1. Field of the Invention
The present invention relates to a valuable paper validator practical for use in a vending machine or coin change machine and more particularly, to such a high-accuracy valuable paper validator, which uses a LED package to emit different wavelengths of intense pulsed light through the valuable paper, a collimator lens to collimate different wavelengths of intense pulsed light onto a test zone of the valuable paper, and a photodiode to collect light passed through the valuable paper for comparing to a predetermined reference value by an internal microcontroller of the valuable paper validator to verify the authenticity of the valuable paper.
2. Description of the Related Art
Following fast development of technology, our mode of living has been changed. Various automatic vending machines (card dispensers, ticket venders, coin change machines, etc.) are used everywhere to sell different products without serviceman. These automatic vending machines save much labor and bring convenience to people. The coin changer of a vending machine accepts coins and paper money.
However, venders and consumers are always assailed by the problem of counterfeit money since the use of paper currency. Following development of computer technology, evil persons may use a computer to scan, copy and print paper money. Therefore, a paper currency has anti-counterfeiting techniques. Visible anti-counterfeiting techniques of paper currency include paper material, ink, seal, mark and etc. that can easily be verified with the eyes. However, examining invisible anti-counterfeiting techniques requires a special machine or instrument to verity the authenticity. A validator for this purpose uses rollers to carry in the inserted paper currency over a magnetic head, which detects the magnetic inks of the emblems and portrait and compares the detected signal with respective predetermined reference values for determining the authenticity of the paper current subject to the comparison result. However, the magnetic head tends to be contaminated by ink dirt, resulting in an inaccurate detection. Further, a counterfeit currency maker may make a counterfeit currency that carrying similar magnetic inks to cheat the machine.
Nowadays, modern valuable paper validators commonly use different LEDs (light emitting diodes) to emit different light for examining the characteristics of different paper currency.
The aforesaid prior art valuable paper validator has numerous drawbacks as outlined hereinafter.
Further, ATMs (Auto Teller Machines) or bill counters used in a banking system commonly use ultraviolet lamps to scan paper currency. Ultraviolet lamps are not suitable for use in a bill validator for vending machine. When an ultraviolet lamp type bill validator is used in an outdoor vending machine, air moisture may pass through gap between the lamp bulb and the electric socket, causing a short circuit. Further, the bulb of an ultraviolet lamp attenuates quickly with use. Further, an ultraviolet lamp consumes much electric power and releases much heat energy during operation. Further, an ultraviolet lamp has a big side and a short working life, and is easy to break.
Therefore, it is desirable to provide a valuable paper validator that eliminates the aforesaid problems.
The present invention has been accomplished under the circumstances in view. It is one object of the present invention to provide a valuable paper validator for vending machine or coin change machine, which uses one LED package to emit different wavelengths of intense pulsed light onto one same location at the test valuable paper, and one corresponding photodiode to receive light passing through the test valuable paper for verifying the authenticity of the test valuable paper. This arrangement eliminates the complicated valuable paper validation procedure of the prior art design of using multiple LEDs and photo sensors. Therefore, the invention requires less installation space in the vending machine or coin change machine, and saves much the installation cost.
It is another object of the present invention to provide a valuable paper validator, which uses one LED package, one collimator lens, one condensing lens and one photodiode to constitute the valuable paper validation unit for verifying the authenticity of valuable papers accurately. This design has a simple structure that eliminates the drawbacks of the complicated prior art design of using multiple light emitting diodes to scan different test zones of the test valuable paper and multiple optical elements to correct the light source output angle and an optical element to gather scanned light onto the photo sensor. Further, the design of the valuable paper validator of the invention has the advantages of. non-necessity of lamp warming time, fast reaction speed, small size, low power consumption, low pollution, high brightness and long working life.
Before explanation of the features of the present invention, it is necessary to understand the physical characteristics of light. The colors of known light rays include red, orange, yellow, green, blue, indigo and purple. Different colors of light rays have different wavelengths. When emitting different colors of light rays onto an object, different transmission and refractive indexes will be obtained. For example, when emitting light onto a red color object, the red color object will reflect red color of light and absorb other colors of light, and therefore only red color of light is seen. When emitting different colors of light onto an object, the light intensity of other colors of light that passed through the object will be weaker than the red color of light because red color of light has the highest transmission. The invention uses the aforesaid physical characteristics of light in verification of valuable paper. Further, because different wavelengths of light have different colors, the following description of the present invention uses wavelengths for explanation.
Referring to
The delivery unit 11 has an insertion slot 111 through which a valuable paper is inserted, and a delivery path 112 in communication with the insertion slot 111.
The optical emitter module 12 is provided above the delivery path 112, comprising a LED package 121, which has multiple light emitting diode chips controllable to emit different wavelengths of light, and a collimator lens 122 that guides light rays from the LED package 121 across the delivery path 112.
The optical receiver module 13 is provided beneath the delivery path 112, comprising a condensing lens 131 adapted to condense light passing from the LED package 121 through the collimator lens 122 onto a valuable paper being delivered through the delivery path 112, and a photodiode 132 adapted to receive light passing through the condensing lens 131.
The security gate 14 is provided at the rear end of the delivery path 112. The security hook 15 is provided at one side of the security gate 14. The security gate 14 and the security hook 15 constitute a security mechanism.
Referring to
Referring to
However, there are two ways to verify the authenticity of the valuable paper 5. One way is to check the paper quality of the valuable paper 5, i.e., the LED package 121 of the optical emitter module 12 is controlled to emit different wavelengths of light through the collimator lens 122 and the test zone 51 of the valuable paper 5, causing the test zone 51 to produce different transmittance, therefore the photodiode 132 obtains different intensity of light source from the test zone 51 through the condensing lens 131 for comparing to the predetermined reference value by the microcontroller 2 so that the comparison result is used to determine the authenticity of the valuable paper 5. The other way is to use the color of the pattern on the valuable paper 5 to filter different wavelengths of light from the LED package 121, for enabling the filtered light signal to be further compared to the predetermined reference value by the microcontroller 2 so that the microcontroller 2 determines the valuable paper 5 to be true or false subject to the comparison result.
As indicated above, the invention is to verify the authenticity of a valuable paper 5 by driving the internal light emitting diode chips of the LED package 121 to emit different wavelengths of intense pulsed light through the collimator lens 122 onto a same location at the valuable paper 5. This design needs not to use multiple LEDs and related optical elements to correct light source output angle. Therefore, the invention greatly saves the cost and improves the validation accuracy. The use of the LED package 121 to emit different wavelengths of intense pulsed light has the advantages of non-necessity of lamp warming time, fast reaction speed, small size, low power consumption, low pollution, high brightness and long working life. For the aforesaid advantages, the invention is practical for use in the limited space of a vending machine or coin change machine. By means of the validation of the valuable paper validator of the present invention, valuable paper verification efficiency and accuracy are greatly improved.
Referring to
(101) Start;
(102) Store all voltage values of the LED package 121 in a register variable;
(103) Set an initial voltage value for the LED package 121;
(104) Read the voltage value of the LED package 121 from the register variable;
(105) Set a voltage value for the LED package 121;
(106) Read a voltage value received by the photodiode 132;
(107) Turn off the LED package 121;
(108) Increase the voltage value for the LED package 121;
(109) Determine whether or not the voltage value of the LED package 121 surpasses the predetermined reference value? Return to step (104) when negative; and
(110) End.
To have the LED package 121 emit different wavelengths of intense pulsed light, the LED package 121 can be made having five light emitting diode chips encapsulated therein for emitting different wavelengths of intense pulsed light. These light emitting diode chips include a first light emitting diode chip that emits 615 nm˜635 nm red light, a second light emitting diode chip that emits 515 nm˜532 nm green light, a third light emitting diode chip that emits 460 nm˜475 nm blue light, a fourth light emitting diode chip that emits 850 nm infrared light and a fifth light emitting diode chip that emits 940 nm infrared (or ultraviolet) light.
As indicated above, the invention provides a valuable paper validator, which has the following features:
1. The valuable paper validator of the present invention uses one LED package to emit different wavelengths of intense pulsed light onto one same location at the test valuable paper, and one corresponding photodiode to receive light passing through the test valuable paper for verifying the authenticity of the test valuable paper. This arrangement eliminates the complicated valuable paper validation procedure of the prior art design of using multiple LEDs and photo sensors. Therefore, the invention requires less installation space in the vending machine or coin change machine, and saves much the installation cost.
2. The invention uses one LED package, one collimator lens, one condensing lens and one photodiode to constitute the valuable paper validator. Unlike the complicated prior art design of using multiple light emitting diodes to scan different test zones of the test valuable paper and multiple optical elements to correct the light source output angle and an optical element to gather scanned light onto the photo sensor, the valuable paper validator of the invention has a simple structure that is inexpensive to manufacture and easy to install.
3. The valuable paper validator of the invention uses one single LED package to emit different wavelengths of intense pulsed light for scanning a predetermined area of the test valuable paper. The LED package has a small size, practical for use in a limited space in a vending machine or coin change machine. The valuable paper validator has a simple structure that does not require a precision radiation angle correction. Further, the valuable paper validator has the advantages of non-necessity of lamp warming time, fast reaction speed, small size, low power consumption, low pollution, high brightness and long working life. By means of the validation of the valuable paper validator of the present invention, valuable paper verification efficiency and accuracy are greatly improved.
4. The invention uses different wavelengths of intense pulsed light to provide different transmittance for verifying the authenticity of a valuable paper. By means of controlling the light emitting diode chips of the LED package to emit different wavelengths of intense pulsed light through the paper material, fluorescent fibers or ink of the test valuable paper, the invention achieves high verification accuracy.
5. The LED package can be made having multiple light emitting diode chips controllable to emit different colors of visible and invisible light at different wavelengths for verifying the authenticity of the test valuable paper, thereby achieving high verification accuracy.
6. By means of the security gate and the security hook, the invention effectively prohibits evil persons from using an iron wire or adhesive tape to pick up banknotes from the moneybox in the vending machine or coin change machine.
A prototype of valuable paper validator has been constructed with the features of
Although a particular embodiment of the invention has been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.