The present invention relates to a valve for alternately filling two working chambers of a piston-cylinder system of a pump with a fluid, wherein the valve has two valve pump outlets for connection to the working chambers of the pump and has a valve control element that is displaceably arranged in a space of a valve housing and can be moved backwards and forwards in a fluid-driven manner between two end positions, wherein the valve control element has control ducts that co-operate with housing ducts arranged in the valve housing, wherein the first valve pump outlet is connected to the housing ducts and the second valve pump outlet is connected to the housing ducts.
Generic valves of the above type are required for example for filling the working chambers of membrane pumps and also piston pumps. With membrane pumps the membrane delimits a conveying chamber, in which a feed line and an outflow line terminate. As a rule non-return valves are arranged in the feed lines and outflow lines so that, due to the backwards and forwards movement of the membrane, the conveying medium is first of all suctioned through the feed line into the conveying chamber and can then be expelled from the conveying chamber through the outflow line.
So as to ensure a continuous conveyance, generally two membrane pumps are connected in parallel, wherein one of the pumps suctions the conveying medium and the other expels the conveying medium from its conveying chamber at the same time.
Double membrane pumps are also known, in which the membranes, which are generally formed as disc membranes, can be adjusted by means of a common piston-cylinder system or by means of an electric drive. In chambers in which explosive gases can be formed, no electric pumps are allowed to operate or stringent requirements have to be observed to protect against explosions. In this case pneumatic pumps are as a rule used, in which a piston, which is mechanically connected to the membranes, is moved backwards and forwards in a cylinder by means of compressed air. The compressed air is in this connection switched by means of a main valve in such a way that the two working chambers are alternately filled with compressed air. Such a pump is known from U.S. Pat. No. 4,818,191. The spaces separated from the conveying chamber by the membranes are connected to the surroundings by means of ducts, so that in the event of a leakage the conveying medium can escape from the pump and the movement of the membranes is not affected. A disadvantage with this pump is that the membranes are subjected to a high differential pressure loading on account of the high pressure in the conveying chamber and the ambient pressure prevailing behind the membrane, which leads to rapid wear of the membranes.
A further developed pneumatically driven double membrane pump is known from WO2009/024619. In this pump the compressed air driving the piston is simultaneously led into the space behind the membrane. At the same time the membrane is supported by a disc, which however only at the dead centre completely abuts the membrane in a supporting manner. A disadvantage of this pump is that if there is a defect in the membrane the conveying medium can reach the pneumatic system and cause the valves and therefore the whole pump to fail. Following this the pump can be restored to operation only with much effort and expenditure, if at all.
A double-chamber membrane pump without driven pistons is known from DE 32 06 242. A main valve is disclosed for this pump, in which a piston that moves backwards and forwards between two end positions in a cylinder is used as valve control element, wherein the piston comprises surrounding grooves and axial bores as control ducts. A disadvantage with this pump are the large chambers that have to be filled with compressed air after the dead centre is reached, in order that the membrane can be moved in the other direction. A very large amount of compressed air is required for this purpose, which increases the maintenance costs of the pump. A similarly constructed pump having the same disadvantages is known from CA 1172904, WO97/10902 and U.S. Pat. No. 5,368,452. Also, in the pump known from WO2009/024619 a disproportionately large amount of compressed air is required for the operation of the pump. Also, these pumps are not pressure intensified, so that the conveying pressure always lies below the feed pressure.
The object of the invention is to provide a valve for an alternately driven pump, with which the pump can reach a high efficiency.
This object is achieved according to the invention with a valve having the features of claim 1. Advantageous modifications of the valve according to claim 1 are disclosed by the features of the sub-claims.
The underlying concept of he invention is that the valve connects the two valve outlets connectable to the pump working chambers to one another via the valve control element in a central transition region between the end positions of the valve control element.
As already described in the introduction, such pumps as a rule comprise a piston-cylinder system, wherein the piston hermetically separates the two working chambers from one another. Depending on which working chamber is filled with compressed air or a liquid medium, the piston is adjusted to the left or to the right to its respective end positions. The movement reversal of the piston takes place in known valves in that the fluid is discharged, i.e. the pressure is released, from the last filled working chamber, and the compressed air or the pressurised liquid medium is introduced through the valve into the other working chamber.
In the valve according to the invention advantageously the already pressurised air of the last filled working chamber is not discharged unutilised to the surroundings, but is used for the prefilling of the working chamber that is due to be filled next. In this way compressed air is advantageously saved, whereby such as pump can be operated in a more energy-efficient manner.
Advantageously the main valve is designed as a 412-way valve or as a 5/2-way valve. It thus has two valve outlets for the connection of the working chambers of the pump, an inlet for the fluid supplied from an external pressure source, as Well as one or two outlets that serve for the alternate outflow of the fluid under pressure in the working chambers of the pump.
Since the valve control element of the valve moves alternately backwards and forwards only between its two end positions and remains respectively only within these positions, in the context of the present invention it is by definition a valve with two switching positions. The connection of the two valve pump outlets takes piece during passage through the central region between the two end positions. Here the valve control element is not in a defined switching position. If on the other hand the central region should also be understood as a switching position, then the valve according to the invention would advantageously be a 5/3-way or 4/3-way valve.
If for example the pump is a pneumatically driven pump, then during the movement phase of the valve control element and passage through the central region between the end positions, the two working chambers of the piston-cylinder system of the attached pump are connected to one another via the valve control element and thus the receiving working chamber is prefilled with the compressed air from the delivering working chamber. During further travel to the next end position of the valve control element the short circuit of the pump outlets of the valve is lifted, and the working chamber that was prefilled is flied further with the compressed air. The other working chamber is connected via the valve adjustment member to the valve outlet, so that the residual working air can expand and leave the working chamber, for example through sound absorbers. An improved efficiency of the attached pump can be achieved in this way, since less compressed air is required for the operation of the pump.
Advantageously the valve control element can be driven from one end position to the other end position by means of unregulated fluid pressure. On the other hand in most cases it is necessary to use a regulated fluid pressure source in order to fill the working chambers of the pump. The valve according to the invention can have for this purpose an inlet, for example for unregulated compressed air from an external compressed air source, wherein the valve itself can have a pressure regulating device for generating regulated compressed air at a specific pressure. Likewise the valve can have an inlet for regulated air and an inlet for unregulated air.
The valve control element is advantageously moved backwards and forwards by a piston. The valve control element can in this connection be a part of the piston. The valve control element may however obviously also be formed by the piston itself, it is however particularly advantageous if the valve control element is decoupled from the piston in such a way that it is always reliably held, in particular under the action of pressure, with its bearing surface hermetically abutting a bearing surface of the housing. In this connection duct openings of the control ducts are arranged in the bearing surface of the valve control element, and duct openings of the housing ducts are arranged in the bearing surface of the housing. These openings and ducts co-operate appropriately in the individual movement phases. The bearing surfaces should in this connection preferably be formed planar for production technology reasons.
In order to press the bearing surface against the bearing surface of the housing there may be provided either at least one spring element, which is supported on the piston and forcibly presses the valve control element with its bearing surface hermetically against a bearing surface of the housing. It is also possible however that the valve control element with its bearing surface is forcibly pressed hermetically against the bearing surface of the housing by means of a fluid, for example in the form of a piston-cylinder system that is arranged in the piston of the valve.
The valve control element can advantageously lie in a recess of the piston, wherein in particular at least in the movement direction of the piston a positive engagement exists between the piston and the valve control element, so that the valve control element at least in the movement direction of the piston is not displaceable relative thereto.
The space of the recess is in this connection sealed by means of respectively at least one seal with respect to the working chambers of the valve, which are formed by the piston in co operation with the cylinder.
The valve control element itself can advantageously in a simple modification have a cuboid shape, in which one side forms the bearing surface.
In a preferred embodiment the valve control element has at least one, in particular two, recesses in the bearing surface extending in the movement direction of the valve control element, which co-operate with the openings of the housing in such a way that a valve pump outlet, to which the connecting line to a working chamber A or B of the pump is attached, is connected as desired to the valve outlet, so that the fluid that is still present in the working chamber can expand and be discharged into a fluid reservoir or into the surrounding air, and can flow away. During the movement phase, in which the valve connects the two working chambers of the pump to one another, the pump outlet or pump outflow duct is not connected via the valve control element to any of the valve pump outlets, in order to connect the two pump valve outlets during the central movement phase, the valve control element has a further duct, which is separated from the recesses by wails of the valve control element. Advantageously this duct can run between two recesses spaced apart from one another.
The duct openings in the bearing surface formed by the housing are advantageously arranged so that one or two openings spaced apart from one another for the valve outlet duct is/are arranged in the middle between the openings of the ducts that lead to the valve pump outlets. The interspacing of the two openings for the two ducts that lead to the valve pump outlets should be chosen larger than the length of the recesses in the bearing surface of the valve control element, so as to ensure that in the central region through the recess for a specific path section the valve outlet does not correspond to or overlap with an opening of the ducts that lead to the valve pump outlets. Furthermore in each case ducts that serve to supply the fluid under pressure, in particular compressed air, to the working chambers of the pump terminate in the chamber in which the valve control element is arranged. These ducts are connected to the pump inlet, in this connection it is important that an unblocking of the opening of the connecting duct to a valve pump outlet can only take place when the middle movement phase is finished, i.e. the two pump working chambers are no longer connected to one another. The connection of the working chamber of the pump to be emptied takes place at the same time via the recess(es) of the valve control element up to the outflow duct of the valve.
The valve inlet is in this connection connected via connecting ducts to both front-face regions of the space in which the valve control element is moved. In this case the inflow openings of these connecting ducts can be arranged on both front-face regions of the recess forming the space for the valve control element in the piston. The front-face walls of the recess in the piston can in this connection have offsets forming ducts that are joined to the connecting ducts of the valve inlet.
Advantageously the valve according to the invention is controlled by means of additional switching valves that are actuated and switched by the piston of the pump being driven. Thus, in each case a working chamber of the piston-cylinder system of the valve according to the invention is filled with a pressurised fluid, in particular compressed air, via the switching valves until the valve control element has completely reached its other end position, so that the piston of the pump is displaced from its end position in the direction of its other end position. So long as none of the switching valves is actuated, the valve control element is no longer driven. The valve control element is however held in its end position by the fluid flowing into the working chamber to be respectively filled with pressurised fluid, since this fluid presses against the front wall of the valve control element in the direction of the end position to be maintained, in addition it is held in the end positions by the friction of the seals.
The switching valves can advantageously have throttles, so that the air forced out from the respective working chamber is braked by the respective throttle and as a result the movement of the valve control element of the valve is advantageously slowed down, whereby the phase of the pressure compensation between the preloaded and the shortly to be emptied working chamber, and the next working chamber to be filled in turn, becomes as long as possible. At the start of the movement of the pneumatic piston the throttle still does not act so strongly that the valve control element of the main valve is displaced at high velocity from its end position in the direction of the central region, in which the working chambers of the pneumatic cylinder are short-circuited.
The valve according to the invention and its use in a double membrane pump are described in more detail hereinafter with the aid of the following drawings, in which:
a-c: is a section through the plane C-C according to
a-c: is a section through the plane D-D according to
a-c: is a horizontal section through the valve in the region of the valve control element;
The ducts 80 and 81 terminate in openings 80a, 81a of the bearing surface 60a of the housing part 60, so that they can co-operate with the ducts 83, 84 and the recesses 67 of the valve control element 64. The upper housing part 61 forms together with the front-face housing covers 76 the cylinder for the piston 72, which hermetically seals the two working chambers 75 and 95 from one another by means of seals 73. By means of the seals 73 it is also ensured that no pressure medium can pass from the working chambers 75 and 95 into the recess 72a in which the valve control element 64 is disposed. The valve control element 64 is forced by means of the two springs 74 against the bearing surface 60a of the lower housing part 60, so that with sufficient planarity of both bearing surfaces a satisfactory hermetically is ensured.
a to 7c show the valve control element 64 in three different positions sectioned through the plane C-C according to
a to 8c show the valve 50 for the same positions of the valve control element 64, but in the sectional plane D-D. In this sectional plane the co-operation of the one recess 67 with the ducts 80, 81 and the outflow duct 51 in the various valve positions can be recognised. In
a to 9c show horizontal sections through the valve 50 in the region of the valve control element 64 for the three positions illustrated in
The first piston 1, which is formed by two discs 1a, 1b and separates the working chambers A and B from one another, is arranged in the cylinder 2, 3 of the first piston-cylinder system.
The discs 1a, 1b are screwed to one another by means of the screws 4. The cylindrical wall 2 has on its outside surface ribs for absorbing heat from the surrounding air, in order to prevent the membrane pump icing up. The axial walls 3 also comprise recesses 3b, which likewise serve to provide a better thermal conductivity and to stiffen the arrangement and save material. The piston 1 has a surrounding seal 1c, which hermetically abuts against the inner wall of the cylinder 2.
When assembling the piston 1 the piston rods 8a, 8b are inserted beforehand through the bores id until the collars 8c lie in the corresponding recesses to of the piston discs 1a, 1b. As a result of the assembly of the piston discs 1a, 1b, the piston rods 8a, 8b are fixed by positive engagement to the piston 1.
The piston rods 8a, 8b pass through the bores 3a of the axial walls 3, wherein seals 56 ensure that no compressed air can pass from the working chambers A, B into the hydraulic spaces H2. The piston rods 8a, 8b are hermetically connected at their ends rid to the hydraulic pistons by means of screws 60. The piston rods 8a, 8b are formed as tubes, in which the connecting element 5 is displaceably accommodated in the form of a rod. The connecting element 5 is screwed with its ends 5a provided with an outer thread, into the membrane disc 20. The membrane disc 20 is formed in the membrane M1 in its centre 21.
The hydraulic pistons 9 likewise comprise a surrounding seal 12, which hermetically abuts against the inner wall of the cylinder war 10 and separates the two working chambers H1, H2 from one another. The two hydraulic chambers H2 of the two hydraulic piston-cylinder systems are connected to one another via the connecting ducts 16, 17 and 18. Differential pressure valves 13 are in each case arranged in the hydraulic pistons 9. As long as the differential pressure between the working chambers H1 and H2 exceeds a certain value during the operation of the pump, the differential pressure valve 13 opens and the differential pressure can be reduced to a predetermined value. The connecting duct 16, 17, 18 can be connected by means of a further connecting line (not shown) to a reservoir and/or a sensor, if an inflow or outflow of hydraulic medium now occurs at the reservoir or the connecting line, this may indicate a fracture of the membrane, whereupon an error signal can be sent to an override control and/or the membrane pump is automatically switched off. This can take place for example by the forced closure of the line supplying the pump with compressed air.
The feed ducts 28 are connected to one another by means of the feed line 36, wherein the feed tine 36 forms with its one end 41 the conveying medium inlet of the pump. The other end of the feed line 36 formed as a tube is closed by means of a screwed-in plug 34. The feed line 36 lies with its regions 36a in a floating manner in the housing flanges 27, wherein seals 39 provide the necessary hermeticity. The housing flanges 27 comprise an annular space 40 enclosing the regions 38a, which is formed by a surrounding groove. In the region 36a the feed fine 36 has window-like openings 38, through which the conveying medium passes from the interior 37 of the feed fine 36 into the annular space 40 and from there into the feed duct 28.
The outflow ducts 26 are connected to one another by means of the pressure line 29, wherein the pressure line 29 forms with its one end 33 the conveying medium outlet of the pump. The other end of the pressure line 29 formed as a tube is dosed by means of a screwed-in plug 34. The pressure fine 29 lies with its regions 29a in a floating manner in the housing flanges 25, wherein seals 39 provide the necessary hermeticity. The housing flanges 25 have an annular space 32 enclosing the regions 29a, which is formed by a surrounding groove. in the regions 29a the pressure line 29 comprises window-like openings 31, through which the conveying medium can pass from the annular space 32 into the interior 30 of the pressure line 29.
Switching valves 14, which reach via an extension 15 of their valve control members into the working chambers A, B, are arranged in the axial wails 3. As soon as the piston 1 reaches its dead centre, the respective switching valve is actuated, whereby compressed air is fed to the main valve 50 via ducts (not shown), and the main valve is in turn switched.
The main valve 50 according to the invention is arranged externally on the pump housing, so that a good heat exchange with the ambient air can take place, whereby the danger of icing up is reduced.
As soon as the membrane disc 20 is adjusted by means of the hydraulic piston 9 so that the volume of the conveying chamber F1 is reduced, the conveying medium present in the conveying chamber F1 is conveyed through the non-return valve 24 to the outflow duct 26. The non-return valve 23 is closed during this operation. If the volume of the conveying chamber F1 is then increased by retracting the membrane M1, conveying medium is suctioned from the feed line 36 into the conveying chamber F1 through the now opened non-return valve 23. The non-return valve 24 is closed during the suction phase.
The inlet 43 is connected via connecting lines 48, 49 to the switching valves 14. The switching valves are formed as 3/2-way valves and are switched by means of the extensions 15 of their valve control members extending into the working chambers A, B. A spring forces the valve control members into the illustrated position, in which the control lines 52, 53 are not connected to the valve inlet or to the connecting line 48, 49. As soon as the piston 1 adjusts the respective valve control member 15, the switching valve 14 is switched and the unregulated compressed air from the external compressed air source switches the valve 50 according to the invention.
The valve 50 is formed as a 5/2-way valve. In the illustrated position the regulated compressed air reaches the working chamber A via the connecting line 57. The piston 1 is thus displaced to the right together with the hydraulic piston 9. Due to the hydraulic medium present in the hydraulic chambers H1 the right-hand membrane (not shown) is now displaced to the right, whereby its associated conveying chamber is reduced in size. The right-hand membrane is thus in conveying mode, and at the same time the left-hand membrane, likewise not illustrated in
Number | Date | Country | Kind |
---|---|---|---|
10 2010 013 107.5 | Mar 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/001359 | 3/18/2011 | WO | 00 | 9/24/2012 |