAAAFAWLAACWINRIPGSPHK





ATGASKPCILGAGYYY





NMB0264 Nucleic acid sequence


ATGTTGAACAAAATATTTTCCTGGTTCGAGTCCCGAATCGACCCTTATCCCGAAGCCGCC





CCGAAAACGCCAGAAAAAGGCTTGTGGCGGTTTGTCTGGAGCAGCATGGCCGGCGTGCGG





AAATGGATAGCCGCCCTGGCTGCGCTGACCGCCGGCATCGGCATTATGGAAGCCCTGGTT





TTTCAATTTATGGGCAAAATCGTGGAGTGGCTCGGCAAATACGCGCCCGCCGAACTGTTT





GCCGAAAAAAGTTGGGAACTGGCGGCAATGGCGGCGATGATGGTATTTTCGGTTGCGTGG





GCGTTTGCCGCGTCCAACGTGCGCCTGCAAACCCTTCAGGGCGTGTTCCCCATGCGCCTG





CGCTGGAACTTCCACCGCCTGATGCTGAACCAAAGCCTCGGTTTTTATCAGGACGAATTT





GCCGGACGCGTGTCCGCCAAAGTCATGCAGACCGCGCTGGCGTTGCGCGACGCGGTGATG





ACGGTTGCCGATATGGTCGTTTATGTGTCGGTGTATTTCATTACCTCCGGCGTGATTCTC





GCCTCGCTCGACTCATGGCTGCTGCTGCCCTTTATCGGCTGGATTGTCGGTTTCGCTTCG





GTGATGCGCCTGCTGATTCCCAAATTGGGGCAAACCGCCGCATGGCAGGCGGATGCCCGC





TCGCTGATGACCGGCCGCATTACCGATGCCTATTCCAATATCGCCACCGTCAAACTCTTC





TCCCACGGCGCGCGTGAAGCCGCCTATGCCAAGCAGTCGATGGAAGAATTTATGGTTACG





GTGCGCGCCCAAATGCGGCTGGCGACGCTGCTGCATTCGTGCAGCTTCATCGTCAACACC





TCCCTGACCCTCTCCACCGCCGCACTGGGCATCTGGCTCTGGCACAACGGGCAGGTCGGC





GTGGGCGCGGTTGCTACAGCCACCGCCATGGCGTTGCGCGTCAACGGTTTGTCGCAATAC





ATTATGTGGGAATCCGCGCGGCTGTTTGAAAACATCGGCACCGTCGGCGACGGCATGGCA





ACCCTGTCCAAACCGCACACCATCCTCGACAAGCCCCGGGCACTGCCGCTGAACGTGCCG





CAAGGCGCAATCAAATTTGAACACGTCGATTTCTCCTACGAAGCGGGCAAACCGCTGCTC





AACGGCTTCAACCTCACCATCCGCCCGGGCGAAAAAGTCGGCTTGATCGGACGCAGCGGC





GCGGGCAAATCCACCATCGTCAACCTGCTTTTGCGCTTCTACGAACCGCAAAGCGGCACG





GTTTCGATCGACGGGCAGGACATAAGCGGCGTTACCCAAGAATCTTTACGCGCCCAAATC





GGTTTGGTCACGCAAGATACCTCGCTGCTGCACCGTTCCGTGCGCGACAACATTATTTAC





GGCCGCCCCGACGCGACCGATGCCGAAATGGTTTCTGCCGCCGAACGCGCCGAAGCCGCC





GGCTTCATCCCCGACCTTTCCGATGCCAAAGGGCGGCGCGGCTACGACGCACACGTCGGC





GAACGCGGCGTGAAACTCTCCGGCGGGCAACGCCAGCGCATCGCCATCGCCCGCGTGATG





CTCAAAGACGCACCGATTCTTCTTTTGGACGAAGCCACCAGCGCGCTCGATTCCGAAGTC





GAAGCCGCCATCCAAGAAAGCCTCGACAAAATGATGGACGGCAAAACCGTCATCGCCATC





GCCCACCGCCTCTCCACCATCGCCGCAATGGACAGGCTCGTCGTCCTCGACAAAGGCCGC





ATCATCGAAGAAGGCACACACGCCGAACTCCTCGAAAAACGCGGGCTTTACGCCAAACTC





TGGGCGCACCAGAGCGGCGGCTTCCTCAACGAACACGTCGAGTGGCAGCACGACTGA





NMB0264 Amino acid sequence


MLNKIFSWFESRIDPYPEAAPKTPEKGLWRFVWSSMAGVRKWIAALAALTAGIGIMEALV





FQFMGKIVEWLGKYAPAELFAEKSWELAAMAAMMVFSVAWAFAASNVRLQTLQGVFPMRL





RWNFHRLMLNQSLGFYQDEFAGRVSAKVMQTALALRDAVMTVADMVVYVSVYFITSGVIL





ASLDSWLLLPFIGWIVGFASVMRLLIPKLGQTAAWQADARSLMTGRITDAYSNTATVKLF





SHGAREAAYAKQSMEEFMVTVRAQMRLATLLHSCSFIVNTSLTLSTAALGIWLWHNGQVG





VGAVATATAMALRVNGLSQYIMWESARLFENIGTVGDGMATLSKPHTILDKPRALPLNVP





QGAIKFEHVDFSYEAGKPLLNGFNLTIRPGEKVGLIGRSGAGKSTIVNLLLRFYEPQSGT





VSIDGQDISGVTQESLRAQIGLVTQDTSLLHRSVRDNIIYGRPDATDAEMVSAAERAEAA





GFIPDLSDAKGRRGYDAHVGERGVKLSGGQRQRIAIARVMLKDAPILLLDEATSALDSEV





EAAIQESLDKMMDGKTVIAIAHRLSTIAAMDRLVVLDKGRIIEEGTHAELLEKRGLYAKL





WAHQSGGFLNEHVEWQHD





NMB1036 Nucleic acid sequence


ATGACAGCACAAACCCTCTACGACAAACTTTGGAACAGCCACGTCGTCCGCGAAGAAGAA





GACGGCACCGTCCTGCTCTACATCGACCGCCATTTGGTGCACGAAGTTACCAGCCCTCAG





GCATTTGAAGGCTTGAAAATGGCGGGGCGCAAGCTGTGGCGCATCGACAGCGTCGTCTCC





ACCGCCGACCACAACACCCCGACCGGCGATTGGGACAAAGGCATCCAAGACCCGATTTCC





AAGCTGCAAGTCGATACTTTGGACAAAAACATTAAAGAGTTTGGCGCACTCGCCTATTTT





CCGTTTATGGACAAAGGTCAGGGCATCGTACACGTTATGGGCCCCGAACAAGGCGCGACC





CTGCCCGGTATGACCGTCGTCTGCGGCGACTCGCACACTTCCACCCACGGCGCATTCGGC





GCACTGGCGCACGGCATCGGCACTTCCGAAGTCGAGCACACCATGGCGACCCAATGTATT





ACCGCGAAAAAATCCAAATCCATGCTGATTTCCGTTGACGGCAAATTAAAAGCGGGCGTT





ACCGCCAAAGACGTGGCGCTCTACATCATCGGGCAAATCGGCACGGCAGGCGGTACAGGC





TACGCCATCGAGTTTGGCGGCGAAGCCATCCGCAGCCTTTCTATGGAAAGCCGCATGACT





TTATGCAATATGGCGATTGAGGCAGGCGCGCGCTCAGGCATGGTTGCCGTCGACCAAACC





ACCATCGACTACGTAAAAGATAAACCCTTCGCACCCGAAGGCGAAGCGTGGGACAAAGCC





GTCGAGTACTGGCGTACGCTGGTGTCTGACGAAGGTGCGGTATTCGACAAAGAATACCGT





TTCAACGCCGAAGACATCGAACCGCAAGTCACTTGGGGTACCTCGCCTGAAATGGTTTTA





GACATCAGCAGCAAAGTGCCGAATCCTGCCGAAGAAACCGATCCGGTCAAACGCAGCGGT





ATGGAACGCGCCCTTGAATACATGGGCTTGGAAGCCGGTACGCCATTAAACGAAATCCCC





GTCGACATCGTATTCATCGGCTCTTGCACCAACAGCCGCATCGAAGACTTGCGCGAAGCC





GCCGCCATCGCCAAAGACCGCAAAAAAGCCGCCAACGTACAGCGCGTGTTAATCGTCCCC





GGCTCCGGTTTGGTTAAAGAACAAGCCGAAAAAGAAGGCTTGGACAAAATTTTCATCGAA





GCCGGTTTTGAATGGCGCGAACCGGGCTGTTCGATGTGTCTCGCCATGAACGCCGACCGC





CTGACCCCGGGGCAACGCTGCGCCTCCACCTCCAACCGTAACTTTGAAGGCCGTCAAGGC





AACGGCGGACGTACCCACCTCGTCAGCCCCGCTATGGCAGCAGCCGCCGCCGTTACCGGC





CGCTTTACCGACATCCGCATGATGGCGTAA





NMB1036 Amino acid sequence


MTAQTLYDKLWNSHVVREEEDGTVLLYIDRHLVHEVTSPQAFEGLKMAGRKLWRIDSVVS





TADHNTPTGDWDKGIQDPISKLQVDTLDKNIKEFGALAYFPFMDKGQGIVHVNGPEQGAT





LPGMTVVCGDSHTSTHGAFGALAHGIGTSEVEHTMATQCITAKKSKSMLISVDGKLKAGV





TAKDVALYIIGQIGTAGGTGYAIEFGGEAIRSLSMESRMTLCNMAIEAGARSGMVAVDQT





TIDYVKDKPFAPEGEAWDKAVEYWRTLVSDEGAVFDKEYRFNAEDIEPQVTWGTSPEMVL





DISSKVPNPAEETDPVKRSGMERALEYMGLEAGTPLNEIPVDIVFIGSCTNSRIEDLREA





AAIAKDRKKAANVQRVLIVPGSGLVKEQAEKEGLDKIFIEAGFEWREPGCSMCLAMNADR





LTPGQRCASTSNRNFEGRQGNGGRTHLVSPAMAAAAAVTGRFTDIRMMA





NMB1176 Nucleic acid sequence


ATGAAAGACAAGCACGATTCTTCCGCCATGCGGCTGGACAAATGGCTTTGGGCGGCACGT





TTTTTCAAGACCCGTTCCCTTGCGCAAAAGCACATCGAACTGGGTAGGGTTCAAGTAAAC





GGCTCGAAGGTCAAAAACAGTAAAACCATAGACATCGGCGATATTATCGACCTGACGCTC





AATTCCCTTCCCTATAAAATCAAGGTTAAAGGTTTGAACCACCAACGCCGCCCGGCATCC





GAGGCGCGGCTTCTGTATGAAGAGGACGCGAAAACGGCAACATTGAGGGAAGAGCGCAAA





CAGCTCGACCAATTCAGCCGCATCACTTCCGCCTATCCCGACGGCAGACCGACCAAGCGC





GACCGCCGCCAACTGGACAGGCTGAAAAAAGGAGACTGGTAA





NMB1176 Amino acid sequence


MKDKHDSSAMRLDKWLWAARFFKTRSLAQKHIELGRVQVNGSKVKNSKTIDIGDITDLTL





NSLPYKIKVKGLNHQRRPASEARLLYEEDAKTATLREERKQLDQFSRITSAYPDGRPTKR





DRRQLDRLKKGDW





NMB1359 Nucleic acid sequence


ATGAACCACACCGTTACCCTGCCCGACCAAACCACCTTTGCCGCCAACGACGGCGAAACC





GTTTTGACCGCTGCCGCCCGTGAAAACCTCAACCTGCCCCATTCCTGCAAAAGCGGTGTC





TGCGGACAATGCAAAGCCGAACTGGTCAGCGGCGATATTCAAATGGGCGGACACTCGGAA





CAGGCTTTATCCGAAGCAGAAAAAGCGCAAGGCAAGATTTTGATGTGCTGCACCACTGCG





CAAAGCGATATCAACATCAACATCCCCGGCTACAAAGCCGATGCCCTACCCGTCCGCACC





CTGCCCGCACGCATCGAAAGTATTATTTTCAAACACGATGTCGCCCTCCTGAAACTTGCC





CTGCCCAAAGCCCCGCCGTTTGCCTTCTACGCCGGGCAATACATTGATTTACTGCTGCCG





GGCAACGTCAGCCGCAGCTACTCCATCGCCAATTTACCCGACCAAGAAGGCATTTTGGAA





CTGCACATCCGCAGGCACGAAAACGGTGTCTGCTCGGAAATGATTTTCGGCAGCGAACCC





AAAGTCAAAGAAAAAGGCATCGTCCGCGTTAAAGGCCCGCTCGGTTCGTTTACCTTGCAG





GAAGACAGCGGCAAACCCGTCATCCTGCTGGCAACCGGCACAGGCTACGCCCCCATCCGC





AGCATCCTGCTCGACCTTATCCGCCAAGGCAGCAACCGCGCCGTCCATTTCTACTGGGGC





GCGCGTCATCAGGATGATTTGTATGCCCTCGAAGAAGCACAAGGGTTGGCATGCCGTCTG





AAAAACGCCTGCTTCACCCCCGTATTGTCCCGCCCCGGAGAGGGCTGGCAGCGAAGAAAT





GGTCACGTACAAGACATCGCGGCACAAGACCACCCCGACCTGTCGGAATACGAAGTATTT





GCCTGCGGTTCTCCGGCCATGACCGAACAAACAAAGAATCTGTTTGTGCAACAGCATAAG





CTGCCGGAAAACTTGTTTTTCTCCGACGCATTCACGCCGTCCGCATCATAA





NMB1359 Amino acid sequence


MNHTVTLPDQTTFAANDGETVLTAAARQNLNLPHSCKSGVCGQCKAELVSGDIQMGGHSE





QALSEAEKAQGKILMCCTTAQSDININIPGYKADALPVRTLPARIESIIFKHDVALLKLA





LPKAPPFAFYAGQYIDLLLPGNVSRSYSIANLPDQEGILELHIRRHENGVCSEMIFGSEP





KVKEKGIVRVKGPLGSFTLQEDSGKPVILLATGTGYAPIRSILLDLIRQGSNRAVHFYWG





ARHQDDLYALEEAQGLACRLKNACFTPVLSRPGEGWQGRNGHVQDIAAQDHPDLSEYEVF





ACGSPAMTEQTKNLFVQQHKLPENLFFSDAFTPSAS





NMB1138 Nucleic acid sequence


ATGAAAGACAAGCACGATTCTTCCGCCATGCGGCTGGACAAATGGCTTTGGGCGGCACGT





TTTTTCAAGACCCGTTCCCTTGCGCAAAAGCACATCGAACTGGGTAGGGTTCAAGTAAAC





GGCTCGAAGGTCAAAAACAGTAAAACCATAGACATCGGCGATATTATCGACCTGACGCTC





AATTCCCTTCCCTATAAAATCAAGGTTAAAGGTTTGAACCACCAACGCCGCCCGGCATCC





GAGGCGCGGCTTCTGTATGAAGAGGACGCGAAAACGGCAACATTGAGGGAAGAGCGCAAA





CAGCTCGACCAATTCAGCCGCATCACTTCCGCCTATCCCGACGGCAGACCGACCAAGCGC





GACCGCCGCCAACTGGACAGGCTGAAAAAAGGAGACTGGTAA





NMB1138 Amino acid sequence


MKDKHDSSAMRLDKWLWAARFFKTRSLAQKHIELGRVQVNGSKVKNSKTIDIGDIIDLTL





NSLPYKIKVKGLNHQRRPASEARLLYEEDAKTATLREERKQLDQFSRITSAYPDGRPTKR





DRRQLDRLKKGDW
















Schedule of SEQ ID Nos








SEQ ID No
Sequence











1
NMB0341 DNA


2
NMB0341 Protein


3
NMB1583 DNA


4
NMB1583 Protein


5
NMB1345 DNA


6
NMB1345 Protein


7
NMB0738 DNA


8
NMB0738 Protein


9
NMB0792 DNA


10
NMB0792 Protein


11
NMB0279 DNA


12
NMB0279 Protein


13
NMB2050 DNA


14
NMB2050 Protein


15
NMB1335 DNA


16
NMB1335 Protein


17
NMB2035 DNA


18
NMB2035 Protein


19
NMB1351 DNA


20
NMB1351 Protein


21
NMB1574 DNA


22
NMB1574 Protein


23
NMB1298 DNA


24
NMB1298 Protein


25
NMB1856 DNA


26
NMB1856 Protein


27
NMB0119 DNA


28
NMB0119 Protein


29
NMB1705 DNA


30
NMB1705 Protein


31
NMB2065 DNA


32
NMB2065 Protein


33
NMB0339 DNA


34
NMB0339 Protein


35
NMB0401 DNA


36
NMB0401 Protein


37
NMB1467 DNA


38
NMB1467 Protein


39
NMB2056 DNA


40
NMB2056 Protein


41
NMB0808 DNA


42
NMB0808 Protein


43
NMB0774 DNA


44
NMB0774 Protein


45
NMA0078 DNA


46
NMA0078 Protein


47
NMB0337 DNA


48
NMB0337 Protein


49
NMB0191 DNA


50
NMB0191 Protein


51
NMB1710 DNA


52
NMB1710 Protein


53
NMB0062 DNA


54
NMB0062 Protein


55
NMB1333 DNA


56
NMB1333 Protein


57
NMB0377 DNA


58
NMB0377 Protein


59
NMB0264 DNA


60
NMB0264 Protein


61
NMB1036 DNA


62
NMB1036 Protein


63
NMB1176 DNA


64
NMB1176 Protein


65
NMB1359 DNA


66
NMB1359 Protein


67
NMB1138 DNA


68
NMB1138 Protein








Claims
  • 1. A polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID Nos. 38, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, and 68; or a fragment or variant thereof or a fusion of such a fragment or variant.
  • 2. A polynucleotide encoding a polypeptide according to claim 1.
  • 3-4. (canceled)
  • 5. A method for making a polypeptide according to claim 1 the method comprising expressing the polynucleotide of claim 2 in a host cell and isolating said polypeptide.
  • 6. A method for making a polypeptide according to claim 1 comprising chemically synthesising said polypeptide.
  • 7. A method of vaccinating an individual against Neisseria meningitidis, the method comprising administering to the individual a molecule selected from the group consisting of a polypeptide according to claim 1 and a polynucleotide according to claim 2.
  • 8. (canceled)
  • 9. A pharmaceutical composition comprising a molecule selected from the group consisting of a polypeptide according to claim 1 and a polynucleotide according to claim 2 and a pharmaceutically acceptable carrier.
  • 10. The polypeptide of claim 1, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO. 38.
  • 11. The polynucleotide of claim 2, wherein the polynucleotide comprises the nucleotide sequence of SEQ ID NO. 37.
  • 12. The method of claim 5, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO. 38.
  • 13. The method of claim 6, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO. 38.
  • 14. The method of claim 7, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO. 38.
  • 15. The method of claim 7, wherein the polynucleotide comprises the nucleotide sequence of SEQ ID NO. 37.
  • 16. The method of claim 9, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO. 38.
  • 17. The method of claim 9, wherein the polynucleotide comprises the nucleotide sequence of SEQ ID NO. 37.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB2005/005113 12/23/2005 WO 00 6/22/2007