Information
-
Patent Grant
-
6394074
-
Patent Number
6,394,074
-
Date Filed
Thursday, October 18, 200123 years ago
-
Date Issued
Tuesday, May 28, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 123 525
- 123 521
- 123 516
- 123 518
- 123 519
- 123 520
- 123 522
-
International Classifications
-
Abstract
A fuel pump suctions fuel from a fuel tank and discharges it into a pressure tank. Then, the fuel pump suctions the fuel from the pressure tank and pressurizes it. Then, the fuel pump discharges the pressurized fuel toward an engine side through a fuel discharge pipeline. A pressure control valve is opened to communicate an inside of the fuel tank and an inside of the pressure tank when a pressure in the pressure tank becomes equal to or greater than a predetermined pressure. A canister receives activated carbons for absorbing vapor fuel from the fuel tank. A pressurizing pump suctions the vapor fuel from the canister and pressurizes it. The pressurized vapor fuel is then discharged from the pressurizing pump into the pressure tank, so that the vapor fuel is dissolved into the fuel in the pressure tank.
Description
CROSS REFERENCE TO RELATED APPLICATION
This application is based on and incorporates herein by reference Japanese Patent Application No. 2000-320835 filed on Oct. 20, 2000.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a vapor fuel processing system for dissolving vapor fuel, which is generated in a fuel tank and is absorbed by a canister, into liquid fuel received in the fuel tank.
2. Description of Related Art
In a previously proposed vapor fuel processing system, vapor fuel generated in the fuel tank is absorbed by activated carbons received within a canister and is discharged into an intake air pipeline of an intake air system that supplies intake air to an engine, so that the vapor fuel discharged into the intake air pipeline is combusted in the engine. However, in this system, a deviation in an air-fuel ratio occurs due to the vapor fuel discharged into the intake air pipeline. This may result in an increase in the amount of noxious components contained in exhaust gas of the vehicle. This is not favorable for satisfying various emission standards, such as the SULEV standard. Thus, it is desirable to reduce the amount of the vapor fuel discharged into the intake air pipeline.
Furthermore, there is a strong demand for improving fuel consumption of vehicles. In an engine that can achieve improved fuel consumption, a negative pressure of intake air is reduced due to a reduction in a pumping loss and an increase in fuel combustion in a lean fuel range. In the engine that has the reduced negative pressure of the intake air, the amount of the vapor fuel, which is absorbed by the canister and is then removed from the canister into the intake air pipeline through use of the negative pressure of the intake air, is reduced.
The system that discharges the vapor fuel into the intake air system can be modified as follows. That is, the vapor fuel absorbed by the canister from the fuel tank may be suctioned into and pressurized within a pressurizing pump. Then, the pressurized vapor fuel may be discharged into a pressure tank maintained at a high pressure to liquefy the vapor fuel. Thereafter, the liquefied fuel under the high pressure may be discharged into a fuel supply line.
However, when the pump suctions the vapor fuel from the canister, the air is also suctioned along with the vapor fuel, so that the air is also dissolved into the pressurized liquefied fuel. Thus, the fuel that contains the dissolved air is supplied to the engine. When the fuel pressure decreases, for example, right after engine stop, the air dissolved in the fuel is depressurized and becomes air bubbles, making it difficult to restart the engine.
SUMMARY OF THE INVENTION
Thus, it is an objective of the present invention to provide a vapor fuel processing system that can process vapor fuel regardless of a degree of a negative pressure of intake air and can restrain a deviation in an air-fuel ratio.
To achieve the objective of the present invention, there is provided a vapor fuel processing system including a fuel tank, a pressure tank, a pressure control valve, a canister and a pressurizing pump. The fuel tank receives liquid fuel. The pressure tank is arranged within the fuel tank and receives liquid fuel supplied from the fuel tank. The pressure control valve is arranged between the fuel tank and the pressure tank. The pressure control valve is opened to communicate between an inside of the pressure tank and an inside of the fuel tank when a pressure within the pressure tank becomes equal to or greater than a predetermined pressure. The canister absorbs vapor fuel contained in the fuel tank. The pressurizing pump is arranged between the canister and the pressure tank. The pressurizing pump suctions the vapor fuel from the canister and discharges the vapor fuel into the liquid fuel in the pressure tank upon pressurizing the vapor fuel in the pressurizing pump to dissolve the vapor fuel into the liquid fuel in the pressure tank.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention, together with additional objectives, features and advantages thereof, will be best understood from the following description, the appended claims and the accompanying drawings in which:
FIG. 1
is a schematic view of a vapor fuel processing system according to a first embodiment of the present invention;
FIG. 2
is a schematic view of a vapor fuel processing system according to a second embodiment of the present invention; and
FIG. 3
is a schematic view of a vapor fuel processing system according to a third embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Various embodiments of the present invention will be described with reference to the accompanying drawings.
First Embodiment
A vapor fuel processing system according to a first embodiment of the present invention is shown in FIG.
1
.
There is provided a fuel tank
1
that can be made of a resin material or a metal material. A pressure control valve
50
is provided within the fuel tank
1
. When a pressure in the fuel tank
1
becomes negative, the pressure control valve
50
is opened to connect an inside and an outside of the fuel tank
1
.
The fuel pump
10
is an in-tank type fuel pump that is received within the fuel tank
1
. The fuel pump
10
includes a flange
11
, a pump main body
12
, suction filters
13
,
14
and a pressure regulator
15
. The flange
11
is attached to the fuel tank
1
. Various fuel pipelines, connectors and the like are attached to the flange
11
. Furthermore, a pressurizing pump
40
, which will be described later in greater detail, is integrally mounted to the flange
11
. Thus, the fuel pump
10
and the pressurizing pump
40
constituting an integrated unit that may be preassembled before it is installed in the fuel tank
1
. The integrated unit allows easier assembly of the vapor fuel processing system and also allows a reduction in the number of the assembling steps for assembling the vapor fuel processing system.
The pump main body
12
is of a two-stage type. In a first stage, the pump main body
12
suctions fuel from the fuel tank
1
through the suction filter
13
and discharges it into a pressure tank
20
. Then, in a second stage, the pump main body
12
suctions the fuel from the pressure tank
20
through the suction filter
14
and pressurizes it. Then, the pump main body
12
discharges the pressurized fuel toward an engine side of the system through a fuel discharge pipeline
100
. A pressure regulator
15
regulates a pressure of the pressurized fuel discharged from the pump main body
12
to be equal to or less than a predetermined value. The pressure regulator
15
also returns excess fuel into the pressure tank
20
. The pressure tank
20
is substantially sealed. A pressure control valve
52
is opened to communicate between the inside of the fuel tank
1
and an inside of the pressure tank
20
when a pressure in the pressure tank
20
becomes equal to or greater than a predetermined pressure.
A canister
30
is arranged at the outside of the fuel tank
1
and receives activated carbons for absorbing vapor fuel outputted from the fuel tank
1
. The canister
30
has a heater
31
and a solenoid valve
32
. The heater
31
that acts as a heating means of the present invention heats an inside of the canister
30
to increase the amount of fuel removed from the activated carbons of the canister
30
. When the solenoid valve
32
is opened, the inside and an outside of the canister
30
are communicated with each other, so that the inside of the canister
30
is communicated with the atmosphere. A pipeline
110
connects between a pressure control valve
51
provided in the fuel tank
1
and the canister
30
. The pressure control valve
51
opens to communicate between the inside of the fuel tank
1
and the inside of the canister
30
when the pressure in the fuel tank
1
becomes equal to or greater than a predetermined pressure. A pipeline
111
connects between the canister
30
and the pressurizing pump
40
. A pipeline
112
connects between the pressurizing pump
40
and the pressure tank
20
. The pipelines
110
,
111
,
112
constitute a circulation pipeline for circulating air received in the fuel tank
1
between the fuel tank
1
and the canister
30
.
The pressurizing pump
40
is assembled to the flange
11
. The pressurizing pump
40
is driven, for example, by a motor to suction the vapor fuel received in the canister
30
and to pressurize it to a pressure equal to or less than 100 kPa. The pressurized vapor fuel is then discharged from the pressurizing pump
40
into the pressure tank
20
.
In general, in order to liquefy the vapor fuel, the vapor fuel should be cooled to about zero degrees Celsius or should be pressurized to about 500 to 600 kPa. In the present embodiment, the vapor fuel is absorbed by the canister
30
when it is supplied from the fuel tank
1
through the pipeline
110
, and then the vapor fuel is suctioned from the canister
30
by the pressurizing pump
40
through the pipeline
111
. Thereafter, the vapor fuel is pressurized by the pressurizing pump
40
and is discharged into the pressure tank
20
through the pipeline
112
, so that the vapor fuel is dissolved into the liquid fuel received in the pressure tank
20
. The vapor fuel dissolved into the liquid fuel received in the pressure tank
20
is suctioned by the pump main body
12
and is thereafter discharged from the pump main body
12
toward the engine side of the system. The air discharged into the pressure tank
20
along with the vapor fuel is discharged into the fuel tank
1
through the pressure control valve
52
and flows into the canister
30
along with the remaining air and the vapor fuel in the fuel tank
1
once again.
When the vapor fuel is pressurized to about equal to or less than 100 kPa without cooling it, the most of the vapor fuel can be dissolved into the liquid fuel in the pressure tank
20
without cooling it. This allows use of a smaller pressurizing pump having a smaller pressurizing capacity as the pressurizing pump
40
of the present embodiment. Furthermore, it is also possible to prevent leakage of the vapor fuel out of the fuel tank
1
.
In the present embodiment, the temperature in the canister
30
is raised by the heater
31
. The removal process of the vapor fuel absorbed by the activated carbons in the canister
30
is an endothermic reaction. Thus, when the temperature of the canister
30
increases, the amount of the vapor fuel removed from the canister
30
increases, so that a concentration of the vapor fuel discharged into the pressure tank
20
increases. When the concentration of the vapor fuel discharged into the pressure tank
20
increases, the vapor fuel is more easily dissolved into the liquid fuel received within the pressure tank
20
.
When the temperature inside of the fuel tank
1
rises, a concentration of the vapor fuel supplied to the canister
30
tends to increase. Thus, it is advantageous to provide, for example, a cooling device at an inlet side of the pressure control valve
51
to reduce a temperature of the air in order to reduce the concentration of the vapor fuel supplied to the canister
30
.
Also, when the amount of the vapor fuel removed from the canister
30
increases, the amount of the vapor fuel that can be absorbed by the canister
30
increases. Thus, a size of the canister according to the present embodiment can be advantageously reduced in comparison to a canister that is not heated while a capacity of the canister for absorbing the vapor fuel is maintained at substantially the same level.
Second Embodiment
A second embodiment of the present invention is shown in FIG.
2
. Components similar to those of the first embodiment are depicted with similar reference numerals. In the second embodiment, in addition to the passage for discharging the vapor fuel from the canister
30
into the pressure tank
20
, there is also provided a passage for discharging the vapor fuel from the canister
30
into an intake air pipeline that constitutes a part of an intake air system.
A pipeline (output pipeline)
120
branches off from the pipeline
111
and is connected to the intake air pipeline (not shown). A check valve
60
is inserted in the pipeline
120
on the canister
30
side. The check valve
60
prevents backflow of the vapor fuel from the intake air pipeline side toward the canister
30
side thereof. A solenoid valve
61
is inserted in the pipeline
120
on the intake air pipeline side of the check valve
60
. When the solenoid valve
61
is opened, the canister
30
side is communicated with the intake air pipeline side, so that the vapor fuel within the canister
30
is discharged to the intake air pipeline side. The pipeline
120
and the solenoid valve
61
constitute an outputting means of the present invention.
When an ambient temperature rises, and thereby a large amount of the vapor fuel is generated in the fuel tank
1
, it could happen that the pressurizing pump
40
alone is not sufficient to process the vapor fuel within the canister
30
by discharging the vapor fuel into the pressure tank
20
. When a pressure sensor (not shown) senses that the pressure inside of the fuel tank
1
becomes equal to or greater than a predetermined pressure, the solenoid valve
61
is opened, so that the vapor fuel that has not been discharged into the pressure tank
20
by the pressurizing pump
40
is discharged to the intake air pipeline side.
The amount of the vapor fuel discharged into the intake air pipeline side should be small, so that a deviation in an air-fuel ratio is small. Furthermore, by opening the solenoid valve
61
, the vapor fuel is processed through the two systems, so that the amount of the vapor fuel removed from the canister
30
is increased, and thereby the amount of the vapor fuel that can be absorbed by the canister
30
is increased. Thus, a size of the canister can be further reduced in comparison to the canister of the first embodiment while the amount of the vapor fuel that can be absorbed by the canister remains substantially the same. Furthermore, depending on the amount of the vapor fuel generated in the fuel tank
1
, it is possible to eliminate the heater
31
.
Third Embodiment
A third embodiment of the present invention is shown in FIG.
3
. Components similar to those of the first embodiment are depicted with similar reference numerals. In the third embodiment, a subtank
70
and a pressure tank
75
are provided as separate components. The pump main body
12
suctions the fuel from the subtank
70
, and the vapor fuel pressurized by the pressurizing pump
40
is discharged into the pressure tank
75
.
A known jet pump (not shown) is connected to a distal end of a pipeline
130
for circulating the excess fuel from the pressure regulator
15
. A fuel level in the subtank
70
is maintained to be higher than a fuel level in the fuel tank
1
by the fuel injected through the jet pump.
The fuel circulated from the pressure regulator
15
is also circulated to the pressure tank
75
through a pipeline
131
. A choke
132
is provided in the pipeline
131
. By adjusting an opening area of the choke
132
, a ratio between the amount of the fuel to be circulated to the jet pump and the amount of the fuel to be circulated to the pressure tank
75
can be adjusted. The fuel circulated to the pipeline
131
flows into the pressure tank
75
from the choke
132
through a check valve
76
. The check valve
76
prevents backflow of the fuel from the pressure tank
75
to the pressure regulator
15
side, so that the check valve
76
maintains a pressure in the pressure tank
75
when the engine is stopped.
As described above, in each one of the above embodiments, the vapor fuel is dissolved into the liquid fuel in the pressure tank. Thus, substantially no vapor fuel is discharged to the engine side, or only a small amount of the vapor fuel is discharged to the engine side, if any. Thus, even if the air-fuel ratio is deviated, the amount of the deviation in the air-fuel ratio can be minimized, so that noxious components contained in exhaust gas of the vehicle can be accordingly reduced.
Furthermore, the vapor fuel can be processed regardless of a degree of a negative pressure of the intake air, so that fuel consumption can be improved. Thus, if the vapor fuel processing system of the present invention is implemented in a low emission engine that has a smaller pumping loss and a wider lean fuel range, the vapor fuel can be effectively processed, so that the amount of the noxious components contained in the exhaust gas can be relatively easily reduced.
In the above embodiments of the present invention, although the fuel pump is received within the fuel tank
1
, it is possible to arrange the fuel pump at the outside of the fuel tank
1
. Furthermore, the pressurizing pump and the pressure tank can be also arranged at the outside of the fuel tank
1
.
Additional advantages and modifications will readily occur to those skilled in the art. The invention in its broader terms is therefore, not limited to the specific details, representative apparatus, and illustrative examples shown and described.
Claims
- 1. A vapor fuel processing system comprising:a fuel tank for receiving liquid fuel; a pressure tank arranged within said fuel tank, said pressure tank receiving liquid fuel supplied from said fuel tank; a pressure control valve arranged between said fuel tank and said pressure tank, said pressure control valve being opened to communicate between an inside of said pressure tank and an inside of said fuel tank when a pressure within said pressure tank becomes equal to or greater than a predetermined pressure; a canister for absorbing vapor fuel contained in said fuel tank; and a pressurizing pump arranged between said canister and said pressure tank, said pressurizing pump suctioning said vapor fuel from said canister and discharging said vapor fuel into said liquid fuel in said pressure tank upon pressurizing said vapor fuel in said pressurizing pump to dissolve said vapor fuel into said liquid fuel in said pressure tank.
- 2. A vapor fuel processing system according to claim 1, further comprising a heating means arranged within said canister for heating an inside of said canister.
- 3. A vapor fuel processing system according to claim 1, further comprising an outputting means for outputting said vapor fuel absorbed within said canister to an intake air system.
- 4. A vapor fuel processing system according to claim 1, further comprising a fuel pump received within said fuel tank, said fuel pump pumping said liquid fuel received within said fuel tank toward an engine side of said vapor fuel processing system.
- 5. A vapor fuel processing system according to claim 4, wherein said pressurizing pump and said fuel pump are provided together as an integrated unit.
- 6. A vapor fuel processing system according to claim 1, wherein said canister is inserted in a circulation pipeline that circulates air received within said fuel tank between said fuel tank and said canister, said vapor fuel absorbed by said canister being removed from said canister with use of said air circulated through said circulation pipeline.
- 7. A vapor fuel processing system according to claim 3, wherein said outputting means including:an output pipeline arranged between said canister and said intake air system to communicate therebtween; and a solenoid valve inserted in said output pipeline, said solenoid valve being opened when a pressure in said fuel tank becomes equal to or greater than a predetermined pressure.
- 8. A vapor fuel processing system according to claim 4, wherein said fuel pump includes a pump main body received within said pressure tank.
- 9. A vapor fuel processing system according to claim 4, wherein said fuel pump includes a pump main body arranged at an outside of said pressure tank.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-320835 |
Oct 2000 |
JP |
|
US Referenced Citations (5)
Foreign Referenced Citations (1)
Number |
Date |
Country |
58-136660 |
Sep 1983 |
JP |