The present invention relates to an implantable vascular prosthesis configured for use in a wide range of applications, and more specifically, a prosthesis having a substantially small delivery configuration, drug delivery capabilities, and a design allowing for a precise and controlled deployment of the prosthesis.
Today there are a wide range of intravascular prostheses on the market for use in the treatment of aneurysms, stenoses, and other vascular irregularities. Balloon expandable and self-expanding stents are well known for restoring patency in a stenosed vessel, e.g., after an angioplasty procedure, and the use of coils and stents are known techniques for treating aneurysms.
Previously-known self-expanding stents generally are retained in a contracted delivery configuration using an outer sheath, then self-expand when the sheath is retracted. Such stents commonly have several drawbacks, for example, the stents may experience large length changes during expansion and may shift within the vessel prior to engaging the vessel wall, resulting in improper placement. Additionally, many self-expanding stents have relatively large delivery profiles because the configuration of their struts limits further compression of the stent. Accordingly, such stents may not be suitable for use in smaller vessels, such as cerebral vessels and coronary arteries.
Other drawbacks associated with the use of coils or stents in the treatment of aneurysms is that the coils or stents, when deployed, may have a tendency to remodel or straighten a delicate cerebral vessel, which may cause further adverse consequences. Moreover, such devices may not adequately reduce blood flow from the cerebral vessel into the sac of the aneurysm, which may increase the likelihood of rupture. Generally, if a greater surface area is employed to cover the sac, the delivery profile of the device may be compromised due to the increased surface area, and the device also may be more rigid and cause remodeling of the vessel.
For example, PCT Publication WO 00/62711 to Rivelli describes a stent comprising a helical mesh coil having a plurality of turns and including a lattice having a multiplicity of pores. The lattice is tapered along its length. In operation, the plurality of turns are wound into a reduced diameter helical shape, then constrained within a delivery sheath. The delivery sheath is retracted to expose the distal portion of the stent and anchor the distal end of the stent. As the delivery sheath is further retracted, the subsequent individual turns of the stent unwind to conform to the diameter of the vessel wall.
The stent described in the foregoing publication has several drawbacks. For example, due to friction between the turns and the sheath, the individual turns of the stent may bunch up, or overlap with one another, when the delivery sheath is retracted. In addition, once the sheath is fully retracted, the turns may shift within the vessel prior to engaging the vessel wall, resulting in improper placement of the stent. Moreover, because the distal portion of the stent may provide insufficient engagement with the vessel wall during subsequent retraction of the remainder of the sheath, ambiguity concerning accuracy of the stent placement may arise.
When utilizing stents in interventional procedures, it may be advantageous to deliver therapeutic agents to a vessel wall via the surface of the stent. Such drug eluting stents have many advantages, such as controlled delivery of therapeutic agents over an extended period of time without the need for intervention, and reduced rates of restenosis after angioplasty procedures. Typically, the drug is disposed in the matrix of a bioabsorbable polymer coated on an exterior surface of the struts of the stents, and then gradually released into a vessel wall. The quantity of the therapeutic agent provided by the stent generally is limited by the surface area of the struts. Increasing the surface area of the struts may enhance drug delivery capability, but may compromise the overall delivery profile of the stent. There therefore exists a need for a prosthesis having a reduced delivery profile and enhanced drug delivery capabilities.
In view of these drawbacks of previously known devices, it would be desirable to provide apparatus and methods for an implantable vascular prosthesis that is configured to be used in a wide range of applications including, but not limited to, treating aneurysms, maintaining patency in a vessel, and delivering drugs to a vessel wall.
It also would be desirable to provide apparatus and methods for a vascular prosthesis that is flexible enough to conform to a natural shape of a vessel without substantially remodeling the vessel.
It further would be desirable to provide apparatus and methods for a vascular prosthesis having a distal anchoring section that allows for controlled deployment of the prosthesis at a desired location within a vessel.
It still further would be desirable to provide apparatus and methods for a vascular prosthesis that has a selectable surface area to facilitate in-vivo delivery of therapeutic agents.
It yet further would be desirable to provide apparatus and methods for a vascular prosthesis that has a substantially small delivery configuration to allow the prosthesis to be used in smaller vessels.
In view of the foregoing, it is an object of the present invention to provide apparatus and methods for an implantable vascular prosthesis that is configured to be used in a wide range of applications including, but not limited to, treating aneurysms, maintaining patency in a vessel, and delivering drugs to a vessel wall.
It is also an object of the present invention to provide apparatus and methods for a vascular prosthesis that is flexible enough to conform to a natural shape of a vessel without substantially remodeling the vessel.
It is a further object of the present invention to provide apparatus and methods for a vascular prosthesis having a distal anchoring section that allows for controlled deployment of the prosthesis at a desired location within a vessel.
It is a further object of the present invention to provide apparatus and methods for a vascular prosthesis that has a selectable surface area to facilitate in-vivo delivery of therapeutic agents.
It is yet another object of the present invention to provide apparatus and methods for a vascular prosthesis that has a substantially small delivery configuration to allow the prosthesis to be used in smaller vessels.
These and other objects of the present invention are accomplished by providing a vascular prosthesis having a contracted state and a deployed state configured to engage a vessel wall and adapt to a natural curvature of the vessel wall. The vascular prosthesis may be used in a wide range of applications, such as treating aneurysms, maintaining patency in a vessel, e.g., after an angioplasty procedure, and other procedures requiring a controlled delivery of therapeutic drugs to a vessel wall.
In a preferred embodiment, the vascular prosthesis comprises a shape memory material, such as Nitinol, and includes a distal anchoring section having a generally zig-zag configuration coupled to a proximal helical section having a helical mesh configuration formed of a plurality of turns.
The anchoring section is provided in the contracted state when constrained within an outer sheath, due to the radially inward compressive forces applied by the outer sheath. The helical section is provided in the contracted state when the plurality of turns of the helical mesh are wound down to a smaller configuration, wherein adjacent turns preferably at least partially overlap, and then are constrained within the outer sheath.
In a preferred method of operation, the proximal helical and distal anchoring sections are provided in their respective contracted states within the outer sheath and the prosthesis is fluoroscopically advanced into a selected vessel using techniques that are per se known in the art. The proximal section then is positioned adjacent a target region of a vessel, such as an aneurysm or a stenosed region. At this time, the distal section is positioned distal of the target region. The outer sheath then is retracted proximally to cause the distal section to self-deploy and engage an inner wall of the vessel distal of the target region. A distal portion of the distal section may be biased radially outward, or provided with proximally-directed teeth, to facilitate secure anchoring of the distal section within the vessel.
Once the distal section is securely anchored distal of the target region, the outer sheath further is retracted to cause the proximal section to self-deploy and engage the vessel wall at the target region. Advantageously, by providing a distal anchoring element prior to deploying the proximal section, each turn of the helical proximal section will unwind in a controlled manner as the outer sheath is retracted. This technique ensures that the prosthesis will not shift within the vessel during deployment.
The vascular prosthesis of the present invention is flexible enough to conform to the shape of a delicate vessel without substantially remodeling the vessel. In particular, the zig-zag configuration of the distal section may conform to a natural curvature of a vessel wall better than traditional stents having interconnected struts, which may be more rigid. Additionally, the helical mesh configuration of the proximal section conforms to vasculature of the target region since each of the plurality of turns are free to assume a curved configuration substantially independently of one another. Also, the proximal section of the vascular prosthesis is not compressed, as in like traditional self-expanding prostheses. Rather, the proximal section may be wound down to a contracted state and so has a substantially reduced delivery profile. This feature makes the stent of the present invention especially useful for treating defects in smaller vessels, such as cerebral arteries.
In accordance with another aspect of the present invention, the plurality of turns may comprise a substantially increased surface area relative to conventional stents that have a plurality of interconnected struts. The increased surface area of the turns is particularly advantageous for localized drug delivery. The turns may be coated with a drug-laden polymer coating or, alternatively, one or more dimples or through holes may be disposed in a lateral surface of the turns to elute drugs over an extended period of time.
Methods of using the vascular prosthesis of the present invention, for example, in the treatment of an aneurysm, also are provided.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments, in which:
The present invention is directed to an implantable vascular prosthesis configured for use in a wide range of applications, such as treating aneurysms, maintaining patency in a vessel, and allowing for the controlled delivery of therapeutic agents to a vessel wall. The prosthesis has a substantially small delivery profile compared to other known devices, while having an increased surface area to allow for delivery of the therapeutic agents. Additionally, the prosthesis is configured to comply to a vessel wall without substantially remodeling the vessel, and further is configured to provide improved deployment accuracy during deployment relative to previously known devices.
Referring now to
Vascular prosthesis 20 preferably is formed from a solid tubular member comprising a shape memory material, such a nickel-titanium alloy (commonly known in the art as Nitinol). The solid tubular member then is laser cut, using techniques that are per se known in the art, to a desired deployed configuration, as depicted in
Distal section 24 preferably has a generally zig-zag configuration in the deployed state, as shown in
Proximal section 22 preferably comprises a helical mesh configuration in the deployed state, as depicted in
As will be apparent to one skilled in the art, the configuration of proximal section 22 depicted herein is merely for illustrative purposes. Any combination of covered sections 39, circular openings 29, large or small rectangular openings, or any other shape may be provided along portions of turns 26, as desired. Plurality of turns 26 similarly may comprise exclusively one type of opening, such as small circular openings 29. Alternatively, plurality of turns 26 may be completely solid, such that the openings are omitted altogether. As will be apparent to those skilled in the art, the combination of solid regions and openings may be selectively provided along the length of proximal section 22, for example, to selectively increase surface area and drug delivery capabilities along proximal section 22, or to influence flow dynamics within a vessel.
Proximal section 22 includes distal turn 34 that transitions into bend 32 of distal section 24, thereby forming junction 23. Proximal turn 35 of proximal section 22 forms a free end that permits proximal section 22 to conform to a natural configuration of a patient's vessel, as described hereinbelow with respect to
Referring now to
Junction 23 further preferably comprises substantially orthogonal segment 48, i.e., a segment that is substantially orthogonal to a longitudinal axis of vascular prosthesis 20. Segment 48 transitions into extension strut 47 in the vicinity of bend 32, and further transitions into distal wall 41 of distal turn 34, as shown in
Junction 23 may comprise one or more radiopaque markers 44, such as a radiopaque marker band or coating. Radiopaque marker 44 facilitates positioning of junction 23 at a desired longitudinal position within a patient's vessel, and further facilitates alignment of vascular prosthesis 20 at a desired radial orientation within the vessel. For example, radiopaque marker 44 may be used to orient proximal section 22 so that a desired lateral surface of proximal section 22, e.g., comprising covered sections 39 or small circular openings 29, deploys to overlay the arc of a vessel in which an aneurysm is situated.
It will be apparent to those skilled in the art that junction 32 may comprise other strut arrangements to connect distal section 24 to proximal section 22. For example, more than one extension struts 47 may be coupled between bends 32 and distal turn 34 of proximal section 22. Alternatively, proximal and distal sections 22 and 24 may be manufactured as two distinct sections, then coupled together to form a junction. In this embodiment, the junction may be formed when distal turn 34 of proximal section 22 is coupled to one or more bends 32 situated at proximal end 37 of distal section 24. Distal turn 34 may be coupled to one or more bends 32 using a means for bonding, such as a solder, or the sections alternatively may be mechanically coupled together, for example, using a rivet or any other means, as will be apparent to one skilled in the art.
Referring now to
Distal end 38 of alternative distal section 24′ further may comprise at least one tooth 40 protruding from bend 32 and/or a distal portion of strut 31, as depicted in
Referring now to
One or more turns 26 may be selectively coated with elastomeric polymer 56, such as polyurethane. Elastomeric polymer 56 may partially or fully cover selected regions of turns 26. For example, elastomeric polymer 56 may be disposed on one arc of the circumference of proximal section 22 to overlay an aneurysm and reduce blood flow into a sac of the aneurysm. Additionally, therapeutic agent 54 may be disposed on elastomeric polymer 56, which increases the working surface area of proximal section 22. Alternatively, the therapeutic agent may be disposed directly on solid region 33, either with or without the use of elastomeric polymer 56.
Referring now to
Delivery system 60 also may comprise fluid delivery lumen 67, which may be used to deliver chilled saline to vascular prosthesis 20 during delivery of the device. Fluid delivery lumen 67 may be disposed within catheter 61, as depicted in
Referring now to
Referring now to
First, guide wire 70 is percutaneously and transluminally advanced through a patient's vasculature, using techniques that are per se known in the art, until a distal end of guide wire 70 is positioned distal of aneurysm A, which is situated in vessel V. Delivery system 60, having vascular prosthesis 20 contracted therein, then is advanced over guide wire 70 via central lumen 62 of catheter 61. Nose cone 63 serves as an atraumatic bumper during advancement of delivery system 60. Delivery system 60 is advanced under fluoroscopic guidance until proximal section 22 is situated adjacent aneurysm A, as shown in
During advancement of delivery system 60 though a patient's vasculature, chilled saline preferably is delivered to vascular prosthesis 20 via fluid delivery lumen 67 and port 68. The chilled saline may be used to increase the flexibility of prosthesis 20 to facilitate advancement of delivery system 60 over guide wire 70.
In a next step, outer sheath 64 is retracted proximally to cause distal section 24 to self-deploy distal of aneurysm A, as shown in
With distal section 24 anchored distal of aneurysm A, outer sheath 64 then is further retracted proximally to cause distal turn 34 of proximal section 22 to unwind and deploy to its predetermined shape, as shown in
In accordance with one aspect of the present invention, deploying distal section 24 prior to deploying proximal section 22 allows distal section 24 to serve as an anchoring mechanism that allows for a controlled deployment of the helical turns of proximal section 22. Advantageously, turns 26 of proximal section 22 will be accurately deployed within vessel V, with substantially no proximal or distal shifting with respect to the vessel as outer sheath 64 is retracted.
Moreover, by deploying distal section 24 prior to deploying proximal section 22, drawbacks associated with the device described in the above-referenced publication to Rivelli may be overcome. Specifically, without a distal anchoring element, the multiplicity of turns of the stent described in the Rivelli publication may experience a tendency to “bunch up,” i.e., overlay one another, as the outer sheath is retracted due to friction between the turns and the outer sheath. In the present invention, distal section 24 serves as an anchoring mechanism prior to retraction of the outer sheath over the proximal section. Accordingly, such a distal anchoring mechanism overcomes potential friction and turns 26 will be less inclined to bunch up.
In accordance with another aspect of the present invention, vascular prosthesis 20 of the present invention is configured to be flexible enough to substantially conform to the shape of vessel V without causing the vessel to remodel. In particular, the zig-zag configuration of distal section 24 and the helical configuration of proximal section 22 allow for increased flexibility of prosthesis 20. The pitch associated with plurality of turns 26 may be varied to vary the overall flexibility of proximal section 22. A lower pitch, whereby adjacent turns 26 are spaced relatively close together, may be employed to increase flexibility of proximal section 22. A lower pitch is desirable, for example, to treat cerebral aneurysms so that turns 26 may conform to the vasculature without causing remodeling of the vessel. Conversely, a higher pitch, whereby adjacent turns 26 are spaced further apart, may be employed to increase the rigidity of proximal section 22. Such a design may be desirable for use in maintaining patency in a stenosed vessel by increasing rigidity of proximal section 22. As a yet further embodiment, the width of the coil may be tapered, as described in the Rivelli publication.
In accordance with another aspect of the present invention, covered sections 39 may be positioned to overlay aneurysm A to significantly reduce blood flow into aneurysm A. Alternatively, smaller rectangular openings 28 or small circular openings 29 may overlay aneurysm A to reduce blood flow into the sac of the aneurysm. Over time, the intima of vessel V will grow over plurality of turns 26 of proximal section 22 to completely exclude the aneurysm A from vessel V.
As noted hereinabove, the configuration of proximal section 22 depicted in
In accordance with yet another aspect of the present invention, therapeutic agents may be delivered to expedite treatment of the aneurysm or prevent restenosis. As described hereinabove with respect to
Therapeutic agent 54 may include, for example, antiplatelet drugs, anticoagulant drugs, agents used for purposes of providing gene therapy to a target region, or any other agent, and may be tailored for a particular application. Radiopaque markers (not shown) may be selectively disposed on turns 26 in the vicinity of the therapeutic agents to facilitate alignment of the therapeutic agents with a target site of a vessel wall. Advantageously, higher doses of such agents may be provided using vascular prosthesis 20 of the present invention, relative to previously known coils or stents having interconnected struts, due to the increased surface area associated with turns 26.
Referring now to
Proximal section 122 includes a plurality of individual helical turns 126. Each turn has a distal end that is coupled to a respective bend 132 of distal section 124 at junctions 127, as shown in
While preferred illustrative embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made therein without departing from the invention. The appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4553545 | Maass et al. | Nov 1985 | A |
4655771 | Wallsten | Apr 1987 | A |
4665918 | Garza et al. | May 1987 | A |
4739762 | Palmaz | Apr 1988 | A |
4760849 | Kropf | Aug 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4886062 | Wiktor | Dec 1989 | A |
4969458 | Wiktor | Nov 1990 | A |
5019090 | Pinchuk | May 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5246445 | Yachia et al. | Sep 1993 | A |
5314444 | Gianturco | May 1994 | A |
5342387 | Summers | Aug 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5383892 | Cardon et al. | Jan 1995 | A |
5421955 | Lau et al. | Jun 1995 | A |
5423885 | Williams | Jun 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5443500 | Sigwart | Aug 1995 | A |
5476505 | Limon | Dec 1995 | A |
5540713 | Schnepp-Pesch et al. | Jul 1996 | A |
5551954 | Buscemi et al. | Sep 1996 | A |
5556413 | Lam | Sep 1996 | A |
5607445 | Summers | Mar 1997 | A |
5607478 | Lentz et al. | Mar 1997 | A |
5707387 | Wijay | Jan 1998 | A |
5716396 | Williams, Jr. | Feb 1998 | A |
5741333 | Frid | Apr 1998 | A |
5766238 | Lau et al. | Jun 1998 | A |
5817152 | Birdsall et al. | Oct 1998 | A |
5824052 | Khosravi et al. | Oct 1998 | A |
5824053 | Khosravi et al. | Oct 1998 | A |
5830179 | Mikus et al. | Nov 1998 | A |
5833699 | Chuter | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5876432 | Lau et al. | Mar 1999 | A |
6027526 | Limon et al. | Feb 2000 | A |
6080191 | Summers | Jun 2000 | A |
6086604 | Fischell et al. | Jul 2000 | A |
6156062 | McGuiness | Dec 2000 | A |
6238430 | Klumb et al. | May 2001 | B1 |
6248122 | Klumb et al. | Jun 2001 | B1 |
6273908 | Ndondo-Lay | Aug 2001 | B1 |
6331189 | Wolinsky et al. | Dec 2001 | B1 |
6334870 | Ehr et al. | Jan 2002 | B1 |
6348065 | Brown et al. | Feb 2002 | B1 |
6361556 | Chuter | Mar 2002 | B1 |
6409754 | Smith et al. | Jun 2002 | B1 |
6423091 | Hojeibane | Jul 2002 | B1 |
6425915 | Khosravi et al. | Jul 2002 | B1 |
6432128 | Wallace et al. | Aug 2002 | B1 |
6503270 | Richter et al. | Jan 2003 | B1 |
6508834 | Pinchasik et al. | Jan 2003 | B1 |
6514285 | Pinchasik | Feb 2003 | B1 |
6533805 | Jervis | Mar 2003 | B1 |
6540775 | Fischell et al. | Apr 2003 | B1 |
6565600 | Hojeibane | May 2003 | B2 |
6572643 | Gharibadeh | Jun 2003 | B1 |
6576006 | Limon et al. | Jun 2003 | B2 |
6589276 | Pinchasik et al. | Jul 2003 | B2 |
6596021 | Lootz | Jul 2003 | B1 |
6607554 | Dang et al. | Aug 2003 | B2 |
6635084 | Israel et al. | Oct 2003 | B2 |
6645237 | Klumb et al. | Nov 2003 | B2 |
6656220 | Gomez et al. | Dec 2003 | B1 |
6660032 | Klumb et al. | Dec 2003 | B2 |
6679911 | Burgermeister | Jan 2004 | B2 |
6736844 | Glatt et al. | May 2004 | B1 |
6746475 | Rivelli, Jr. | Jun 2004 | B1 |
20010020182 | Klumb et al. | Sep 2001 | A1 |
20020004676 | Wallace et al. | Jan 2002 | A1 |
20020004679 | Eury et al. | Jan 2002 | A1 |
20020095206 | Addonizio et al. | Jul 2002 | A1 |
20040034402 | Bales et al. | Feb 2004 | A1 |
20040044401 | Bales et al. | Mar 2004 | A1 |
20040172123 | Lootz et al. | Sep 2004 | A1 |
20070185560 | Roeder et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
1 110 515 | Jun 2001 | EP |
WO 9721399 | Jun 1997 | WO |
WO 9838945 | Sep 1998 | WO |
WO0062711 | Oct 2000 | WO |
WO 2006017586 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20040122504 A1 | Jun 2004 | US |