1. Field of the Disclosure
The disclosure relates generally to retractable instruments and more specifically to cap-less, retractable writing instruments having a valve door with a force directing component.
2. Related Technology
One example of a cap-less, retractable writing instrument is shown in U.S. Pat. No. 5,048,990, which is hereby incorporated by reference. The cap-less writing instrument includes a writing member having a writing tip. The writing member is accommodated in a seal cylinder that is disposed inside a writing instrument body. A seal cover for closing an end opening of the seal cylinder is disposed on the seal cylinder near the front end of the seal cylinder. A writing member moving mechanism moves the writing member forwardly and locks the writing member at a writing position with the writing tip protruding through the front of the writing instrument body. The moving mechanism includes a thread-like member that connects the writing member to the seal cover so that after the writing member is retracted, the seal cover is pulled backwardly so as to be brought into contact with the seal cylinder, thus preventing the writing tip from drying out. The prior art cap-less writing instruments work well with relatively small writing tips. However, the prior art design is not especially well suited for relatively large writing tips, for example, those used to produce markers intended to convey information to groups of people such as dry erase markers, and other similarly sized markers, as the seal cover does not adequately seal large diameter openings.
A valve door for a retractable marker comprises a lid having first and second surfaces and a connecting means for connecting the lid with an actuating mechanism, the connecting means being adapted to distribute forces from the actuating mechanism across a portion of the first lid surface in order to bias the lid to a closed position. A force directing member is attached to the first lid surface, the force directing member being adapted to distribute force from the connecting means over a portion of the lid surface, thereby maintaining a positive seal and reducing lid deflection.
A retractable writing instrument comprises a writing member having a nib and a seal cylinder substantially surrounding the writing member, the seal cylinder having an open end. A movement mechanism moves the writing member from a retracted position in which the nib is disposed within the seal cylinder to an extended position in which the nib is extended outside of the seal cylinder through the open end. A lid is hingedly attached to the seal cylinder at the open end, the lid being movable between an open position in which the lid exposes the open end of the seal cylinder and a closed position in which the lid covers the open end of the seal cylinder. The lid includes a force directing member disposed on a lid surface opposite the open end of the seal cylinder. A connecting means is attached to the movement mechanism and the lid, the connecting means contacting the force directing member. The force directing member prevents the connecting means from contacting the first lid surface over at least a portion of the first lid surface.
A retractable writing instrument comprises a writing member having a nib, the writing member being disposed in a writing instrument body. A seal cylinder is disposed within the writing instrument body, the seal cylinder surrounding a portion of the writing member including the nib, and having an open end. A lid selectively seals or exposes the open end of the seal cylinder. A moving mechanism is disposed between the writing instrument body and the writing member, the moving mechanism moving the writing member between a retracted position in which the nib is disposed within the seal cylinder and an extended position in which the nib protrudes outside of the seal cylinder through the open end of the seal cylinder. A connecting means connects the lid to the moving mechanism, the connecting means applies force generated by the moving mechanism across at least a portion of one side of the lid, thereby biasing the lid to a closed position in which the lid seals the open end of the seal cylinder. The lid includes a pair of ribs positioned between the lid and the connecting means, the ribs elevating a portion of the connecting means above a portion of a lid surface distal to the seal cylinder, the pair of ribs applying force from the connecting means across a portion of the lid surface distal to the seal cylinder, thus reducing lid deflection when the lid is in the closed position and thereby reducing ink evaporation.
Exemplary aspects and features of a writing instrument constructed in accordance with the disclosure are described and explained in greater detail below with the aid of the drawing figures in which:
A writing instrument generally constructed in accordance with the teachings of the disclosure is shown in
The seal cylinder 3 may include grooves 22 (
Prior art seal covers 4 often included a groove 32 (
Typically, the seal cover 4 is subjected to an internal pressure in the closed position due, in part, to solvent vapor pressure within the seal cylinder 3. A force from the connecting means 15 counteracts the internal pressure when the seal cover 4 is in the closed position, thus forming a seal between the seal cover 4 and the seal cylinder 3. The seal between the seal cover 4 and the seal cylinder 3 prevents or reduces premature solvent loss within the writing system, and thereby mitigates dry out of the writing instrument by substantially sealing the assembly.
We have observed that prior art seal covers 4, such as the seal cover 4 shown in
Turning now to
As shown in
The pair of ribs 160 may be formed of plastic and the may be attached to the first surface 150 by any known means, such as adhesive, fasteners, integral molding, etc. Although the ribs 160 need not be parallel to one another, the ribs 160 typically are oriented in a direction substantially parallel to one another, for example, in a direction parallel to the line between the hinge 128 and the front 134 of the lid 104.
Each of the pair of ribs 160 may include a gusset 162 (
A valve seal ring 170 may be disposed on the seal cylinder 103, for example, on an interior annular surface proximate the opening of the seal cylinder 103. The valve seal ring 170 contacts the second surface 152 of the lid 104 (which is opposite the first surface 150) when the lid 104 is in a closed position and thus can help in sealing the assembly. The valve seal ring 170 may be formed of the same material as the seal cylinder 103 (e.g., a single shot molding process), or the valve seal ring 170 may be formed of a different material from the seal cylinder 103 (e.g., a two shot molding process as described in U.S. patent application Ser. No. 11/654,959).
By directing force from the connection means towards the center of the lid 104, it is believed that the force directors 160 cause the lid 104 to deform in a predictable manner. For example, when the lid 104 deforms, the deformation radiates outward from the center in a negative direction (i.e., into the valve cylinder). Additionally, the greatest negative deformation generally occurs near the center of the lid 104 with the negative deformation decreasing exponentially toward the outer circumference of the lid 104. Thus, the valve seal ring 170 remains under positive compression over its entire circumference, especially the area adjacent the front 134 of the lid 104. As a result, the lid 104 reduces premature evaporation of ink solvent when the lid 104 is in the closed position by maintaining positive pressure across the entire valve seal ring 170.
The cross-section or width of the ribs 160 is relatively small compared to the thickness of the lid 104. Thus, injection molding defects, such as sink marks or surface imperfections, are significantly reduced due to a large injection pressure drop across the relatively small hinge gate. As a result, defects on the lid 104 that would reduce seal integrity between the lid 104 and the valve seal ring 170 are greatly reduced.
A second alternate embodiment of a lid 204 constructed and arranged in accordance with teachings of the disclosure is shown in
A third alternate embodiment of a lid 304 is shown in
In yet another embodiment, the force director could be provided as a single elevated structure positioned substantially in the center of the lid, thereby forming a tower. The tower centrally distributes the forces from the connecting member across the top of the lid, and substantially inside the diameter of the seal.
In still another embodiment, the force directing member could be attached to the connecting member as opposed to being attached to the lid. When the connecting member is positioned on the top of the lid such that the force directing member is substantially at the center thereof, the force directing member would contact the top of the lid, thus distributing forces from the transfer member across the top of the lid, and substantially inside the diameter of the seal.
In each of the above embodiments, it is believed that the force directing member redirects forces from the connecting member towards the center of the lid, thus causing the lid to cup, or deflect inwardly from the center of the lid. This deflection causes a more even distribution of force across a valve seal ring on a seal cylinder. Moreover, causing the lid to deflect in the center prevents asymmetric edge deflections that could cause leaks, thereby compromising the ink system of a retractable marker.
The force directors may be used on virtually any instrument having a lid. For example, as will be appreciated by one of skill in the art, valve doors having a force director as described above may be used in various retractable writing instruments such as highlighters, markers, felt-tipped pens, ball point pens, and the like. In addition to writing instruments, the force directors are also applicable to a variety of other retractable instruments including paint brush applicators, correction fluid applicators, make-up applicators, such as nail polish and mascara applicators, perfume applicators, thermometers, pH detectors, knives, fluid sampling devices, and other instruments. The improved valve door is particularly useful for writing instruments such as retractable markers having relatively large writing points as such instruments greatly benefit from the improved seal achieved with the force director components described herein. In one aspect, the writing instrument is a permanent marker. In another aspect, the writing instrument is a dry-erase marker.
Although certain force directors have been described herein in accordance with the teachings of the present disclosure, the scope of coverage of this patent is not limited thereto. On the contrary, while the invention has been shown and described in connection with various preferred embodiments, it is apparent that certain changes and modifications, in addition to those mentioned above, may be made. This patent covers all embodiments of the teachings of the disclosure that fairly fall within the scope of permissible equivalents. For example, the force director may take on virtually any shape and/or size provided that it is capable of directing force as described herein. Many other variations of the invention may also be used without departing from the principles outlined above. Accordingly, it is the intention to protect all variations and modifications that may occur to one of ordinary skill in the art.