The invention relates to a vacuum tight coupling for the end portions of two tubular sections. In particular it relates to the coupling of heavy tube sections which have to rotate around their longitudinal tube axis such as, for example, rotatable targets in vacuum sputtering reactors, in particular magnetrons.
Vacuum or at least fluid tight couplings for tube ends are known from the patent publications DE 3328137; U.S. Pat. No. 4,900,063; U.S. Pat. No. 5,591,314; WO 85/04940 and EP 0726 417. Most of these coupling devices include clamping rings that, due to the nature of their fixing means, do not have a substantially cylindrical outer surface. This prevents tube rotation within a small opening surrounding—i.e. radially facing—the clamping rings. In addition, when joined, the transverse tube extremities essentially abut with their end faces against each other with sealing means positioned in between them in this transverse abutment area. When one tube end has to carry the other heavy tube, e.g. in cantilever mode and optionally has to set it in rotation, e.g. at a considerable speed, then the structure of these known abutment-type couplings is subjected to virtually insupportable stresses and loads.
U.S. Pat. No. 5,480,193 describes a push-on fitting including a split clamp. An inner tube end is provided with two “O” ring seals and an outer tube end is pushed over the seals. Each half of the axial clamp includes a semi-annular surface positioned to encircle that portion of the push-on fitting lying over the seals. Elastic inserts are placed in the clamp which clamp down onto the outer tube. Due to the use of elastic components there is some possibility of relative movement between the inner and outer tube.
U.S. Pat. No. 5,647,612 describes a push-on tube fitting which is clamped by a hinged clamp. In the closed position the two halves of the clamp co-operate to form a recess corresponding to that of the fitted part of the couplings, thereby axially restraining the couplings but not clamping them together. The clamp is held closed by a releasable locking mechanism.
It is an object of the invention to avoid the disadvantages of known couplings and to provide a reliable vacuum tight coupling for relatively heavy tube sections. It is also an object to design such a coupling which permits rotation at relatively high speeds when needed. It is a further object to produce a coupling which can easily be assembled and disassembled and which is readily usable e.g. as a spindle/target-coupling for a rotatable sputtering target. The coupling is designed for multiple disassembly and reassembly. After fixing the coupling, the spindle may be attached to its supporting unit, e.g. an end block which is provided with the connections for driving and cooling the inner space of the target tube.
In the vacuum tight coupling for the end portions of two tubular sections according to the present invention the inner diameter of the first end portion is chosen to be smaller than that of the second end portion. This second end portion carries a radially outwardly extending flange extremity and this portion can be slid axially over the first end portion to abut against a peripheral outer abutment ring on said first end portion. At least one sealing ring is provided between said end portions in their overlapping cylindrical contact area. The coupling comprises further a clamping ring with a substantially cylindrical outer surface. This ring is composed of two substantially equal halves with each a U-shaped cross section with an inwardly oriented recess, said recess enclosing said flange portion of the second end portion and said abutment ring of the first end portion. Tightening of the clamp results in longitudinal (axial) positive clamping of the abutment ring to the flange. The clamp operates directly on the flange and ring. Preferably, the load bearing surfaces of the clamp, flange extremity and abutment ring are made of metal, e.g. steel. The fixing means for the ring halves comprise in at least one place bolting means, the axis of which is perpendicular to the longitudinal axis of the coupled tubular sections and substantially tangential to the clamping ring periphery.
To provide for a robust coupling, said overlapping cylindrical contact area, where one tube end enters the other, should exceed a minimum surface in relation to the inner diameter “d” of the first end portion. For example, the minimum overlap may be 5% of the inner diameter of the first end portion. In this manner the entering tube end will offer a proper mechanical support for the surrounding tube end during any conditions of operation. To allow ease of coupling in confined spaces the amount of overlap should preferably be limited in length. For example, it is preferred if the length of overlap between the first and second end portions is 50% or less of the inner diameter “d” of first end portion, more preferably 30% or less and most preferably 20% or less. The overlap may be 10%. This amount of overlap is sufficient to provide both enough space for sealing rings and also mechanical stability.
To prevent arcing is it preferable to attach an anti-arcing element to the surface of the clamping ring. The anti-arcing element may be a ring. The anti-arcing element may be made of an insulating or a conductive material.
The invention will now be described with reference to the attached drawings. Further details and advantages will be clarified, in particular in relation to certain preferred embodiments for couplings for spindles to rotatable targets.
The present invention will be described with reference to certain embodiments and to certain drawings but the present invention is not limited thereto but only by the claims. The coupling in accordance with the present invention is particularly suitable as a vacuum coupling. The couplings in accordance with the present invention are not only suitable for levels of vacuum in the range 0.5 to 0.01 bar but are also suitable for high vacuum levels such as 10−3 or lower, in particular 10−5 or lower, for example 10−6 to 10−9 bar. Couplings in accordance with the present invention may be ultra-high vacuum couplings. Ultra-high vacuum in accordance with this invention is 10−10 bar or lower, e.g. 10−11 down to 10−15 bar.
An embodiment of a vacuum tight coupling in accordance with the present invention is shown schematically in
The coupling includes at least one sealing ring 4, 5 between said end portions in their overlapping contact area. Sealing ring 4, 5 may be an O-ring seal. An O-ring 5 is preferably arranged in a circumferential groove on the outside of the end portion of the spindle. An O-ring 4 is preferably located near the abutment area with the end portion of the target tube. Although one O-ring could in principle assure a vacuum tight sealing, two O-rings warrant a maximal vacuum integrity under the most extreme conditions of operation. Both O-rings 4 and 5 are mounted on the spindle during assembly. This arrangement provides an automatic and uniform pressure on the seal which minimises the risk of damaging them or the sealing surfaces during assembly, revision, cleaning and target exchange. The couplings in accordance with the present invention are designed for repetitive assembly and disassembly while still maintaining their mechanical properties, e.g. suitable for vacuum or ultra-high vacuum conditions. Rubber O-ring seals (e.g. Viton™ rubber O-rings) are suitable for high vacuum use, i.e. down to about 10−9 bar. Due to outgassing from the rubber such rings are not preferred for ultra-high vacuum use. Toroidal flexible metal seals supplied under the trade name Helicoflex™ (supplier Le Carbone-Lorraine, France) may be used instead of rubber O-rings for ultra-high vacuums, e.g. 10−11 to 10−15 bar.
The coupling comprises further a clamping ring 3 with a substantially cylindrical outer surface. Substantially cylindrical means that the envelope of the outer circumference of the ring with its fixing means 9 does not show parts which extend radially outside said circumference to a significant extent. As a result, cylindrical shields may be placed quite closely over the clamp without touching it, even during relative rotation between the clamp and the cylindrical shield. Clamping ring 3 is preferably made from a high strength material such as a metal, e.g. steel. The clamping ring 3 is composed of two substantially equal halves 12, 13, each having a semi-circular or U-shaped cross section with an inwardly oriented recess 6. Upon closing the ring 3, said recess 6 encloses the flange 11 and said abutment ring 10. Tightening of the clamp halves 12, 13 forces thereby the transversal end faces of the abutment ring 10 and the flange 11 tightly against each other by means of the conically machined edges (25 in
The fixing means comprises in at least one place bolting means 9, the longitudinal axis 14 of which is perpendicular to the longitudinal axis of the coupled tubular sections and substantially tangential to the clamping ring periphery. This securing of the clamp halves 12, 13 together is shown here with only two bolts 9 which are screwed in threaded holes in the clamp end face 16. They can be reached and seen very easily at any rotational position of the clamp 3. This guarantees a fast and user friendly interface for mounting and removing a cylindrical tube, in particular a rotatable target. In this embodiment, as shown in
In a further embodiment shown schematically in
In
In certain vacuum chambers of sputtering reactors it is useful to provide for different sputtering widths. This corresponds to different lengths of the rotatable targets to be used. The active width of the sputtering area may thus be substantially shorter than the distance between the two opposite spindles which carry the target tubes. In this manner it is advantageous to provide at least one tubular insert section 20, as shown in
A further clamping device 3 in accordance with an embodiment of the present invention is shown schematically in
The clamping device 3 is used as a means for mounting a cylindrical rotating target represented by 2 to a spindle represented by 1. Clamping device 3 may include two clamping semi-circular halves 12, 13 which may be fastened together with any of the fixing means described with reference to FIGS. 1 to 7. The outer circumference of clamp 3 is substantially cylindrical as has been described with respect to all the previous embodiments. Clamp 3 provides positive axial clamping of the abutting flanges 10, 11. For this purpose, the clamping halves 12, 13 are provided with at least one bevelled surface 25, 29 which co-operates with at least one chamfered surface 28, 30 on the ring 10 and/or the flange 11 to force the ring 10 and the flange 11 together and to clamp their machined abutting surfaces positively together.
A cross-sectional view of the extended clamp in accordance with this embodiment is shown below in
In an alternative embodiment, the ring 32 may be made from a conductive material and slightly spaced from the target surface. This ring 32 may be brought to a desired potential, grounded or be electrically floating. In this case, the presence of insulating ring 31 is advantageous to insulate the conductive ring 32 from the clamp halves 12, 13 which are at a potential. Additional, in this configuration, pins 35 should be designed to prevent electrical contact of the clamp halves 12, 13 with ring 32. For example, this can be achieved by using insulating pins or by putting an insulating sleeve over these pins. The lip 36 on 32, extending over the target 2, is preferably equally spaced over the target surface. The lip end, shown in
Preferably, both rings 31 and 32 have a geometry at their outer circumference which provides a groove 39 between clamp halves 12, 13 and ring 31 when they are fixed together and a labyrinth groove 38 between rings 31 and 32. During a sputtering process, not only the substrate is covered with the required film, but all other bodies and walls in the vacuum chamber are coated as well. This means that eventually ring 31 and 32 will be covered with a sputtered film. If the sputtered coating is conductive, an electrical short may be formed from the clamp halves 12, 13 over the insulating ring 31 to ring 32. If ring 32 is conductive and this ring is to be maintained at a potential different from the clamp potential, it is important that no conductive path between both is formed. By providing a complex groove 38 between rings 31 and 32 and a groove 39 between clamp halves 12, 13 and ring 3, the chance of having a conductive path is reduced considerably.
The skilled person will appreciate that the present invention also includes within its scope the independent invention of a coupling for a cylindrical sputtering target comprising an anti-arcing element attached to the side of the coupling facing the sputtering target. The coupling may be used to couple a cylindrical target to a spindle. The spindle may be driven to rotate the coupling and the target. The envelope of the outer surface of the coupling may be substantially circular so that the coupling may be placed within a close fitting tubular shield. Two end portions of two tubular sections may be coupled with this coupling, the size of the inner space of a first end portion being smaller than that of a second end portion, the second end portion having a flange extremity axially slidable over the first end portion to abut the flange extremity against a peripheral outer abutment ring on said first end portion, the coupling comprising at least one sealing ring between said end portions in their overlapping contact area and further comprising a clamping ring with a substantially cylindrical outer surface and being composed of two substantially equal halves, each clamp half having a semi-circular or U-shaped cross section with an inwardly oriented recess, said recess enclosing said flange extremity and said abutment ring.
Number | Date | Country | Kind |
---|---|---|---|
98202183.4 | Jun 1998 | EP | regional |
PCT/EP99/04085 | Jun 1999 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | 09720744 | Jun 2001 | US |
Child | 11611470 | Dec 2006 | US |