1. Field of the Invention
The present invention relates to a vapor chamber, and in particular to a vapor chamber having a composite supporting structure.
2. Description of Prior Art
With the advancement of science and technology, the power and performance of a modern electronic element have been increased significantly. As a result, a large amount of heat is generated during the operation of the electronic element. If the heat is not conducted to the outside but accumulated inside the electronic element, the temperature of the electronic element will rise to such an extent that its performance is affected and even the electronic element may suffer damage. Therefore, it is an important issue for the manufacturers in this field to develop effective heat-conducting members to solve the above problem. For example, a vapor chamber is a common heat-conducting member used nowadays.
The vapor chamber includes a flat sealed casing, a wick structure formed in the flat sealed casing, and a working fluid filled in the flat sealed casing. The flat sealed casing is formed with a heat-absorbing surface and a heat-releasing surface opposite to the heat-absorbing surface. The heat-absorbing surface is brought into thermal contact with an electronic heat-generating element. The liquid/vapor phase change of the working liquid inside the vapor chamber thermally conducts the heat generated by the electronic heat-generating element from the heat-absorbing surface to the heat-releasing surface.
Recently, since electronic products are made more and more compact, the thickness of the vapor chamber provided in the electronic product has to be reduced accordingly. However, the reduction in the thickness of the vapor chamber inevitably reduces the thickness of the flat sealed casing. As a result, the whole structural strength of the vapor chamber becomes insufficient due to the thinned casing. When the vapor chamber is evacuated vacuum, the external atmosphere will exert a compressive force onto the vapor chamber, thereby making the vapor chamber sunken. In another case, the portion of the vapor chamber to which an electronic heat-generating element is adhered will be sunk due to the compressive force exerted by the electronic heat-generating element on the vapor chamber.
Therefore, it is well known to provide a supporting structure within the vapor chamber. The supporting structure abuts an upper surface and a lower surface of an inner wall of the vapor chamber to increase the structural strength of the vapor chamber, thereby protecting the vapor chamber from getting sunken due to the external compressive force. If the area and volume of the supporting structure are too small, the effect of the supporting structure may be insufficient. However, if the area and volume of the supporting structure are too large, the supporting structure may obstruct the phase change between liquid and vapor phases of the working fluid and thus adversely affect the thermal-conducting effect of the vapor chamber.
On the other hand, in practice, since the working fluid in the vapor chamber is vaporized when heated, the volume of the vapor phase of the working fluid is significantly larger than that of the liquid phase of the working fluid. The volume expansion and the pressure increase of vapor will bulge the casing of the vapor chamber, which causes unevenness of the vapor chamber. Thus, it is an important issue to balance the compressive strength and the tensile strength of the vapor chamber.
Therefore, it is an important issue for the present inventor to solve the above problems.
The present invention is to provide a vapor chamber having a composite supporting structure, whereby compressive strength and tensile strength thereof can be increased simultaneously without obstructing the circulation of liquid/vapor phases of the working fluid and reducing the thermal-conducting efficiency thereof.
The present invention provides a vapor chamber having a composite supporting structure, comprising: a flat sealed casing; a wick structure arranged on inner walls of the flat sealed casing; a working fluid filled within the flat sealed casing; and a composite supporting structure mounted in the flat sealed casing, the composite supporting structure having a waved supporting rack and at least one supporting pillar.
In comparison with prior art, the present invention has advantages features as follows:
According to the present invention, since the waved supporting rack is configured to support an upper inner wall and a lower inner wall of the flat sealed casing, the waved supporting rack can increase the compressive strength of the vapor chamber. Thus, the vapor chamber may not be sunken due to the compressive force exerted by an electronic heat-generating element or during a vacuum evacuation process.
Furthermore, since the waved supporting rack has therein a plurality of separated channels for allowing the vapor of the working fluid to flow through, the waved supporting rack will not obstruct the circulation of liquid/vapor phases of the working fluid nor adversely affect the thermal-conducting efficiency of the vapor chamber.
Since the composite supporting structure of the present invention further has at least one supporting pillar, both ends of the supporting pillar are respectively connected to the flat sealed casing or the wick structure, the flat sealed casing can be prevented from bulging, thereby increasing the tensile strength of the vapor chamber.
The detailed description and technical contents of the present invention will become apparent with the following detailed description accompanied with related drawings. It is noteworthy to point out that the drawings is provided for the illustration purpose only, but not intended for limiting the scope of the present invention.
Please refer to
As shown in
The flat sealed casing 10 is made of metallic materials of good thermal conductivity. The wick structure 20 is made by sintering metallic powders or metallic meshes. The interior of the wick structure 20 has a plurality of tiny pores to thereby generate a capillary action. The wick structure 20 is arranged on an inner wall of the flat sealed casing 10. The working fluid 30 is filled inside the flat sealed casing 10. With the circulation of liquid/vapor phases of the working fluid 30 in the flat sealed casing 10, the heat generated by the electronic heat-generating element (not shown) can be conducted to the outside continuously.
According to a first embodiment shown in
In the present embodiment, the composite supporting structure 40 is accommodated in the flat sealed casing 11 and includes a waved supporting rack 41 and at least one supporting pillar 42 (seven shown in
The waved supporting rack 41 comprises at least two side plates 411 and a plurality of waved pieces 412 connected between the two side plates 411. Each of the waved pieces 412 is constituted of a plurality of wave-crest sections 4121 and a plurality of wave-recess sections 4122. The wave-crest sections 4121 of the any two adjacent waved pieces 412 are staggered to each other. Similarly, the wave-recess sections 4122 of any two adjacent waved pieces 412 are staggered to each other. Any two adjacent waved pieces 412 are separated from each other to form a separated channel 4123 there between. The wave-crest sections 4121 are located in a level higher than that of the top surface of the side plate 411, and the wave-recess sections 4122 are located in a level lower than that of the bottom surface of the side plate 411.
As shown in
Please refer to
Please refer to
Please refer to
Please refer to
In comparison with prior art, the present invention has advantages features as follows:
According to the present invention, since the waved supporting rack 41 is configured to support an upper inner wall and a lower inner wall of the flat sealed casing 10, the waved supporting rack 41 can increase the compressive strength of the vapor chamber 1. Thus, the vapor chamber 1 may not be sunken due to the compressive force exerted thereon by the electronic heat-generating element or a vacuum evacuation process.
Furthermore, since the waved supporting rack 41 has therein a plurality of separated channels 4123 for allowing the vapor of the working fluid 30 to flow through, the waved supporting rack 41 will not obstruct the circulation of liquid/vapor phases of the working fluid 30 nor adversely affect the thermal-conducting efficiency.
Since the composite supporting structure 40 of the present invention further has at least one supporting pillar 42 with its both ends connected to the flat sealed casing 10 or the wick structure 20, the flat sealed casing 10 can be prevented from bulging, thereby increasing the tensile strength of the vapor chamber 1.
Although the present invention has been described with reference to the foregoing preferred embodiments, it will be understood that the invention is not limited to the details thereof. Various equivalent variations and modifications can still occur to those skilled in this art in view of the teachings of the present invention. Thus, all such variations and equivalent modifications are also embraced within the scope of the invention as defined in the appended claims.