The present invention relates generally to a variable flow valve, where the valve includes a metering orifice for modulating the amount of flow.
Internal combustion engines may be used in a variety of applications such as, for example, passenger and industrial vehicles, marine, stationary and aerospace applications. There are generally two dominant ignition cycles, which are commonly referred to as gas and diesel cycles, or more formally as spark ignited (SI) and compression ignition (CI) cycles, respectively.
Exhaust-driven turbochargers may be used to improve the power output and overall efficiency of an internal combustion engine. Specifically, exhaust gas energy may be used to drive a turbine. The turbocharger includes a compressor and a turbine, where the compressor is mounted on a shaft of the turbocharger, opposite the turbine. The turbine converts engine exhaust gas into mechanical energy, which is used to drive the compressor. The compressor draws in and compresses air. The compressed air is then directed to an intake manifold of the internal combustion engine.
A relief valve, such as a compressor discharge valve or a blow-off valve, may be mounted on an intake pipe located downstream of the turbocharger before a throttle. Specifically, a compressor discharge valve may be used to vent compressed air back into an inlet of the compressor. A blow-off valve is similar to a compressor recirculation valve, but vents to the atmosphere rather than back to the inlet of the compressor. The relief valve may be used to alleviate a sudden surge or spike in pressure that may occur when the throttle closes (i.e., when an operator suddenly lifts his or her foot off of the gas pedal and the throttle closes). Some types of relief valves currently available may only be completely opened or shut. In other words, some relief valves do not provide active control of the position of the valve.
The disclosed variable flow valve assembly includes a modulation orifice that varies the amount of medium, such as air or fluid, that flows through the relief valve. Specifically, in one aspect, a variable flow valve assembly is disclosed and includes a main body, a piston, a position sensor, a controller, a solenoid, and a cover. The main body defines a chamber, an inlet port, an outlet port, and a wall located between the inlet port and the outlet port. The wall defines a metering orifice for selectively allowing a medium to flow from the inlet port to the outlet port. The chamber of the main body includes a pressurized chamber. The piston is moveable within the chamber of the main body in a plurality of partially open positions to vary the amount of medium flowing through the modulation orifice. The piston separates the pressurized chamber from the inlet port. The position sensor determines the position of the piston within the chamber of the main body, and the controller is in signal communication with the position sensor. The solenoid is in signal communication with the controller. The cover is located within the chamber of the main body, and provides sealing between the pressurized chamber and the atmosphere.
In another aspect, a system for controlling an exhaust driven turbocharging system is disclosed. The system includes a turbocharger having a compressor inlet in fluid communication with a variable flow valve assembly and an intake manifold of an engine. The variable flow valve assembly includes a main body and a piston. The main body defines a chamber, an inlet port, an outlet port, and a wall located between the inlet port and the outlet port. The wall defines a metering orifice for selectively allowing a medium to flow from the inlet port to the outlet port. The chamber of the main body includes a pressurized chamber. The piston is moveable within the chamber of the main body in a plurality of partially open positions to vary the amount of medium flowing through the modulation orifice. The piston separates the pressurized chamber from the inlet port. The system also includes a position sensor, a controller, a solenoid, and a cover. The position sensor determines the position of the piston within the chamber of the main body. The controller is in signal communication with the position sensor. The position of the piston within the chamber is determined by the controller. The metering orifice is partially opened in order to communicate air into the intake manifold of the engine. The solenoid is in signal communication with the controller. The solenoid applies a predetermined amount of vacuum to the pressurized chamber. The predetermined amount of vacuum causes the piston to move into one of the plurality of open positions. The cover provides sealing between the pressurized chamber and the atmosphere.
The following detailed description will illustrate the general principles of the invention, examples of which are additionally illustrated in the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements.
Referring now to
The wastegate 26 is a control valve used to meter an exhaust volume 37 exiting an exhaust manifold 40 of the internal combustion engine 12, and controls the amount of energy available to power the turbine wheel 32. The wastegate 26 works by opening a valve (not shown) connected to a bypass pipe 42. Opening the valve of the wastegate 26 allows for exhaust to flow away from the turbine wheel 32. Thus, the wastegate 26 may have direct control over the speed of the EDT 20 and the resultant operating pressure of the intake manifold 36 of the internal combustion engine 12. The wastegate 26 may have any number of embodiments, including the embodiments disclosed in applicant's U.S. Pat. No. 8,469,333, which is incorporated by reference herein in its entirety.
Operating pressures exist in an EDT compressor inlet 50, the intake manifold 36 of the internal combustion engine 12 and an intake manifold pipe 52, the exhaust manifold 40 of the internal combustion engine 12 and an intake manifold pipe 54, an exhaust inlet 58 of the EDT 20, and an exhaust outlet 59 of the EDT 20. Specifically, the EDT compressor inlet 50 may be defined as the passageway from an air intake system 60 to an inlet 64 of the compressor section 24. The intake manifold 36 of the internal combustion engine 12 may be defined as the passage between an EDT compressor discharge 66 and one or more intake valves 68 of the internal combustion engine 12. The exhaust manifold 40 of the internal combustion engine 12 may be defined as the passage between one or more exhaust valves 70 and the exhaust inlet 58 of the EDT. The exhaust may be any passageway located after the exhaust outlet 59 of the EDT 20. In order to achieve effective exhaust gas recirculation (EGR), the pressures in an exhaust manifold should be significantly higher than the pressures found in an intake manifold in order for exhaust gas to flow in the correct direction. Smaller EDT exhaust profiles produce higher desired exhaust manifold pressures, but at the expense of lower efficiencies. Thus, those skilled in the art will appreciate that a fine balance exists between achieving efficiency of the internal combustion engine 12 and EGR effectiveness.
The relief valve 30 may be a regulating valve located in the intake manifold pipe 52 between the compressor discharge 66 of the compressor section 24 of the EDT 20 and the intake manifold 36 of the internal combustion engine 12. In the embodiment as shown in
In the exemplary embodiment as shown in
When the relief valve 30 is opened the EDT 20 may spin freely, thereby conserving the inertia of the EDT 20. If the relief valve 30 was omitted, the EDT 20 would stall or stop once the throttle 80 is closed. This stalling or stopping may adversely affect EDT life and throttle response. Those skilled in the art will appreciate that the EDT 20 should be spinning and ready to produce boost as soon as the throttle plate 80 is opened. The relief valve 30 may decrease turbo lag by allowing the EDT 20 to spin up to speed (i.e., spool up) without compressor load, as there is no back pressure present once the relief valve 30 is opened. A variable relief valve, which is described in greater detail below, may be especially beneficial by allowing just the amount of bypass to be ready for immediate boost to substantially prevent compressor surge. Compressor surge may be defined as when the air pressure after the compressor wheel 35 is actually higher than what the compressor wheel 35 is capable of maintaining. This condition causes the airflow in the compressor wheel 35 to back up, build pressure, or stall. Thus, compressor surge is noisy, affects EDT life, and may reduce the performance of the turbo system 10.
The relief valve 30 may be employed in any EDT enabled internal combustion engine, including a diesel engine. Although a turbo system 10 is disclosed, those skilled in the art will readily appreciate that the relief valve 30 may be used in any application where the flow of a medium such as fluid or gas may be modulated or varied. In other words, the relief valve 30 may include a plurality of partially opened positions to vary the amount of exhaust gas to the intake manifold 36 of the internal combustion engine 12 (
Referring to
In the exemplary embodiment as shown in
The modulation orifice 142 may be used to selectively allow for a medium, such as fluid or gas, to flow from the inlet port 102 to the outlet port 104. The modulation orifice 142 may also be used to vary or modulate the amount of medium that passes from the inlet port 102 to the outlet port 104. Specifically, when the valve 30 is in the closed position (
As best seen in
In the exemplary embodiment as shown, the modulation orifice 142 includes a generally inverted triangular profile. Thus, as the piston 120 moves upwardly from the closed position (
Referring to
The body 152 of the cover 112 also defines a recess 170. A controller 172 and the position sensor 150 may be located within the recess 170 of the cover 112, where the controller 172 is in signal communication with the position sensor 150. The controller 172 may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, or other suitable components that provide the described functionality.
The position sensor 150 may be any device that permits position measurement. In one embodiment, position sensor 150 is a relative position sensor (a displacement sensor) based on movement of the piston 120 within the cylindrical chamber 136 of the valve body 100. The position sensor 150 may be a capacitive transducer, an eddy-current sensor, a grating sensor, a Hall effect sensor, an inductive non-contact position sensor, a laser Doppler Vibrometer (optical), a linear variable differential transformer (LVDT), a multi-axis displacement transducer, a photodiode array, a piezo-electric transducer (piezo-electric), a potentiometer, a proximity sensor (optical), a seismic displacement pick-up, a string potentiometer (also known as string pot., string encoder, cable position transducer), or a combination thereof.
In the embodiment illustrated, the position sensor 150 is a Hall effect sensor comprising a chip/Hall effect position sensor 174 that sensors the displacement of the magnet 126. The magnet 126 may be connected to the piston 120 for translation therewith. Specifically, the magnet 126 may be mounted to or placed within the piston 120. In
The chip/Hall effect position sensor 174 may be positioned within the valve body 100 in sufficient proximity to sense the movement of the magnet 126 located within the piston 120, and determine the specific position of the piston 120 within the chamber 136 of the valve body 100. In the embodiment as shown in
The biasing element 114 may include a first end 180 and a second end 182. The first end 180 of the biasing element 114 may be seated against the rim 158 of the cover 112, and the second end 182 of the biasing element 114 may be seated against the upper surface 148 of the piston 120. The biasing element 114 may be used to exert an axial force against the upper surface 148 of the piston 120. In the non-limiting embodiment as shown, the biasing element 114 is a coil spring, however those skilled in the art will appreciate that any type of biasing element for exerting an axial force against the piston 120 may be used as well.
The controller 172 may be in signal communication with the solenoid 38 in order to turn on the solenoid 38 and to move an armature (not illustrated). Specifically, the controller 172 may control the solenoid 38 based on the current position of the piston 120 within the chamber 136. The movement of the armature of the solenoid 38 may create a pressure differential between the inlet port 102 and the pressurized chamber 106 of the valve body 100. The piston 120 may translate or move within the chamber 136 of the valve body 100 based on a pressure differential between the inlet port 102 and the pressurized chamber 106, which is described in greater detail below.
In the embodiment as shown in
The controller 172 may control the solenoid 38 in order to create a pressure differential between the inlet port 102 and the pressurized chamber 106 of the valve body 100. Specifically, the controller 172 may control the armature of the solenoid 38 (not illustrated) in order to close the first vent port 190 and apply vacuum to the second vent port 194. Thus, the pressure of the inlet port 102 is no longer equal to the pressure located within the pressurized chamber 106 of the valve body 100. As a result, the piston 120 overcomes the axial force exerted by the biasing element 114, and the piston 120 may translate in an upward direction, and into the open position seen in
Referring generally to the figures, the disclosed relief valve 30 includes a modulation orifice, which is used to vary the amount of medium that flows through the relief valve. Thus, referring specifically to
The embodiments of this invention shown in the drawings and described above are exemplary of numerous embodiments that may be made within the scope of the appended claims. It is contemplated that numerous other configurations of the tensioner may be created taking advantage of the disclosed approach. In short, it is the applicant's intention that the scope of the patent issuing herefrom will be limited only by the scope of the appended claims.
This application is a continuation application of U.S. application Ser. No. 14/269,286, filed on May 5, 2014.
Number | Name | Date | Kind |
---|---|---|---|
1128077 | Taylor | Feb 1915 | A |
1805106 | Robinson | May 1931 | A |
3425444 | Jones | Feb 1969 | A |
3765447 | Cornell | Oct 1973 | A |
3973729 | Sliger | Aug 1976 | A |
RE32197 | Self | Jul 1986 | E |
4671123 | Magnussen, Jr. et al. | Jun 1987 | A |
4798365 | Mayhew | Jan 1989 | A |
5150734 | Chiba | Sep 1992 | A |
5393035 | Steele | Feb 1995 | A |
5462343 | Yoshida et al. | Oct 1995 | A |
5632258 | Tsuzuki et al. | May 1997 | A |
5669364 | Everingham | Sep 1997 | A |
5960824 | Sullivan | Oct 1999 | A |
6006732 | Oleksiewicz | Dec 1999 | A |
6019347 | Adams et al. | Feb 2000 | A |
6089019 | Roby | Jul 2000 | A |
6293514 | Pechoux et al. | Sep 2001 | B1 |
6299134 | Laaja | Oct 2001 | B1 |
6318085 | Torno et al. | Nov 2001 | B1 |
6422217 | Feucht et al. | Jul 2002 | B1 |
6435848 | Minami et al. | Aug 2002 | B1 |
6607175 | Nguyen et al. | Aug 2003 | B1 |
6722128 | Adrian | Apr 2004 | B1 |
6863260 | Medina | Mar 2005 | B2 |
6938420 | Kawamura et al. | Sep 2005 | B2 |
7100584 | Bruestle et al. | Sep 2006 | B1 |
7481056 | Blaylock et al. | Jan 2009 | B2 |
7500363 | Hara et al. | Mar 2009 | B2 |
7617678 | Joergl et al. | Nov 2009 | B2 |
7802588 | Doutt | Sep 2010 | B2 |
8469333 | Medina | Jun 2013 | B2 |
8671976 | Park et al. | Mar 2014 | B2 |
9261015 | Zurke et al. | Feb 2016 | B2 |
20030042450 | Bircann | Mar 2003 | A1 |
20030106539 | Jung | Jun 2003 | A1 |
20030145603 | Reed et al. | Aug 2003 | A1 |
20040255580 | Bayerl | Dec 2004 | A1 |
20060086918 | Koyama | Apr 2006 | A1 |
20060272625 | Wang | Dec 2006 | A1 |
20070227142 | Blaylock et al. | Oct 2007 | A1 |
20080022679 | Hara et al. | Jan 2008 | A1 |
20080066466 | Melchior | Mar 2008 | A1 |
20090101121 | Okamura | Apr 2009 | A1 |
20090293963 | Busato et al. | Dec 2009 | A1 |
20120132839 | Moren | May 2012 | A1 |
20120198837 | Medina | Aug 2012 | A1 |
20130319535 | Boger et al. | Dec 2013 | A1 |
20130340428 | Graichen et al. | Dec 2013 | A1 |
20140096675 | Fletcher et al. | Apr 2014 | A1 |
20140271234 | Markyvech et al. | Sep 2014 | A1 |
20150047340 | Ulrey et al. | Feb 2015 | A1 |
20150059337 | Wang | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
10 2010 024 297 | Dec 2011 | DE |
0 827 056 | Mar 1998 | EP |
2004-76659 | Mar 2004 | JP |
3911512 | May 2007 | JP |
2008-25529 | Feb 2008 | JP |
2010006150 | Jan 2010 | WO |
2013192281 | Dec 2013 | WO |
Entry |
---|
JP2006177303 translation, Yoneda Yukifumi. |
EP, Extended European Search Report; Application No. 13807817.5; (dated Jul. 6, 2016). |
EP, Office Action; Patent Application No. 13807817.5; 3 pages (dated Mar. 7, 2017). |
JP, Notice of Allowance issued in Japanese patent application No. 2015-518542 (dated Jun. 6, 2016). |
PCT, International Search Report and Written Opinion, Patent Application No. PCT/US2013/046503 (dated Dec. 12, 2013). |
U.S., Notice of Allowance, U.S. Appl. No. 13/921,473 (dated Mar. 16, 2015). |
PCT, International Search Report and Written Opinion, Patent Application No. PCT/US2015/024037 (dated Jul. 7, 2015). |
U.S., Non-Final Office Action, U.S. Appl. No. 14/269,286 (dated May 27, 2015). |
U.S., Final Office Action, U.S. Appl. No. 14/269,286 (dated Oct. 8, 2015). |
U.S., Advisory Action, U.S. Appl. No. 14/269,286 (dated Nov. 3, 2015). |
U.S., Notice of Allowance, U.S. Appl. No. 14/269,286 (dated Dec. 8, 2015). |
EP Supplement Search Report; Patent Application 15789807.3, 7 pages (Jan. 3, 2018). |
CN, First Office Action with English Translation; Chinese Application No. 201580022093.0 (dated Jul. 16, 2018). |
Number | Date | Country | |
---|---|---|---|
20160146374 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14269286 | May 2014 | US |
Child | 15010393 | US |