This application is the U.S. national phase of International Application No. PCT/FI2006/050037 filed on Jan. 23, 2006 published in English on Aug. 3, 2006 as International Publication No. WO 2006/079688 A1, which application claims priority to Finnish Application No. 20055033 filed on Jan. 25, 2005, the contents of which are incorporated by reference herein.
The present invention relates to a vacuum sewer system comprising a source of sewage, sewer piping, a discharge valve between the source of sewage and the sewer piping, means for generating partial vacuum in the sewer piping, and a control means for controlling the operation of the discharge valve.
More particularly the invention relates to a control means for a vacuum sewer system, the control means comprising a control mechanism with a body part defining a series of chambers including a first end chamber and a second end chamber, wherein the first end chamber is provided with an activating means, and the body part is provided with a first port for communication with a source of vacuum, a second port for communication with a discharge valve and a third port for communication with an aeration means.
Depending on the source of sewage the vacuum system may also include a rinse water arrangement comprising a rinse water supply, a rinse water valve and a rinse water distribution means for providing rinse water to the source of sewage. Preferably the above mentioned control means also controls the operation of the rinse water arrangement.
Such vacuum sewer systems and control means are previously known. The basic operation principle of the control means is to activate an alternation of partial vacuum and atmospheric pressure in the chambers in order to effect the opening and closing of the discharge valve and preferably also the rinse water valve.
The known solutions generally have a very complex structure and a very large number of components. Furthermore, the interaction of the components is easily disturbed, partly due to their relatively small dimensions and their fragile structure, which results in malfunction of the control means. In addition the known control means are expensive to manufacture and service.
The object of the present invention is to achieve a vacuum sewer system in which the above disadvantages are avoided and which provides a reliable operation by way of a simplified arrangement. A further object of the present invention is to provide a control means, which improves the operation of the vacuum sewer system. These objects are attained by a vacuum sewer system according to claim 1 and a control means according to claim 4.
The basic idea of the invention is to provide a vacuum sewer system, which in the control of the discharge valve, and preferably also the rinse water valve, employs a control means, which in its operation utilises partial vacuum from the system, as known per se, and comprises a mechanically simple structure that secures operation even if some parts are damaged and also provides for provisional maintenance measures. The control means of the vacuum sewer system comprises a series of chambers, in which two valve means operate in sequence in order to open or close communication of partial vacuum to the said valves, the operation being initiated by an activating means.
A preferred embodiment of the vacuum sewer system including a rinse water arrangement is defined in claims 2 to 3.
Preferred embodiments of the control means employed in the vacuums sewer system are defined in claims 5 to 11.
In the following the invention will be described, by way of example only, more in detail with reference to the accompanying schematic drawings, in which
The vacuum sewer system 100 shown in
The first chamber 1 is provided with the activating means 106, e.g. usually a so-called flush button, arranged to engage a first spring 18 biased first valve means 19 including a first valve stem 191 connected to an engagement means 13, in this embodiment shown as a suction cup. The first valve stem 191 is provided with a recess 15, the function of which will be described below in connection with
The engagement means 13 is arranged in the second chamber 2 for engagement with a membrane 14 disposed between and separating the second chamber 2 and the third chamber 3. The engagement means is preferable a suction cup in this embodiment. However, other engagement means providing appropriate engagement with the membrane could also be used, whereby the membrane would be designed accordingly. The term membrane is to be understood as a means providing an appropriate flexible function for movement within the body part 12. The membrane 14 is connected to a second spring 16 biased second valve means 5. The second valve stem 51 of the second valve means 5 is provided with a first duct 6 and a second duct 7, the function of which will be described below in connection with
In the following the operational sequence of the control mechanism 105 will be described with reference to
The control mechanism 105 is shown in a normal rest position in
The discharge valve 103 is in communication with the second port 9 and the rinse water valve 108 is in communication the fourth port 11, whereby they remain aerated as the third port 10 is open and in connection with the atmosphere.
The control mechanism 105 is activated (
The so-called opening phase is shown in
Just before the second valve means 5 comes to its second, i.e. end position, the first valve means 19 arrives at its most forward position where its further movement is stopped by the first valve seat 192, whereby the engagement means 13 is released from the membrane 14. This results in that the first spring 18 returns the first valve means 19 with the suction cup 13 to its initial position closing the communication between the second chamber 2 and the first chamber 1. As a consequence, the pressure difference between the second chamber 2 and the third chamber 3 begins to equalise through the first duct 6 and the second duct 7, i.e. the flow restrictor, in the second valve stem 51. The second spring 16 returns the second valve means 5 to its first position and the supply of partial vacuum from the third chamber 3 through channel 17 to the discharge valve and the rinse water valve stops. The third port 10 opens and the discharge valve 103 and the rinse water valve 108 are closed. The rinse water valve 108 has an in-built restrictor means, whereby it closes later than the discharge valve 103 in order to provide a base water level in the toilet bowl.
The length of the flushing period may be varied by the dimensioning of the second duct 7, i.e. the flow restrictor. The flow restrictor is preferably formed by a nozzle, whereby a smaller nozzle bore lengthens the return time giving a longer flushing period.
In normal use the flushing sequence, corresponding to the operational sequence of the valve arrangement in the control means, is initiated by lightly pressing the activating means 106. The flushing sequence may be prolonged by pressing the activating means 106 all the way to its bottom position. If the toilet bowl is clogged or jammed the activating means 106 may kept in the bottom position for some time in order more forcibly flush the toilet bowl.
In the event the membrane 14 is damaged, the flushing sequence may still be initiated by pressing the activating means 106 to the bottom position. In this case, however, the timing function as described above does not work.
The drawings and the description related thereto are only intended for clarification of the basic idea of the invention. The invention may vary in further detail within the scope of the ensuing claims.
Number | Date | Country | Kind |
---|---|---|---|
20055033 | Jan 2005 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2006/050037 | 1/23/2006 | WO | 00 | 3/7/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/079688 | 8/3/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4304390 | Kawabata et al. | Dec 1981 | A |
4310141 | Tamura | Jan 1982 | A |
4373838 | Foreman et al. | Feb 1983 | A |
5114280 | Ushitora et al. | May 1992 | A |
5326069 | Clear et al. | Jul 1994 | A |
5588458 | Ushitora et al. | Dec 1996 | A |
5634494 | Martens | Jun 1997 | A |
5871027 | Shimizu et al. | Feb 1999 | A |
6360768 | Galler | Mar 2002 | B1 |
Number | Date | Country |
---|---|---|
0 659 947 | Jun 1995 | EP |
0 659 947 | Jun 1995 | EP |
0825303 | Feb 1998 | EP |
0825303 | Feb 1998 | EP |
2 247 327 | Feb 1992 | GB |
Number | Date | Country | |
---|---|---|---|
20080256697 A1 | Oct 2008 | US |