The present invention relates to valves and, in particular, to a valve with a special handle that tracks the usage of the valve to enable logging and billing. The valve handle may thus be used not only to dispense a gas but, in combination with the disclosed procedure, to provide a method for conveniently providing tracking of the use of the gas and subsequent billing for medical treatments using the gas.
Some medical treatments involve the use of gases that are inhaled by the patient. In the past, medical gas suppliers have charged for the gas in the cylinder at the time of delivering the filled cylinder to the user. This method has been used both for industrial and medical uses. Pharmaceutical gases, dispensed by prescription, have great variability of use from patient to patient due to treatment regimen and dispensing methods. A method of charging for treatment time would be a desirable way for allocating the true value of the product. However, in the past, there has not been a way to automatically track the duration of treatments by cylinder or to tie the treatments to the patients who receive the treatments in order to make it easy to bill for use of the gas. Such a method is provided in accordance with the present invention.
The present invention provides a valve with a smart handle for the gas bottle (or cylinder). This valve records all the treatment information and makes the information readily accessible for use in tracking and invoicing. It permits the vendor to invoice the user for total treatment time and to provide users, such as hospitals or clinics, the information to bill individual patients. It also provides both the vendor and the user with data which is useful for trend analysis and inventory control.
The valve handle includes sensors for sensing the opening and closing of the valve, a timer for timing the duration over which the valve is opened, and an electronic memory device which records the pertinent information. The information recorded by the memory device may include the cylinder fill date, the lot batch number, cylinder number, the patient's name, the number of times the valve is opened, and the date, time, and duration of each opening of the valve, as well as additional information, if desired.
The data then can be readily transferred from the memory device to a device that generates reports or invoices.
Referring to
The handle 16 mounts on the valve stem 15. An operator grasps the handle 16 and rotates it in order to open and close the flow of gas from the cylinder 12 to a ventilator or other gas dispensing device (not shown). The handle 16 has a substantially circular cross-section and includes ribs around its outer edge to facilitate grasping the handle.
As shown in
Most of the components of
The handle 16 is protected from undesired removal by a special stud 38 (such as a “Torx” stud) and its corresponding security nut 39 (See
While the simple proximity sensor 28 and magnet 32 are used in this preferred embodiment, many other arrangements are known in the art for sensing and signaling when the valve 10 is open and when it is closed, and it would be obvious to those skilled in the art to use other known sensing arrangements.
The display 26 may be arranged to display in a variety of ways. However, in this embodiment, it alternates flashing of two different numbers—first the accumulated open time, and then the open time for the current event preceded by a “plus sign”. If the valve is closed, then the current event open time flashes as a “minus sign” with no digits adjacent to the “minus sign”.
The threaded security stud 38 is fixed at its top end to the handle cover 24 and projects downwardly. It is received by the special security nut 39, which is rotatable relative to the handle 16 but is trapped onto the underside of the handle 16. The nut 39 must be unthreaded from the stud 38 in order to remove the handle cover 24 to allow access to the interior of the handle 16. This arrangement helps make the handle 16 tamper-proof. Once the handle cover 24 has been removed, there is access to the batteries 25, reset button 27, and so forth, and there is access to the screw 37 which secures the handle 16 to the valve stem 15.
An optional locking device 54 (See
Since the collar 30 is fixed on the valve 14, and the arm 58 of the locking device 54 is caught in the notch 40 of the collar 30, the locking device 54 is fixed and does not rotate relative to the valve body 14. Furthermore, since the finger 60 is attached to the arm 58 (which is part of the locking device 54), and is mated to the security nut 39 (which is part of the handle 16), then the handle :16 is also unable to rotate relative to the valve body 14. In order to open the valve 10, the locking device 54 is removed by pushing downwardly on the outwardly-projecting portion of the tab 62 to release the inwardly-projecting portion of the tab 62 from the top of the handle 16, and then the locking device 54 is slid downwardly to remove the finger 60 from the nut 39 and to remove the arm 58 from the notch 40. Then, the handle 16 can be rotated to open the valve 10. As long as the locking device 54 is properly attached to the valve 10, accidental opening of the valve 10 (such as due to vibration during transport) is unlikely.
Installation of the Valve and Handle:
The following steps may be taken to install the valve and handle on the gas cylinder. First, the valve body 14 (without the valve handle 16) is installed onto the cylinder 12 by threading the inlet port 18 of the valve body onto the cylinder 12. At this point, the valve stem 15 is in the full clockwise (closed) position. The cover 24 is removed from the handle 16, and the handle 16 is temporarily placed onto the valve stem 15 by placing the square hole 15A of the handle 16 over the valve stem 15. The handle 16 should be in a position in which there will be easy access to the memory module 22. The location of the security nut 39 should be noted, and then the handle 16 should be removed from the valve stem 15.
As shown in
Once the collar 30 and its notch 40 and magnet 32 are properly positioned onto the valve body 14, the handle 16 can then be placed back onto the valve stem 15, with the square opening 15A of the handle 16 fitting onto the valve stem 15, making sure to align the security nut 39 with the notch 40 on the collar 30. The handle 16 is then secured to the stem 15 by using a Fender washer 35 and threading a button-head cap screw 37 from the top side of the handle 16 into the threaded top of the stem 15, as is well known in the art. (See
The reset button 27 on the inside of the handle 16 is then depressed to reset the timers 21. The handle cover 24 is then installed onto the handle 16 by lining up the security stud 38 with the security nut 39 and tightening the security nut 39 from below, extending a tool upwardly through the notch 40. This draws the handle cover 24 onto the handle 16. The LCD display 26 should read −00.0 The minus sign indicates that the valve handle is not currently logging time and ensures that the magnet 32 on the target collar 30 and the sensor 28 on the handle 16 are properly aligned. When the valve handle 16 is in the closed position, the LCD display 26 toggles between a “ - - - ” display indicating that the valve 10 is closed, to a “-XXX” display where XXX represents the total accumulated time the cylinder has been open. When the valve handle 16 is in the open position, the LCD display 26 toggles between the treatment time display and the total accumulated time display.
Configuring the Valve with Smart Handle
Once the valve handle 16 is reset and is mounted on the cylinder 12, the valve handle should now be configured to input the initial parameters such as:
This initial configuration would typically be done by the distributor who is filling and supplying the filled cylinders to the user. The distributor uses a computer in which the required software has been previously installed and the initialization parameters have been previously inputted. The distributor inputs the initialization parameters from its computer to the smart handle 16 by some known data transfer mechanism. In this preferred embodiment, the distributor uses the transfer device 44 shown in
Similarly, the user (such as the hospital) may add more data into the memory device 22 of the valve 10. This information may include a patient identification number, a treatment number, and so forth, which the hospital may use for its record keeping and for billing its patients or other end users. One way to add that data is by using a hand held computer 50 or laptop (not shown), inputting the information into the computer 50 and transferring that information to the memory device 22 through an adapter 48 (shown in
The hospital or other user, as well as the distributor, may later download the data from the memory device 22 to be used for record keeping and billing.
Valve Operation
Typically, the outlet port 20 of the valve 10 is connected to a delivery device, such as a ventilator (not shown), which is used to adjust the concentration and flow rate or to mix gases administered to the patient. When the valve handle 16 is turned to open or close the valve, the proximity sensor 28 triggers the processor 23 to instruct the memory device 22 to log the event, including date, time, and whether the event was an opening or a closing of the valve. This information is stored in a non-volatile, read-only-memory (NVROM) in the memory device 22. As was explained above,
All this information may be read or downloaded by the user and/or by the supplier, using a number of data transfer methods. Three methods are described here, but others may also be used.
1—Using a PIR-2 reader (See
The data on the portable iButtons 22A may then be transferred to a computer via a DS-1402 BlueDot receptor 52 (See
2—The data may be downloaded directly onto a hand-held or lap-top computer 50 using a wand reader 44, as shown in
3—The data may be sent directly from the port 22′ on the handle 16 to a printer.
The user may use the generated reports to keep a record of the treatments on the patients, for record keeping, for billing the patients, and for checking the billing it receives from its supplier. The supplier may use the generated reports or print outs to bill the user for the treatments and for inventory control purposes.
For instance, a worker may walk around the user's facility (a hospital or clinic, for example) at certain intervals with a reading device and download the data from the ports 22′ on the handles 16 of the cylinders 12 to a portable iButton 22A or to some other portable recording device. It would also be possible for the handle 16 to include a transmitter to transmit the data to a remote recording device at intervals or on command, as desired. The HA7MB reader of
In the first preferred embodiment shown in
Some advantages of this Smart Valve handle system include:
The embodiment described above is only intended to be one example of a device made in accordance with the present invention. It will be obvious to those skilled in the art that modifications may be made to the preferred embodiment described above without departing from the scope of the present invention.
This application is a National Stage Application of PCT/US01/45519 which claims priority from U.S. Provisional Application Ser. No.: 60/249,765 filed 17 Nov. 2000.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US01/45519 | 11/15/2001 | WO | 00 | 5/15/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/40914 | 5/23/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5202666 | Knippscheer | Apr 1993 | A |
5409037 | Wheeler et al. | Apr 1995 | A |
5441070 | Thompson | Aug 1995 | A |
5680329 | Lloyd et al. | Oct 1997 | A |
5945910 | Gorra | Aug 1999 | A |
6003170 | Humpert et al. | Dec 1999 | A |
6236317 | Cohen et al. | May 2001 | B1 |
Number | Date | Country |
---|---|---|
0961065 | Dec 1991 | EP |
WO 9836245 | Aug 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20040045608 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60249765 | Nov 2000 | US |