Vapor phase deposition of organic films

Information

  • Patent Grant
  • 11446699
  • Patent Number
    11,446,699
  • Date Filed
    Monday, May 18, 2020
    4 years ago
  • Date Issued
    Tuesday, September 20, 2022
    a year ago
Abstract
Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve.
Description
BACKGROUND
Field

The present invention relates to forming organic thin films by vapor deposition.


Description of the Related Art

Organic thin films have valuable optical, thermal, electrical and mechanical properties and are widely used in the electronics, medical engineering, defense, pharmaceutical, and micro- and nanotechnology industries. Polymers in the microelectronics and photonics industries include, among other examples, photon- or electron-curable/degradable polymers for lithographic patterning; and polyimides for packaging, interlayer dielectrics and flexible circuit boards. Norrman et al., Annu. Rep. Prog. Chem., Sect. C, 2005, 101, 174-201.


Polyimide films in particular are valuable for their thermal stability and resistance to mechanical stress and chemicals. Polyimide thin films can be used as a starting point in semiconductor applications for amorphous carbon films or layers, which are needed for future V-NAND structures. Polyimide films can be used, for example, as antireflection layers to improve pattern definition and reduce misalignment in lithography steps, as layers in multiple patterning (e.g., SDDP, SDQP), as insulating materials for interlayer dielectric materials, or as the gate dielectric in all-organic thin film transistors.


Polymer thin films have traditionally been fabricated through spin-coating techniques. The spin-coating method forms highly functional polymer films by coating a rotating disc with a liquid material and sintering the liquid. However, tailoring of spin-applied films is limited for several reasons. For instance, formation of uniform thin films on a substrate is difficult to control, in part because of the viscosity of the starting liquid, and it can be difficult to fill the gaps of very small features (e.g., trenches or gaps between metal lines) without void generation after curing. Also, spin-coating over high topography relative to the desired thickness of the layer can result in discontinuous and non-conformal deposition. As semiconductor chip sizes continue to shrink, thinner and higher-strength films with more tunable morphology are required.


Recently, vapor phase deposition processes such as chemical vapor deposition (CVD), vapor deposition polymerization (VDP), molecular layer deposition (MLD), and sequential deposition processes such as atomic layer deposition (ALD) and cyclical CVD have been applied to the formation of polymer thin films. In CVD, a film is deposited when reactants react on a substrate surface. Gases of one or more reactants are delivered to one or more substrates in a reaction chamber. In thermal CVD, reactant gases react with one another on a hot substrate to form thin films, with the growth rate influenced by the temperature and the amount of reactant supplied. In plasma enhanced CVD, one or more reactants can be activated in a remote plasma generator or in situ. In ALD, a film is built up through self-saturating surface reactions performed in cycles. Vapor phase reactants are supplied, alternatingly and repeatedly, to the substrate or wafer to form a thin film of material on the wafer. In a typical process, one reactant adsorbs in a self-limiting process on the wafer. A different, subsequently pulsed reactant reacts with the adsorbed species of the first reactant to form no more than a single molecular layer of the desired material. Thicker films are produced through repeated growth cycles until the target thickness is achieved. Plasma enhanced variants of ALD, and hybrid ALD/CVD processes (e.g., with some overlaps of the reactants permitted) are also known.


SUMMARY OF THE INVENTION

In one aspect, a method is provided for depositing an organic film by vapor deposition. The method comprises vaporizing a first organic reactant in a vaporizer at a temperature A to form a first reactant vapor. A substrate in a reaction space is exposed to the first reactant vapor at a temperature B, which is lower than the temperature A at which the first organic reactant was vaporized. An organic film is deposited on the substrate.


In some embodiments, the organic film comprises a polymer. In some embodiments the polymer is a polyimide. In some embodiments, the organic film comprises polyamic acid. In some embodiments, the polyamic acid is further converted to polyimide. In some embodiments, the first organic reactant is a solid at room temperature and atmospheric pressure. In some embodiments, the first organic reactant is a dianhydride, and more particularly, in some embodiments, PMDA.


The ratio of temperature A to temperature B in Kelvin is greater than 1. In some embodiments, the ratio of temperature A to temperature B in Kelvin can be less than 1.8, between about 1 and 1.25, between about 1.01 and 1.10, and/or between any of the other foregoing values.


In some embodiments, the temperature A can be greater than 120° C., less than 200° C., between about 120° C. and 250° C., between about 140° C. and 190° C., and/or between any of the other foregoing values.


In some embodiments, the temperature B is between about 5° C. and about 50° C. lower than the temperature A, between about 10° C. and about 30° C. lower than the temperature A, and/or between any of the other foregoing values lower than the temperature A.


In some embodiments, the temperature B can be greater than 20° C., less than 250° C., between about 20° C. and 250° C., between about 100° C. and 200° C., between about of 120° C. to 180° C., and/or between any of the other foregoing values.


In some embodiments, the method further includes removing excess of the first reactant vapor from contact with the substrate. The substrate is then exposed to a second reactant, such that the first reactant vapor and the second reactant vapor do not substantially mix, and excess of the second reactant is removed from contact with the substrate. In some embodiments, the steps of exposing the substrate to the first reactant vapor and exposing the substrate to the second reactant are repeated in a plurality of cycles, such that the first reactant vapor and the second reactant vapor do not substantially mix. In some embodiments, the second reactant is a diamine, and more particularly, in some embodiments, 1,6-diaminohexane (DAH). In some embodiments, each of removing the excess of the first reactant vapor and removing the excess of the second reactant vapor occurs over a time period greater than 1 second, less than 10 seconds, between about 1 second and about 10 seconds, and/or between any of the other foregoing values.


In some embodiments, when the first reactant vapor is exposed to the substrate, it is transported from the vaporizer to the reaction space through a gas line. In some embodiments, the gas line is at a temperature C, which is higher than the temperature A at which the first organic reactant was vaporized.


In some embodiments, the substrate comprises a non-planar topography, and the deposited organic film comprises forming a first thickness on a lower feature of the substrate, and depositing a second thickness on an upper field region of the substrate, where the first thickness is greater than the second thickness.


In another aspect, a method is provided for controlling planarity of a deposited organic film. The method comprises vaporizing a first organic reactant in a vaporizer at a temperature A to form a first reactant vapor; exposing a substrate in a reaction space to the first reactant vapor at a temperatures B, which is lower than the temperature A; and removing excess of the first reactant vapor from contact with the substrate over a period of time, where decreasing the period of time increases the planarity of the deposited organic film. In some embodiments the deposited organic film has thickness non-uniformity (1 sigma) of below about 20%, below about 10%, below about 5%, below about 2%, below about 1% and below about 0.5%. In some embodiments the substrate is a semiconductor wafer, such as 200 mm or 300 silicon mm wafer, or a glass substrate.


In some embodiments, the method further comprises exposing the substrate to a second reactant such that the first reactant vapor and the second reactant do not substantially mix; removing excess of the second reactant from contact with the substrate; and repeating exposure of the substrate to the first reactant vapor and exposure of the substrate to the second reactant in a plurality of cycles, such that the first reactant vapor and the second reactant do not substantially mix.


In another aspect, an apparatus for organic film deposition comprises a vessel configured for vaporizing a first organic reactant to form a first reactant vapor, a reaction space configured to accommodate a substrate and in selective fluid communication with the vessel; and a control system. In a preferred embodiment, the control system is configured to maintain the reactant in the vessel at or above a temperature A, maintain the substrate at a temperature B that is lower than the temperature A, transport the first reactant vapor from the vessel to the substrate, and deposit an organic film on the substrate.


In some embodiments, the apparatus is configured to deposit a polymer. In some embodiments, the polymer comprises a polyimide. In some embodiments, the apparatus is configured to deposit polyamic acid. In some embodiments, the polyamic acid can be converted to polyimide.


In some embodiments, the apparatus further comprises a gas line fluidly connecting the vessel to the reaction space, wherein the control system is further configured to maintain the gas line at a temperature C that is higher than the temperature A.


In some embodiments, the control system is further configured to transport a second reactant vapor to the substrate alternately with the first reactant vapor in a sequential deposition process.


In some embodiments, the apparatus further comprises an outlet line and an inert gas source connected to the reaction space, and the control system is further configured to remove excess reactant vapors and byproduct between supply of the first reactant vapor and the second reactant vapor.


In another aspect, a method for reducing the aspect ratio of three-dimensional structures on a substrate is provided. The method includes vaporizing a first reactant to form a first reactant vapor. The substrate is exposed in a reaction space to the first reactant vapor, the substrate that includes a topography with a three-dimensional structure. An organic film is deposited over the substrate preferentially over lower features of the topography compared to higher features of the topography such that the organic film reduces an aspect ratio of the three-dimensional structure on the substrate as it deposits. Depositing includes exposing the substrate to the first reactant vapor.


In another aspect, a method is provided for forming an organic film. The method includes vaporizing a first reactant in a vaporizer to form a first reactant vapor. A substrate in a reaction space is exposed to the first reactant vapor and a second reactant vapor. A polyamic acid film from the first reactant vapor and the second reactant vapor on the substrate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B are flow diagrams illustrating methods for vapor deposition of an organic film.



FIGS. 2A-2D are schematic representations of examples of vapor deposition apparatuses that can be employed for the deposition processes described herein.



FIGS. 3A-3B are graphs illustrating temperature at different stages of methods for vapor depositing an organic film.



FIGS. 4A-4E are representations of bottom-up filling of trenches in accordance with a method for vapor depositing an organic film.



FIGS. 5A-D are thickness maps of films deposited by methods in which the deposition temperature is higher than the vaporization vessel and by a deposition process employing higher vaporization temperatures than deposition temperatures, respectively.



FIGS. 6A-6B are representations of bottom-up filling of trenches in accordance with a method for vapor depositing an organic film.





DETAILED DESCRIPTION OF EMBODIMENTS

Vapor phase deposition techniques can be applied to organic films and polymers such as as polyimide films, polyamide films, polyurea films, polyurethane films, polythiophene films, and more. CVD of polymer films can produce greater thickness control, mechanical flexibility, conformal coverage, and biocompatibility as compared to the application of liquid precursor. Sequential deposition processing of polymers can produce high growth rates in small research scale reactors. Similar to CVD, sequential deposition processes can produce greater thickness control, mechanical flexibility, and conformality. The terms “sequential deposition” and “cyclical deposition” are employed herein to apply to processes in which the substrate is alternately or sequentially exposed to different precursors, regardless of whether the reaction mechanisms resemble ALD, CVD, MLD or hybrids thereof.


However, vapor phase deposition of organic thin films can be challenging for a variety of reasons. For example, reactants for fabricating organic films tend to have low vapor pressure and volatility, and thus require a high source temperature to vaporize. It can be difficult to ensure sufficient vapor pressure is developed to allow for the vapor deposition to properly proceed, while at the same time avoiding thermal decomposition. Furthermore, the substrate temperature is typically higher than the vaporizer to drive the deposition reactions, but high vaporization temperatures to increase the vapor pressure of the precursor not only risks premature thermal decomposition, but also can lead to excessively high deposition rates and consequent non-conformal deposition.


For example, polyimide film can be deposited by reacting a dianhydride and a diamine, and the dianhydride typically used for this process is pyromellitic dianhydride (PMDA). At room temperature and atmospheric pressure, PMDA is a solid with quite low vapor pressure, and consequently, it requires heating to vaporize. Failure to control evaporation temperatures in CVD/VDP of polyimide films can lead to crack formation, and, despite potential on the small research scale, production-scale sequential deposition of polyimide faces numerous difficulties for manufacturability (e.g., particles, poor repeatability, clogging of gas lines, poor uniformity, low growth rate).


Due to strict requirements of reactant volatility and growth temperature, obtaining high quality organic films using conventional vapor phase deposition techniques is challenging. Accordingly, a need exists for an improved approach for vapor deposition of organic thin films.


In embodiments described herein, the growth temperature at the substrate can be lower than the reactant source temperature. This temperature profile allows high enough vapor pressure for the reactant (e.g., precursors for organic film deposition, such as PMDA) to vaporize, low enough growth temperature to avoid the problems of overheating, and enables a high growth rate process. Deposition processes taught herein can achieve high growth rate and throughput, and produces high quality organic thin films.



FIG. 1A is a simplified flow diagram of a method for vapor deposition of an organic film. In the first illustrated block 10, a first organic reactant is vaporized at a temperature A to form a first reactant vapor. The reactant being vaporized may be liquid or solid under standard temperature and pressure conditions (room temperature and atmospheric pressure). In some embodiments, the reactant being vaporized comprises an organic precursor, such as a dianhydride, for example pyromellitic dianhydride (PMDA). In block 20, the substrate is exposed to the first reactant vapor at a temperature B that is lower than the temperature A, and in block 30, an organic film deposited. The method can include additional steps, and may be repeated, but need not be performed in the illustrated sequence nor the same sequence in each repetition if repeated, and can be readily extended to more complex vapor deposition techniques.


In some embodiments, the organic film comprises a polymer. In some embodiments, the polymer deposited is a polyimide. In some embodiments, the polymer deposited is a polyamide. In some embodiments, the polymer deposited is a polyurea. Other examples of deposited polymers include dimers, trimers, polyurethanes, polythioureas, polyesters, polyimines, other polymeric forms or mixtures of the above materials.


In some embodiments, the organic film comprises a precursor material to a polymer film that can be converted or polymerized by a treatment process. For example, the as-deposited organic film comprise a polyamic acid. In some embodiments, the polyamic acid is converted to a polyimide. In particular, polyamic acid is a common polyimide precursor that can be cyclized, or imidized, to form polyimide. It has been found in experiments that, for vapor deposition using a dianhydride and diamine, the composition of the as-deposited film depends upon the substrate temperature. For example, in experiments, below about 130° C. the as-deposited film was found to be mostly polyamic acid. Between about 130° C. and 160° C., the film was a mixture of polyamic acid and polyimide. Above about 160° C. the film was mostly polyimide (polymer). Polyamic acid can be converted to polyimide in a variety of techniques, including annealing, plasma (e.g., using an inert or rare gas), chemical treatment (e.g., using an anhydride), UV treatment, and other post-deposition treatments.


The term “about” is employed herein to mean within standard measurement accuracy.


The techniques taught herein can be applied to vapor deposition techniques, including CVD, VPD, ALD, and MLD in a wide variety of reactor configurations. FIG. 1B is a simplified flow diagram of a sequential deposition process, and FIGS. 2A-2D illustrate schematic representations of exemplary reactor configurations.


The flow chart of FIG. 1B illustrates a sequential deposition method for vapor deposition of an organic film. In block 10, a first organic reactant is vaporized at temperature A to form a first reactant vapor. In block 40, the first reactant vapor is transported to the substrate through a gas line at temperature C, which is higher than temperature A. In an embodiment, the first reactant, or species thereof, chemically adsorbs on the substrate in a self-saturating or self-limiting fashion. The gas line can be any conduit that transports the first reactant vapor from the source to the substrate. In block 20, the substrate is exposed to the first reactant vapor at a temperature B that is lower than the temperature A. In block 45, excess of the first reactant vapor (and any volatile reaction by-product) is removed from contact with the substrate. Such removal can be accomplished by, e.g., purging, pump down, moving the substrate away from a chamber or zone in which it is exposed to the first reactant, or combinations thereof. In block 50, the substrate is exposed to a second reactant vapor. In an embodiment, the second reactant may react with the adsorbed species of the first reactant on the substrate. In block 60, excess of the second reactant vapor (and any volatile reaction by-product) is removed from contact with the substrate, such that the first reactant vapor and the second reactant vapor do not mix. In some embodiments the vapor deposition process of the organic film does not employ plasma and/or radicals, and can be considered a thermal vapor deposition process.


Various reactants can be used for these processes. For example, in some embodiments, the first reactant is an organic reactant such as an anhydride, for example a dianhydride, e.g., pyromellitic dianhydride (PMDA), or any other monomer with two reactive groups. In some embodiments, the first reactant can be an anhydride, such as furan-2,5-dione (maleic acid anhydride). In some embodiments, the second reactant is also an organic reactant capable of reacting with adsorbed species of the first reactant under the deposition conditions. For example, the second reactant can be a diamine, e.g., 1,6-diamnohexane (DAH), or any other monomer with two reactive groups which will react with the first reactant. In some embodiments, different reactants can be used to tune the film properties. For example, a polyimide film and/or polyimide precursor material (e.g., polyamic acid) film could be deposited using 4,4′-oxydianiline or 1,4-diaminobenzene instead of 1,6-diaminohexane to get a more rigid structure with more aromaticity and increased dry etch resistance. In some embodiments the reactants do not contain metal atoms. In some embodiments the reactants do not contain semimetal atoms. In some embodiments one of the reactants comprises metal or semimetal atoms. In some embodiments the reactants contain carbon and hydrogen and at least one or more of the following elements: N, O, S, P or a halide, such as Cl or F. Deposition conditions can differ depending upon the selected reactants and can be optimized upon selection. For sequential deposition of polyimide using the PMDA and DAH in a single wafer deposition tool, substrate temperatures can be selected from the range of about 100° C. to about 250° C., and pressures can be selected from the range of about 1 mTorr to about 760 Torr, more particularly between about 100 mTorr to about 100 Torr. In some embodiments, the reactant being vaporized comprises an organic precursor selected from the group of 1,4-diisocyanatobutane or 1,4-diisocyanatobenzene. In some embodiments the reactant being vaporized comprises an organic precursor selected from the group of terephthaloyl dichloride, alkyldioyl dichlorides, such as hexanedioyl dichloride, octanedioyl dichloride, nonanedioyl dichloride, decanedioyl dichloride, or terephthaloyl dichloride. In some embodiments, the reactant being vaporized comprises an organic precursor selected from the group of 1,4-diisothiocyanatobenzene or terephthalaldehyde. In some embodiments, the reactant being vaporized can be also diamine, such as 1,4-diaminobenzene, decane-1,10-diamine, 4-nitrobenzene-1,3-diamine or 4,4′-oxydianiline. In some embodiments, the reactant being vaporized can be terephthalic acid bis(2-hydroxyethyl) ester. In some embodiments the reactant being vaporized can be carboxylic acid, for example alkyl-, alkenyl-, alkadienyl-dicarboxylic or tricarboxylic acids, such as ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid or propane-1,2,3-tricarboxylic acid. In some embodiments, the reactant being vaporized can be aromatic carboxylic or dicarboxylic acid, such as benzoic acid, benzene-1,2-dicarboxylic acid, benzene-1,4-dicarboxylic acid or benzene-1,3-dicarboxylic acid. In some embodiments, the reactant being vaporized can be selected from the group of diols, triols, aminophenols such as 4-aminophenol, benzene-1,4-diol or benzene-1,3,5-triol. In some embodiments, the reactant being vaporized can be 8-quinolinol. In some embodiments, the reactant being vaporized can comprise alkenylchlorosilanes, like alkenyltrichlorosilanes, such as 7-octenyltrichlorosilane


In block 30, an organic film is deposited. The skilled artisan will appreciate that block 30 may represent the result of blocks 10, 40, 20, 45, 50 and 60, rather than a separate action. The blocks 10-60 together define a cycle 70, which can be repeated until a film of sufficient thickness is left on the substrate (block 80) and the deposition is ended (block 90). The cycle 70 can include additional steps, need not be in the same sequence nor identically performed in each repetition, and can be readily extended to more complex vapor deposition techniques. For example, cycle 70 can include additional reactant supply blocks, such as the supply and removal of additional reactants in each cycle or in selected cycles. Though not shown, the process may additionally comprise treating the deposited film to form a polymer (e.g., UV treatment, annealing, etc.).


In some embodiments the organic film does not contain metal atoms. In some embodiments the organic film does not contain semimetal atoms. In some embodiments the organic film contains metal or semimetal atoms. In some embodiments the organic film contains carbon and hydrogen and at least one or more of the following elements: N, O, S, or P.



FIG. 2A is a simplified schematic representation of apparatus 100 for vapor deposition of an organic film. The apparatus includes a first reactant vessel 105 configured for vaporizing a first organic reactant 110 to a first reactant vapor. A reaction chamber defines a reaction space 115 configured to accommodate at least one substrate 120. A control system 125 is configured to maintain the first reactant 110 in the first reactant vessel 105 at a temperature A, and is configured to maintain the substrate 120 in the reaction space 115 at a temperature B, where the temperature B is lower than the temperature A.


A gas line 130 fluidly connects the first reactant vessel 105 to the reaction space 115, and is configured to selectively transport the first reactant vapor from the first reactant vessel 105 to an inlet manifold 135 to the reaction space 115. In an embodiment, the control system 125 or a separate temperature control is configured to maintain the gas line 130 at a temperature C, where the temperature C is higher than the temperature A.


The apparatus 100 includes a second reactant vessel 140 holding a second reactant 145. In some embodiments, the second reactant 145 is naturally in a gaseous state; in other embodiments, the second reactant vessel 140 is also configured to vaporize the second reactant 145 from a natural liquid or solid state. The second reactant vessel is in selective fluid communication with the inlet manifold 135. The inlet manifold can include a shared distribution plenum across the chamber width, or can maintain separate paths to the reaction space 120 for separate reactants. For sequential deposition embodiments, it can be desirable to keep the reactant inlet path separate until introduction to the reaction space 115 in order to avoid reactions and along the surface of common flow paths for multiple reactants, which can lead to particle generation. The apparatus can in some embodiments include additional vessels for supply of additional reactants.


One or more inert gas source(s) 150 is (are) in selective fluid communication with the first reactant vessel 105 and with the reaction space 115. The inert gas source 150 can also be in selective fluid communication with the second reactant vessel 140, as shown, and any other desired reactant vessels to serve as a carrier gas. The control system 125 communicates with valves of the gas distribution system in accordance with deposition methods described herein. For sequential deposition processing, the valves are operated in a manner that alternately and repeatedly exposes the substrate to the reactants, whereas for simultaneous supply of the reactants in a conventional CVD process, the valves can be operated to simultaneously expose the substrate to mutually reactive reactants.


An exhaust outlet 155 from the reaction space 115 communicates through an exhaust line 160 with a vacuum pump 165. The control system 125 is configured to operate the vacuum pump 165 to maintain a desired operational pressure and exhaust excess reactant vapor and byproduct through the exhaust outlet 155.



FIG. 2B schematically illustrates an example of a showerhead reaction chamber 200 that can be employed for vapor deposition of an organic film as described herein. The reactor includes a showerhead 204 configured by receive and distribute reactant vapors across a substrate 206 on a substrate support 208. While illustrated as a single substrate chamber, the skilled artisan will appreciate that shower reactors can also accommodate multiple substrates. A reaction space 209 is defined between the showerhead 204 and the substrate 206. A first inlet 210 communicates with a source of a first reactant, and a second inlet 212 communicates with a source of a second reactant. Additional inlets (not shown) can be provided for separate sources of inert gases and/or additional reactants, and the showerhead 204 can also be provided with a separate exhaust (not shown) to speed removal of reactants between phases for sequential deposition (e.g., ALD) processes. While the first inlet 210 and the second inlet 212 are both shown communicating with a single plenum of the showerhead 204, it will be understood that in other arrangements the inlets can independently feed reactants to the reaction space and need not share a showerhead plenum. An exhaust outlet 214, shown in the form of an exhaust ring surrounding the base of the substrate support 208, communicates with a vacuum pump 216.



FIG. 2C illustrates a different configuration of a reaction chamber 230 that can be employed for vapor deposition of an organic film as described herein, where features similar in function to those of FIG. 2B are referenced by like reference numbers. Typically known as a horizontal flow reactor, the reaction chamber 230 is configured with a first reactant inlet 210 and a second reactant inlet 212, and an exhaust outlet 216. While illustrated as a single substrate chamber, the skilled artisan will appreciate that horizontal flow reactors can also accommodate multiple substrates. Additional inlets (not shown) can be provided for separate sources of inert gases and/or additional reactants. Separate inlets 210, 212 are shown to minimize deposition reactions upstream of the reaction space 209, as is generally preferred for sequential deposition reactors, but it will be understood that in other arrangements the different reactants can be provided through a common inlet manifold, particularly for CVD processing. While the second inlet 212 is illustrated as feeding from a remote plasma unit 202, the skilled artisan will appreciate that the RPU can be omitted or left unpowered for thermal deposition processes. The skilled artisan will appreciate that in other types of horizontal flow reactors, the different reactants can also be provided from different sides of the chamber, with separate exhausts operated alternately on the different sides, such that a first reactant can flow in one direction and a second reactant can flow in another direction in separate pulses.



FIG. 2D illustrates another example of a reaction chamber 240 that can be employed for vapor deposition of an organic film. The illustrated chamber is configured for space-divided sequential deposition reactions, rather than time-divided reactions. The space-divided reactions employ different zones, here zones A, B, C and D, through which substrates move. Alternatively, the gas injection system can move in relation to the substrates and substrates might be stationary or rotating. The zones are separated by barriers 242, which may be physical walls, inert gas curtains, exhausts, or combinations thereof that minimize vapor interactions among the zones A-D. The substrate support(s) 208 can take the form of a rotating platform, as shown, or a conveyor belt (not shown) for linearly arrayed zones. In one example, zone A could be plumbed and operated to be supplied consistently with a first reactant, such as a precursor that adsorbs on the substrate, zones B and D could be plumbed and operated to be supplied with inert or purge gas, and zone C could be plumbed and operated supplied with a second reactant that reacts with the adsorbed species of the first reactant. Substrates 206 (four shown) move through the zones to sequentially be exposed to the first reactant (zone A), inert gas (zone B), second reactant (zone C), and inert gas (zone D) before the cycle is repeated. In the case of space-divided plasma sequential deposition, the residence time of the reactants can depend on both the speed of the reactants through the zone as well as the rate of movement of the substrate support 208. In some cases the substrate is stationary or rotating and the gas supply system, such as gas injector(s), is rotated over the substrates. Rotation speed of the injector(s) or substrates can also affect the gas residence time. In variations on space-divided sequential deposition, a combination of space-divided and time-divided sequential deposition could supply different reactants at different times to the same zone, while substrates move through the zones. Each zone may supply separate reactants, and additional zones may be added by providing larger platforms divided by greater numbers of zones, or by providing longer conveyors through greater numbers of zones.


While not shown, the skilled artisan will readily appreciate that the principles and advantages taught herein are applicable to other types of vapor deposition reactors, including batch reactors, such as vertical furnaces, which are known in the art for CVD and sequential deposition (e.g., ALD, cyclical CVD and hybrids) processing.


The graphs of FIGS. 3A-3B illustrate the temperature at different stages of methods for vapor depositing an organic film. FIG. 3A illustrates a temperature profile along the reactant path in accordance with embodiments. The source of the reactant is vaporized at a temperature A. The reaction chamber, or at least the substrate, is kept at a temperature B, which is lower than the temperature A. FIG. 3B illustrates the temperature profile of some embodiments where the reactant vapor is transported from the vaporization vessel to the reaction chamber in a gas line at a temperature C that is higher than the temperature A. The higher temperature gas line reduces the risk of condensation and consequent contamination and/or gas line clogging.


The illustrated temperature profile can be applied to a wide variety of vapor deposition processes that involve low vapor pressure reactants and/or growth temperature restrictions. The particular temperatures in each reaction will depend on multiple factors, including the reactants, desired film properties, deposition mechanism and reactor configuration. The embodiments are particularly useful for vaporizing organic precursors for vapor phase organic film deposition.


Precursor condensation or multilayer adsorption can cause problems in repeatability and process stability. Condensation or multilayer adsorption can occur when the source temperature is higher than the deposition temperature. In some embodiments, the pressure in the source vessel and source lines is higher than the pressure in the reaction chamber or zone where deposition takes place. This negative pressure difference can decrease the probability of precursor condensation and multilayer adsorption. This negative pressure difference can be applied to one or more of the reactants to a vapor deposition process, including both reactants subject to the temperature profile illustrated in FIG. 3A and reactants not subject to the temperature profile illustrated in FIG. 3A. In experiments, the PMDA source line was at 45-50 Torr while the reaction chamber was at about 2-10 Torr. In some embodiments, the pressure difference between the source line and the reaction chamber or zone where deposition takes place can be greater than 1 mTorr, less than 760 Torr, between about 1 mTorr and 760 Torr, between about 5 mTorr and 300 Torr, between about 10 Torr and 200 Torr, and/or between any of the other foregoing values. In some embodiments the ratio of the pressure of the source line to the pressure of the reaction chamber or zone where deposition takes place, in Torr, can be greater than 1.01, less than 1000, between about 2 and 100, between about 3 and 50, between about 5 and 25, and or between any of the other foregoing values.


In some embodiments of the invention, the temperature A can be greater than 120° C., less than 250° C., between about 120° C. and 200° C., between about 140° C. and 190° C., and/or between any of the other foregoing values. In some embodiments, the temperature B is between about 5° C. and about 50° C. lower than the temperature A, between about 10° C. and about 30° C. lower than the temperature A, and/or between any of the other foregoing values lower than the temperature A. In some embodiments, the temperature C is between about 0.1° C. and about 300° C. higher than the temperature A, between about 1° C. and about 100° C. higher than the temperature A, between about 2° C. and about 75° C. higher than the temperature A, between about 2° C. and about 50° C. higher than the temperature A, and/or between any of the other foregoing value higher than the temperature A. In some embodiments, the ratio of temperature C to temperature A in Kelvin is between about 1.001 and about 2.0, between about 1.001 and about 1.5, between about 1.001 and about 1.25 and/or between about 1.001 to about 1.10. In some embodiments the temperature C can be lower than temperature A, but higher than temperature B. In some embodiments the temperature C can be between about 0.1° C. to about 200° C., between about 0.1° C. to about 50° C., between about 0.1° C. to about 30° C. lower than temperature A, but higher than temperature B. However in some embodiments the temperature C can be about the same as temperature A, but higher than temperature B. In some embodiments the temperatures A, B and C can be about equal


In addition to the low vapor pressure of reactants, the fine particulate form of solid reactants can pose problems during vapor deposition. The particles can be easily blown or carried to the substrate, for example, if the pressure differences during pulsing for deposition are too great. While filters can be used to reduce the particulates blown or carried to the substrate, filters can become clogged, and can decrease the gas line conductance so much that the dose becomes too low. Accordingly it is preferable to limit the pressure differences during deposition to less than about 80 Torr, and more particularly to less than about 50 Torr, and do without filters.


It has been found that depositing organic film using the embodiments described herein facilitates tailoring film morphology. In some embodiments, employing alternate pulsing to reactants and equipment and lower deposition temperature compared to the precursor source vessel, or vaporizer, a desirably non-conformal film that reduces the aspect ratio of three-dimensional structures can be deposited on a non-planar substrate. In some embodiments, the non-planar substrate comprises trenches or vias or other three-dimensional structures. The film can be deposited in a manner that achieves thicker film on a lower feature of the substrate than on an upper field region of the substrate. Such bottom-up deposition is surprising given that conventional vapor deposition typically either grows faster on upper field areas (such as conventional CVD), leading to pinching at the top of trenches and “keyhole” formation, or is conformal (such as conventional sequential deposition processes).



FIGS. 4A-4C are schematic representations of a vapor deposition process that reduces the aspect ratio of three-dimensional structures of a substrate in accordance with some embodiments. FIG. 4A illustrates a schematic representation of a cross section of a substrate 400 with a pattern of three dimensional (3D) features in the form of trenches 410. In other embodiments, the substrate can have different surface topography. The 3D features can be quite small with high aspect ratios, which ordinarily makes it difficult to reach the bottom with deposition and fill gaps in the features, or trenches, without forming voids. In the illustrated embodiment, the 3D features can have lateral dimensions from 5 nm to 10 μm, more particularly about 5 nm to about 500 nm, or about 10 nm to about 200 nm. At the same time, the ratio of height to width, or aspect ratio, of the 3D features, or trenches 410 for the illustrated embodiment, can range between about 0.25 to 1000, about 0.5 to about 100, more particularly about 1.0 to 75, and even more particularly from about 2.0 to about 50. FIG. 4B illustrates a cross section of the substrate 400 where the polymer 420 being deposited exhibits reduction of the aspect ratio of the trenches 410 as the deposition favors the bottom of the 3D features in a bottom-up filling process, in contrast to most vapor deposition techniques. FIG. 4C illustrates a cross section of the substrate 400 where the deposited organic film 420 has filled the trenches 410 evenly without any seams visible in the micrograph and without voids. In some embodiments, the deposited organic film decreases the aspect ratio in the three-dimensional structures by a factor more than about 1.5, more than about 5, more than about and more than about 25 or in some embodiments by a factor more than about 100. In some embodiments, the deposited organic film decreases the aspect ratio of the substrate so that there is no substantial aspect ratio left anymore after the deposition of the organic film. In some embodiments, the deposited organic fills the three-dimensional structures, such as vias or trenches, at least about 50%, at least about 75%, at least about 90%, at least about 95% of the volume of the three-dimensional structure without having any substantial seam or voids in the filled volume. In some embodiments the deposited organic fills the three-dimensional structures, such as vias or trenches, fully and/or there exists organic and substantially planar film above top level of the three-dimensional structures in the substrate. The deposited organic film can comprise polyamic acid, polyimide, polyurea, polyurethane, polythophene, and mixtures thereof.



FIGS. 4D-4E are electron micrographs showing the results of a negative temperature difference experiment, where PMDA and DAH were alternately and sequentially provided to the substrate in sequential deposition process to deposit a polyimide film. The first reactant PMDA was vaporized at a temperature of 150° C., the PMDA gas line was maintained at 155° C., and the substrate was maintained at 127° C. Line flows of 450 sccm, pump line pressure of 2 torr, and source line pressure of 40-100 torr were used. Pulse/purge lengths of 11/8.1 seconds and 4.7/9 seconds were used for PMDA and DAH, respectively. FIG. 4D illustrates a cross section of a substrate 400 where a polymer 420 has been deposited with bottom-up filling of the trenches 410 after 20 cycles. FIG. 4E illustrates a cross section of a substrate 400 where a polymer 420 has been deposited with bottom-up filling of the trenches 410 after 60 cycles. The deposited film of FIG. 4E exhibits a relatively planar surface compared to the topography of the initial trenches.


In some embodiments, planarity of the film can be tailored based on the length of the time period over which excess of reactant vapor is removed from contact with the substrate. Decreasing the period of time over which excess reactant is removed increases the planarity of the deposited organic film. In some embodiments, each of removing the excess of the first reactant vapor and removing the excess of the second reactant vapor occurs over a time period greater than 1 second, less than 10 seconds, between about 1 second and about 10 seconds, and/or between any of the other foregoing values.


Example 1


FIGS. 5A-5D show the results of experiments comparing similar sequential deposition processes using a negative temperature difference from the vaporizer to the substrate (FIGS. 5A & 5B) and using a positive temperature difference from the vaporizer to the substrate (FIGS. 5C & 5D). All experiments employed 300 mm wafers in a PULSAR 3000™ beta ALD tool supplied by ASM International, N.V. (Almere, The Netherlands). The negative temperature difference deposited a film at more than three times the growth rate, and produced a film with much higher thickness uniformity, compared to a process with a positive difference.


For the negative temperature difference experiment, PMDA and DAH were alternately and sequentially provided to the substrate in a sequential deposition process to deposit a polyimide film. The first reactant PMDA was vaporized at a temperature of 150° C., the PMDA gas line was maintained at 153° C., and the substrate was maintained at 127° C. The second reactant DAH was kept at 45° C. Line flows of 450 sccm were used, and pulse/purge lengths of 11/8.066 seconds and 4.68/9 seconds were used for PMDA and DAH, respectively. The pulsing pressure difference was set to about 45 Torr for PMDA, and no line filters were used. 60 deposition cycles were applied, and the resulting film was analyzed by spectroscopic ellipsometry. FIGS. 5A & 5B show the thickness maps obtained on a 200 mm wafer mapping size and a 300 mm wafer mapping size, respectively, in both cases employing 3 mm edge exclusions. The growth rate was 5.1 Å per cycle and 1σ thickness non-uniformities were 0.6% and 1.4% using the 200 mm and 300 mm mapping sizes, respectively.


For the positive temperature difference experiment, the first reactant PMDA was vaporized at a temperature of 140° C., the PMDA gas line was maintained at 143° C., and the substrate was maintained at 150° C. The second reactant DAH was kept at 45° C. Line flows of 450 sccm were used, and pulse/purge lengths of 5/5 seconds and 2/5 seconds were used for PMDA and DAH, respectively. The pulsing pressure difference was set to about 45 Torr for PMDA, and no line filters were used. 165 deposition cycles were applied, and the resulting film was analyzed by spectroscopic ellipsometry. FIGS. 5C & 5D show the thickness maps obtained using either 200 mm wafer mapping size and 300 mm wafer mapping size, in both cases applying 3 mm edge exclusions. The growth rate was 1.6 Å per cycle and 1σ thickness non-uniformities were 1.1% and 6.0% using the 200 mm and 300 mm mapping sizes, respectively.


Example 2

In another negative temperature difference experiment conducted on wafers patterned with trenches, PMDA and DAH were reacted in a sequential process to deposit a polyimide film on a substrate with trench patterns. The trenches had variable pitches of 40 and 50 nm with 25-35 nm openings. The first reactant PMDA was vaporized at a temperature of 150° C., the PMDA gas line was maintained at 153° C., and the substrate was maintained at 127° C. The second reactant DAH was kept at 45° C. Line flows of 450 sccm were used, and pulse/purge lengths of 11/8.066 seconds and 4.68/9 seconds were used for PMDA and DAH, respectively. The resulting film was analyzed by tunneling electron microscopy (TEM). After 20 cycles, the TEM image showed that the film was thicker on the trench bottom areas, and thinner on the side walls of the trenches. The film thickness on a planar wafer grown using the same parameters was 7 nm, the film thickness on the bottom of some trenches was about 11 nm, and the film thickness on the sides of some trenches was about 4 nm. The growth was thus proceeding faster in the bottom areas of the trenches, indicating bottom-up filling. After 60 deposition cycles, the TEM analysis showed seamless, bottom-up gap filling of the trenches with polyimide. The top surface was relatively smooth, exhibiting some self-planarizing behavior.


Example 3

In another negative temperature difference experiment, PMDA and DAH were reacted in sequential deposition processes to deposit a polyimide films on substrates with trench patterns. Different time purge lengths were used. In one film, a purge length of 8.066 seconds was used for PMDA and 9.0 seconds for DAH, in another film a purge length of 15 seconds was used for each of PMDA and DAH, and in another film a purge length of 25 seconds was used for each of PMDA and DAH. The resulting films were analyzed by TEM. Purge length did seem to affect gap filling performance. However, shorter purges resulted in more planar film on top of the structures. Purge length can thus be used as a factor to tailor the final morphology of the film.


Example 4

In another negative difference experiment, PMDA and DAH were reacted in two separate alternative and sequential deposition processes at different temperatures. In the first experiment, the PMDA was vaporized at 150° C., and the substrate was maintained at 127° C. In the second experiment, the PMDA was vaporized at 180° C., and the substrate was maintained at 160° C. The film deposited in the first experiment was predominantly polyamic acid, and the film deposited in the second experiment was predominantly polyimide. Deposition temperature appears to affect the composition of the deposited film when the reactants are PMDA and DAH. A lower deposition temperature appears to lead to greater proportion of polyamic acid, and a higher deposition temperature appears to lead to greater proportion of polyimide.


Example 5

In another negative temperature difference experiment, deposited polyamic film was annealed to form polyimide. When reacting PMDA and DAH, polyamic acid is deposited in greater proportions at lower deposition temperatures. Conversion to polyimide was confirmed by FTIR spectroscopy. Data for the four polyamic films annealed at different temperature is as follows:












TABLE I









Polyamic Film Deposited at 127° C.
Annealed Film
















Thickness



Thickness




Ave.
Non-

Anneal
Ave.
Non-



Thickness
uniformity
Refractive
Temp.
Thickness
uniformity
Refractive


Film
(nm)
(1σ)
Index
(° C.)
(nm)
(1σ)
Index

















1
32.898
1.44
1.578
200
22.707
1.99
1.6099


2
31.048
1.87
1.5719
250
20.438
2.89
1.6119


3
31.183
1.65
1.572
300
20.385
2.11
1.6149


4
30.665
1.81
1.5642
350
19.426
2.39
1.6056









Example 6

In another negative temperature difference experiment, organic films were deposited at different temperatures. Thickness was analyzed thickness was measured with spectroscopic electrometry (SE) and X-ray reflectivity (XRR). Density and RMS-roughness were also measured. Data for the four films is as follows:















TABLE II








SE
XRR





Deposition

Thickness
Thickness
Density
Roughness


Film
Temperature
Anneal
(nm)
(nm)
(g/cm3)
(nm)





















1
127° C.
No
32.6
33.4
1.419
0.338


2
127° C.
200° C.
24.6
24.6
1.434
0.449


3
150° C.
No
25.2
25.9
1.472
0.377


4
160° C.
No
38.2
39.4
1.401
0.400









Example 7

In another negative temperature difference experiment, water was used to etch the deposited films to confirm conversion from polyamic acid to a more etch resistant polymer, such as polyimide. Polyamic acid is water soluble and can be etched by water. Polyimide, by contrast, is not water soluble and cannot be etched by water. The first film was deposited at 127° C. and thus was predominantly polyamic acid. The second film was deposited at 160° C. and thus was predominantly polyimide. The third film was deposited at 127° C. and subsequently treated with argon plasma to convert the deposited polyamic acid to polyimide. Thickness of the films was measured before and after exposure to water and compared to determine the extent of etching by the water. The following data shows that the polyamic film deposited at 127° C. was etched by the water, and the polyimide film deposited at 160° C. and the polyamic acid film deposited at 127° C. and subsequently cured to form polyimide were not etched by the water:









TABLE III







Deposition at 127° C.













Start Thickness
End Thickness
Δ



Time (s) in H2O
(nm)
(nm)
(nm)
















1
33.20
7.10
26.10



5
33.12
9.27
23.85



10
33.07
7.52
25.55

















TABLE IV







Deposition at 160° C.













Start Thickness
End Thickness
Δ



Time (s) in H2O
(nm)
(nm)
(nm)
















10
41.10
40.87
0.23



20
40.72
39.89
0.83



60
40.18
40.63
−0.45

















TABLE V







Deposition at 127° C., followed by


treatment with argon plasma (200 W, 2 min)













Start Thickness
End Thickness
Δ



Time (s) in H2O
(nm)
(nm)
(nm)
















10
40.05
41.33
−1.28



120
39.96
40.85
−0.89



300
39.40
41.02
−1.62










Example 8

In another negative temperature difference experiment conducted on wafers patterned with trenches, 1,4-phenylenediisocyanate (PDIC) and DAH were reacted in a sequential process to deposit a polyurea film on a substrate with trench patterns. The trenches had variable pitches of 40 and 50 nm with 25-35 nm openings. The first reactant PDIC was vaporized at a temperature of 75° C., the PDIC gas line was maintained at 85° C., and the substrate was maintained at 40° C. The second reactant DAH was kept at 45° C. Line flows of 450 sccm were used, and pulse/purge lengths of 3/2 seconds and 8/7 seconds were used for PDIC and DAH, respectively. The resulting film was analyzed by tunneling electron microscopy (TEM). After 50 cycles, the TEM image showed that the film was thicker on the trench bottom areas, and thinner on the side walls of the trenches (FIG. 6A). The film thickness on a planar wafer grown using the same parameters was 7 nm, the film thickness on the bottom of some trenches was about 10 nm, and the film thickness on the sides of some trenches was about 3 nm. The growth was thus proceeding faster in the bottom areas of the trenches, indicating bottom-up filling. After 215 deposition cycles, the TEM analysis (FIG. 6B) showed seamless, bottom-up gap filling of the trenches with polyurea. The aspect ratio of the three-dimensional features was decreased, exhibiting some self-planarizing behavior.


Although certain embodiments and examples have been discussed, it will be understood by those skilled in the art that the scope of the claims extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof.

Claims
  • 1. An apparatus for organic film deposition, comprising: a vessel configured for vaporizing an organic reactant to form a reactant vapor;a reaction space configured to accommodate a substrate and in selective fluid communication with the vessel; anda control system configured to: maintain the reactant in the vessel at or above a temperature A, wherein the reactant is vaporized at the temperature A;maintain the substrate at a temperature B, the temperature B being in a range from about 100° C. to about 180° C., and the temperature B being between about 5° C. and about 50° C. lower than the temperature A;transport the reactant vapor from the vessel to the substrate; anddeposit an organic film on the substrate while maintaining the reactant in the vessel at or above the temperature A and maintaining the substrate at the temperature B.
  • 2. The apparatus of claim 1, wherein the organic film comprises a polymer.
  • 3. The apparatus of claim 1, wherein the vessel contains a solid at room temperature and atmospheric pressure.
  • 4. The apparatus of claim 1, wherein the vessel contains a dianhydride.
  • 5. The apparatus of claim 1, wherein the vessel contains a pyromellitic dianhydride (PMDA).
  • 6. The apparatus of claim 1, wherein the control system is further configured to maintain the ratio of temperature A to temperature B in Kelvin between about 1 and about 1.25.
  • 7. The apparatus of claim 1, further comprising a gas line fluidly connecting the vessel to the reaction space, wherein the control system is further configured to maintain the gas line at a temperature C, the temperature C being higher than the temperature A.
  • 8. The apparatus of claim 1, wherein the control system is further configured to transport a second reactant vapor to the substrate alternately with the reactant vapor in a sequential deposition process and to remove excess reactant vapors and byproduct between supply of the reactant vapor and the second reactant vapor.
  • 9. The apparatus of claim 1, wherein the control system is further configured to maintain the temperature B at a temperature of less than about 160° C..
  • 10. The apparatus of claim 9, wherein the control system is further configured to maintain the temperature B from the range of about 100° C. to about 130° C.
  • 11. The apparatus of claim 9, wherein the control system is further configured to maintain the temperature B from the range of about 130° C. to about 160° C.
  • 12. The apparatus of claim 1, wherein the control system is configured to maintain the temperature B between about 10° C. and about 30° C. lower than the temperature A.
  • 13. The apparatus of claim 1, wherein the control system is further configured maintain a pressure within the vessel at a pressure higher than a pressure in the reaction space.
  • 14. A method for vapor depositing an organic film, comprising: vaporizing a first organic reactant in a vaporizer at a temperature A to form a first reactant vapor;exposing a substrate in a reaction space to the first reactant vapor at a temperature B, the temperature B being lower than the temperature A, the temperature B is selected from the range of about 100° C. to about 180° C., and the temperature B being between about 5° C. and about 50° C. lower than the temperature A; anddepositing the organic film on the substrate while vaporizing the first organic reactant in the vaporizer at the temperature A and exposing the substrate to the first reactant vapor at the temperature B during the depositing.
  • 15. The method of claim 14, wherein the organic film comprises a polymer.
  • 16. The method of claim 15, wherein the polymer comprises a polyimide.
  • 17. The method of claim 15, wherein the polymer comprises a polyurea.
  • 18. The method of claim 14, wherein depositing the organic film on the substrate comprises an atomic layer deposition process.
  • 19. The method of claim 14, wherein the organic film comprises a polyamic acid, further comprising converting the polyamic acid to a polyimide.
  • 20. The method of claim 14, wherein the first reactant is a solid at room temperature and atmospheric pressure.
  • 21. The method of claim 14, wherein the first reactant comprises pyromellitic dianhydride (PMDA).
  • 22. The method of claim 14, wherein the ratio of temperature A to temperature B in Kelvin is between about 1 and about 1.15.
  • 23. The method of claim 14, wherein the temperature B is less than about 160° C..
  • 24. The method of claim 14, wherein exposing the substrate comprises adsorbing a species of the first reactant on the substrate, the method further comprising: removing excess of the first reactant vapor from contact with the substrate;exposing the substrate to a second reactant, such that the first reactant vapor and the second reactant do not substantially mix; andremoving excess of the second reactant from contact with the substrate.
  • 25. The method of claim 24, wherein the second reactant is a diamine.
  • 26. The method of claim 25, further comprising repeating exposing the substrate to the first reactant vapor and exposing the substrate to the second reactant in a plurality of cycles, such that the first reactant vapor and the second reactant do not substantially mix.
  • 27. The method of claim 24, wherein the substrate comprises a non-planar topography, and depositing the organic film comprises forming a first thickness on a lower feature of the substrate and depositing a second thickness on an upper field region of the substrate, wherein the first thickness is greater than the second thickness.
  • 28. The method of claim 14, wherein exposing the substrate to the first reactant vapor comprises transporting the first reactant vapor through a gas line from the vaporizer to the reaction space, wherein the gas line is at a temperature C higher than the temperature A.
  • 29. A method for vapor depositing an organic film, comprising: vaporizing a first organic reactant in a vaporizer at a temperature A to form a first reactant vapor;exposing a substrate in a reaction space to the first reactant vapor at a temperature B, the temperature B being lower than the temperature A, and the temperature B is selected from the range of about 100° C. to about 250° C.;depositing the organic film on the substrate while vaporizing the first organic reactant in the vaporizer at the temperature A and exposing the substrate to the first reactant vapor at the temperature B during the depositing; andmaintaining a pressure within the vaporizer at a pressure higher than a pressure in the reaction space while depositing.
REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 14/879,962, filed Oct. 9, 2015, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (339)
Number Name Date Kind
4804640 Kaganowicz Feb 1989 A
4863879 Kwok Sep 1989 A
4948755 Mo Aug 1990 A
5288697 Schrepp et al. Feb 1994 A
5366766 Sekiguchi et al. Nov 1994 A
5447887 Filipiak et al. Sep 1995 A
5604153 Tsubouchi et al. Feb 1997 A
5633036 Seebauer et al. May 1997 A
5869135 Vaeth et al. Feb 1999 A
5925494 Horn Jul 1999 A
6046108 Liu et al. Apr 2000 A
6416577 Suntola et al. Jul 2002 B1
6426015 Xia et al. Jul 2002 B1
6455414 Hillman et al. Sep 2002 B1
6482740 Soininen et al. Nov 2002 B2
6586330 Ludviksson et al. Jul 2003 B1
6652709 Suzuki et al. Nov 2003 B1
6679951 Soininen et al. Jan 2004 B2
6727169 Raaijmakers et al. Apr 2004 B1
6759325 Raaijmakers et al. Jul 2004 B2
6811448 Paton et al. Nov 2004 B1
6844258 Fair et al. Jan 2005 B1
6852635 Satta et al. Feb 2005 B2
6858533 Chu et al. Feb 2005 B2
6878628 Sophie et al. Apr 2005 B2
6887795 Soininen et al. May 2005 B2
6902763 Elers et al. Jun 2005 B1
6921712 Soininen et al. Jul 2005 B2
6958174 Klaus et al. Oct 2005 B1
7067407 Kostamo et al. Jun 2006 B2
7084060 Furukawa et al. Aug 2006 B1
7118779 Verghese et al. Oct 2006 B2
7220669 Hujanen et al. May 2007 B2
7241677 Soininen et al. Jul 2007 B2
7323411 Blosse Jan 2008 B1
7405143 Leinikka et al. Jul 2008 B2
7425350 Todd Sep 2008 B2
7476618 Kilpela et al. Jan 2009 B2
7494927 Kostamo et al. Feb 2009 B2
7595271 White Sep 2009 B2
7611751 Elers Nov 2009 B2
7695567 Fu Apr 2010 B2
7754621 Putkonen Jul 2010 B2
7790631 Sharma et al. Sep 2010 B2
7799135 Verghese et al. Sep 2010 B2
7910177 Li Mar 2011 B2
7914847 Verghese et al. Mar 2011 B2
7927942 Raaijmakers Apr 2011 B2
7951637 Weidman et al. May 2011 B2
7955979 Kostamo et al. Jun 2011 B2
7964505 Khandelwal et al. Jun 2011 B2
8030212 Yang et al. Oct 2011 B2
8084087 Bent et al. Dec 2011 B2
8173554 Lee et al. May 2012 B2
8293597 Raaijmakers Oct 2012 B2
8293658 Shero et al. Oct 2012 B2
8425739 Wieting Apr 2013 B1
8466052 Baek et al. Jun 2013 B2
8536058 Kostamo et al. Sep 2013 B2
8586478 Soda et al. Nov 2013 B2
8623468 Lin et al. Jan 2014 B2
8778815 Yamaguchi et al. Jul 2014 B2
8890264 Dewey et al. Nov 2014 B2
8956971 Haukka et al. Feb 2015 B2
8962482 Albertson et al. Feb 2015 B2
8980418 Darling et al. Mar 2015 B2
8993404 Korbrinsky et al. Mar 2015 B2
9067958 Romero Jun 2015 B2
9112003 Haukka et al. Aug 2015 B2
9129897 Pore et al. Sep 2015 B2
9136110 Rathsack Sep 2015 B2
9159558 Cheng et al. Oct 2015 B2
9236292 Romero et al. Jan 2016 B2
9257303 Haukka et al. Feb 2016 B2
9312131 Bauer et al. Apr 2016 B2
9349687 Gates et al. May 2016 B1
9353139 Sundermeyer et al. May 2016 B2
9455138 Fukazawa et al. Sep 2016 B1
9490145 Niskanen et al. Nov 2016 B2
9502289 Haukka et al. Nov 2016 B2
9552979 Knaepen et al. Jan 2017 B2
9679808 Haukka et al. Jun 2017 B2
9754779 Ishikawa et al. Sep 2017 B1
9786491 Suzuki et al. Oct 2017 B2
9786492 Suzuki et al. Oct 2017 B2
9803277 Longrie et al. Oct 2017 B1
9805974 Chen et al. Oct 2017 B1
9816180 Haukka et al. Nov 2017 B2
9895715 Haukka et al. Feb 2018 B2
9911595 Smith et al. Mar 2018 B1
10014212 Chen et al. Jul 2018 B2
10041166 Longrie et al. Aug 2018 B2
10047435 Haukka et al. Aug 2018 B2
10049924 Haukka et al. Aug 2018 B2
10115603 Niskanen et al. Oct 2018 B2
10121699 Wang et al. Nov 2018 B2
10157786 Haukka et al. Dec 2018 B2
10186420 Fukazawa Jan 2019 B2
10204782 Maes et al. Feb 2019 B2
10316406 Lecordier Jun 2019 B2
10343186 Pore Jul 2019 B2
10373820 Tois et al. Aug 2019 B2
10428421 Haukka Oct 2019 B2
10443123 Haukka et al. Oct 2019 B2
10453701 Tois et al. Oct 2019 B2
10480064 Longrie et al. Nov 2019 B2
10546741 Murakami et al. Jan 2020 B2
10553482 Wang et al. Feb 2020 B2
10566185 Wang et al. Feb 2020 B2
10695794 Pore Jun 2020 B2
10741411 Niskanen et al. Aug 2020 B2
10793946 Longrie et al. Oct 2020 B1
10814349 Pore Oct 2020 B2
10847361 Wang et al. Nov 2020 B2
10847363 Tapily Nov 2020 B2
10854460 Tois et al. Dec 2020 B2
10872765 Tois et al. Dec 2020 B2
10900120 Sharma et al. Jan 2021 B2
10903113 Wang et al. Jan 2021 B2
10923361 Tois et al. Feb 2021 B2
20010019803 Mirkanimi Sep 2001 A1
20010021414 Morishima et al. Sep 2001 A1
20010025205 Chern et al. Sep 2001 A1
20020027261 Blesser et al. Mar 2002 A1
20020047144 Nguyen et al. Apr 2002 A1
20020068458 Chiang et al. Jun 2002 A1
20020090777 Forbes et al. Jul 2002 A1
20020107316 Bice et al. Aug 2002 A1
20030027431 Sneh et al. Feb 2003 A1
20030066487 Suzuki Apr 2003 A1
20030143839 Raaijmakers et al. Jul 2003 A1
20030176559 Bice et al. Sep 2003 A1
20030181035 Yoon et al. Sep 2003 A1
20030185997 Hsieh Oct 2003 A1
20030192090 Meilland Oct 2003 P1
20030193090 Otani et al. Oct 2003 A1
20040092073 Cabral May 2004 A1
20040129558 Liu et al. Jul 2004 A1
20040219746 Vaartstra et al. Nov 2004 A1
20050012975 George et al. Jan 2005 A1
20050136604 Al-Bayati et al. Jun 2005 A1
20050160575 Gambino Jul 2005 A1
20050223989 Lee et al. Oct 2005 A1
20060019493 Li Jan 2006 A1
20060047132 Shenai-Khatkhate et al. Mar 2006 A1
20060121271 Frey et al. Jun 2006 A1
20060121677 Parekh et al. Jun 2006 A1
20060121733 Kilpela et al. Jun 2006 A1
20060128150 Gandikota et al. Jun 2006 A1
20060141155 Gordon et al. Jun 2006 A1
20060156979 Thakur et al. Jul 2006 A1
20060176559 Takatoshi et al. Aug 2006 A1
20060199399 Muscat Sep 2006 A1
20060226409 Burr et al. Oct 2006 A1
20060292845 Chiang et al. Dec 2006 A1
20070014919 Hamalainen et al. Jan 2007 A1
20070026654 Huotari et al. Feb 2007 A1
20070036892 Haukka et al. Feb 2007 A1
20070063317 Kim et al. Mar 2007 A1
20070098894 Verghese et al. May 2007 A1
20070099422 Wijekoon et al. May 2007 A1
20070232082 Balseanu et al. Oct 2007 A1
20070241390 Tanaka et al. Oct 2007 A1
20070251444 Gros-Jean et al. Nov 2007 A1
20070292604 Dordi et al. Dec 2007 A1
20080066680 Sherman Mar 2008 A1
20080072819 Rahtu Mar 2008 A1
20080124932 Tateishi et al. May 2008 A1
20080179741 Streck et al. Jul 2008 A1
20080241575 Lavoie et al. Oct 2008 A1
20080282970 Heys et al. Nov 2008 A1
20090035949 Niinisto et al. Feb 2009 A1
20090071505 Miya et al. Mar 2009 A1
20090081385 Heys et al. Mar 2009 A1
20090203222 Dussarrat et al. Aug 2009 A1
20090269507 Yu et al. Oct 2009 A1
20090274887 Millward et al. Nov 2009 A1
20090275163 Lacey et al. Nov 2009 A1
20090311879 Blasco et al. Dec 2009 A1
20100015756 Weidman et al. Jan 2010 A1
20100102417 Ganguli et al. Apr 2010 A1
20100147396 Yamagishi et al. Jun 2010 A1
20100178468 Jiang et al. Jul 2010 A1
20100248473 Ishizaka et al. Sep 2010 A1
20100266785 Kurachi et al. Oct 2010 A1
20100270626 Raisanen Oct 2010 A1
20100297474 Dameron Nov 2010 A1
20100314765 Liang et al. Dec 2010 A1
20110039420 Nakao Feb 2011 A1
20110053800 Jung et al. Mar 2011 A1
20110120542 Levy May 2011 A1
20110124192 Ganguli et al. May 2011 A1
20110146568 Haukka et al. Jun 2011 A1
20110146703 Chen et al. Jun 2011 A1
20110198756 Thenappan et al. Aug 2011 A1
20110221061 Prakash Sep 2011 A1
20110244680 Tohnoe et al. Oct 2011 A1
20110311726 Liu et al. Dec 2011 A1
20120032311 Gates Feb 2012 A1
20120046421 Darling et al. Feb 2012 A1
20120052681 Marsh Mar 2012 A1
20120088369 Weidman et al. Apr 2012 A1
20120091541 Suchomel et al. Apr 2012 A1
20120164829 Rajagopalan et al. Jun 2012 A1
20120189868 Borovik et al. Jul 2012 A1
20120219824 Prolier et al. Aug 2012 A1
20120241411 Darling et al. Sep 2012 A1
20120264291 Ganguli et al. Oct 2012 A1
20120269970 Ido et al. Oct 2012 A1
20130005133 Lee et al. Jan 2013 A1
20130078793 Sun et al. Mar 2013 A1
20130084700 Swerts et al. Apr 2013 A1
20130089983 Sugita et al. Apr 2013 A1
20130095664 Matero et al. Apr 2013 A1
20130115763 Takamure et al. May 2013 A1
20130115768 Pore et al. May 2013 A1
20130126815 Kim et al. May 2013 A1
20130143401 Yu et al. Jun 2013 A1
20130146881 Yamazaki et al. Jun 2013 A1
20130157409 Vaidya et al. Jun 2013 A1
20130189790 Li et al. Jul 2013 A1
20130189837 Haukka et al. Jul 2013 A1
20130196502 Haukka et al. Aug 2013 A1
20130203267 Pomarede et al. Aug 2013 A1
20130280919 Yuasa et al. Oct 2013 A1
20130284094 Pavol et al. Oct 2013 A1
20130309457 Rathsack et al. Nov 2013 A1
20130316080 Yamaguchi et al. Nov 2013 A1
20130319290 Xiao et al. Dec 2013 A1
20130323930 Chattopadhyay et al. Dec 2013 A1
20140001572 Bohr et al. Jan 2014 A1
20140024200 Kato et al. Jan 2014 A1
20140091308 Dasgupta et al. Apr 2014 A1
20140120738 Jung et al. May 2014 A1
20140152383 Nikonov et al. Jun 2014 A1
20140190409 Matsumoto et al. Jul 2014 A1
20140193598 Traser et al. Jul 2014 A1
20140205766 Lyon et al. Jul 2014 A1
20140209022 Inoue Jul 2014 A1
20140227461 Darwish et al. Aug 2014 A1
20140252487 Stephens et al. Sep 2014 A1
20140272194 Xiao et al. Sep 2014 A1
20140273290 Somervell Sep 2014 A1
20140273477 Niskanen et al. Sep 2014 A1
20140273492 Anthis Sep 2014 A1
20140273514 Somervell et al. Sep 2014 A1
20140273523 Rathsack Sep 2014 A1
20140273527 Niskanen et al. Sep 2014 A1
20150004317 Dussarrat et al. Jan 2015 A1
20150004319 Mizue Jan 2015 A1
20150004806 Ndiege et al. Jan 2015 A1
20150011032 Kunimatsu et al. Jan 2015 A1
20150011093 Singh et al. Jan 2015 A1
20150037972 Danek et al. Feb 2015 A1
20150064931 Kumagai Mar 2015 A1
20150083415 Monroe et al. Mar 2015 A1
20150087158 Sugita Mar 2015 A1
20150093890 Blackwell et al. Apr 2015 A1
20150097292 He et al. Apr 2015 A1
20150118863 Rathod et al. Apr 2015 A1
20150140694 Inoue et al. May 2015 A1
20150162214 Thompson et al. Jun 2015 A1
20150170961 Romero et al. Jun 2015 A1
20150179798 Clendenning et al. Jun 2015 A1
20150184296 Xu et al. Jul 2015 A1
20150200132 Chi et al. Jul 2015 A1
20150217330 Haukka et al. Aug 2015 A1
20150240121 Sugita et al. Aug 2015 A1
20150270140 Gupta et al. Sep 2015 A1
20150275355 Mallikarjunan et al. Oct 2015 A1
20150299848 Haukka et al. Oct 2015 A1
20150371866 Chen et al. Dec 2015 A1
20150372205 Kimura et al. Dec 2015 A1
20150376211 Girard et al. Dec 2015 A1
20160075884 Chen Mar 2016 A1
20160079524 Do et al. Mar 2016 A1
20160086850 Romero et al. Mar 2016 A1
20160104628 Metz et al. Apr 2016 A1
20160126305 Cheng et al. May 2016 A1
20160152640 Kuchenbeiser et al. Jun 2016 A1
20160172189 Tapily Jun 2016 A1
20160186004 Hustad et al. Jun 2016 A1
20160190060 Bristol et al. Jun 2016 A1
20160222504 Haukka et al. Aug 2016 A1
20160247695 Niskanen et al. Aug 2016 A1
20160276208 Haukka et al. Sep 2016 A1
20160284568 Morris et al. Sep 2016 A1
20160293384 Yan et al. Oct 2016 A1
20160293398 Danek et al. Oct 2016 A1
20160315191 Tsai et al. Oct 2016 A1
20160322213 Thompson et al. Nov 2016 A1
20160346838 Fujita et al. Dec 2016 A1
20160365280 Brink et al. Dec 2016 A1
20170037513 Haukka et al. Feb 2017 A1
20170040164 Wang et al. Feb 2017 A1
20170051405 Fukazawa et al. Feb 2017 A1
20170058401 Blackwell et al. Mar 2017 A1
20170062210 Visser et al. Mar 2017 A1
20170069527 Haukka et al. Mar 2017 A1
20170100742 Pore et al. Apr 2017 A1
20170100743 Pore et al. Apr 2017 A1
20170107413 Wang et al. Apr 2017 A1
20170154806 Wang et al. Jun 2017 A1
20170298503 Maes et al. Oct 2017 A1
20170301542 Maes et al. Oct 2017 A1
20170323776 Färm et al. Nov 2017 A1
20170332179 Bright et al. Nov 2017 A1
20170352533 Tois et al. Dec 2017 A1
20170352550 Tois et al. Dec 2017 A1
20170358482 Chen et al. Dec 2017 A1
20180010247 Niskanen et al. Jan 2018 A1
20180040708 Narayanan et al. Feb 2018 A1
20180073136 Haukka et al. Mar 2018 A1
20180080121 Longrie et al. Mar 2018 A1
20180096888 Naik et al. Apr 2018 A1
20180142348 Yu et al. May 2018 A1
20180151345 Haukka et al. May 2018 A1
20180151355 Fukazawa May 2018 A1
20180182618 Blanquart et al. Jun 2018 A1
20180222933 Romero Aug 2018 A1
20180233350 Tois et al. Aug 2018 A1
20180243787 Haukka et al. Aug 2018 A1
20190017170 Sharma et al. Jan 2019 A1
20190057858 Hausmann et al. Feb 2019 A1
20190074441 Kikuchi et al. Mar 2019 A1
20190100837 Haukka et al. Apr 2019 A1
20190155159 Knaepen et al. May 2019 A1
20190283077 Pore et al. Sep 2019 A1
20190333761 Tois et al. Oct 2019 A1
20200010953 Haukka et al. Jan 2020 A1
20200051829 Tois et al. Feb 2020 A1
20200066512 Tois et al. Feb 2020 A1
20200105515 Maes et al. Apr 2020 A1
20200181766 Haukka et al. Jun 2020 A1
20200324316 Pore et al. Oct 2020 A1
20200365416 Niskanen et al. Nov 2020 A1
20210001373 Pore et al. Jan 2021 A1
20210151324 Tois et al. May 2021 A1
20210175092 Tois et al. Jun 2021 A1
Foreign Referenced Citations (53)
Number Date Country
0469456 Feb 1992 EP
0880168 Nov 1998 EP
1340269 Feb 2009 EP
3026055 Jun 2016 EP
H02-033153 Feb 1990 JP
H08222569 Aug 1996 JP
2001-127068 May 2001 JP
2001-308071 Nov 2001 JP
2004-281479 Oct 2004 JP
2008-311603 Dec 2008 JP
4333900 Sep 2009 JP
2009231783 Oct 2009 JP
2010-232316 Oct 2010 JP
2011-018742 Jan 2011 JP
2011-187583 Sep 2011 JP
2011222779 Nov 2011 JP
2013229622 Nov 2013 JP
2013247287 Dec 2013 JP
2014-93331 May 2014 JP
2014150144 Aug 2014 JP
2015099881 May 2015 JP
102001001072 Feb 2001 KR
10-2002-0010821 Feb 2002 KR
20030027392 Apr 2003 KR
1020040056026 Jun 2004 KR
10-2005-0103811 Nov 2005 KR
10-0869326 Nov 2008 KR
10-0920033 Oct 2009 KR
10-2010-0093859 Aug 2010 KR
10-2012-0120902 Nov 2012 KR
175767 Aug 2003 TW
200539321 Dec 2005 TW
200539321 Dec 2005 TW
201005827 Feb 2010 TW
201005827 Feb 2010 TW
2010-27766 Jul 2010 TW
201439365 Oct 2014 TW
201439365 Oct 2014 TW
WO 2002045167 Jun 2002 WO
WO 2011156705 Dec 2011 WO
WO 2013161772 Oct 2013 WO
WO 2014156782 Oct 2014 WO
WO 2014209390 Dec 2014 WO
WO 15047345 Apr 2015 WO
WO 2015047345 Apr 2015 WO
WO 2015094305 Jun 2015 WO
WO 2015147843 Oct 2015 WO
WO 2015147858 Oct 2015 WO
WO 17184357 Oct 2017 WO
WO 2017184357 Oct 2017 WO
WO 2017184358 Oct 2017 WO
WO 2018204709 Nov 2018 WO
WO 2018213018 Nov 2018 WO
Non-Patent Literature Citations (81)
Entry
“Tungsten and Tungsten Silicide Chemical Vapor Deposition”, TimeDomain CVD, Inc., retrieved from link: http://www.timedomaincvd.com/CVD_Fundamentals/films/W_WSi.html, Last modified Jul. 11, 2008.
Au et al., “Selective Chemical Vapor Deposition of Manganese Self/Aligned Capping Layer for Cu Interconnections in Microelectronics”, Journal of the Electrochemical Society, vol. 157, No. 6, 2010, pp. D341-D345.
Bernal-Ramos, et al., “Atomic Layer Deposition of Cobalt Silicide Thin Films Studied by in Situ Infrared Spectroscopy”, Chem. Mater. 2015, 27, pp. 4943-4949.
Bouteville et al., “Selective R.T.L.P.C.V.D. of Tungsten by Silane Reduction on Patterned PPQ/Si Wafers” Journal De Physique IV, Colloque C2, suppl. au Journal de Physique II, vol. 1, Sep. 1991, pp. C2/857-C2/864.
Burton, et al., “Atomic Layer Deposition of MgO Using Bis(ethylcyclopentadienyl)magnesium and H20”. J. Phys. Chem. C, 2009, 113, 1939-1946.
Burton, et al., “Si02 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy”. J. Phys. Chem. C, 2009, 113, 8249-8257.
Carlsson, J., “Precursor Design for Chemical Vapour Deposition”, Acta Chemica Scandinavica, vol. 45, 1991, pp. 864-869.
Chang et al, “Influences of damage and contamination from reactive ion etching on selective tungsten deposition in a low/pressure chemical/vapor/deposition reactor”, J. Appl. Phys., vol. 80, No. 5, Sep. 1, 1996, pp. 3056-3061.
Chen et al., Highly Stable Monolayer Resists for Atomic Layer Deposition on Germanium and Silicon, Chem. Matter, vol. 18, No. 16, pp. 3733-3741, 2006.
Coclite, et al.; 25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modification and Device Fabrication; Advanced Materials; Oct. 2013; 25; pp. 5392-5423.
Elam et al., “Kinetics of the WF6 and Si2H6 surface reactions during tungsten atomic layer deposition”, Surface Science, vol. 479, 2001, pp. 121-135.
Elam et al., “Nucleation and growth during tungsten atomic layer deposition on SiO2 surfaces”, Thin Solid Films, vol. 386, 2001 pp. 41-52.
Ellinger et al., “Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone)”, Chem Mater. 2014, 26:1514-1522.
Fabreguette et al., Quartz crystal microbalance study of tungsten atomic layer deposition using WF6 and Si2H6, Thin Solid Films, vol. 488, 2005, pp. 103-110.
Farm et al. Selective/Area Atomic Layer Deposition Using Poly( methyl methacrylate) Films as Mask Layers, J. Phys. Chem. C, 2008, 112, pp. 15791-15795. (Year: 2008).
Farr, Isaac Vincent; Synthesis and Characterization of Novel Polyimide Gas Separation Membrane Material Systems, Chapter 2; Virginia Tech Chemistry PhD Dissertation; URN # etd-080999-123034; Jul. 26, 1999.
George, Steven M.; Atomic Layer Deposition: An Overview; Chem. Rev. 2010, 110, pp. 111-131; Feb. 12, 2009.
Ghosal et al., Controlling Atomic Layer Deposition of Ti02 in Aerogels through Surface Functionalization, Chem. Matter, vol. 21, pp. 1989-1992, 2009.
Grubbs et al., “Nucleation and growth during the atomic layer deposition of W on Al2O3 and Al2O3 on W”, Thin Solid Films, vol. 467, 2004, pp. 16-27.
Hymes et al., “Surface cleaning of copper by thermal and plasma treatment in reducing and inert ambients”, J. Vac. Sci. Technol. B, vol. 16, No. 3, May/Jun. 1998, pp. 1107-1109.
International Search Report and Written Opinion dated Feb. 17, 2012 in Application No. PCT/US2011/039970, filed Jun. 10, 2011.
King, Dielectric Barrier, Etch Stop, and Metal Capping Materials for State of the Art and beyond Metal Interconnects, ECS Journal of Solid State Science and Technology, vol. 4, Issue 1, pp. N3029-N3047, 2015.
Klaus et al., “Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction”, Thin Solid Films, vol. 360, 2000, pp. 145-153.
Klaus et al., “Atomically controlled growth of tungsten and tungsten nitride using sequential surface reactions”, Applied Surface Science 162/163, 2000, pp. 479-491.
Lee et al., Area-Selective Atomic Layor Deposition Using Self/Assembled Monolayer and Scanning Probe Lithography, Journal of the Electrochemical Society, vol. 156, Issue 9, pp. G125-G128, 2009.
Lei et al., “Real/time observation and opitimization of tungsten atomic layer deposition process cycle”, J. Vac. Sci. Technol. B, vol. 24, No. 2, Mar./Apr. 2006, pp. 780-789.
Lemonds, A.M., “Atomic Layer Deposition and Properties of Refractory Transition Metal/Based Copper/Diffusion Barriers for ULSI Interconnect”, The University of Texas at Austin, 2003, Dissertation in 216 pages.
Leusink et al., “Growth kinetics and inhibition of growth of chemical vapor deposited thin tungsten films on silicon from tungsten hexafluoride”, J. Appl. Phys., vol. 72, No. 2, Jul. 15, 1992, pp. 490-498.
Liang, et al., “Growth of Ge Nanofilms Using Electrochemical Atomic Layer Deposition, with a “Bait and Switch” Surface/Limited Reaction”. Journal of the American Chemical Society, 2011, 133, 8199-8024.
Lohokare et al., “Reactions of Disilane on Cu(111): Direct Observation of Competitive Dissociation, Disproportionation, and Thin Film Growth Processes”, Langmuir 1995, vol. 11, pp. 3902-3912.
Low et al., Selective deposition of CVD iron on silicon dioxide and tungsten, Microelectronic Engineering 83, pp. 2229-2233, 2006.
Mackus et al., Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis, Chem. Matter, vol. 25, pp. 1905-1911, 2013.
Mackus et al., Local deposition of high/purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition, Journal of Applied Physics, vol. 107, pp. 116102/1-116102/3, 2010.
Mackus, et al., The use of atomic layer depositioni in advanced nanopatterning; Nanoscale (2014) 6:10941-10960.
Maluf et al., “Selective tungsten filling of sub/0.25 μm trenches for the fabrication of scaled contacts and x/ray masks”, J. Vac. Sci. Technol. B, vol. 8, No. 3, May/Jun. 1990, pp. 568-569.
Norrman, et al.; 6 Studies of Spin-Coated Polymer Films; Annu. Rep. Prog. Chem.; Sect. C; 2005; 101; pp. 174-201.
Office Action dated Apr. 8, 2020 in Taiwan Application No. 105132286.
Office Action for ASMMC.123P1C1, U.S. Appl. No. 16/429,750, 22 pages.
Overhage et al., Selective Atomic Layer Deposition (SALD) of Titanium Dioxide on Silicon and Copper Patterned Substrates, Journal of Undergraduate Research 4, 29, Mar. 2011 in 4 pages.
Parulekar et al., Atomic Layer Deposition of Zirconium Oxide on Copper Patterned Silicon Substrate, Journal of Undergraduate Research, vol. 7, pp. 15-17, 2014.
Parulekar et al., Selective atomic layer deposition of zirconium oxide on copper patterned silicon substrate, pp. 1-6, 2013.
Prasittichai et al., “Area Selective Molecular Layer Deposition of Polyurea Film”, Applied Materials & Interfaces, 2013, vol. 5, pp. 13391-13396.
Proslier et al., “Atomic Layer Deposition and Superconducting Properties of NbSi Films”, The Journal of Physical Chemistry C, 2011, vol. 115, No. 50, pp. 1-26.
Putkonen, et al.; Atomic Layer Deposition of Polyimide Thin Films; Journal of Materials Chemistry; 2007, 17, pp. 664-669.
Ratta, Varun; Crystallization, Morphology, Thermal Stability and Adhesive Properties of Novel High Performance Semicrystalline Polyimides, Chapter 1; Virginia Tech Chemistry PhD Dissertation; URN # etd-051799-162256; Apr. 26, 1999.
Roberts et al., “Selective Mn deposition on Cu lines”, poster presentation, 12th International Conference on Atomic Layer Deposition, Jun. 19, 2012, Dresden, Germany; 1 page.
Sapp, et al.; Thermo-Mechanical and Electrical Characterization of Through-Silicon Vias with a Vapor Deposited Polyimide Dielectric Liner; IEEE; 2012.
Schmeißer, Decomposition of formic acid, Chemnitz University of Technology, pp. 1-13, Aug. 31, 2011.
Schmeißer, Reduction of Copper Oxide by Formic Acid an ab/initio study, Chemnitz University of Technology, pp. 1-42, Sep. 2011.
Schuisky, et al., Atomic Layer Deposition of Thin Films Using O2 as Oxygen Source; Langmuir (2001) 17:5508-5512.
Selvaraj et al., Selective atomic layer deposition of zirconia on copper patterned silicon substrates using ethanol as oxygen source as well as copper reductant, Journal of Vacuum Science & Technology A, vol. 32, No. 1, pp. 010601/1-010601/4, Jan. 2014.
Senesky et al., “Aluminum nitride as a masking material for the plasma etching of silicon carbide structures,” 2010, IEEE, pp. 352-355.
Sundberg, et al.; Organic and Inorganic-Organic Thin Film Structures by Molecular Layer Deposition: A Review; Beilstein J. Nanotechnol; 2014, 5, pp. 1104-1136.
Suntola, “Handbook of Crystal Growth. vol. 3., Thin Films and Epitaxy, Part B: Growth mechanisms and Dynamics”, Amsterdam: North Holland, Elsevier Science Publishers (1994), Chapter 14, pp. 601-663.
Toirov, et al.; Thermal Cyclodehydration of Polyamic Acid Initiated by UV-Irradiation; Iranian Polymer Journal; vol. 5, No. 1; pp. 16-22; 1996; Iran.
Vallat et al., Selective deposition of Ta205 by adding plasma etching super/cycles in plasma enhanced atomic layer deposition steps, Journal of Vacuum Science & Technology A, vol. 35, No. 1, pp. 01B104/1-01B104/7, Jan. 2017.
Vervuurt et al. “Area/selective atomic layer deposition of platinum using photosensitive polymide,” (2016) Nanotechnology 27.40 (2016): 405302 in 6 pages.
Yu et al., “Gas/surface reactions in the chemical vapor deposition of tungsten using WF6/SiH4 mixtures”, J. Vac. Sci. Technol. A, vol. 7, No. 3, May/Jun. 1989, pp. 625-629.
Zhou, et al.; Fabrication of Organic Interfacial Layers by Molecular Layer Deposition: Present Status and Future Opportunities; Journal of Vacuum Science & Technology; A 31 (4), 040801-1 to 040801-18; 2013.
George, S.M. et al., “Surface chemistry for molecular layer deposition of organic and hybrid organic—inorganic polymers,” Accounts of Chemical Research, Apr. 2009, vol. 42, No. 4, pp. 498-508.
Office Action in Taiwanese Patent Application No. 109123189, dated Feb. 24, 2021.
Office Action dated Dec. 15, 2020 in Japanese Patent Application No. 2016-197037.
Aaltonen et al. (2004) Atomic layer deposition of iridium thin films. Journal of the Electrochemical Society. 151(8):G489-G492.
Benzotriazole, Wikipedia via https://en.wikipedia.org/wiki/Benzotriazole; pp. 1-5, no date available.
Cameron et al., “Molecular layer deposition”, ECS Transactions, 58(10):263-275, The Electrochemical Society (2013).
Cho et al., “Atomic layer deposition of Al2O3 thin films using dimethylaluminum isopropoxide and water”, Journal of Vacuum Science & Technology A 21, (2003), doi: 10.1116/1.1562184, pp. 1366-1370.
Farm et al., “Self-Assembled Octadecyltrimethoxysilane Monolayers Enabling Selective-Area Atomic Layer Deposition of Iridium”, Chem. Vap. Deposition, 2006, 12, pp. 415-417.
Formic Acid, Wikipedia via https://en.wikipedia.org/wiki/Formic_acid; pp. 1-5, no date available.
Hashemi et al., “A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal-Dielectric Patterns”, J. Phys. Chem. C 2014, 118, pp. 10957-10962.
Hashemi et al., “Selective Deposition of Dieletrics: Limits and Advantages of Alkanethiol Blocking Agents on Metal-Dielectric Patterns”, ACS Appl. Mater. Interfaces 2016, 8, pp. 33264-33272.
Hu et al. “Coating strategies for atomic layer deposition”, Nanotechnol. Rev. 2017; 6(6): pp. 527-547.
International Search Report and Written Opinion dated Jun. 20, 2017 in Application No. PCT/US2017/026515, filed April 7, 2017in 11 pages.
International Search Report and Written Opinion dated Jun. 16, 2017 in Application No. PCT/US2017/026518, filed Apr. 7, 2017 in 13 pages.
International Search Report and Written Opinion dated Jun. 22, 2017 in Application No. PCT/US2017/026519, filed Apr. 7, 2017 in 12 pages.
Kukli et al., “Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen”, J. Appl. Phys., vol. 92, No. 10, Nov. 15, 2002, pp. 5698-5703.
Lecordier et al., “Vapor-deposited octadecanethlol masking layer on copper to enable area selective Hf3N4 atomic layer deposition on dielectrics studied by in situ spectroscopic ellipsometry”, J. Vac. Sci. Technol. A36(3), May/Jun. 2018, pp. 031605-1-031605-8.
Lemonds, A.M., “Atomic layer deposition of TaSix thin films on SiO2 using TaF5 and Si2H6”, Thin Solid Films 488, 2005 pp. 9-14.
Lin et al., “Selective Deposition of Multiple Sensing Materials on Si Nanobelt Devices through Plasma-Enhanced Chemical Vapor Deposition and Device-Localized Joule Heating”, ACS Appl. Mater. Interfaces 2017, 9, 39935-39939, DOI: 10.1021/acsami.7b13896.
Shao et al., “Layer-by-layer polycondensation of nylon 66 by alternating vapor deposition polymerization”, Polymer, vol. 38(2):459-462 (1997).
Ting, et al., “Selective Electroless Metal Deposition for Integrated Circuit Fabrication”, J. Electrochem. Soc., vol. 136, No. 2, Feb. 1989, pp. 456-462.
Wang et al., “Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells”, Journal of Materials Chemistry A, 2016, 4, pp. 12080-12087.
Related Publications (1)
Number Date Country
20200324316 A1 Oct 2020 US
Continuations (1)
Number Date Country
Parent 14879962 Oct 2015 US
Child 16877129 US