Variable beam angle directional lighting fixture assembly

Information

  • Patent Grant
  • 9360185
  • Patent Number
    9,360,185
  • Date Filed
    Monday, April 9, 2012
    13 years ago
  • Date Issued
    Tuesday, June 7, 2016
    9 years ago
Abstract
A directional lighting fixture having a variable beam angle that is easily adjusted. One or more lighting sources are disposed within a fixture housing. A removable cover is disposed over the open end of the housing. The cover comprises a micro lens structure that defines the beam angle of the light that is emitted from the fixture. The removable cover, or in some configurations portions of the cover, can be easily replaced by the end user to achieve a desired beam angle.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates generally to optical assemblies for lighting applications and, more particularly, to variable beam angle fixture assemblies for solid state light sources.


2. Description of the Related Art


Light emitting diodes (LED or LEDs) are solid state devices that convert electric energy to light, and generally comprise one or more active regions of semiconductor material interposed between oppositely doped semiconductor layers. When a bias is applied across the doped layers, holes and electrons are injected into the active region where they recombine to generate light. Light is emitted from the active region and from surfaces of the LED.


In order to generate a desired output color, it is sometimes necessary to mix colors of light which are more easily produced using common semiconductor systems. Of particular interest is the generation of white light for use in everyday lighting applications. Conventional LEDs cannot generate white light from their active layers; it must be produced from a combination of other colors. For example, blue emitting LEDs have been used to generate white light by surrounding the blue LED with a yellow phosphor, polymer or dye, with a typical phosphor being cerium-doped yttrium aluminum garnet (Ce:YAG). The surrounding phosphor material “downconverts” some of the blue light, changing its color to yellow. Some of the blue light passes through the phosphor without being changed while a substantial portion of the light is downconverted to yellow. The LED emits both blue and yellow light, which combine to provide a white light.


In another known approach light from a violet or ultraviolet emitting LED has been converted to white light by surrounding the LED with multicolor phosphors or dyes. Indeed, many other color combinations have been used to generate white light.


Because of the physical arrangement of the various source elements, multicolor sources often cast shadows with color separation and provide an output with poor color uniformity. For example, a source featuring blue and yellow sources may appear to have a blue tint when viewed head-on and a yellow tint when viewed from the side. Thus, one challenge associated with multicolor light sources is good spatial color mixing over the entire range of viewing angles.


One known approach to the problem of color mixing is to use a diffuser to scatter light from the various sources; however, a diffuser usually results in a wide beam angle. Diffusers may not be feasible where a narrow, more controllable directed beam is desired.


Another known method to improve color mixing is to reflect or bounce the light off of several surfaces before it is emitted. This has the effect of disassociating the emitted light from its initial emission angle. Uniformity typically improves with an increasing number of bounces, but each bounce has an associated loss. Many applications use intermediate diffusion mechanisms (e.g., formed diffusers and textured lenses) to mix the various colors of light. These devices are lossy and, thus, improve the color uniformity at the expense of the optical efficiency of the device.


Many modern lighting applications demand high power LEDs for increased brightness. High power LEDs can draw large currents, generating significant amounts of heat that must be managed. Many systems utilize heat sinks which must be in good thermal contact with the heat-generating light sources. Some applications rely on cooling techniques such as heat pipes which can be complicated and expensive.


Recent lighting luminaire designs have incorporated LEDs into lamp modules. There are several design challenges associated with the LED-based lamp modules including: source size, heat management, overall size of the lamp assembly, and the efficiency of the optic elements. Source size is important because the size of a 2 pi emitter dictates the width of the output beam angle (i.e., etendue) using a standard aperture, such as a 2 inch (MR16) aperture, for example. Heat dissipation is a factor because, as noted above, the junction temperature of LEDs must be kept below a maximum temperature specified by the manufacturer to ensure optimal efficacy and lifetime of the LEDs. The overall size of the optical assembly is important because ANSI standards define the physical envelope into which a lamp must fit to ensure compliance with standard lighting fixtures. Lastly, the efficiency of the optic elements must be high so that the output from high-efficacy LEDs is not wasted on inefficient optics.


To address the issue of overall optical assembly size, total internal reflection (TIR) lenses have been used in lamp packages. In many implementations, additional beam-shaping optics are attached to the TIR with a lens carrier. The lens carrier may be attached to the TIR using various methods such as a two-piece trap or heat staking, for example. The TIR/lens carrier component requires early configuration in the assembly process. Additionally, customers cannot easily adjust these lamps for different beam-angle outputs. Each light source is associated with a collimator to collimate light as it is initially emitted from the source.


SUMMARY OF THE INVENTION

An embodiment of a directional lighting system comprises the following elements. A collimator is within a housing. A removable transmissive cover is proximate to the collimator. The cover comprises micro lenses shaped to determine an outgoing beam angle.


An embodiment of a directional lighting system comprises the following elements. A housing comprises a base. At least one light source is on a mount surface of the base. A collimator is arranged to receive light emitted from the light source and collimate the light. A removable cover is proximate to the collimator. The cover comprises micro lenses shaped to determine the beam of angle of light exiting the open end of the housing.


An embodiment of a fixture assembly comprises the following elements. A housing defines an interior cavity and an open end and comprises a base. A plurality of light emitting diodes (LEDs) is on a mounting surface of the base in the cavity. A plurality of collimators is in the cavity, each of the collimators arranged to collimate light from at least one of the LEDs toward the open end of the housing. A removable cover is on the open end of the housing, the removable cover comprising micro lenses shaped to determine the beam angle of light exiting the open end of the housing.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a fixture assembly according to an embodiment of the present invention.



FIG. 2 is a perspective view of a fixture assembly according to an embodiment of the present invention.



FIG. 3 is an exploded perspective view of a plurality of collimators and a cover that may be used in fixture assemblies according to embodiments of the present invention.



FIG. 4 is an exploded perspective view of a plurality of collimators and a cover that may be used in fixture assemblies according to embodiments of the present invention.



FIG. 5 is an exploded perspective view of a plurality of collimators and a cover that may be used in fixture assemblies according to embodiments of the present invention.



FIG. 6 is a perspective view of fixture assembly according to an embodiment of the present invention.



FIG. 7 is a perspective view of a cover and a close-up of one micro lens element that may be used in fixture assemblies according to embodiments of the present invention.



FIG. 8 is a perspective view of the back side of a cover and collimators that may be used in fixture assemblies according to embodiments of the present invention.



FIG. 9 is a perspective view of a fixture assembly according to an embodiment of the present invention.



FIG. 10 is a top perspective view of a chip-on-board (COB) element that may be used in fixtures according to embodiments of the present invention.



FIG. 11 is an exploded view of a collimator/micro lens assembly that may be used in lighting systems according to embodiments of the present invention.



FIG. 12 is a front perspective view a cover that may be used in lighting systems according to embodiments of the present invention.



FIG. 13 is a front perspective view of a cover that may be used in lighting systems according to embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention provide a directional lighting fixture having a variable beam angle that is easily adjusted. A fixture housing is shaped to define an interior cavity and an open end. One or more lighting sources are disposed within the cavity. A removable transmissive cover is disposed over the open end of the housing. The cover comprises a micro lens structure that defines the beam angle of the light that is emitted from the fixture. The removable cover can be easily replaced by the end user with a different cover to achieve a desired beam angle.


It is understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. Furthermore, relative terms such as “inner”, “outer”, “upper”, “above”, “lower”, “beneath”, and “below”, and similar terms, may be used herein to describe a relationship of one element to another. It is understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.


Although the ordinal terms first, second, etc., may be used herein to describe various elements, components, regions and/or sections, these elements, components, regions, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, or section from another. Thus, unless expressly stated otherwise, a first element, component, region, or section discussed below could be termed a second element, component, region, or section without departing from the teachings of the present invention.


As used herein, the term “source” can be used to indicate a single light emitter or more than one light emitter functioning as a single source. For example, the term may be used to describe a single blue LED, or it may be used to describe a red LED and a green LED in proximity emitting as a single source. Thus, the term “source” should not be construed as a limitation indicating either a single-element or a multi-element configuration unless clearly stated otherwise.


The term “color” as used herein with reference to light is meant to describe light having a characteristic average wavelength; it is not meant to limit the light to a single wavelength. Thus, light of a particular color (e.g., green, red, blue, yellow, etc.) includes a range of wavelengths that are grouped around a particular average wavelength. Light of a particular color may also be characterized by a specific combination of discrete wavelengths that, in combination, exhibit the particular color.



FIG. 1 is a cross-sectional view of a fixture assembly 100 according to an embodiment of the present invention. FIG. 2 is a perspective view of the fixture assembly 100. In this particular embodiment, seven collimators 102 are positioned over light sources 104 each of which are mounted within a protective housing 106. A Collimator is any device that narrows the incoming beam of light such that the outgoing light disperses more slowly as it propagates; collimators include lenses and reflective structures, for example. In some embodiments, LED light sources are used which may include individual encapsulants 108 over each source to protect the LED and to perform other functions. For example, the encapsulants 108 can be designed to function as diffusers or wavelength converters. The collimators 102 cooperate with encapsulants 108 such that a substantial portion of the light emitted from the sources 104 enter into the collimators 102. Each source 104 may comprise one or more emitter chips which can emit the same or different colors.


The protective housing 106 surrounds the collimators 102 and the sources 104 to shield these internal components from the elements. A portion of the housing 106 may comprise a material that is a good thermal conductor, such as aluminum or copper. The thermally conductive portion of the housing 106 can function as a heat sink by providing a path for heat from the sources 104 through the housing 106 into the ambient. In some embodiments the housing 106 can comprise heat dissipating features such as fins or heat pipes. In other embodiments the housing 106 can comprise different types of lamp collars that can be mounted to a different feature such as a separate heat sink. The sources 104 are disposed at the base of the housing 106 in good thermal contact with the body of the housing 106. Thus, the sources 104 may comprise high power LEDs that generate large amounts of heat. Although in this particular embodiment the light sources 104 comprise individual LED components, other embodiments may comprise multi-chip elements such as a chip-on-board (COB) element, for example, as discussed in more detail herein.


Power is delivered to the sources 104 through a protective conduit 110. The fixture 100 may be powered by a remote source connected with wires running through the conduit 110, or it may be powered internally with a battery that is housed within the conduit 110. The conduit 110 may be threaded as shown in FIG. 2 for mounting to an external structure. In one embodiment, an Edison screw shell may be attached to the threaded end to enable the fixture 100 to be used in a standard Edison socket. Other embodiments can include custom connectors such as a GU24 style connector, for example, to bring AC power into the fixture 100. The device may also be mounted to an external structure in other ways.


The conduit 110 functions not only as a structural element, but may also provide electrical isolation for the high voltage circuitry that it houses which helps to prevent shock during installation, adjustment, and replacement. The conduit 110 may comprise an insulative and flame retardant thermoplastic or ceramic, although other materials may be used.


A transmissive removable cover 112 may be placed over the collimators 104 at the open end of the housing 106. The cover 112 and the housing 106 may form a watertight seal to keep moisture from entering into the internal areas of the fixture 100. The cover 112 is easily removable and attachable to the open end of the housing 106. Thus, several different covers 112, each having different optical properties, may be used with the fixture 100 to change the appearance of the output beam.


The cover 112 may be removably attached to the housing several different structures. In one embodiment, the cover 112 and housing 106 comprise snap-fit structures so that the cover 112 may be easily removed and reattached to the housing 106. The snap-fit attachment mechanism makes it easy for a vendor or an end user to switch out various covers to produce a desired output effect. It is understood that the cover 112 may be attached to the housing 106 with other mechanisms such as screws, latches, or adhesives, for example.


The cover 112 comprises a micro lens structure 114. The micro lens structures may be distributed across the entire face of the cover 112 or may be confined to specific areas. Additionally, the micro lens structures can be uniform or non-uniform across the face of the cover 112 as discussed in more detail herein. Many different known micro lens structures may be used to achieve an output beam having particular characteristics. For example, the micro lenses 114 may be designed to produce a desired output beam angle (i.e., to control beam divergence). In one embodiment, removable covers 112 comprising different micro lens structures 114 can respectively produce beam angles of 12 degrees, 25 degrees, or 40 degrees, for example. Nearly any desired beam angle can be achieved using different known micro lens structures.


The micro lens structure 114 shown in FIG. 1 is merely illustrative; it is not meant to represent the actual contour or shape of any real micro lens structure. Thus, it is understood that many different micro lens structures may be used in embodiments of the present invention.


The cover 112 comprises a flat outer surface 116 to facilitate maintenance and cleaning. In this particular embodiment, the micro lens structure 114 is uniform and covers the entire area of the cover 112. In other embodiments, it may be more efficient to limit the micro lens structure to a particular area or areas of the cover 112 as discussed in more detail herein.



FIG. 3 is an exploded perspective view of a plurality of collimators 302 and a cover 304 that may be used in fixture assemblies according to embodiments of the present invention. In this particular embodiment, the collimators 304 comprise reflector cups 306 that would align with individual light sources in a multi-source configuration. In other embodiments, the fixture may only require a single reflector cup to align with a single source. The reflector cups 306 comprise a reflective interior surface. Thus, the cups 306 may be fabricated using aluminum, another metal, or any other substantially specularly reflective material, for example. The cups 306 may also be made of one material and then finished with a substantially specular material on the interior surface, such as a metal coating, for example.



FIG. 4 is an exploded perspective view of a plurality of collimators 402 and a cover 404 that may be used in fixture assemblies according to embodiments of the present invention. In this embodiment, each collimator 402 comprises a TIR lens 406. Many different TIR lens shapes can be used to produce initial collimated beams having particular characteristics. The TIR lenses 406 may be constructed from a typical material such as poly(methyl methacrylate) (PMMA) or from materials having a higher refractive index including various polymeric materials such as PMMAs, polycarbonates (PCs), cyclic olyphan copolymers (COC), or various types of glass. Other materials may also be used.



FIG. 5 is an exploded perspective view of a plurality of collimators 502 and a cover 504 that may be used in fixture assemblies according to embodiments of the present invention. Here, the collimators 502 comprise individual TIR lenses 506 inside respective reflector cups 508. In this configuration, the TIR lenses 506 provide most of the collimation with the reflector cups 508 redirecting any light that escapes the TIR lens 506 (e.g., light that impinges the TIR lens 506 at an angle greater than the critical angle for a given material).


Because, in this embodiment, most of the collimation is done with the TIR lenses 506, it may be desirable to use a diffuse material on the interior surface of the reflector cups 508. Thus, in embodiments using the TIR lens/reflector cup combination similar to the one shown in FIG. 5, a diffuse white reflector such as a microcellular polyethylene terephthalate (MCPET) material or a Dupont/WhiteOptics material, for example, may be incorporated into the reflector cups 508. Other white diffuse reflective materials can also be used. Such materials may be applied as a coating to the interior surface of the reflector cups 508.


Diffuse reflective coatings have the inherent capability to mix light from solid state light sources having different spectra (i.e., different colors). These coatings are particularly well-suited for multi-source designs where two different spectra are mixed to produce a desired output color point. For example, LEDs emitting blue light may be used in combination with LEDs emitting yellow (or blue-shifted yellow) light to yield a white light output. A diffuse reflective coating may eliminate the need for additional spatial color-mixing schemes that can introduce lossy elements into the system; although, in some embodiments it may be desirable to use a diffuse coating on the interior surface of the reflector cup 306 in combination with other diffusive elements. In some embodiments, the cup interior surface may be coated with a phosphor material that converts the wavelength of at least some of the light from the light emitting diodes to achieve a light output of the desired color point.



FIG. 6 is a perspective view of fixture assembly 600 according to an embodiment of the present invention. The fixture 600 is similar to the fixture 100 shown in FIG. 1. However, in this embodiment the micro lenses 602 are confined to areas of a cover 604 that align with the collimators (not shown in this figure) that are disposed inside the housing 606. This configuration reduces the amount of micro lens material necessary by eliminating material in areas that do no align with the collimators, possibly reducing the total cost of the fixture 600. Several known mechanisms may be used to ensure proper alignment of the collimators and the associated micro lenses 602, such as a notch/key mechanism (not shown), for example.



FIG. 7 is a perspective view of a cover 702 and a close-up of one micro lens element 704 that may be used in fixture assemblies according to embodiments of the present invention. Several micro lens elements 704 are positioned in associated cutout portions of the cover 702 such that they align with the collimators in the housing. When the micro lens elements are disposed in the cutout portions, the cover itself may be light transmissive or opaque. In some embodiments, it may be desirable to have micro lens elements 704 with different properties.



FIG. 8 is a perspective view of the back side of the cover 702. Several collimators 706 are mounted to the cover 702 over the cutout portions such that they align with the micro lenses 704 visible from the other side of the cover 702. Here, the collimators 706 comprise reflector cups similar to the embodiment shown in FIG. 3. In this embodiment, the cover 702 is designed to cooperate with a lamp having seven discrete light sources; other fixture embodiments may have a different number of sources, such as the fixture shown in FIG. 9.



FIG. 9 is a perspective view of a fixture assembly 900 according to an embodiment of the present invention. This particular embodiment comprises a cover 902 with four cutout portions 904 to accommodate the micro lenses 906. The housing 908 surrounds and protects the four discrete light sources (not shown) inside. Thus, it is understood that many different light source configurations can be used with embodiments of the present invention.


In some embodiments, individual LED sources may be replaced with LEDs that are clustered in a given area(s) using a chip-on-board (COB) configuration as mentioned briefly with reference to FIG. 1. Thus, each discrete source may comprise several LEDs and the circuitry necessary to drive them in a single element. FIG. 10 is a top perspective view of a COB element 1000 that may be used in fixtures according to embodiments of the present invention. The COB element 1000 comprises several LEDs of first color 1002 and LEDs of a second color 1004 all mounted to a thermally conductive board 1006. On-board elements provide circuitry that can power multiple high voltage LEDs. The element 1000 may be easily mounted to many surfaces within the fixture. COB provides several advantages over traditional individually packaged LEDs. One advantage is the removal of a thermal interface from between the chip and the ambient environment. A substrate element, which may be made of alumina or aluminum nitride, may be removed as well resulting in a cost saving. Process cost may also be reduced as the singulation process necessary to separate individual LED dice is eliminated from the work stream.



FIG. 11 shows an individual assembly 1100 comprising a collimator 1102 and micro lens element 1104 that may be used in lighting systems according to embodiments of the present invention. As shown, the collimator 1102 and the micro lens element 1104 can be joined using a snap-fit structure, including posts 1106 and holes 1108. It is understood that micro lens element 1104 may be attached to the collimator 1102 with other mechanisms such as screws, latches, or adhesives, for example.



FIG. 12 is a front perspective view of a cover 1200 for use in lighting systems according to embodiments of the present invention. This particular cover 1200 comprises a light transmissive body 1202 and may be used with the collimator 1102 and micro lens element 1104 shown in FIG. 11. The emission end of the collimator 1102 is flush with cutout portion of the cover 1200 as shown. Each individual micro lens element 1104 is removably attached to a respective collimator 1102. In this embodiment, the micro lens elements 1104 mate with the collimators 1102 using a snap-fit post 1106 and hole 1108 structure. A side view of one of the micro lens elements 1104 which has been removed is shown such that the posts 1106 and holes 1108 are visible. In this way, the micro lens elements 1104 are easily removable and replaceable, allowing for customized lens arrangements such as that shown in FIG. 12. For example, the embodiment shown in FIG. 12 includes six micro lens elements 1104 of a first type surrounding a central micro lens 1204 of a second type. Thus, the micro lens structure is non-uniform across the face of the cover 1200. Lenses having various properties and fabricated from various materials can be easily used in combination to achieve a particular output profile. Many different arrangements are possible.



FIG. 13 is a front perspective view of a cover 1300 that may be used in lighting systems according to embodiments of the present invention. In this particular embodiment, the body 1302 of the cover is light transmissive and comprises micro lens features across the entire face. The body 1302 also comprises cutout portions 1304 with micro lens elements 1306 disposed within the cutout portions 1304 as shown. In some embodiments, the micro lens elements 1306 have different optical properties than the surrounding body 1302 such that the micro lens structure is non-uniform across the face of the cover 1300. Thus, it is possible to customize the body 1302 and micro lens element 1306 combinations to achieve a desire output profile.


It is understood that embodiments presented herein are meant to be exemplary. Embodiments of the present invention can comprise any combination of compatible features shown in the various figures, and these embodiments should not be limited to those expressly illustrated and discussed.


Although the present invention has been described in detail with reference to certain configurations thereof, other versions are possible. Therefore, the spirit and scope of the invention should not be limited to the versions described above.

Claims
  • 1. An assembly for directional lighting, comprising: a housing;a plurality of collimators within said housing; anda transmissive cover which is removably mounted over said plurality of collimators, said cover comprising a plurality of micro lenses, all of which are co-planar and shaped to determine a desired outgoing beam angle, said cover proximate to said collimators without substantially extending into said collimators.
  • 2. The assembly for directional lighting of claim 1, wherein each of said collimators comprises a total internal reflection (TIR) lens.
  • 3. The assembly for directional lighting of claim 1, wherein each of said collimators comprises a reflector cup.
  • 4. The assembly for directional lighting of claim 3, wherein each of said reflector cups comprises a substantially specularly reflective material.
  • 5. The assembly for directional lighting of claim 3, wherein each of said reflector cups comprises a highly reflective material.
  • 6. The assembly for directional lighting of claim 3, wherein each of said reflector cups is metal-coated.
  • 7. The assembly for directional lighting of claim 1, further comprising respective reflector cups around each of said collimators.
  • 8. The assembly for directional lighting of claim 1, wherein said cover is removably mounted to said housing with a snap-fit structure.
  • 9. The assembly for directional lighting of claim 1, wherein an outer surface of said cover is flat, said outer surface opposite said collimators.
  • 10. The assembly for directional lighting of claim 1, wherein said plurality of micro lenses are dispersed across the entire area of said cover.
  • 11. The assembly for directional lighting of claim 1, wherein said plurality of micro lenses are confined to an area of said cover that aligns with at least one of said collimators.
  • 12. The assembly for directional lighting of claim 1, wherein said plurality of micro lenses are non-uniform across the face of said cover.
  • 13. The assembly for directional lighting of claim 1, wherein said cover is shaped to define cutout portions with said plurality of micro lenses therein.
  • 14. The assembly for directional lighting of claim 13, wherein said plurality of micro lenses connect to at least one of said collimators.
  • 15. A directional lighting system, comprising: a housing comprising a base;at least one light source on a mount surface of said base;a plurality of collimators configured to receive light emitted from said light source and collimate said light; anda cover which is removably mounted over said plurality of collimators, said cover comprising a plurality of micro lenses, all of which are co-planar and shaped to determine a desired beam angle of light exiting said lighting system, said cover proximate to said collimators without substantially extending into said collimators.
  • 16. The directional lighting system of claim 15, wherein each of said collimators comprises a total internal reflection (TIR) lens.
  • 17. The directional lighting system of claim 15, wherein each of said collimators comprises a reflector cup.
  • 18. The directional lighting system of claim 17, wherein each of said reflector cups comprises a substantially specularly reflective material.
  • 19. The directional lighting system of claim 17, wherein each of said reflector cups comprises a highly reflective material.
  • 20. The directional lighting system of claim 17, wherein each of said reflector cups is metal-coated.
  • 21. The directional lighting system of claim 15, further comprising a reflector cup around each of said collimators.
  • 22. The directional lighting system of claim 15, wherein said cover is removably mounted to said housing with a snap-fit structure.
  • 23. The directional lighting system of claim 15, wherein an outer surface of said cover is flat, said outer surface opposite said collimators.
  • 24. The directional lighting system of claim 15, wherein said plurality of micro lenses are dispersed across the entire area of said cover.
  • 25. The directional lighting system of claim 15, wherein said plurality of micro lenses are confined to an area of said cover that aligns with at least one of said collimators.
  • 26. The directional lighting system of claim 15, wherein said plurality of micro lenses are non-uniform across a face of said cover.
  • 27. The directional lighting system of claim 15, wherein said cover is shaped to define cutout portions with said plurality of micro lenses therein.
  • 28. The directional lighting system of claim 27, wherein said plurality of micro lenses connect to at least one of said collimators.
  • 29. A fixture assembly, comprising: a housing defining an interior cavity and an open end, said housing comprising a base;a plurality of light emitting diodes (LEDs) on a mounting surface of said base in said cavity;a plurality of collimators in said cavity, each of said collimators configured to collimate light from at least one of said LEDs toward said open end of said housing; anda cover which is removably mounted on said open end of said housing and proximate to at least one collimator in said plurality of collimators without substantially extending into said at least one collimator, said cover comprising a plurality of micro lenses, all of which are co-planar and shaped to determine the beam angle of light exiting said open end of said housing.
  • 30. The fixture assembly of claim 29, wherein each of said collimators comprises a total internal reflection (TIR) lens.
  • 31. The fixture assembly of claim 29, wherein each of said collimators comprises a reflector cup.
  • 32. The fixture assembly of claim 31, wherein each of said reflector cups comprises a substantially specularly reflective material.
  • 33. The fixture assembly of claim 31, wherein each of said reflector cups comprises a highly reflective material.
  • 34. The fixture assembly of claim 31, wherein an interior surface of each of said reflector cups is metal-coated.
  • 35. The fixture assembly of claim 29, further comprising a reflector cup around each of said collimators.
  • 36. The fixture assembly of claim 29, wherein said cover is removably mounted to said housing with a snap-fit structure.
  • 37. The fixture assembly of claim 29, wherein an outer surface of said cover is flat, said outer surface opposite said cavity.
  • 38. The fixture assembly of claim 29, wherein said plurality of micro lenses are dispersed across the entire area of said cover.
  • 39. The fixture assembly of claim 29, wherein said plurality of micro lenses are confined to areas of said cover that align with said collimators.
US Referenced Citations (163)
Number Name Date Kind
D85382 Guth Oct 1931 S
2356654 Cullman Aug 1944 A
3381124 Eisenberg Apr 1968 A
4939627 Herst et al. Jul 1990 A
5025356 Gawad Jun 1991 A
5823663 Bell et al. Oct 1998 A
D407473 Wimbock Mar 1999 S
6149283 Conway et al. Nov 2000 A
6155699 Miller et al. Dec 2000 A
6210025 Schmidt et al. Apr 2001 B1
6234643 Lichon, Jr. May 2001 B1
6402347 Maas et al. Jun 2002 B1
6443598 Morgan Sep 2002 B1
6523974 Engel Feb 2003 B2
6578979 Truttmann-Battig Jun 2003 B2
D496121 Santoro Sep 2004 S
6871983 Jacob et al. Mar 2005 B2
6948840 Grenda et al. Sep 2005 B2
7021797 Minano et al. Apr 2006 B2
7049761 Timmermans et al. May 2006 B2
7063449 Ward Jun 2006 B2
7175296 Cok Feb 2007 B2
7213940 Van de Ven et al. May 2007 B1
7217004 Park et al. May 2007 B2
7237924 Martineau et al. Jul 2007 B2
D556358 Santoro Nov 2007 S
7338182 Hastings et al. Mar 2008 B1
7510299 Timmermans et al. Mar 2009 B2
7520636 Van der Poel Apr 2009 B2
D593246 Fowler et al. May 2009 S
7559672 Parkyn et al. Jul 2009 B1
7594736 Kassay et al. Sep 2009 B1
D604446 Fowler et al. Nov 2009 S
7618157 Galvez et al. Nov 2009 B1
7618160 Chinniah et al. Nov 2009 B2
D608932 Castelli Jan 2010 S
7654702 Ding et al. Feb 2010 B1
7661844 Sekiguchi et al. Feb 2010 B2
D611183 Duarte Mar 2010 S
7674005 Chung et al. Mar 2010 B2
7686470 Chiang Mar 2010 B2
7686484 Heiking et al. Mar 2010 B2
7712918 Siemiet et al. May 2010 B2
7722220 Van de Ven May 2010 B2
7722227 Zhang et al. May 2010 B2
D617487 Fowler et al. Jun 2010 S
7768192 Van de Ven et al. Aug 2010 B2
7815338 Siemiet et al. Oct 2010 B2
7824056 Madireddi et al. Nov 2010 B2
7828468 Mayfield et al. Nov 2010 B2
D633247 Kong et al. Feb 2011 S
7887216 Patrick et al. Feb 2011 B2
7922354 Everhart Apr 2011 B2
7926982 Liu Apr 2011 B2
7988321 Wung et al. Aug 2011 B2
7988335 Liu et al. Aug 2011 B2
7991257 Coleman Aug 2011 B1
7993034 Wegner Aug 2011 B2
7997762 Wang et al. Aug 2011 B2
8038314 Ladewig Oct 2011 B2
8038321 Franck et al. Oct 2011 B1
8070326 Lee Dec 2011 B2
D653376 Kong et al. Jan 2012 S
8092043 Lin et al. Jan 2012 B2
8092049 Kinnune et al. Jan 2012 B2
8096671 Cronk Jan 2012 B1
D657488 Lown et al. Apr 2012 S
8162504 Zhang et al. Apr 2012 B2
8186855 Wassel et al. May 2012 B2
8197086 Watanabe et al. Jun 2012 B2
8201968 Maxik et al. Jun 2012 B2
8215799 Vanden Eynden et al. Jul 2012 B2
8246219 Teng et al. Aug 2012 B2
8256927 Hu Sep 2012 B2
D670849 Lay et al. Nov 2012 S
8317354 Gassner et al. Nov 2012 B2
D679848 Pickard et al. Apr 2013 S
8410514 Kim Apr 2013 B2
D684291 Goelz et al. Jun 2013 S
8480252 Bertram et al. Jul 2013 B2
8506135 Oster Aug 2013 B1
8591058 Concepcion Nov 2013 B2
8591071 Hochstein Nov 2013 B2
D698975 Blessitt et al. Feb 2014 S
8641243 Rashidi Feb 2014 B1
D701988 Clements Apr 2014 S
8696154 Hutchens Apr 2014 B2
8702264 Rashidi Apr 2014 B1
8764244 Jeon Jul 2014 B2
D714988 Park et al. Oct 2014 S
D721198 Glasbrenner Jan 2015 S
9052075 Demuynck et al. Jun 2015 B2
20030063476 English et al. Apr 2003 A1
20040001344 Hecht Jan 2004 A1
20040085779 Pond et al. May 2004 A1
20040100796 Ward May 2004 A1
20040240230 Kitajima Dec 2004 A1
20050180135 Mayer Aug 2005 A1
20050264716 Kim et al. Dec 2005 A1
20050281023 Gould Dec 2005 A1
20060221611 Noh et al. Oct 2006 A1
20060262521 Piepgras et al. Nov 2006 A1
20060291206 Angelini et al. Dec 2006 A1
20070070625 Bang Mar 2007 A1
20070109779 Sekiguchi et al. May 2007 A1
20070211457 Mayfield et al. Sep 2007 A1
20070253205 Welker Nov 2007 A1
20070297181 Mayfield et al. Dec 2007 A1
20080019147 Erchak Jan 2008 A1
20080049422 Trenchard et al. Feb 2008 A1
20080232093 Kim Sep 2008 A1
20080278943 Van Der Poel Nov 2008 A1
20090034247 Boyer Feb 2009 A1
20090073693 Nall Mar 2009 A1
20090161356 Negley et al. Jun 2009 A1
20090168439 Chiang Jul 2009 A1
20090196024 Heiking et al. Aug 2009 A1
20090237958 Kim Sep 2009 A1
20090262543 Ho Oct 2009 A1
20090296388 Wu et al. Dec 2009 A1
20090310354 Zampini et al. Dec 2009 A1
20100061108 Zhang et al. Mar 2010 A1
20100097794 Teng et al. Apr 2010 A1
20100103678 Van De Ven et al. Apr 2010 A1
20100110679 Teng et al. May 2010 A1
20100172133 Lie Jul 2010 A1
20100177532 Simon et al. Jul 2010 A1
20100188609 Matsuki et al. Jul 2010 A1
20100253591 Hwu et al. Oct 2010 A1
20100254128 Pickard et al. Oct 2010 A1
20100254145 Yamaguchi Oct 2010 A1
20100254146 McCanless Oct 2010 A1
20100270903 Jao et al. Oct 2010 A1
20100271843 Holten et al. Oct 2010 A1
20100277905 Janik et al. Nov 2010 A1
20100295468 Pederson et al. Nov 2010 A1
20100327768 Kong et al. Dec 2010 A1
20110032714 Chang Feb 2011 A1
20110043132 Kim et al. Feb 2011 A1
20110090671 Bertram et al. Apr 2011 A1
20110141722 Acampora et al. Jun 2011 A1
20110141734 Li et al. Jun 2011 A1
20110156584 Kim Jun 2011 A1
20110164417 Huang Jul 2011 A1
20110175533 Holman Jul 2011 A1
20110199005 Bretschneider et al. Aug 2011 A1
20110199769 Bretschneider et al. Aug 2011 A1
20110246146 Kauffman et al. Oct 2011 A1
20110255292 Shen Oct 2011 A1
20110267810 Higman et al. Nov 2011 A1
20110267823 Angelini et al. Nov 2011 A1
20110305024 Chang Dec 2011 A1
20120033420 Kim et al. Feb 2012 A1
20120038289 Jee et al. Feb 2012 A1
20120051041 Edmond et al. Mar 2012 A1
20120127714 Rehn May 2012 A1
20120134146 Smith May 2012 A1
20120140442 Woo Jun 2012 A1
20120140461 Pickard Jun 2012 A1
20130235568 Green et al. Sep 2013 A1
20130258652 Hsieh Oct 2013 A1
20140265930 Harris Sep 2014 A1
20150016100 Ishii Jan 2015 A1
Foreign Referenced Citations (48)
Number Date Country
1762061 Apr 2006 CN
1934389 Mar 2007 CN
1963289 May 2007 CN
101188261 May 2008 CN
10166071 5 Mar 2010 CN
101776254 Jul 2010 CN
101790660 Jul 2010 CN
102072443 May 2011 CN
202580962 Dec 2012 CN
102007030186 Jan 2009 DE
202010001832 Jul 2010 DE
1298383 Apr 2003 EP
1357335 Oct 2003 EP
1653254 Mar 2006 EP
1737051 Dec 2006 EP
1847762 Oct 2007 EP
1860467 Nov 2007 EP
2287520 Feb 2011 EP
2290690 Mar 2011 EP
2636945 Sep 2013 EP
774198 May 1957 GB
1069809 Mar 1998 JP
2002244027 Nov 2002 JP
U3097327 Aug 2003 JP
2004140327 May 2004 JP
2004345615 Dec 2004 JP
2006173624 Jun 2006 JP
2008147044 Jun 2008 JP
3151501 Jun 2009 JP
2009295577 Dec 2009 JP
2010103687 May 2010 JP
2011018571 Aug 2011 JP
2011018572 Aug 2011 JP
200524186 Jul 2005 TW
201018826 May 2010 TW
WO 03102467 Dec 2003 WO
WO 2009030233 Mar 2009 WO
WO 2009140761 Nov 2009 WO
WO 2009157999 Dec 2009 WO
WO 2009157999 Dec 2009 WO
WO 2010024583 Mar 2010 WO
WO 2010042216 Apr 2010 WO
WO 2010042216 Apr 2010 WO
WO 2011074424 Jun 2011 WO
WO 2011096098 Aug 2011 WO
WO 2011098191 Aug 2011 WO
WO 2011118991 Sep 2011 WO
WO 2011140353 Nov 2011 WO
Non-Patent Literature Citations (102)
Entry
International Search Report and Written Opinion for PCT Application No. PCT/US2011/062396, dated Jul. 13, 2012.
Office Action from U.S. Appl. No. 29/387,171. dated May 2, 2012.
Response to OA from U.S. Appl. No. 29/387,171, filed Aug. 2, 2012.
Office Action from U.S. Appl. No. 12/961,385, dated Apr. 26, 2013.
Response to OA from U.S. Appl. No. 12/961,385, filed Jul. 24, 2013.
Office Action from U.S. Appl. No. 13/464,745, dated Jul. 16, 2013.
Office Action from U.S. Appl. No. 29/368,970, dated Jun. 19, 2012.
Office Action from U.S. Appl. No. 29/368,970, dated Aug. 24, 2012.
Response to OA from U.S. Appl. No. 29/368,970, filed Nov. 26, 2012.
Search Report and Written Opinion from PCT Patent Appl. No. PCT/US2012/047084. dated Feb. 27, 2013.
Search Report and Written Opinion from PCT Patent Appl. No. PCT/US2012/071800, dated Mar. 25, 2013.
U.S. Appl. No. 12/873,303, filed Aug. 31, 2010 to Edmond. et al.
International Search Report and Written Opinion from Appl. No. PCT/CN2013/072772, dated Dec. 19, 2013.
Notice to Submit a Response from Korean Patent Application No. 30-2011-0038115, dated Dec. 12, 2012.
Notice to Submit a Response from Korean Patent Application No. 30-2011-0038116, dated Dec. 12, 2012.
Office Action from U.S. Appl. No. 13/464,745, dated Feb. 12, 2014.
Office Action from U.S. Appl. No. 13/453,924, dated Feb. 19, 2014.
Office Action from U.S. Appl. No. 13/341,741, dated Jan. 14, 2014.
Office Action from U.S. Appl. No. 13/370,252, dated Dec. 20, 2013.
Preliminary Report and Written Opinion from PCT appl. No. PCT/US2012/047084, dated Feb. 6, 2014.
Office Action from U.S. Appl. No. 13/429,080, dated Apr. 18, 2014.
Office Action from U.S. Appl. No. 12/961,385, dated Mar. 11, 2014.
Final Rejection issued in Korean Design Appl. No. 30-2011-0038114, dated Jun. 14, 2013.
Final Rejection issued in Korean Design Appl. No. 30-2011-0038115, dated Jun. 14, 2013.
Final Rejection issued in Korean Design Appl. No. 30-2011-0038116, dated Jun. 17, 2013.
International Search Report and Written Opinion from PCT Patent Appl. No. PCT/US2013/035668, dated Jul. 12, 2013.
Reasons for Rejection from Japanese Patent Appl. No. 2013-543207, dated May 20, 2014.
First Office Action from Chinese Patent Appl. No. 2011800529984, dated May 4, 2014.
Office Action from U.S. Appl. No. 13/544,662, dated May 5, 2014.
Office Action from U.S. Appl. No. 13/844,431, dated May 15, 2014.
Office Action from U.S. Appl. No. 13/341,741, dated Jun. 6, 2014.
International Search Report and Written Opinion from PCT Application No. PCT/US2013/021053, dated Apr. 17, 2013.
Office Action from U.S. Appl. No. 13/429,080, dated Sep. 16, 2014.
Office Action from U.S. Appl. No. 13/844,431, dated Oct. 10, 2014.
Office Action from U.S. Appl. No. 13/443,630, dated Oct. 10, 2014.
Office Action from U.S. Appl. No. 13/368,217, dated Oct. 22, 2014.
Office Action from U.S. Appl. No. 12/961,385, dated Nov. 6, 2014.
Office Action from U.S. Appl. No. 13/453,924, dated Nov. 7, 2014.
Decision of Rejection from Japanese Appl. No. 2013-543207, dated Nov. 25, 2014.
Office Action from Mexican Appl. No. 100881, dated Nov. 28, 2014.
Grant Notice from European Appl. No. 13701525.1-1757, dated Nov. 24, 2014.
Preliminary Report on Patentability from PCT/US2013/035668, dated Oct. 14, 2014.
International Preliminary Report on Patentabiliby from PCT/US2012/071800 dated Jul. 10, 2014.
Office Action from U.S. Appl. No. 13/189,535, dated Jun. 20, 2014.
Office Action from U.S. Appl. No. 13/453,924, dated Jun. 25, 2014.
Office Action from U.S. Appl. No. 13/443,630, dated Jul. 1, 2014.
Office Action from U.S. Appl. No. 13/787,727, dated Jan. 29, 2015.
Office Action from U.S. Appl. No. 13/429,080, dated Feb. 18, 2015.
Office Action from U.S. Appl. No. 13/453,924, dated Mar. 10, 2015.
US Publication No. US 2007/0115671, date: May 24, 2007 to Roberts et al.
US Publication No. US 2007/0115670, date: May 24, 2007 to Roberts et al.
US Publication No. US 2009/0323334, date: Dec. 31, 2009 to Roberts et al.
US Publication No. US 2009/0225543, date: Mar. 5, 2008 to Roberts et al.
U.S. Appl. No. 12/873,303, filed Aug. 31, 2010 to Edmond, et al.
U.S. Appl. No. 12/961,385, filed Dec. 6, 2010 to Pickard, et al.
Cree's XLamp XP-G LED's data sheet, pp. 1-12, no date.
International Search Report and Written Opinion for Patent Application No. PCT/US2011/001517, dated: Feb. 27, 2012.
Second Office Action and Search Report from Chinese Appl. No. 2011800529984, dated Dec. 26, 2014.
Grant Notice from European Appl. No. 13701525.1, dated Nov. 19, 2014.
International Report and Written Opinion from PCT/US2013/049225, dated Jan. 22, 2015.
Office Action from U.S. Appl. No. 13/828,348, dated Nov. 20, 2014.
Office Action from U.S. Appl. No. 12/873,303, dated Nov. 28, 2014.
Office Action from U.S. Appl. No. 13/464,745, dated Dec. 10, 2014.
Office Action from U.S. Appl. No. 13/341,741, dated Dec. 24, 2014.
Office Action from U.S. Appl. No. 13/189,535, dated Jan. 13, 2015.
Communication from European Patent Appl. No. 13701525.1-1757, dated Sep. 26, 2014.
First Official Action from European Patent Appl. No. 12 743 003.1-1757, dated Jan. 16, 2015.
Office Action from U.S. Appl. No. 13/464,745, dated Jul. 16, 2014.
International Preliminary Report on Patentability and Written Opinion from PCT/US2013/021053, dated Aug. 21, 2014.
First Office Action from Chinese Patent Appl. No 2012800369142, dated Mar. 26, 2015.
Office Action from U.S. Appl. No. 13/464,745, dated Apr. 2, 2015.
Office Action from U.S. Appl. No. 13/368,217, dated May 13, 2015.
Office Action from U.S. Appl. No. 13/828,348, dated May 27, 2015.
Office Action from U.S. Appl. No. 12/961,385, dated Nov. 27, 2015.
Office Action from U.S. Appl. No 13/828,348, dated Nov. 4. 2015.
Office Action from U.S. Appl. No. 14/020,757, dated Nov, 24, 2014.
First Office Action from Chinese Patent Appl No. 2011800588770, dated Sep. 25, 2015.
Notice of Completion of Pretrial Re-examination from Japanese Patent appl. No. 2013-543207. dated Jun. 30, 2015.
Pretrial Report from Japanese Appl. No. 2013-543207, dated Jun. 19, 2015.
Decision of Rejection from Chinese Patent Appl. No. 201180052998.4, dated Jul. 16, 2015.
Office Action from U.S. Appl. No. 12/873,303, dated Jun. 22, 2015.
Response to OA from U.S. Appl. No. 12/873,303, filed Aug. 21, 2015.
Office Action from U.S. Appl. No. 13/341,741, dated Jun. 22, 2015.
Office Action from U.S. Appl. No. 13/443,630, dated Jun. 23, 2015.
Response to OA from U.S. Appl. No. 13/443,630, filed Aug. 21, 2015.
Office Action from U.S. Appl. No. 13/189,535, dated Jul. 19, 2015.
Office Action from U.S. Appl. No. 13/453,924, dated Jul. 21, 2015.
Office Action from U.S. Appl. No. 14/020,757, dated Aug. 3, 2015.
Office Action from U.S. Appl. No. 13/429,080, dated Sep. 1, 2015.
Office Action from U.S. Appl. No. 14/716,480, dated Sep. 24, 2015.
Office Action from U.S. Appl. No. 14/170,627, dated Oct. 5, 2015.
Office Action from U.S. Appl. No. 13/368,217, dated Oct. 8, 2015.
Office Action from U.S. Appl. No. 13/464,745, dated Oct. 8, 2015.
Office Action from U.S. Appl. No. 29/466,391, dated Oct. 14, 2015.
International Search Report and Written Opinion from PCT/US2013/049225, dated Oct. 24, 2013.
Examination Report from Taiwanese Patent Appl. No. 100131021, dated Jan. 5, 2016.
Examination from European Patent Appl. No. 12743003.1.-1757, dated Jan. 8, 2016.
Notice of Reasons for Rejection from Japanese Patent Appl. No. 2013-543207, dated Feb. 2, 2016.
Examination from European Patent Appl. No. 13 701 525.1-1757, dated Feb. 3, 2016.
Office Action from U.S. Appl. No. 13/189,535; Jan. 6, 2016.
Office Action from U.S. Appl. No. 13/341,741; Jan. 8, 2016.
Office Action from U.S. Appl. No. 13/873,303; Feb. 2, 2016.
Related Publications (1)
Number Date Country
20130265760 A1 Oct 2013 US