Vectors For Integration Of DNA Into Genomes And Methods For Altering Gene Expression And Interrogating Gene Function

Abstract
The present disclosure provides vectors and methods for rapid and efficient integration of DNA at target sites in genomes with high efficiency. The present disclosure also provides methods for creating cell lines to model human diseases, for activating gene expression to correct genetic diseases or even for performing genetic screenings.
Description
BACKGROUND

Gene editing technologies rely on the use of engineered nucleases to introduce targeted modifications in the genomes of living cells. In particular, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 RNA-guided nuclease (RGN) system, has revolutionized this field, providing a simple and efficient means of inducing DNA double-strand breaks (DSBs) at targeted genomic loci. In Streptococcus pyogenes, the CRISPR RNAs (crRNAs) and the trans-activating-crRNA (tracrRNA) form a complex that guides the Cas9 nuclease to the target DNA. The only constraint for target sequences is that they must immediately precede a suitable protospacer adjacent motif (PAM) of the form NGG5 or NGA6. This bacterial CRISPR system has been further simplified to utilize a single-guide RNA (sgRNA) molecule, which is a chimeric RNA that replaces both the crRNA and tracrRNA elements.


The CRISPR system has been adapted for use in mammalian cells, where gene knock out can be accomplished by introducing DSBs at the target locus that, when repaired by error-prone DNA repair pathways such as non-homologous end joining (NHEJ), cause inactivating mutations. Despite the high rates of allele modification that can be achieved with RGNs, the laborious and costly screening needed for identification and isolation of isogenic cell lines remains challenging in genetic engineering.


Alternatively, strain development can be streamlined by co-delivering engineered nucleases with donor vectors containing expression cassettes that confer antibiotic resistance for rapid clonal screening. These donor vectors often share a common architecture that consists of two DNA sequences homologous to the region of DNA upstream and downstream of the intended DSB, flanking the DNA that will be incorporated into the genome following repair of the DSB. Donor vectors stimulate DNA repair through homologous recombination (HR), a pathway that can be hijacked for targeted integration of DNA sequences into genomes. This method has been used successfully for multiple applications, including gene knock-out, delivery of therapeutic genes, or for tagging endogenous proteins. Gene editing via donor vectors is precise, however, it is inefficient and it relies on construction of lengthy homology arms using complex cloning strategies, costly synthesis of DNA fragments, or both.


Furthermore, an important drawback for genome engineering applications, which often requires integration of constructs in excess of 5 kb, is that the efficiency of HR decreases as the size of the DNA insert between the homology arms increases. More importantly, since homology between the donor vector and the target site is critical, each donor vector is necessarily associated with a specific sgRNA. Consequently, the time frame necessary for design, testing and validation of new strains generated using HR is excessively long. Platforms for rapid and low cost multiplexed genomic integration are needed.


Additionally, genome-scale gain-of-function screening is a powerful tool to systematically identify genes that regulate biological processes. The activation of endogenous genes with artificial transcription factors (ATFs) is an enticing technology, not only for developing gene therapies or disease models, but also for interrogating gene function through genome-wide screenings. ATFs consist of a programmable DNA binding domain that can be customized to target a transcriptional activation domain to the appropriate locus for upregulation of gene expression. While zinc finger proteins and Transcriptional Activator-Like Effectors (TALE) have been used for gene activation, the RNA guided nuclease (RGN) platform is arguably the most popular since the DNA binding specificity can be engineered rapidly and at low cost. RGN-based gene activation, also known as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) activation or CRISPRa, requires a single-guide RNA (sgRNA) and catalytically dead Cas9 (dCas9) coupled with a transcriptional activator. First generation transcriptional activators, which typically used VP64 or VP16 activation domains, required multiple ATFs acting in synergy near the transcriptional start site (TSS) of the gene of interest for optimal gene activation. This important limitation is lessened when using second-generation transcriptional activators, including VP160, SAM, VPR, suntag, VP64-dCas9-BFP-VP64, Scaffold, and P300, which are capable of activating expression of some target genes when used individually.


A key application of second generation transcriptional activators has been the interrogation of gene function by introducing genetic perturbations at genome-scale using libraries of sgRNAs. However, the success of gain-of-function screenings fundamentally relies on the effective activation of target genes by the ATFs in order to overcome the applied selection pressure. Unfortunately, it is becoming evident that even second generation CRISPRa technologies are often limited by their need for multiple sgRNA to achieve adequate activation of many genes and the lack of established parameters to best position ATFs within endogenous promoters for effective upregulation of gene expression. These constraints in gain-of-function screenings by ATFs may lead to results that are skewed in favor of select subgroups of sgRNAs for which activation is readily achieved with a single sgRNA.


To address shortcomings in loss-of-function genome-scale screenings, hits from CRISPR knock out screenings can be refined by simultaneously considering hits from short hairpin RNA (shRNA) screenings. Unfortunately, there are no such alternatives to CRISPRa that function by a different mechanism and that, by having different advantages and limitations, can be used in parallel with CRISPRa screenings to comprehensively identify targets. While ideal outcomes from screenings require robust activation of target gene expression, current CRISPRa technologies often exhibit relatively weak, variable, or unpredictable activation across targets.


To address these limitations, a novel universal vector integration platform system for gene activation is described herein, which bypasses native promoters to achieve unprecedented levels of endogenous gene activation. Since genomic context at the promoter greatly impacts output expression when using ATFs, it is possible to circumvent this problem through insertion of a synthetic promoter near the transcriptional start site (TSS) of target genes. This system not only overrides negative regulatory elements, but is also highly customizable, given the existing assortment of well-characterized synthetic promoters capable of both constitutive and inducible gene expression.


This platform enables rapid, robust and inducible activation of both individual and multiplexed gene transcripts. This gene activation system is multiplexable and easily tuned for precise control of expression levels. Importantly, since promoter vector integration requires just one variable sgRNA to target each gene of interest, this procedure can be adapted for gain-of-function screenings. Collectively, these results demonstrate a novel system for gene modulation with wide adaptability in cell line engineering and genome-scale functional screenings.


BRIEF SUMMARY OF THE INVENTION

The present disclosure relates to a system for targeted genome engineering and methods for altering the expression of genes and interrogating the function of genes.


One aspect of the present invention provides a system for targeted genome engineering, the system comprising one or more vectors comprising: (i) nucleic acids for integration in genomic DNA with no significant homology to the target sequence in genomic DNA; (ii) a single guide RNA (sgRNA) that binds one or more vectors; (iii) a sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated; and (iv) a nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules.


In some embodiments of the invention disclosed herein, the nucleic acids for integration in genomic DNA with no significant homology to the target sequence in genomic DNA; the single guide RNA (sgRNA) that binds one or more vectors; the sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated; and the nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules are located on the same or different vectors of the system.


In some embodiments of the invention disclosed herein, the sgRNA that binds one or more vectors and the sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated are the same sgRNA. In other embodiments of the above aspect of the invention, the sgRNA that binds one or more vectors and the sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated are different sgRNAs.


In some embodiments of the invention disclosed herein, the sgRNA that binds one or more vectors is a universal sgRNA.


In some embodiments of the invention disclosed herein, the nuclease is expressed from an expression cassette.


In some embodiments of the invention disclosed herein, the one or more vectors further comprises a polynucleotide encoding for a marker protein. In other embodiments of the invention disclosed herein, a sgRNA target site is cloned upstream of the marker protein. In other embodiments of the invention disclosed herein, the marker protein is an antibiotic resistance protein or a florescent protein.


In some embodiments of the invention disclosed herein, the polynucleotide encoding for a marker protein is expressed on a vector separate from the one or more vectors comprising the nucleic acids for integration in genomic DNA with no significant homology to the target sequence in genomic DNA; the single guide RNA (sgRNA) that binds one or more vectors; the sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated; and the nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules.


In some embodiments of the invention disclosed herein, the sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated is complementary to a portion of the nucleic acid sequence of a target DNA.


In some embodiments of invention disclosed herein, the nucleic acids with no significant homology to the target nucleic acid molecule are about 0.1 kilobase to about 50 kilobases in size.


In some embodiments of the invention disclosed herein, the nuclease is a Zinc finger nuclease (ZFN), RNA guided nucleases (RGN), or transcription activator-like effector nucleases (TALEN). In other embodiments of the invention disclosed herein, the RGN is Caspase 9 (Cas9).


In some embodiments of the invention disclosed herein, the one or more vectors are plasmids or viral vectors. In other embodiments of the invention disclosed herein, the viral vector is a lentivirus vector, an adenovirus vector, or an adeno-associated vector (AAV).


In some embodiments of the invention disclosed herein, the system for targeted genome engineering further comprises one or more additional sgRNA molecules that causes a double-stranded nucleic acid break of one or more additional target nucleic acid molecules.


In some embodiments of the invention disclosed herein, the system does not require the entire vector that can be integrated to have any homology with the target site.


Another aspect of the present invention provides a method of altering the expression of at least one gene product, the method comprising: (i) introducing into a cell a system for targeted genome engineering as disclosed herein; and (ii) selecting for successfully transfected cells by applying selective pressure; wherein the expression of at least one gene product is reduced or eliminated relative to a cell that has not been transfected with the system for targeted genome engineering.


In some embodiments of the invention disclosed herein, the method occurs in vivo or in vitro. In other embodiments of the invention disclosed herein, the cell is a eukaryotic cell.


Another aspect of the present invention provides a system for targeted genome engineering, the system comprising one or more vectors comprising: (i) at least one nucleic acid with no significant homology to the target genomic DNA site and that contains a promoter for controlling gene expression; (ii) a primary sgRNA that binds the target nucleic acid molecule at or near the transcription start site of a gene in the target nucleic acid molecule; (iii) a universal secondary sgRNA that binds one or more vectors; and (iv) a nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules.


In some embodiments of the invention disclosed herein, the at least one nucleic acid with no significant homology to the target genomic DNA site and that contains a promoter for controlling gene expression comprises: (1) a nucleic acid promoter followed by a universal secondary sgRNA; (2) two opposing, constitutive promoters separated by a universal secondary sgRNA; or (3) two inducible promoters in opposite orientations separated by an universal secondary sgRNA.


In some embodiments of the invention disclosed herein, the at least one nucleic acid with no significant homology to the target genomic DNA site and that contains a promoter for controlling gene expression; the primary sgRNA that binds the target nucleic acid molecule at or near the transcription start site of a gene in the target nucleic acid molecule; the universal secondary sgRNA that binds one or more vectors; and the nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules are located on the same or different vectors of the system.


In some embodiments of the invention disclosed herein, each inducible promoter of the two inducible promoters in opposite orientations separated by a universal secondary sgRNA contains multiple TetO repeats and a transferase gene operatively linked to a reverse tetracycline transactivator (rtTA) via a T2A peptide.


In some embodiments of the invention disclosed herein, the one or more vectors further comprise a polynucleotide encoding for a marker protein. In other embodiments of the invention disclosed herein, the marker protein is an antibiotic resistance protein or a florescent protein.


In some embodiments of the invention disclosed herein, the nucleic acid promotor is heterologous to the promoter of the target nucleic acid molecule.


In some embodiments of the invention disclosed herein, the nuclease is a Zinc finger nuclease (ZFN), RNA guided nucleases (RGN), or transcription activator-like effector nucleases (TALEN). In other embodiments of the invention disclosed herein, the RGN is Caspase 9 (Cas9).


In some embodiments of the invention disclosed herein, the one or more vectors are plasmid or viral vectors. In other embodiments of the invention disclosed herein, the viral vector is a lentivirus vector, an adenovirus vector, or an adeno-associated vector (AAV).


Another aspect of the present invention provides a method of altering the expression of at least one gene product, the method comprising: (i) introducing into a cell a system for targeted genome engineering as disclosed herein; and (ii) selecting for successfully transfected cells by applying selective pressure, wherein the expression of at least one gene product is activated relative to a cell that is not transfected with the system of targeted genome engineering.


In some embodiments of the invention disclosed herein, the method occurs in vivo or in vitro. In other embodiments of the invention disclosed herein, the cell is a eukaryotic cell.


Another aspect of the present invention provides a method of identifying the genetic basis of one or more medical symptoms exhibited by a subject, the method comprising: (i) obtaining a biological sample from the subject and isolating a population of cells having a first phenotype from the biological sample; (ii) transfecting a library of sgRNA into the cells; (iii) introducing into the cells a system of targeted genome engineering as disclosed herein; (iv) selecting for successfully transfected cells by applying the selective pressure; (v) selecting the cells that survive under the selective pressure, (vi) determining the genomic loci of the DNA molecule that interacts with the first phenotype and identifying the genetic basis of the one or more medical symptoms exhibited by the subject.


In some embodiments of the invention disclosed herein, selective pressure is applied by contacting the cells with an antibiotic and selecting the cells that survive. In some embodiments of the method disclosed herein, the antibiotic is puromycin or hygromycin.


Additional features and advantages are described herein, and will be apparent from the following Detailed Description, Drawings and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects and advantages other than those set forth above will become more readily apparent when consideration is given to the detailed description below. Such detailed description makes reference to the following drawings, wherein:



FIG. 1 shows a schematic representation of the traditional approach to integrate heterologous DNA at target genomic loci using homologous recombination of donor vectors. The donor vector contains a homology region consisting of genomic DNA up to position −4 on the left and from position −3 onward (length ranges from 300 to 2,000 bp). Separation of the target sequence in 2 fragments is needed to prevent Cas9 from recognizing and degrading the donor.



FIG. 2A-2C shows a schematic representation of the major systems for targeted genome modification. FIG. 2A shows that in the absence of a template, mammalian cells prefer to use NHEJ to repair DSBs introduced with RGN at the target site. NHEJ is a mutagenic pathway that, by introducing insertions and deletions, can be used for gene inactivation. FIG. 2B shows homologous recombination is used in mammalian cells when a repair template is present. A repair template can be a donor vector with two arms that are homologous to the genomic DNA flanking the DSB. Heterologous DNA positioned between the homology arms can be integrated in the genome at the target site. FIG. 2C shows introduction of a DSB simultaneously in genomic DNA and a vector results in efficient integration of the entire vector at the target site by an unknown mechanism.



FIG. 3 shows a schematic representation of a proposed system for using Cas9 as RGN for Integration of DNA at Target Loci. The entire target CRISPR target sequence, including the PAM, is cloned into a preexisting vector where the DNA encoding the elements that need to be integrated is located.



FIG. 4 shows a gel of insertions and deletions with co-transfection of Cas9 and sgRNA in the ACTB, GAPDH, TUBB, NR0B2, CTTN-EX9, CTTN-EX8 target sites relative to control samples with GFP.



FIG. 5A shows a schematic of the transfer vectors. FIG. 5B is a gel image showing proof-of-principle studies with the genes ACTB (β-actin), GAPDH, and TUBB (β-tubulin), and NR0B2 (SHP1). Four gene specific transfer vectors containing the sequence targeted by the sgRNA in genomic DNA were prepared. When Cas9 and locus specific sgRNA were co-transfected with a donor vector that contains the same target sequence, the plasmids were integrated at the target site in the genome.



FIG. 6A-6B shows that NAVI is multiplexable but integration is not strand specific. FIG. 6A shows a schematic and gel image of the analysis of genomic integration of two different transfer vectors that target GFP to the GAPDH locus or RFP to the ACTB locus by co-transfection with Cas9 and sgRNAs targeting GAPDH or ACTB. PCR detecting integration of GFP at the GAPDH locus demonstrates that Cas9, GAPDH sgRNA as well that the GAPDH-GFP transfer vector are required, however, when ACTB sgRNA is also expressed, integration of GFP can also occur at the ACTB locus. Similarly, analysis of RFP integration the ACTB locus demonstrates that Cas9, ACTB sgRNA and the ACTB-RFP transfer vector are required, but a simultaneous DSB at GAPDH results in integration of ACTB-RFP at the ACTB locus. FIG. 6B shows a schematic and gel image of the target sequence of two ACTB sgRNAs that target the plus or minus strand of the ACTB gene were inserted in a transfer vector in orientations plus or minus. Each of these transfer vectors was transfected in combination with Cas9 and each of the ACTB sgRNAs. Introduction of a DSB in genomic DNA led to integration of each transfer vector in both orientations regardless of the strand targeted by the sgRNA.



FIG. 7A shows a schematic of the generation of clonal cell lines with integration of a transfer vector at the NR0B2 locus by co-transfection of Cas9, NR0B2 sgRNA, and a NR0B2 transfer vector. FIG. 7B shows a gel image visualizing out-in and in-out PCRs with various primer combinations to detect integration of different fragments of the NR0B2 transfer vector in genomic DNA. The length of the different fragments detected shows that the entire vector was integrated.



FIG. 8A shows a schematic of the generation of TALENs targeting the ACTB locus and included their target sequence into a transfer vector. FIG. 8B shows a gel image showing that when the TALENs were transfected together with the transfer vector, specific integration of the vector at the target locus was readily detected. While GAPDH RGNs were not sufficient to integrate the circular transfer vector containing the TALEN ACTB site, when the vector was linearized with ACTB specific TALENs, it was incorporated successfully at the GAPDH locus upon induction of a DSB with RGNs.



FIG. 9A-9B shows that NAVI can efficiently introduce large vectors, including BACs and phage genomes, into genomic DNA of mammalian cells using universal RGNs. FIG. 9A shows a schematic and gel image of GAPDH RGNs that were transfected with T7 sgRNA and 4 different transfer vectors with sizes ranging from 6.3 kb to 12.1 kb. Each of these plasmids contained a T7 priming site compatible with the T7 sgRNA. The transfer vectors were transfected both individually and in combination. PCR with primer pairs that bind genomic DNA and each of the vectors successfully detected integration at the GAPDH locus for each of the vectors. When the four vectors were transfected simultaneously, each of them was detected at the target site in a pooled cell population. FIG. 9B shows a schematic and gel images of either the bacterial artificial chromosome (˜25 kb) or the lambda phage genome (˜50 kb) that were transfected in combination with Cas9, a TUBB sgRNA and a vector-specific RGN. PCRs in pooled cells with primers that amplify the expected junction of genomic DNA with each of the vectors demonstrated successful integration of both DNAs at the target site.



FIG. 10A-10D shows rapid biallelic modification introduced by NAVI can be used to generate gene knock outs or orthogonal gene knock out and gene activation. FIG. 10A shows a schematic and gel images of HCT116 cells that were transfected with CTTN sgRNA, transfer vectors encoding PuroR and/or HygroR genes and vector specific RGNs. Only when Cas9 introduced a DSB simultaneously in the transfer vector and in the target loci in genomic DNA was the transfer vector integrated and CTTN disrupted. When both transfer vectors were transfected in conjunction with Cas9 and both CTTN and sgRNAs, integration of both vectors was detected at the same locus indicating biallelic modification in this diploid cell line. FIG. 10B shows gel images of cell lines transfected with CTTN, sgRNAs, Cas9 and both PuroR and HygroR transfer vectors underwent selection with puromycin and hygromycin before 5 clones and a control cell line (C) were isolated and analyzed for integration of the transfer vectors at the CTTN locus. Four of the five clones were homozygous for the mutation, whereas one clone was heterozygous. FIG. 10C shows a Western blot of CTTN expression in the four homozygous clones, which confirmed that CTTN was effectively knocked out. FIG. 10D shows schematics and gel images of HCT116 cells that were transfected with two RGNs targeting the CTTN and HLA-DRA loci as well as 4 plasmids encoding genes that provide resistance to puromycin, hygromycin, blasticidin or neomycin. Simultaneous treatment with the four antibiotics selected cell lines that incorporated one plasmid in each allele of the 2 genes targeted with RGNs. One of the ten cell lines analyzed had four alleles modified, 5 cell lines had 3 alleles modified, 2 cell lines had 2 alleles modified, one cell line had one allele modified and one was wt.



FIG. 11 shows a gel image visualizing potential off-site target sites of the RGN.



FIG. 12 shows a schematic of the identification of mutations at the junctions of genomic DNA (plus vector integration GAPDH—left set of sequence top to bottom are SEQ ID NO:177, 178, 179 and 180 respectively; plus vector integration GAPDH—right set of sequence top to bottom are SEQ ID NO:181, 182, 183 and 184 respectively; minus vector integration GAPDH—left set of sequence top to bottom are SEQ ID NO:185, 186, 187 and 188 respectively; minus vector integration GAPDH—right set of sequence top to bottom are SEQ ID NO:189, 190, 191 and 192 respectively; and plus vector integration ACTB—left set of sequence top to bottom are SEQ ID NO:193, 194 and 195 respectively; plus vector integration ACTB—right set of sequence top to bottom are SEQ ID NO:196, 197, and 198 respectively; minus vector integration ACTB—left set of sequence top to bottom are SEQ ID NO:199, 200, and 201 respectively; minus vector integration ACTB—right set of sequence top to bottom are SEQ ID NO:202, 203 and 204 respectively).



FIG. 13 shows a schematic representation of a procedure for gene activation using RGNs. This method consists of three stages: (1) sgRNA expression vectors are designed and generated using a single-step digestion, phosphorylation, and ligation reaction, (2) native gene expression is activated by co-delivery of sgRNA and dCas9-transcriptional activator expression plasmids into the target cells, and (3) RNA is isolated and analyzed using qPCR to quantify relative changes in gene expression.



FIG. 14A-14B shows that the NAVIa activation of native gene expression is tunable and surpasses CRISPRa. FIG. 14A shows a schematic of the architecture of the NAVIa system includes a plasmid containing a human codon-optimized expression cassette for active Cas9, which is co-transfected with two separate sgRNA plasmids and a targeting vector (idpTV, cdpTV or cspTV). The primary sgRNA is designed to bind and target Cas9 to the 5′ region of the gene of interest, while the secondary sgRNA target site is at the 3′ end of the cspTV promoter, or between the diametric promoters of the cdpTV and idpTV. After Cas9 cuts the TV, the resulting linearized vector is integrated at the target site in genomic DNA, presumably via NHEJ repair of the double-stranded breaks. FIG. 14B is a graph showing the ability of NAVIa to upregulate the expression of target transcript within pooled, selected 293T cells across a panel of three genes: ASCL1, NEUROD1, and POUF51. Each sgRNA employed within NAVIa was also used for CRISPRa (dCas9-VPR) either alone or in conjunction with three additional sgRNAs, previously reported to activate expression of the target mRNA measured by qPCR. Data shown as the mean±s.e.m. (n=3 independent experiments). P-values were determined by t-test: idpTV versus 4 sgRNAs: p≤0.05 for all targets, cdpTV versus 4 sgRNA: p≤0.05 for ASCL1, idpTV, cspTV or cdpTV versus 1 sgRNA: p≤0.05 for all targets.



FIG. 15 is a graph showing expression of a single-guide RNA targeted to the NeuroD1 locus in the cell lines HCT116, MRCS and Neuro2a, which was was co-transfected with plasmids encoding active Cas9, the secondary sgRNA and the cdpTV. Expression of NeuroD1 was evaluated using qPCR (n=1).



FIG. 16 is a graph showing a representation of levels of activation relative to distance between sgRNA targeting and the canonical TSS.



FIG. 17 shows a schematic of sequencing the PCR amplicon of the TV-NEUROD1 juncture from eight NAVIa clones, which revealed limited indel formation in only two clones, while six of the eight clones contained flawless ligation of each DSB end (Exp(top), C2, and C3 are SEQ ID NO:205; C6 is SEQ ID NO:206; C8 is SEQ ID NO:207; C1, C4, C5, C7 and Exp(bottom) are SEQ ID NO:208).



FIG. 18. is a graph showing expression levels of NEUROD1 that was induced using NAVIa for a period of 4 days at concentrations of doxycycline ranging from 2 ng/mL to 2 μg/mL and measured using qPCR.



FIG. 19 is a graph showing expression of NeuroD1 that was measured by qPCR upon induction with 200 ng/mL doxycycline for 12, 24, 48 and 96 hours in 293T cells in which NeuroD1 was edited using NAVIa. Data in b, d and e are shown as the mean±s.e.m. (n=3 independent experiments).



FIG. 20 is a graph showing that the idpTV was integrated at the TERT locus in SF7996 primary glioblastoma cells and expression of TERT was increased in a dose-dependent manner by addition of doxycycline compared with untreated control cells (n=4, p<0.005). N.D.: not detected.



FIG. 21 is a graph showing the relative proliferation rate over 120 days, which was calculated as the ratio of number of cells cultured in doxycycline-free medium and number of cells in cultures treated with doxycycline (n=2).



FIG. 22 is a graph showing 293T cells transfected with CRISPRa or NAVIa targeting simultaneously the genes ASCL1, NEUROD1, POUF51, IL1B, IL1R2, LIN28A and ZFP42. Expression of the target genes without selection was measured at day 3 without using qPCR (n=2 independent experiments). Data is shown as mean±s.e.m. P-values were determined by t-test (NAVIa versus VPR, p≤0.001 ASCL1, p≤0.02 IL1B (Ct value of control sample was not detected and assumed to be 40), p≤0.004 IL1R2, p≤0.001 LIN28A, p≤0.001 NEUROD1, p≤0.007 POUF51, p≤0.001 ZFP42).



FIG. 23 is a graph showing the average background gene expression levels achieved for each gene target, which were represented in relation with the distance between the target of the sgRNA and the ATG codon. Linear regression modeling indicates lack of a relationship.



FIG. 24 is a graph showing linear regression modeling between basal gene expression and average background activation levels after idpTV integration without induction. No corollary relationship was revealed. This finding denotes another important difference between NAVIa and CRISPRa, which achieves highest levels of activation from genes that are not expressed at steady state.



FIG. 25 is a graph showing mRNA expression levels from a single sgRNA that was designed to target four additional promoters, prior to their inclusion within multiplexed transfections. Induction of expression was achieved by treatment of the cells with 200 ng/mL doxycycline for four days and evaluated by qPCR. Data represents mean±s.e.m.



FIG. 26 is a graph showing a comparison of background and induced expression of NEUROD1 targeted using NAVIa between pooled HCT116 cells (diploid) and clones that were positive for idpTV integration at either one or both alleles (n=3 independent experiments). Untreated pooled cells versus heterozygous, p≤0.003. Untreated heterozygous versus homozygous, p≤0.07. Untreated pooled cells versus homozygous, p≤0.0005. Doxycycline treated heterozygous versus homozygous, p≤0.001. Doxycycline treated pooled cells versus homozygous, p≤0.001. Data in a, b and c are shown as the mean±s.e.m.



FIG. 27A-27G shows that NAVIa is compatible with genome-scale gain-of-function screens. FIG. 27A shows a schematic of the workflow of a NAVIa genome-scale gain-of-function screen, which involves sgRNA library production and incorporation into a lentiviral delivery system, followed by lentiviral transduction into the cell line of interest. Then, the pre-transduced cells are transfected with active Cas9, the NAVIa transfer vector of choice, and the universal secondary sgRNA. After puromycin selection, the cell pool is ready for gain-of-function screens, followed by NGS to analyze results. FIG. 27B is a graph showing P-values of the top ranked gene hits from each screening method, CRISPRa and NAVIa, illustrating that each technique yields similar statistical significance across top candidate genes FIG. 27C is a graph showing MAGeCK assigned p-values for positive selection obtained from NAVIa and CRISPRa screening ordered by chromosomal position, illustrating that similar levels of enrichment were achieved by CRISPRa and NAVIa. FIG. 27D is a graph showing the top hits of CRISPRa (X-axis) and NAVIa (Y-axis) screenings were ranked by p-value of the positively-selected sgRNAs. Each screen yielded significant hits but only one gene within the top 25 hits, IPO9, was identified by both methods. FIG. 27E are graphs showing the p-values of the top 25 hits from NAVIa screening, which are represented in conjunction with the p-values for the same hits in the CRISPRa screening and the top 25 hits from CRISPRa screening are represented in conjunction with the p-values for the same hits in the NAVIa. FIG. 27F is a graph showing that the activation of CHSY1, GDF9, MFSD2B, HMGCL, and IPO9 expression was accomplished in MCF7 cells using NAVIa. The cells were treated with 5 μM 4-hydroxytamoxifen for 10 days and the number of surviving cells was estimated by manual counting. Results are represented as ratio of 4-hydroxytamoxifen-treated/untreated cells. *, p<0.1. **, p<0.05 (n=4 independent experiments). FIG. 27G is a graph showing TCGA expression data for the top ten genome-wide 4-hydroxytamoxifen resistance screen hits from both the CRISPRa and NAVIa in ER+ (left bar) and ER− (right bar) breast cancers.



FIG. 28 is a schematic showing a template with the NGS primers (U6 F2 is SEQ ID NO:209; EF1a rev is SEQ ID NO:210; SAM lib FWD1 is SEQ ID NO:211; SAM lib FWD3 is SEQ ID NO:212; SAM lib FWD5 is SEQ ID NO:213; SAM lib FWD7 is SEQ ID NO:214; SAM lib FWD9 is SEQ ID NO:215; SAM lib REV1 is SEQ ID NO:216; SAM lib REV2 is SEQ ID NO:217; Amplicon is SEQ ID NO:218).





While the present invention is susceptible to various modifications and alternative forms, exemplary embodiments thereof are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description of exemplary embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the embodiments above and the claims below. Reference should therefore be made to the embodiments above and claims below for interpreting the scope of the invention.


DETAILED DESCRIPTION OF THE INVENTION

The system and methods now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.


Likewise, many modifications and other embodiments of the system and methods described herein will come to mind to one of skill in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of skill in the art to which the invention pertains. Although any methods and materials similar to or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described herein.


Articles “a” and “an” are used herein to refer to one or to more than one (i.e. at least one) of the grammatical object of the article. By way of example, “an element” means at least one element and can include more than one element.


As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well as the singular forms, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.


The term “about” in association with a numerical value means that the numerical value can vary plus or minus by 5% or less of the numerical value.


Overview


The present disclosure provides a multiplexable and universal nuclease-assisted vector integration system for rapid generation of gene knockouts using selection that does not require customized targeting vectors, thereby minimizing the cost and time needed for gene editing. Importantly, this system is capable of remodeling native genomes (e.g. mammalian) through integration of large DNA, (e.g., about 50 kb), enabling rapid generation and screening of multigene knockouts from a single transfection. These results support that nuclease assisted vector integration is a robust tool for genome-scale gene editing that will facilitate diverse applications in synthetic biology and gene therapy.


Also described herein are vectors and methods for rapid and efficient integration of heterologous DNA at target sites in genomes with high efficiency. These methods can be adapted to precisely manipulate and activate native gene expression. Furthermore, these techniques can be used for creating cell lines to model human diseases, for activating gene expression to correct genetic diseases or even for performing genetic screenings.


In one aspect, a system for targeted genome engineering, the system comprising one or more vectors comprising: (i) nucleic acids for integration in genomic DNA with no significant homology to the target sequence in genomic DNA; (ii) a single guide RNA (sgRNA) that binds one or more vectors; (iii) a sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors will be integrated; and (iv) a nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules.


As used herein, the term “targeted genome engineering” refers to a type of genetic engineering in which DNA is inserted, deleted, modified, or replaced in the genome of a living organism or cell. Targeted genome engineering can involve integrating nucleic acids into genomic DNA at a target site of interest in order to manipulate (e.g., increase, decrease, knockout, activate) the expression of one or more genes.


As used herein, the term “knockout” refers to a genetic technique in which one of an organism's genes is made inoperative. Knocking out two genes simultaneously in an organism is known as a double knockout. Similarly, triple knockout (TKO) and quadruple knockouts (QKO) are used to describe three or four knocked out genes, respectively. Heterozygous knockouts refer to when only one of the two gene copies (alleles) is knocked out, and homozygous knockouts refer to when both gene copies are knocked out.


As used herein the term “activate” refers to activation of native gene expression, which can include, but is not limited to, increasing the levels of gene products or initiating gene expression of a previously inactive gene. Robust and controllable systems for activation of native gene expression have been pursued for multiple applications in gene therapy, regenerative medicine and synthetic biology. These systems, rather than introducing heterologous genes that are expressed from constitutive or tunable promoters, use proteins that regulate transcription of genes in their natural chromosomal context. There are several advantages to activating native gene expression compared with overexpressing exogenous genes including ease of cloning, simple delivery, tunability and potential for simultaneous regulation of multiple gene splicing isoforms.


As used herein, “single guide RNA” (the terms “single guide RNA” and “sgRNA” may be used interchangeably herein) refers to a single RNA species capable of directing RNA-guided nuclease (RGN) mediated cleavage of target DNA. In some embodiments, a single guide RNA may contain the sequences necessary for RGN nuclease activity and a target sequence complementary to a target DNA of interest.


As used herein, the terms “universal sgRNA,” “secondary sgRNA,” or “universal secondary sgRNA” are used interchangeably to refer to sgRNA that binds to and directs RGN-mediated cleavage of one or more vectors.


As used herein, the term “primary sgRNA” is used to refer to the sgRNA that binds to and directs RGN-mediated cleavage genomic DNA. The primary sgRNA can be customized to integrate nucleic acids (e.g., vectors) at any target site in the genome.


As used herein, the term “no significant homology to the target sequence in genomic DNA” means that the nucleic acids to be inserted into the genomic DNA have less than about 20%, 15%, 10%, 5%, or 1% homology to the genomic DNA. As used herein, the term “homology” refers to the similarity between two nucleic acid sequences. Homology among DNA, RNA, or proteins is typically inferred from their nucleotide or amino acid sequence similarity. Significant similarity is strong evidence that two sequences are related by evolutionary changes from a common ancestral sequence. Alignments of multiple sequences are used to indicate which regions of each sequence are homologous. The term “percent homology” is used herein to mean “sequence similarity.” The percentage of identical nucleic acids or residues (percent identity) or the percentage of nucleic acids residues conserved with similar physicochemical properties (percent similarity), e.g. leucine and isoleucine, is used to quantify the homology.


As described herein, sequence identity is related to sequence homology. Homology comparisons may be conducted by eye or using sequence comparison programs. These commercially available computer programs may calculate percent (%) homology between two or more sequences and may also calculate the sequence identity shared by two or more amino acid or nucleic acid sequences. Sequence homologies may be generated by any of a number of computer programs known in the art, for example BLAST or FASTA.


Percentage (%) sequence homology may be calculated over contiguous sequences, i.e., one sequence is aligned with the other sequence and each amino acid or nucleotide in one sequence is directly compared with the corresponding amino acid or nucleotide in the other sequence, one residue at a time. This is called an “ungapped” alignment. Ungapped alignments are performed only over a relatively short number of residues. Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion may cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in percent homology when a global alignment is performed. Therefore, most sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without unduly penalizing the overall homology or identity score. This is achieved by inserting “gaps” in the sequence alignment to try to maximize local homology or identity.


In some embodiments, the nucleic acids for integration in genomic DNA with no significant homology to the target sequence in genomic DNA; the single guide RNA (sgRNA) that binds one or more vectors; the sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated; and the nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules are located on the same or different vectors of the system. In other embodiments, the sgRNA that binds one or more vectors and the sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated are the same sgRNA. In yet other embodiments, the sgRNA that binds one or more vectors and the sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated are diffrent sgRNAs. In yet other embodiments, the sgRNA that binds one or more vectors is a universal sgRNA.


In some embodiments, multiple vectors can be integrated into one genomic site, where the multiple vectors are linearized by being cut by a single sgRNA, the vectors all having the target nucleic acid sequence for one sgRNA, so a single sgRNA can target the RGN to cut and linearize the vectors at a particular sequence located in all the vectors. All the vectors can be integrated into a target DNA of interest that has been cut by the RGN and inserted into a target DNA of interest that has been cut by an RGN targeted by a sgRNA complementary to a nucleic acid sequence located in the target DNA of interest.


In other embodiments, the nuclease is expressed from an expression cassette. The term “expression cassette” as used herein refers to a distinct component of vector DNA consisting of a gene and regulatory sequence to be expressed by a transfected cell, whereby the expression cassette directs the cell to make RNA and protein. Different expression cassettes can be transfected into different organisms including bacteria, yeast, plants, and mammalian cells as long as the correct regulatory sequences are used.


In other embodiments, the one or more vectors further comprises a polynucleotide encoding for a marker protein. In yet other embodiments, a sgRNA target site is cloned upstream of the marker protein. In yet other embodiments, the marker protein is an antibiotic resistance protein or a florescence protein. In some embodiments, the polynucleotide encoding for a marker protein is expressed on a separate vector.


As used herein, the terms “marker protein” or “selectable marker” are used interchangeably herein to refer to proteins encoded by a gene that when introduced into a cell (prokaryotic or eukaryotic) confers a trait suitable for artificial selection. Marker proteins or selectable markers are used in laboratory, molecular biology, and genetic engineering applications to indicate the success of a transfection or other procedure meant to introduce foreign DNA into a cell. Selectable markers include, but are not limited to, resistance to antibiotics, herbicides or other compounds, which would be lethal to cells, organelles or tissues not expressing the resistance gene or allele. Selection of transformants is accomplished by growing the cells or tissues under selective pressure, i.e., on media containing the antibiotic, herbicide or other compound. If the selectable marker is a “lethal” selectable marker, cells which express the selectable marker will live, while cells lacking the selectable marker will die. If the selectable marker is “non-lethal,” transformants (i.e., cells expressing the selectable marker) will be identifiable by some means from non-transformants, but both transformants and non-transformants will live in the presence of the selection pressure.


Antibiotic resistance genes for use as selectable markers include, but are not limited to, genes encoding for proteins resistant to puromycin, hygromycin, blasticidin, and neomycin. The genes encoding resistance to antibiotics such as ampicillin, chloroamphenicol, tetracycline or kanamycin, are examples of selectable markers for E. coli.


Examples of marker proteins include, but are not limited to an antibiotic resistance protein. In particular, beta-lactamase confers ampicillin resistance to bacterial host, neo gene from Tn5 confers resistance to kanamycin in bacteria and geneticin in eukaryotic cells. Other examples of marker proteins include, but are not limited to, florescence proteins, such as green fluorescent protein (GFP), red fluorescent protein (RFP), bilirubin-inducible fluorescent protein UnaG, dsRed, eqFP611, Dronpa, TagRFPs, KFP, EosFP, Dendra, and IrisFP.


In other embodiments, the sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors will be integrated is complementary to a portion of the nucleic acid sequence of a target DNA.


In other embodiments, the nucleic acids with no significant homology to the target nucleic acid molecule are about 0.001 kilobases to 100 kilobases in size, such as about 0.001, 0.002, 0.003, 0.005, 0.010, 0.020, 0.030, 0.040, 0.050, 0.060, 0.070, 0.080, 0.090, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or about 100 kilobases in size. In other embodiments, the nucleic acids with no significant homology to the target nucleic acid molecule are about 0.1 kilobase to about 50 kilobases in size.


As used herein, the term “nuclease” refers to an enzyme capable of cleaving the phosphodiester bonds between monomers of nucleic acids. Nucleases variously effect single and double stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of DNA repair. Nucleases are used in genetic engineering. There are two primary classifications based on the locus of activity. Exonucleases digest nucleic acids from the ends. Endonucleases act on regions in the middle of target molecules. They are further subcategorized as deoxyribonucleases and ribonucleases. The former acts on DNA, the latter on RNA. Examples of nucleases include, but are not limited to artificial restriction enzymes and artificial transcription factors (ATFs).


There are multiple approaches to controlling native gene expression, however recent advances in genetic engineering have made it possible to rapidly design and assemble artificial transcription factors (ATFs) that are both efficient and highly specific. One key feature of ATFs is that they typically have a modular structure, with two distinct and independent domains: (1) a DNA-binding domain, and (2) a transcriptional activation domain. Through customization of the DNA binding and transcriptional activation domains, it is possible to select a genomic target and activate gene expression exclusively at that locus.


First generation transcriptional activation domains are relatively weak and require binding of multiple ATFs in close proximity, within the promoter, in order to function synergistically and efficiently initiate transcription. However, second-generation transcriptional activation domains can facilitate high levels of gene activation, even when using a single ATF.









TABLE 1







Summary of Transcriptional Activators Used in Artificial Transcription


Factors to Stimulate Gene Expression








Transcriptional



Activating System
Notes





NFkB/p65
Transcriptional activator


VP16
Transcriptional activator


VP64
Four Tandem repeats of the minimal activation



domain of VP16


CIB1-Cry2
Light inducible system. ATF-CIB1 is used with



CRY2-VP64


GI-LOV
Light inducible system. ATF-GI is used with



LOV-VP16


GCN4 peptide
SunTag System


(10× or 24×)



p300 HAT core
Epigenetic modifier


VPR
Tripartite VP64, p65, and Rta


SAM
Modified sgRNA used to recruit multiple effector



domains









Artificial transcription factors are classified according to the nature of the DNA-binding domain in three main groups: Zinc Finger Proteins (ZFP), Transcriptional Activator-Like Effectors (TALEs), and RNA-guided nucleases (RGNs). Each of these ATFs is effective at activating native gene expression.


As used herein, the terms “genomic DNA” or “genomic target DNA” or “target DNA” refer to chromosomal DNA. Most organisms have the same genomic DNA in every cell, but only certain genes are active in each cell to allow for cell function and differentiation within the body. The genome of an organism (encoded by the genomic DNA) is the (biological) information of heredity which is passed from one generation of organism to the next.


As used herein, “RNA-guided nuclease” or “RGN” means a nuclease capable of DNA or RNA cleavage directed by RNA base paring. Examples of RGNs include, but are not limited to, Caspase 9 (Cas9), Zinc Finger nuclease (ZFN), and TALENs.


CrSPR-CAS9-sgRNA


The Clustered Regularly Interspersed Short Palindromic Repeats/CRISPR-associated (CRISPR/Cas) system includes a recently identified type of SSN. CRISPR/Cas molecules are components of a prokaryotic adaptive immune system that is functionally analogous to eukaryotic RNA interference, using RNA base pairing to direct DNA or RNA cleavage. Directing DNA DSBs requires two components: the Cas9 protein, which functions as an endonuclease, and CRISPR RNA (crRNA) and tracer RNA (tracrRNA) sequences that aid in directing the Cas9/RNA complex to target DNA sequence (Makarova et al., Nat Rev Microbiol, 9(6):467-477, 2011). The modification of a single targeting RNA can be sufficient to alter the nucleotide target of a Cas protein. In some cases, crRNA and tracrRNA can be engineered as a single cr/tracrRNA hybrid to direct Cas9 cleavage activity (Jinek et al., Science, 337(6096):816-821, 2012). The CRISPR/Cas system can be used in bacteria, yeast, humans, and zebrafish, as described elsewhere (see, e.g., Jiang et al., Nat Biotechnol, 31(3):233-239, 2013; Dicarlo et al., Nucleic Acids Res, doi:10.1093/nar/gkt135, 2013; Cong et al., Science, 339(6121):819-823, 2013; Mali et al., Science, 339(6121):823-826, 2013; Cho et al., Nat Biotechnol, 31(3):230-232, 2013; and Hwang et al., Nat Biotechnol, 31(3):227-229, 2013).


TALENS


Transcription Activator-Like Effector Nucleases (TALENs) are artificial restriction enzymes generated by fusing the TAL effector DNA binding domain to a


DNA cleavage domain. These reagents enable efficient, programmable, and specific DNA cleavage and represent powerful tools for genome editing in situ. Transcription activator-like effectors (TALEs) can be quickly engineered to bind practically any DNA sequence. The term TALEN, as used herein, is broad and includes a monomeric TALEN that can cleave double stranded DNA without assistance from another TALEN. The term TALEN is also used to refer to one or both members of a pair of TALENs that are engineered to work together to cleave DNA at the same site. TALENs that work together may be referred to as a left-TALEN and a right-TALEN, which references the handedness of DNA. See U.S. Ser. No. 12/965,590; U.S. Ser. No. 13/426,991 (U.S. Pat. No. 8,450,471); U.S. Ser. No. 13/427,040 (U.S. Pat. No. 8,440,431); U.S. Ser. No. 13/427,137 (U.S. Pat. No. 8,440,432); and U.S. Ser. No. 13/738,381, all of which are incorporated by reference herein in their entirety.


TAL effectors are proteins secreted by Xanthomonas bacteria. The DNA binding domain contains a highly conserved 33-34 amino acid sequence with the exception of the 12th and 13th amino acids. These two locations are highly variable (Repeat Variable Diresidue (RVD)) and show a strong correlation with specific nucleotide recognition. This simple relationship between amino acid sequence and DNA recognition has allowed for the engineering of specific DNA binding domains by selecting a combination of repeat segments containing the appropriate RVDs.


The non-specific DNA cleavage domain from the end of the Fokl endonuclease can be used to construct hybrid nucleases that are active in a yeast assay. These reagents are also active in plant cells and in animal cells. Initial TALEN studies used the wild-type Fokl cleavage domain, but some subsequent TALEN studies also used Fokl cleavage domain variants with mutations designed to improve cleavage specificity and cleavage activity. The Fokl domain functions as a dimer, requiring two constructs with unique DNA binding domains for sites in the target genome with proper orientation and spacing. Both the number of amino acid residues between the TALEN DNA binding domain and the Fokl cleavage domain and the number of bases between the two individual TALEN binding sites are parameters for achieving high levels of activity. The number of amino acid residues between the TALEN DNA binding domain and the Fokl cleavage domain may be modified by introduction of a spacer (distinct from the spacer sequence) between the plurality of TAL effector repeat sequences and the Fokl endonuclease domain. The spacer sequence may be 12 to 30 nucleotides.


The relationship between amino acid sequence and DNA recognition of the TALEN binding domain allows for designable proteins. In this case artificial gene synthesis is problematic because of improper annealing of the repetitive sequence found in the TALE binding domain. One solution to this is to use a publicly available software program (DNAWorks) to calculate oligonucleotides suitable for assembly in a two-step PCR; oligonucleotide assembly followed by whole gene amplification. A number of modular assembly schemes for generating engineered TALE constructs have also been reported. Both methods offer a systematic approach to engineering DNA binding domains that is conceptually similar to the modular assembly method for generating zinc finger DNA recognition domains.


Once the TALEN genes have been assembled they are inserted into plasmids; the plasmids are then used to transfect the target cell where the gene products are expressed and enter the nucleus to access the genome. TALENs can be used to edit genomes by inducing double-strand breaks (DSB), which cells respond to with repair mechanisms. In this manner, they can be used to correct mutations in the genome which, for example, cause disease.


Zinc Finger Nuclease (ZFNs)


Zinc finger nucleases (ZFNs) are enzymes having a DNA cleavage domain and a DNA binding zinc finger domain. ZFNs may be made by fusing the nonspecific DNA cleavage domain of an endonuclease with site-specific DNA binding zinc finger domains. Such nucleases are powerful tools for gene editing and can be assembled to induce double strand breaks (DSBs) site-specifically into genomic DNA. ZFNs allow specific gene disruption as during DNA repair, the targeted genes can be disrupted via mutagenic non-homologous end joint (NHEJ) or modified via homologous recombination (HR) if a closely related DNA template is supplied.


In some embodiments, the nuclease is Zinc finger nuclease (ZFN), RNA guided nucleases (RGN), or transcription activator-like effector nucleases (TALEN). In yet other embodiments, RGN is Caspase 9 (Cas9).


In some embodiments, the one or more vectors are plasmids or viral vectors. In other embodiments, the viral vector is a lentivirus vector, an adenovirus vector, or an adeno-associated vector (AAV).


In some embodiments, the system further comprises one or more additional sgRNA molecules that causes a double-stranded nucleic acid break of one or more additional target nucleic acid molecules. In this aspect, the genome can be cut is at several different sites (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 sites) at or near the same time, and vector DNA is being inserted into those one or more sites.


In other embodiments, the system does not require the entire vector that can be integrated to have any homology with the target site.


Yet another aspect of the present invention provides a system for targeted genome engineering, the system comprising one or more vectors comprising: (i) at least one nucleic acid with no significant homology to the target genomic DNA site and that contains a promoter for controlling gene expression; (ii) a primary sgRNA that binds the target nucleic acid molecule at or near the transcription start site of a gene in the target nucleic acid molecule; (iii) a universal secondary sgRNA that binds one or more vectors; and (iv) a nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules.


In some embodiments, the at least one nucleic acid with no significant homology to the target genomic DNA site and that contains a promoter for controlling gene expression comprises: (i) a nucleic acid promoter followed by a universal secondary sgRNA; (ii) two opposing constitutive promoters separated by a universal secondary sgRNA; or (iii) two inducible promoters in opposite orientations separated by an universal secondary sgRNA.


In some embodiments, the at least one nucleic acid with no significant homology to the target genomic DNA site and that contains a promoter for controlling gene expression; the primary sgRNA that binds the target nucleic acid molecule at or near the transcription start site of a gene in the target nucleic acid molecule; the universal secondary sgRNA that binds one or more vectors; and the a nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules are located on the same or different vectors of the system.


The term “constitutive promoter” as used herein refers to an unregulated promoter that allows for continual transcription of its associated gene. These promoters direct expression in virtually all tissues and are independent of environmental and developmental factors. As their expression is normally not conditioned by endogenous factors, constitutive promoters are usually active across species and even across kingdoms. Examples of constitutive promoters include, but are not limited to, CMV, EF1A, and SV40 promoters.


In some embodiments, the two opposing constitutive promoters have similar activity or are identical to one another. In other embodiments, the two opposing constitutive promoters are non-identical to one another.


The term “inducible promoter” as used herein refers to a regulated promoter that allows for controlled transcription of its associated gene. The performance of inducible promoters is not conditioned to endogenous factors but to environmental conditions and external stimuli that can be artificially controlled. Inducible promoters can be modulated by factors such as light, oxygen levels, heat, cold and wounding, as well as chemicals, steroids, and alcohol. Since some of these factors are difficult to control outside an experimental setting, promoters that respond to chemical compounds, not found naturally in the organism of interest, are useful for genetic engineering. Examples of inducible promoters include, but are not limited to, the tetracycline ON (Tet-On) system, the negative inducible pLac promoter, the negative inducible promoter pBad, heat shock-inducible Hsp70 or Hsp90-derived promoters, and heat shock-inducible Cre and Cas9.


The terms “opposing” or “opposite” as it is used herein in connection with the terms “opposing constitutive promoters” or “inducible promoters in opposite orientations” means that the promoters are arranged to direct the expression in both directions on the vector and ensures that there is always a promoter correctly positioned regardless of integration orientation of the vector nucleic acids into the target nucleic acids.


In yet other embodiments, each inducible promotor of the two inducible promoters in opposite orientations separated by a universal secondary sgRNA contains multiple TetO repeats and a transferase gene operatively linked to a reverse tetracycline transactivator (rtTA) via a T2A peptide. In some embodiments, the number of TetO repeats of the inducible promoters can be 2, 3, 4, 5, 6, 7, 8, 9, or 10.


In some embodiments, the one or more vectors further comprise a polynucleotide encoding for a marker protein. In other embodiments, the marker protein is an antibiotic resistance protein or a florescence protein.


In some embodiments, the nucleic acid promotor is heterologous to the promoter of the target nucleic acid molecule.


In some embodiments, the nuclease is Zinc finger nuclease (ZFN), RNA guided nucleases (RGN), or transcription activator-like effector nucleases (TALEN). In other embodiments, the RGN is Caspase 9 (Cas9).


In some embodiments, the one or more vectors are plasmid or viral vectors. In other embodiments, the viral vector is a lentivirus vector, an adenovirus vector, or an adeno-associated vector (AV).


Another aspect of the present disclosure provides a method of altering the expression of at least one gene product, the method comprising: (i) introducing into a cell a system of targeted genome engineering as described herein; and (ii) selecting for successfully transfected cells by applying selective pressure; wherein the expression of at least one gene product is reduced or eliminated relative to a cell that has not been transfected with the system of targeted genome engineering.


As used herein, the term “altering expression of at least one gene product” refers to increasing, decreasing, knocking out, or activating the expression of a gene product of a cell using the targeted genome engineering systems described herein, relative to an unaltered cell.


As used herein, the term “gene product” refers to the biochemical material, either RNA or protein, resulting from expression of a gene.


In some embodiments, the method occurs in vivo or in vitro. In other embodiments, the cell is a eukaryotic cell.


The terms “cell,” “cell line,” and “cell culture” include progeny thereof. It is also understood that all progeny may not be precisely identical, such as in DNA content, due to deliberate or inadvertent mutation. Variant progeny that have the same function or biological property of interest, as screened for in the original cell, are included.


Yet another aspect of the present invention provides a method of altering the expression of at least one gene product, the method comprising: (i) introducing into a cell a system for targeted engineering as described herein; and (ii) selecting for successfully transfected cells by applying selective pressure, wherein the expression of at least one gene product is activated relative to a cell that is not transfected with the system for targeted engineering. In some embodiments, the method occurs in vivo or in vitro. In other embodiments, the cell is a eukaryotic cell.


Yet another aspect of the present invention provides a method of identifying the genetic basis of one or more medical symptoms exhibited by a subject, the method comprising: (i) obtaining a biological sample from the subject and isolating a population of cells having a first phenotype from the biological sample; (ii) transfecting a library of sgRNA into the cells; (iii) introducing into the cells a system for targeting genome engineering; (iv) selecting for successfully transfected cells by applying the selective pressure; (v) selecting the cells that survive under the selective pressure; and (vi) determining the genomic loci of the DNA molecule that interacts with the first phenotype and identifying the genetic basis of the one or more medical symptoms exhibited by the subject.


As used herein, the term “selective pressure” refers to the influence exerted by some factor (such as an antibiotic, heat, light, pressure, or a marker protein) on natural selection to promote one group of organisms or cells over another. In the case of antibiotic resistance, applying antibiotics cause a selective pressure by killing susceptible cells, allowing antibiotic-resistant cells to survive and multiply.


In some embodiments, selective pressure is applied by contacting the cells with an antibiotic and selecting the cells that survive. In other embodiments, the antibiotic is puromycin.


In another embodiment, the polynucleotide can encode for a fluorescent protein for easier monitoring of genome integration and expression, and to label or track particular cells.


As used herein, the term “phenotype” refers to any observable characteristic or functional effect that can be measured in an assay such as changes in cell growth, proliferation, morphology, enzyme function, signal transduction, expression patterns, downstream expression patterns, reporter gene activation, hormone release, growth factor release, neurotransmitter release, ligand binding, apoptosis, and product formation. Such assays include, but are not limited to, transformation assays, changes in proliferation, anchorage dependence, growth factor dependence, foci formation, growth in soft agar, tumor proliferation in nude mice, and tumor vascularization in nude mice; apoptosis assays, e.g, DNA laddering and cell death, expression of genes involved in apoptosis; signal transduction assays, e.g., changes in intracellular calcium, cAMP, cGMP, IP3, changes in hormone and neurotransmittor release; receptor assays, e.g., estrogen receptor and cell growth; growth factor assays, e.g., EPO, hypoxia and erythrocyte colony forming units assays; enzyme product assays, e.g., FAD-2 induced oil desaturation; transcription assays, e.g., reporter gene assays; and protein production assays, e.g., VEGF ELISAs. A candidate gene is “associated with” a selected phenotype if modulation of gene expression of the candidate gene causes a change in the selected phenotype.


The terms “polynucleotide”, “nucleotide”, “nucleotide sequence”, “nucleic acid” and “oligonucleotide” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), single guide RNA (sgRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. A polynucleotide may comprise one or more modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.


The terms “complementary” or “substantially complementary” as used herein refers the hybridization or Watson-Crick base pairing between nucleotides or nucleic acids, such as, for instance, between the two strands of a double stranded DNA molecule or between an oligonucleotide primer and a primer binding site on a single stranded nucleic acid to be sequenced or amplified or between a sgRNA and a target nucleic acid molecule. Complementary nucleotides are, generally, A and T (or A and U), or C and G. Two single stranded RNA or DNA molecules are said to be substantially complementary when the nucleotides of one strand, optimally aligned and compared and with appropriate nucleotide insertions or deletions, pair with at least about 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 100% of the nucleotides of the other strand. Alternatively, substantial complementarity exists when an RNA or DNA strand will hybridize under selective hybridization conditions to its complement. Typically, selective hybridization occurs when there is at least about 65%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% complementarity over a stretch of at least 14 to 25 nucleotides.


As used herein, “expression” refers to the process by which a polynucleotide is transcribed from a DNA template (such as into and sgRNA or mRNA) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins. Transcripts and encoded polypeptides may be collectively referred to as “gene product.” If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell. The term “capable of expression” means the vector has all the components necessary to express the sgRNA or the heterologous gene product, as described below and known to one of ordinary skill in the art. The polynucleotide of the first vector can encode for a protein to tag the cells it is integrated into, to knock out a gene located within the DNA target of interest, to introduce a mutant version of the gene located within the target DNA of interest, to express inhibitory RNAs, or any polynucleotide of interest.


As used herein, the term “subject” refers to any animal classified as a mammal, including humans, mice, rats, domestic and farm animals, non-human primates, and zoo, sport or pet animals, such as dogs, horses, cats, and cows.


As used herein, the terms “library” or “library of sgRNA” refers to a plurality of sgRNAs that are capable of targeting a plurality of genomic loci in a population of cells.


Several aspects of the disclosure relate to vector systems comprising one or more vectors, or vectors as such. Vectors can be designed for expression of RGNs and polynucleotides (e.g. nucleic acid transcripts, proteins, or enzymes) in prokaryotic or eukaryotic cells. For example, RGN or polynucleotides can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors), yeast cells, or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


A “vector” is a replicon, such as a plasmid, phage, or cosmid, to which another nucleic acid segment may be attached so as to bring about the replication of the attached segment. A vector is capable of transferring polynucleotides (e.g. gene sequences) to target cells (e.g., bacterial plasmid vectors, particulate carriers and liposomes).


Typically, the terms “vector construct,” “expression vector,” “gene expression vector,” “gene delivery vector,” “gene transfer vector,” “transfer vector,” and “expression cassette” all refer to an assembly which is capable of directing the expression of a sequence or gene of interest. Thus, the terms include cloning and expression vehicles.


As used herein, a “promoter” may refer to any nucleic acid sequence that regulates the initiation of transcription for a particular polypeptide-encoding nucleic acid under its control. A promoter minimally includes the genetic elements necessary for the initiation of transcription (e.g., RNA polymerase Ill-mediated transcription), and may further include one or more genetic regulatory elements that serve to specify the prerequisite conditions for transcriptional initiation.


The term “regulatory element” as used herein includes promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences). Such regulatory elements are described, for example, in Goeddel, (1990). Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). A tissue-specific promoter may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g. liver, pancreas), or particular cell types (e.g. lymphocytes). Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-type specific. In some embodiments, a vector comprises one or more pol III promoter, one or more pol II promoters, one or more pol I promoters, or combinations thereof. Examples of pol III promoters include, but are not limited to, U6 and H1 promoters.


Examples of pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer), the SV40 promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1α promoter. Also encompassed by the term “regulatory element” are enhancer elements, such as WPRE; CMV enhancers; the R-U5′ segment in LTR of HTLV-I (Mol. Cell. Biol., Vol. 8(1), p. 466-472, 1988); SV40 enhancer; and the intron sequence between exons 2 and 3 of rabbit β-globin (Proc. Natl. Acad. Sci. USA., Vol. 78(3), p. 1527-31, 1981). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression desired, etc. A vector can be introduced into host cells to thereby produce transcripts, proteins, or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., clustered regularly interspersed short palindromic repeats (CRISPR) transcripts, proteins, enzymes, mutant forms thereof, fusion proteins thereof, etc.).


A promoter may be encoded by the endogenous genome of a host cell, or it may be introduced as part of a recombinantly engineered polynucleotide. A promoter sequence may be taken from one host species and used to drive expression of a gene in a host cell of a different species. A promoter sequence may also be artificially designed for a particular mode of expression in a particular species, through random mutation or rational design. In recombinant engineering applications, specific promoters are used to express a recombinant gene under a desired set of physiological or temporal conditions or to modulate the amount of expression of a recombinant nucleic acid.


Methods for transforming a host cell with an expression vector may differ depending upon the species of the desired host cell. For example, yeast cells may be transformed by lithium acetate treatment (which may further include carrier DNA and PEG treatment) or electroporation. These methods are included for illustrative purposes and are in no way intended to be limiting or comprehensive. Routine experimentation through means well known in the art may be used to determine whether a particular expression vector or transformation method is suited for a given host cell. Furthermore, reagents and vectors suitable for many different host microorganisms are commercially available and/or well known in the art.


Many suitable expression vectors and features thereof are known in the art; for example, various vectors and techniques are illustrated in Current Protocols in Molecular Expression vectors may contain, without limitation, a centromeric (CEN) sequence, an autonomous replication sequence (ARS), a promoter, an origin of replication, and a marker gene (e.g., auxotrophic, antibiotic, or other selectable markers). Examples of expression vectors may include plasmids, yeast artificial chromosomes, 2μπι plasmids, yeast integrative plasmids, yeast replicative plasmids, shuttle vectors, and episomal plasmids.


Vectors may be introduced and propagated in a prokaryote. In some embodiments, a prokaryote is used to amplify copies of a vector to be introduced into a eukaryotic cell or as an intermediate vector in the production of a vector to be introduced into a eukaryotic cell (e.g. amplifying a plasmid as part of a viral vector packaging system). In some embodiments, a prokaryote is used to amplify copies of a vector and express one or more nucleic acids, such as to provide a source of one or more proteins for delivery to a host cell or host organism. Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, such as to the amino terminus of the recombinant protein. Such fusion vectors may serve one or more purposes, such as: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Example fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A. respectively, to the target recombinant protein.


Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).


In some embodiments, a vector is a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSec1 (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kuijan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).


In some embodiments, a vector drives protein expression in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).


In some embodiments, a vector is capable of driving expression of one or more sequences in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include, but are not limited to, pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195). When used in mammalian cells, the expression vector's control functions are typically provided by one or more regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, simian virus 40, and others disclosed herein and known in the art. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.


In some embodiments, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Baneiji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).


The practice of the present invention employs, unless otherwise indicated, conventional techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA, which are within the skill of the art. See Sambrook, Fritsch and Maniatis, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd edition (1989); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F. M. Ausubel, et al. eds., (1987)); the series METHODS IN ENZYMOLOGY (Academic Press, Inc.): PCR 2: A PRACTICAL APPROACH (M. J. MacPherson, B. D. Hames and G. R. Taylor eds. (1995)), Harlow and Lane, eds. (1988) ANTIBODIES, A LABORATORY MANUAL, and ANIMAL CELL CULTURE (R. I. Freshney, ed. (1987)).


Conventional and standard techniques may be used for recombinant DNA molecule, protein, and antibody production, as well as for tissue culture and cell transformation. Enzymatic reactions and purification techniques are typically performed according to the manufacturer's specifications or as commonly accomplished in the art using conventional procedures known in the art, or as described herein. Unless specific definitions are provided, the nomenclature utilized in connection with, and the laboratory procedures and techniques of analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well-known and commonly used in the art. Standard techniques may be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.


Further, the terminology used herein is for the purpose of exemplifying particular embodiments only and is not intended to limit the scope of the invention as disclosed herein. Any method and material similar or equivalent to those described herein can be used in the practice of the invention as disclosed herein and only exemplary methods, devices, and materials are described herein.


The invention now will be exemplified for the benefit of the artisan by the following non-limiting examples that depict some of the embodiments by and in which the invention can be practiced.


Example 1: Demonstration of the Nuclease Assisted Vector Integration (NAVI) System

The traditional approach to integrate heterologous DNA at target genomic loci using homologous recombination of donor vectors is shown in the schematic of FIG. 1 and FIG. 2A. The integration efficiencies that can be achieved with this traditional system are very low and decrease as the size of the insert increases, non-specific integration occurs often, and it requires time-consuming cloning of homology arms. FIG. 2B is a schematic of DNA integration utilizing homologous recombination. The NAVI system for targeted genome modification are shown in the schematics of FIG. 2C and FIG. 3. The DNA repair mechanisms stimulated by this method facilitate integration of the entire vector in genomic DNA at the target site. This method is as efficient as homologous recombination and integration occurs regardless of the size of the plasmid. Since cloning of homology arms is not needed, the effort and cost needed to implement this system is low.


Cell Culture and Transfection


HEK293T and HCT116 cells were obtained from the American Tissue Collection Center (ATCC) and were maintained in DMEM supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37° C. with 5% CO2. HEK293T and HCT116 cells were transfected with Lipofectamine 2000 (Invitrogen) according to manufacturer's instructions. Transfection efficiency in 293T cells was routinely higher than 80% whereas transfection efficiency in HCT116 cells was ˜55% as determined by FACS following delivery of a control GFP expression plasmid. The antibiotics used for selection of clonal populations of HCT116 cells were Puromycin 0.5 μg/ml, Hygromycin 100 μg/ml, Blasticidin 10 μg/ml and Neomycin 1 mg/ml.


Plasmids and Oligonucleotides


The plasmids encoding spCas9 and sgRNA were obtained from Addgene (Plasmids #41815 and #47108). The backbone for the transfer vectors was synthesized by IDT Technologies as gene blocks and cloned into a pCDNA3.1 backbone. Oligonucleotides for construction of sgRNAs were obtained from IDT Technologies, hybridized, phosphorylated and cloned in the sgRNA and transfer vectors using BbsI sites as previously described in Perez-Pinera et. al, Nat Methods 10, 973-976, 2013. The target sequences of the gRNAs are provided in Table 2.









TABLE 2







Target sequence of the different sgRNAs 


used in this these studies













SEQ






ID




Target
Protospacer
NO.
PAM
Strand





ACTB Plus 
AGCAGGAGTATGACGAGTC
 1
CGG
+


Strand









ACTB Minus 
CGGTGGACGATGGAGGGGC
 2
CGG



Strand









GAPDH
ATGGCCCACATGGCCTCCA
 3
AGG
+





TUBB
GGTGAGGAGGCCGAAGAGG
 4
AGG
+





TUBBN20
CGGTGAGGAGGCCGAAGAGG
 5
AGG
+





NROB2
CAGGGGCCTGCCCATGCCA
 6
GGG
+





CITNEX9
AAGTGGATAAGAGCGCCGT
 7
TGG






CTTN EX8
GCGCTCTTGTCTACTCGGT
 8
CGG






HLA-DRA
GCTGTGCTGATGAGCGCTC
 9
AGG
+





IL 1R1
AAGCAGAAACTACCCGTTGC
10
AGG
+





IL1RN
TGTACTCTCTGAGGTGCTC
11
TGG
+





ETV sgRNA
ACCGGGTCTTCGAGAAGACC
12
TGG
+/−





CMV sgRNA
TCGATAAGCCAGTAAGCAGT
13
GGG
+/−





T7 sgRNA
CGTAATACGACTCACTATA
14
GGG
+/−





BAC sgRNA
TGAGGGCCAAGTTTTCCGCG
15
AGG



1









Lambda 
TTACGGGGCGGCGACCTCGC
16
GGG



sgRNA 1









PCR


Seventy-two hours after transfection genomic DNA was isolated using DNeasy Blood & Tissue Kit (Qiagen). PCRs were performed using KAPA2G Robust PCR kits. A typical 25 μL reaction used 20-100 ng of genomic DNA, Buffer A (5 μL), Enhancer (5 μL), dNTPs (0.5 μL), 10 μM forward primer (1.25 μL), 10 μM reverse primer (1.25 μL), KAPA2G Robust DNA Polymerase (0.5 U) and water (up to 25 μL). The DNA sequences of the primers for each target are provided in Table 4. The PCR products were visualized in 2% agarose gels and images were captured using a ChemiDoc-It2 (UVP).


Surveyor Assay


Seventy-two hours after transfection genomic DNA was isolated using DNeasy Blood & Tissue Kit (Qiagen). The region surrounding the RGN target site was amplified by PCR with the AccuPrime PCR kit (Invitrogen) and 50-200 ng of genomic DNA as template with primers provided in Table 3. The PCR products were melted and reannealed using the temperature program: 95° C. for 180 s, 85° C. for 20 s, 75° C. for 20 s, 65° C. for 20 s, 55° C. for 20 s, 45° C. for 20 s, 35° C. for 20 s and 25° C. for 20 s with a 0.1° C./s decrease rate in between steps. Eighteen microliters of the reannealed duplex was combined with 1 μl of the Surveyor nuclease and 1 μl of enhancer solution (Integrated DNA Technologies), incubated at 42° C. for 60 min and then separated on a 10% TBE polyacrylamide gel. The gels were stained with ethidium bromide and visualized using a ChemiDoc-It2 (UVP). Quantification was performed using methods previously described in Guschin et. al. Methods Mol Biol 649, 247-256, 2010.









TABLE 3







Sequence of the different primers used


in these studies.











SEQ




ID


Primer
Sequence
NO:





ACTB FW
GTCACATCCAGGGTCCTCAC
17





ACTB REV
TCTGCGCAAGTTAGGTTTTG
18





GAPDH FW
AGGGCCCTGACAACTCTTTT
19





GAPDH REV
AGGGGTCTACATGGCAACTG
20





TUBB FW
CATGGACGAGATGGAGTTCA
21





TUBB REV
GAATGGGCACCAGAAAGAAA
22





NR0B2 FW
GATAAGGGGCAGCTGAGTGA
23





NR0B2 REV
GTGCGATGAGGTGCACATAG
24





GFP REV
TGCCCTTGTCTTGTAGTTTCC
25





RFP REV
ATATCTGCGGGGTGTTTCAC
26





PUROR REV
GCCTGACTGTGGGCTTGTAT
27





HYGROR REV
GCGGTGAGTTCAGGCTTTTT
28





CTTN EX9FW
CTCCCTTCTCAGCCTCCTG
29





CTTN EX9REV
GTTTTTCCTTTTCCGGTGTG
30





CTTN EX8FW
GCGCTTGATGTGTTTGTGAG
31





CTTN EX8REV
CCTCATACGATGGGGAACTG
32





ACTB TALEN FW
CCTCCATCGTCCACCGCAA
33





ACTB TALEN REV
GTGGATCAGCAAGCAGGAGT
34





HLA-DRA FW
TCCCGAGCTCTACTGACTCC
35





HLA-DRA REV
TTGGCTTGTAGCAGGACCTT
36





IL1R1 FW
TGCAAAATTTGTGGAGAATGA
37





1L1R1 REV
ATGCTTTTCAGCCACATTCA
38





GAPDH QPCR FW
CAATGACCCCTTCATTGACC
39





GAPDH QPCR REV
TTGATTTTGGAGGGATCTCG
40





IL1RN QPCR FW
GGAATCCATGGAGGGAAGAT
41





IL1RN QPCR REV
TGTTCTCGCTCAGGTCAGTG
42





BACFW1
TTACAGCCAGTAGTGCTCGC
43





BACREV1
CCCAGGCTTGTCCACATCAT
44





BACREV2
GCACTTATCCCCAGGCTTGT
45





LAMBDAFW
GGTTGTTGTTCTGCGGGTTC
46





LAMBDAREV
CCATTTTATGACGGCGGCAG
47





ww331
GTGCGATGAGGTGCACATAG
48





ww330
GATAAGGGGCAGCTGAGTGA
49





ww442
GAGAAACACTGGACCCCGTA
50





M13F (−21)
TGTAAAACGACGGCCAGT
51





M13REV
CAGGAAACAGCTATGAC
52





ww499
GATAACACTGCGGCCAACTT
53





ww293
GGCACCTATCTCAGCGATCT
54





ww286
CCTTCTAGTTGCCAGCCATC
55









Western Blot


Cells were lysed with loading buffer, boiled for 5 min, loaded in NuPAGE® Novex 4-12% Bis-Tris Gel polyacrylamide gels and transferred to nitrocellulose membranes. Non-specific antibody binding was blocked with 50 mM Tris/150 mM NaCl/0.1% Tween-20 (TBS-T) with 5% nonfat milk for 30 min. The membranes were incubated with primary antibodies anti-GAPDH (Cell Signaling Technology) or anti-CTTN (Cell Signaling Technology) in 5% BSA or 5% nonfat milk in TBS-T diluted 1:1,000 for 60 min and the membranes were washed with TBS-T for 30 min. Membranes labeled with primary antibodies were incubated with anti-rabbit HRP-conjugated antibody (Sigma-Aldrich) diluted 1:10,000 for 30 min, and washed with TBS-T for 30 minutes. Membranes were visualized using the Clarity™ ECL Western Blotting Substrate (Bio-Rad) and images were captured using a ChemiDoc-It2 (UVP).


Quantification of Integration Efficiency


HCT116 cells were transfected with individual RGNs targeting either CTTN exon 8 or HLA-DRA, as well as Cas9, one universal RGN, and either one or two transfer vectors with expression cassettes conferring resistance to puromycin or puromycin and hygromycin. A total of 450,000 cells were transfected using 100 ng of each plasmid. The transfection efficiency was ˜55% as determined by FACS following delivery of a control GFP expression plasmid. Three days post transfection, 90% of cells from each well were harvested and replated into 10 cm dishes for selection with the appropriate antibiotics. Cells with monoallelic modifications were selected with puromycin whereas cells with biallelic modifications were selected with puromycin and hygromycin. Media and antibiotics were replenished every three days. Visible colonies appeared after approximately after one week. The number of clones for each transfection was counted and integration efficiency was determined as the ratio of the number of clonal cells derived from each transfection relative to the number of alleles modified by each specific sgRNA, as measured in experimental control samples using the surveyor assay.


Results


The first version of a genomic DNA integration system relied upon a sgRNA capable of introducing DSBs at genetic loci of interest and a vector where the sgRNA target site was cloned upstream of a GFP transgene. Single guide RNAs were validated using the Surveyor Assay three days after transfection. No gene modification was detected in control samples, however, co-transfection of Cas9 and sgRNA effectively introduced insertions and deletions in all the target sites analyzed in these studies (FIG. 4). These vectors are referred to as “transfer vectors”, FIG. 5A. For proof-of-principle studies with the genes ACTB (β-actin), GAPDH, and TUBB (β-tubulin), and NR0B2 (SHP1) were conducted. Four gene specific transfer vectors containing the sequence targeted by the sgRNA in genomic DNA were prepared. Cotransfection of Cas9 with the sgRNA and the transfer vector stimulates integration of each transfer vector at the specific target site (FIG. 5B). These results suggest that this integration system is sequence specific and that it can be used to multiplex integration of various vectors at different loci.


Multiplex integration was evaluated by comprehensively characterizing genomic incorporation of two transfer vectors intended for two distinct loci: one that expresses GFP and contains a GAPDH RGN target sequence, and another that expresses RFP but contains an ACTB RGN target sequence (FIG. 6A). As expected, integration of GFP at GAPDH required Cas9, GAPDH sgRNA and GAPDH transfer vectors (lanes 4, 8, 10 and 11). Similarly, integration of RFP at the ACTB locus required Cas9, ACTB sgRNA and ACTB transfer vectors (lanes 3, 7, 9 and 11). Strikingly, when both ACTB and GAPDH RGNs were used but only one transfer vector was present, integration occurred at both loci (lanes 9, 10 and 11). Furthermore, when ACTB and GAPDH RGNs and the corresponding transfer vectors were transfected simultaneously, each transfer vector was integrated at both loci (lane 11). Specific recombination were ruled out between both target sites in the vector and in the genome by testing the directionality of the integration. Two sgRNAs were designed that target the plus or minus strand of the ACTB locus and we introduced the target sequence of each sgRNAs in the plus or minus orientations in two separate transfer vectors. PCR analysis demonstrated that integration occurs in the sense and antisense orientations whether the plus or the minus strands are targeted (FIG. 6B). Furthermore, PCRs from selected clonal cell lines demonstrated that the entire vector is integrated (FIG. 7A-7B).


These findings show that DSBs in genomes can avidly capture linear DNA present in the nucleus regardless of homology whereas circular vectors are not efficiently integrated at DSBs. Since transfer vectors linearized with TALENs are also effectively integrated at DSBs generated with RGNs (FIGS. 8A-8B), introduction of a DSB in the donor vector should be sufficient to stimulate its integration without inclusion of the target site also found in genomic DNA (FIG. 9A). A panel of 4 vectors with sizes ranging from 6.3 to 12.1 kb, a sgRNA that targets the T7 promoter sequence found in all these vectors, Cas9, and a sgRNA that targets the GAPDH locus in genomic DNA were transfected. Although there is no homology between the GAPDH target site and any of the transfer vectors, every transfer vector was effectively integrated at the GAPDH locus when transfected individually and also when transfected simultaneously (FIG. 9A). These results demonstrate that this nuclease assisted vector integration (NAVI) system is multiplexable and that integration can be achieved using universal RGNs without modifying the transfer vectors.


Example 2: Integration of Large Vectors into Genomic DNA

Unlike HR-based genomic integration systems, large size vectors can be fully integrated in genomic DNA very efficiently (FIG. 9B). To determine the size limit for plasmids to integrate in genomic DNA, NAVI was utilized by testing integration of a 25 kb bacterial artificial chromosome as well as a lambda phage circular genome, which contains 48.5 kb. sgRNAs were designed capable of linearizing each of these vectors and a sgRNA to introduce a DSB at the TUBB locus in genomic DNA. PCR reactions that amplify integration of both ends of the plasmids at the target locus in pooled cell populations confirmed successful integration (FIG. 9B).


Example 3: Multiplexed Integration of a Vector at Multiple Loci

While multiplexed integration of a single vector at multiple loci has broad applications for synthetic biology, integration of multiple vectors at a single locus is particularly interesting for cell line engineering purposes, such as rapid gene knock out. By simply cotransfecting Cas9, a sgRNA targeting the CTTN locus and a universal sgRNA targeting two separate transfer vectors that encode puromycin or hygromycin resistance expression cassettes, one vector was successfully integrated into each allele of the CTTN gene (FIG. 10A). Simultaneous selection with hygromycin and puromycin ensured that most clonal populations generated contained biallelic modifications (FIG. 10B) that resulted in gene knock out as demonstrated by Western blot (FIG. 10C).


Overall, the timeframe from sgRNA design to HCT116 clonal cell verification and expansion was 2-3 weeks with minimal resources and screening effort required. Cell lines were generated with monoallelic or biallelic modifications at 4 loci tested, including CTTN exon 8 and HLA-DRA (FIG. 10D). The overall integration efficiency in one allele was ˜19% of the cells in which DSBs were introduced at the target site. Using dual selection, the apparent biallelic targeting efficiency was ˜5% of the cells with DSBs (Table 4).









TABLE 4







Bi-allelic target efficiency














% Efficiency
%





(colonies/
Efficiency




Avg.
transfected
(adjusted by


sgRNA
Selection
Colonies
cells)
indel %)














CTTN
Puromycin
1726
0.38
12.00


exon 8
Puromycin +
725
0.16
5.00



Hygromycin





HLA-DRA
Puromycin
2610
0.58
26.40



Puromycin +
453
0.10
4.60



Hygromycin









The percent of total alleles modified by NAVI in diploid cells is 62.5% following selection with a single antibiotic, with 90% of clones containing at least a monoallelic modification. Under dual antibiotic selection, 75.4% of the clones contained biallelic modification and 98.2% of clones had at least one allele modified (Table 5).


Following selection in 10-cm plates with the appropriate antibiotic, total colonies were counted and divided by total cells transfected to obtain the overall editing efficiency of NAVI. This value was then adjusted to account for overall sgRNA editing efficiency, as measured by surveyor nuclease assay. This quantification was performed at 2 different loci using either a single or two antibiotics for selection.


Data collected from integration-specific PCR was used to determine allelic modification rates among clonal cell populations isolated selection. The total number of clones from each genotype (+/+, +/−, and −/−) was determined for each of four genomic targets analyzed. The frequency of allelic modification (total number of alleles modified divided by total number of alleles) was calculated for clones selected using one or two antibiotics.


A limitation for multiplexing applications using NAVI is the potential for off-target integration. Since NAVI relies on linearized DNA integrating at DSBs, naturally occurring DSBs or DSBs derived from off-target binding of the sgRNAs become sites for potential unintended integration as demonstrated in FIG. 11. 293T cells were transfected with RGNs targeting the TUBB locus and a transfer vector that contains the TUBB target sequence. Analysis of potential off-target sites of the RGN, identified over 50 potential sites. Off-target integration at the coding sequences of the genes AMER1 and MYH9 using PCR primers bind in genomic DNA of the off-target site and in the vector backbone were analyzed. The transfer vector integrated efficiently at the off-target sites despite 2 or 3 mismatches between the on-target and off-target sequence.


In HCT116 cells, up to 4 antibiotics have been successfully used for rapid isolation of cell lines with dual gene knock-outs, however, only 10% of the clones contained the desired mutations simultaneously (FIG. 10D). This lower efficiency can be attributed to integration of the transfer vector at off-target sites or poor performance of the drugs used for screening under these conditions. These results suggest that, in addition to careful consideration of selection system, choosing sgRNAs with high off-target scores (see for example Hsu et. al., Nat Biotechnol 31, 827-832, 2013) or using RGN systems with higher specificity (see for example Bolukbasi et. al. Nat Methods 12, 1150-1156, 2015; Fu et. al. Nat Biotechnol 32, 279-284, 2014), are critical parameters for targeted integration.


Mutations can often be found at the junction of genomic DNA with the integrated transfer vector suggesting that the integration mechanism involves an error-prone DNA repair pathway. Genomic DNA from pooled populations of 293 cells transfected and RGNs targeting GAPDH or ACTB and the corresponding transfer vectors was isolated and the regions flanking plasmid integration in genomic DNA were amplified by PCR. The PCR products corresponding to integration events in plus or minus orientation were cloned and sequenced. The sequencing results identified a wide range of mutations at the junction of genomic DNA with the vector suggesting that a mutagenic DNA repair pathway mediates integration of the vector into the target site (FIG. 12).


While mutagenesis generated via NHEJ remains a highly efficient and effective strategy for select applications, the insertion of large or complex sequences and the ability to easily select for modified cells often necessitates the use of homology directed repair (HDR) based strategies. The time-consuming construction of donor vectors for HDR gene editing is often technically challenging, costly, and leads to poor modification rates. By using customized single-stranded oligonucleotides (ssODN) the efficiency of gene editing increases, but the scale of possible genetic changes is greatly diminished. Additionally, as both donor vectors and ssODN require two discontiguous regions of homology, neither is well suited to multiplexing. Nuclease-Assisted Vector Integration (NAVI) is a unique strategy to bypass HDR and the need for customized donor vectors required for traditional genome editing technologies.


Multiplexed genome editing via nuclease assisted vector integration presents a unique opportunity for genome-scale engineering in mammalian cells. The results demonstrate that NAVI is capable of rapidly remodeling mammalian genomes by targeted insertion of large expression cassettes in one single step. NAVI eliminates the need for homologous sequence within donor vectors. While NAVI sacrifices single base pair resolution, it is capable of achieving predictable and robust patterns of integration into native genomes. Virtually any vector may be integrated at a target site in the genome without cloning, setting it apart from all prior integration systems. Importantly, facile integration of large constructs up to 50 kbp, including an entire phage genome were demonstrated, however no upper size limit was identified. Finally, through multiplexed NAVI, a novel system for targeted gene disruption was demonstrated, in which screening time is greatly reduced by via positive selection. In summary, this novel approach to gene editing extends the capacity of structural and functional mammalian genome engineering for applications in synthetic biology and creates new opportunities for developing more efficient gene therapies.


Example 4. Targeted Gene Activation of ASCL1 Using RNA-Guided Nucleases

This Example describes a protocol for activation of ASCL1 expression using RGNs consisting of S. pyogenes Cas9 and single guide RNAs (FIG. 13). See also Brown, et al., Chapter 16: Targeted Gene Activation Using RNA-Guided Nucleases, Enhancer RNAs: Methods and Protocols (2017) 235-250 (incorporated herein by reference). In Streptococcus pyogenes, clustered regularly interspaced short palindromic repeats (CRISPR) RNAs (crRNAs) are expressed in conjunction with a scaffold RNA, known as the trans-activating-crRNA (tracrRNA), and guide Cas9 to the target DNA. The only constraint for target sequences is that they must immediately precede a suitable protospacer adjacent motif (PAM) of the form NGG. The bacterial CRISPR system has been further simplified to utilize a single-guide RNA molecule (sgRNA), which functions as a chimeric RNA to replace both the crRNA and tracrRNA elements. Furthermore, the native S. pyogenes Cas9 has been engineered to work within many eukaryotic systems, including mammalian cells, by delivering expression plasmids of codon-optimized Cas9 cDNA containing one, or more, nuclear localization signals (NLS). Point mutations in amino acids D10 and H840 of Cas9 render the enzyme catalytically inactive (dCas9), providing a programmable DNA binding protein without nuclease activity. Several groups have demonstrated that dCas9 can function as an effective ATF by fusion with transcription al activation domains.


The following protocol for designing, assembling and testing RGN transcription factors assumes that a dCas9-transcriptional activator has already been obtained. To aid the identification of a suitable activation system, Table 6 summarizes the different dCas9-transcriptional activators compatible with the gene activation systems described herein.









TABLE 6







Constructs Encoding dCas9-Transcriptional Activators for Stimulation


of Gene Expression in Mammalian Cells











Addgene

Transcriptional


Plasmid name
#
Promoter
activation domain





SP-dCas9-VPR
63798
CMV
VPR (VP64-p65-Rta)


pcDNA-dCas9-p300
61357
CMV
p300 Core (human, aa


Core


1048-1664)


pcDNA-dCas9-VP64
47107
CMV
VP64


pAC93-pmax-
48225
CAGGS
VP160


dCas9VP160





pAC91-pmax-
48223
CAGGS
VP64


dCas9VP64





pAC92-pmax-
48224
CAGGS
VP96


dCas9VP96





pSL690
47753
CMV
VP64


pCMV_dCas9_VP64
49015
CMV
VP64


CMVp-dCas9-3xNLS-
55195
UBC
VP64


VP64 Construct 1





pMSCV-LTR-dCas9-
46913
MSCV
p65AD


p65AD-BFP

LTR



pMSCV-LTR-dCas9-
46912
MSCV
VP64


VP64-BFP

LTR



EF_dCas9-VP64
68417
EF1a
VP64


pHAGE TRE dCas9-
50916
TRE
VP64


VP64





pHAGE EF1α dCas9-
50918
EF1a
VP64


VP64





dCAS9-VP64_GFP
61422
EF1a
VP64


lenti dCAS-VP64_Blast
61425
EF1a
VP64


pHRdSV40-NLS-
60910
SV40
GCN4/SunTag system


dCas9-24xGCN4_





v4-NLS-P2A-BFP-





dWPRE









Construction of sgRNA Expression Plasmids


1. An appropriate sgRNA vector should be chosen prior to guide design. Examples of sgRNA vectors for cloning and expression of custom sgRNAs using include, but are not limited to, those described in Table 7.









TABLE 7







Vectors for Cloning and Expression of Custom sgRNAs











Addgene

Cloning


Plasmid name
#
Promoter
enzymes(s)





gRNA_Cloning Vector
41824
Human
AfIII




U6



pLKO5.sgRNA.EFS.GFP
57822
U6
BsmBI


pLKO5.sgRNA.EFS.tRFP
57823
U6
BsmBI


pLKO5.sgRNA.EFS.tRFP657
57824
U6
BsmBI


pLKO5.sgRNA.EFS.PAC
57825
U6
BsmBI


pSPgRNA
47108
Human
BbsI




U6



phH1-gRNA
53186
Human
BbsI




H1



pmU6-gRNA
53187
Mouse
BbsI




U6



phU6-gRNA
53188
Human
BbsI




U6



ph7SK-gRNA
53189
Human
BbsI




7SK



pHL-H1-ccdB-mEF1a-RiH
60601
H1
BamHI/EcoRI


pUC57-sgRNA expression vector
51132
T7
BsaI


pGL3-U6-sgRNA-PGK-
51133
Human
BsaI


puromycin

U6



pUC-H1-gRNA
61089
H1
BsaI


pAC155-pCR8-sgExpression
49045
Human
BbsI




U6



pSQT1313
53370
Human
BsmBI




U6



BPK1520
65777
Human
BsmBI




U6



pU6_RNA_handle_U6t
49016
U6
SacI


pGuide
64711
Human
BbsI




U6



pgRNA-humanized
44248
Mouse
BstXI + XhoI




U6



pLX-sgRNA
50662
Human
OE-PCR




U6



pLenti-sgRNA-Lib
53121
Human
BsmBI




U6



pU6-sgRNA EF1Alpha-puro-
60955
Mouse
BstXI + BlpI


T2A-BFP

U6



pLKO.1-puro U6 sgRNA BfuAI
50920
Human
BfuAI


stuffer

U6



+pKLV-U6gRNA(BbsI)-
50946
Human
BbsI


PGKpuro2ABFP

U6



pH1v1
60244
H1
Gibson


lentiGuide-Puro
52963
Human
BsmBI




U6



AAV:ITR-U6-sgRNA(backbone)-
60226
U6
SapI


pEFS-Rluc-2ACre-





WPRE-hGHpA-ITR





AAV:ITR-U6-sgRNA(backbone)-
60229
U6
SapI


pCBh-Cre-





WPRE-hGHpA-ITR





AAV:ITR-U6-sgRNA(backbone)-
60231
U6
SapI


hSyn-Cre-2AEGFP-





KASH-WPRE-shortPA-ITR





PX552
60958
Human
SapI




U6



sgRNA(MS2) cloning backbone
61424
U6
BbsI


lenti sgRNA(MS2)_zeo backbone
61427
U6
BsmBI


pAC2-dual-dCas9VP48-
48236
Human
BbsI


sgExpression

U6



pAC5-dual-dCas9VP48-sgTetO
48237
Human
BbsI




U6



pAC152-dual-dCas9VP64-
48238
Human
BbsI


sgExpression

U6



pAC153-dual-dCas9VP96-
48239
Human
BbsI


sgExpression

U6



pAC154-dual-dCas9VP160-
48240
Human
BbsI


sgExpression

U6









Dual expression of Cas9 and sgRNA from a single plasmid is an alternative to a two plasmid system. This protocol uses pSPgRNA (Addgene #47108), which includes two BbsI/BpiI sites interspaced between a human U6 promoter and the sgRNA loop for cloning of oligonucleotides (FIG. 13).


2. Oligonucleotides for sgRNA construction. Target selection: The identification of optimal target sites for activation of gene expression remains, essentially, an empirical process. It has been shown that the region comprising −400 to −50 bp at the 5′ end of the transcriptional start site (TSS) is optimal. Since the TSS is clearly annotated in most genome browsers, the sequence of the gene of interest is imported into DNA analysis software and used to identify potential target sites. Benchling, a freely available web-based DNA analysis platform that incorporates a “Genome Engineering” tool to identify all possible sgRNAs within any sequence specified by the user can be used. Benchling provides on-target and off-target scores associated with each target site. Off-target changes in gene expression are uncommon when using multiple sgRNAs to activate gene expression, since all target sites must be found simultaneously near the TSS of the off-target gene. However, since second-generation systems for gene activation require one single sgRNA, it is important to identify high quality sgRNAs with favorable off-target scores. For each sgRNA, Benchling provides a detailed list of potential off-target sites that can be used for biased detection of off-target gene activation.


The target sequences chosen to activate ASCL1 gene expression are: 5′-GCTGGGTGTCCCATTGAAA-3′ (SEQ ID NO: 56); 5′-CAGCCGCTCGCTGCAGCAG-3′ (SEQ ID NO: 57); 5′-TGGAGAGTTTGCAAGGAGC-3′ (SEQ ID NO: 58); 5′-GTTTATTCAGCCGGGAGTC-3′ (SEQ ID NO: 59). For each target sequence, a sense oligonucleotide is generated in the format: 5′-CACC G NNNNNNNNNNNNNNNNNNNN-3′ (SEQ ID NO: 60), where N 20 represents the 20 bases of the genomic DNA at the 5′ end of the PAM. The number of nucleotides in the sgRNA complementary with the target site can range between 17 and 20 bp. In fact, it has been demonstrated that sgRNAs with 17 or 18 complementary nucleotides efficiently guide S. pyogenes Cas9 to the target site where it introduces double strand breaks with improved specificity. The first four bases are complementary to the sgRNA vector overhangs, while the fifth base is G in order to initiate transcription of RNA from the upstream U6 promoter. A second oligonucleotide, representing the antisense target sequence, is generated in the format: 5′-AAACY20 C-3′ (SEQ ID NO: 61). Here, AAAC are vector complementing overhangs, Y20 represents the reverse complement of the target sequence, and the last C complements the leading G of the sense oligonucleotide (FIG. 13).


The sequences of the oligonucleotides for assembly of sgRNAs that can target the ASCL1 promoter are:











(SEQ ID NO: 62)










TARGET1S:
5′- CACC G GCTGGGTGTCCCATTGAAA-3′.













(SEQ ID NO: 63)










TARGET1AS:
5′- AAAC TTTCAATGGGACACCCAGC C- 3′;













(SEQ ID NO: 64)










TARGET2S:
5′- CACC G CAGCCGCTCGCTGCAGCAG-3′;













(SEQ ID NO: 65)










TARGET2AS:
5′- AAAC CTGCTGCAGCGAGCGGCTG C- 3′;













(SEQ ID NO: 66)










TARGET3S:
5′- CACC G TGGAGAGTTTGCAAGGAGC-3′;













(SEQ ID NO: 67)










TARGET3AS:
5′- AAAC GCTCCTTGCAAACTCTCCA C- 3′;













(SEQ ID NO: 68)










TARGET4S:
5′- CACC G GTTTATTCAGCCGGGAGTC-3′;













(SEQ ID NO: 69)










TARGET4AS:
5′- AAAC GACTCCCGGCTGAATAAAC C- 3′.






3. Nuclease-free Molecular biology grade (MBG) water.


4. Tris Buffered Saline (TBS), 50 mM Tris pH 7.4 and 150 mM NaCl.


5. Restriction endonuclease BbsI/BpiI. There are multiple commercial sources for BbsI/BpiI. Some formulations of BbsI/BpiI require storage at −80° C. and, repeated cycles of freeze-thaw that occur when used frequently, result in decreased enzymatic activity and undesired background during cloning. Formulations of BbsI/BpiI that can be stored at −20° C.


6. T4 Polynucleotide Kinase (PNK).


7. T4 DNA ligase and T4 DNA Ligase Buffer with ATP. T4 DNA ligase buffer typically contains 10 mM dithiothreitol, which is not stable through repeated freeze-thaw cycles. Single use aliquots of T4 buffer can be prepared.


8. Transformation-competent E. coli. Any chemically competent cells or electro-competent cells can be used, such asHIT Competent Cells-DH5α. These chemically competent cells can be transformed very efficiently without heat-shock by mixing 1.5 μL of the ligation reaction with 30 μL of competent cells followed by incubation at 4° C. for 1-10 min and plating. When using this short protocol, plates prewarmed at 37° C. ensures transformation efficiency. If the transformation efficiency is too low, addition of 100 μL of SOC broth and incubation at 37° C. with shaking for 10 min should yield hundreds to thousands of colonies.


9. LB-Agar plates containing 100 μg/mL carbenicillin for bacterial culture.


10. KAPA2G Robust PCR Kit (KAPA Biosystems) and 10 mM dNTP mix.


11. Sequencing and colony PCR primer, M13 Forward: 5′-TGTAAAACGACGGCCAGT-3′ (SEQ ID NO:70).


12. Ethidium bromide, 10 mg/mL.


13. Electrophoresis Buffer (TAE) 40 mM Tris pH 7.2, 20 mM Acetate, and 1 mM EDTA.


14. Agarose.


15. LB broth containing 100 μg/mL carbenicillin.


16. Qiagen Spin Miniprep Kit.


Activation of Target Gene Expression


1. Mammalian cell line, such as HEK293T.


2. Phosphate-buffered saline (PBS), 8 mM Na2HPO4, 2 mM KH2PO4 pH 7.4, 137 mM NaCl and 2.7 mM KCl.


3. 0.25% Trypsin-EDTA.


4. Complete mammalian cell culture medium appropriate for the chosen cell line, such as DMEM supplemented with 10% Fetal Bovine Serum (FBS) and 1% penicillin/streptomycin.


5. Lipofectamine 2000 (Thermo Fisher Scientific) or other suitable transfection reagent(s).


6. Opti-MEM (Thermo Fisher Scientific) reduced serum media.


7. Twenty-four well tissue culture-treated plates.


8. Transfection plasmids: pSPgRNA(s) with target sequence. pcDNA-dCas9-VP64 (Addgene#47107) or other suitable dCas9 transcriptional activator expression vector. pMAX-GFP (Amaxa) or other suitable reporter plasmid for measuring transfection efficiency.


Analysis of mRNA Expression


1. 0.25% Trypsin-EDTA.


2. PBS.


3. QIAshredder (Qiagen).


4. RNeasy Plus RNA isolation kit (Qiagen).


5. qScript cDNA SuperMix (Quanta Biosciences).


6. RNase/DNase-free water.


7. PerfeCTa® SYBR® Green FastMix (Quanta Biosciences).


8. Oligonucleotides for qPCR. Using high quality primers helps ensure reproducible qPCR results. Repeated freeze-thaw cycles can alter primer binding to the template. Upon receipt, the primers are resuspended in MBG water and prepare single use aliquots that are stored at −80° C. Multiple oligonucleotides are often designed and tested for finding a suitable primer combination that is specific and amplifies the target transcript with 90-110% efficiency. Many design tools, such as Primer3Plus, are freely available as stand-alone or web-based applications. qPCR is performed using fast cycling two-step protocols with amplicons between 100 and 150 bp long. One consideration for primer design is to use primers that bind different exons separated, if possible, by several kilobases. This will ensure that any residual genomic DNA that might be present in the RNA sample will not be amplified during the PCR reaction.











(SEQ ID NO: 71)










ASCL FW:
5′ GGAGCTTCTCGACTTCACCA-3′.













(SEQ ID NO: 72)










ASCL REV: 
5′-AACGCCACTGACAAGAAAGC-3′.













(SEQ ID NO: 39)










GAPDH FW:
5′-CAATGACCCCTTCATTGACC-3′.













(SEQ ID NO: 40)










GAPDH REV:
5′ TTGATTTTGGAGGGATCTCG-3′.






9. CFX96 Real-Time PCR Detection System (Bio-Rad).


Design and construction of sgRNA Expression Plasmids


The procedure utilized for generating sgRNA vectors accomplishes plasmid digestion, oligonucleotide phosphorylation and ligation in a single reaction without DNA purification steps. This is a low cost and highly efficient procedure that can be completed in less than two hours from annealing to transformation.


1. Design and synthesize/order oligonucleotides to target the regions of the promoter proximal to the TSS of the target transcript. Stocks of each oligonucleotide prepared at 100 μM in nuclease-free molecular biology grade water, can be stored frozen for extended periods.


2. Combine 1 μL of each sense and antisense oligonucleotide with 98 μL of TBS in a PCR tube. Anneal the oligonucleotide mix by incubation at 95° C. for 5 min, followed by 25° C. for 3 min.


3. Mix 1 μL of annealed and diluted oligonucleotides with 170 ng sgRNA vector, 2 μL 10×T4 ligase buffer, 1 μL of T4 ligase, 1 μL BbsI/BpiI, 1 μL T4 polynucleotide kinase (PNK), and MBG water to a final reaction volume of 20 μL. The sgRNA vector backbone is simultaneously digested and ligated with the annealed, phosphorylated oligonucleotides in a single reaction with the following thermocycling program: 37° C., 5 min. 16° C., 10 min. Repeat a and b for a total of three cycles.


4. Transform ligated plasmid by mixing 1.5 μL of the reaction product with 30 μL of competent E. coli, spread onto prewarmed LB agar containing 100 μg/mL carbenicillin, and incubate overnight at 37° C.


5. Correct ligation is ensured by analyzing four transformants per plate using colony PCR with KAPA2G Robust PCR Kits. 25 μL reactions containing MBG water (11.9 μL), 5×KAPA2G Buffer (5.0 μL), 5× Enhancer (5.0 μL), 10 mM dNTP mix (0.50 μL), 10 μM M13 Forward primer (1.25 μL), 10 μM Reverse primer (antisense cloning oligonucleotide) (1.25 μL), and 5 U/μL KAPA2G Robust (0.10 μL) are used for sequencing. With a pipette tip, scrape one colony from the plate, transfer to the PCR reaction and, immediately, to a second PCR tube containing LB broth. The PCR reactions are performed in a thermocycler according to manufacturer's instructions and the PCR products analyzed in 2% agarose gels containing 0.1-0.2 μg/mL ethidium bromide. The expected size of the correct PCR product is ˜330 bp.


6. One colony, verified by PCR, is grown overnight in 5 mL of LB broth with 100 μg/mL carbenicillin.


7. The plasmid DNA from the bacterial culture is purified using a plasmid purification kit such as the Qiagen Spin Miniprep Kit and the construct is verified by DNA sequencing with M13 Forward primer.


Activation of Target Gene Expression in Mammalian Cells


1. A typical experimental setup includes reactions containing plasmid mixtures such as the following: GFP (1 μg). sgRNA 1 and dCas9 (0.5 μg each). sgRNA 2 and dCas9 (0.5 μg each). sgRNA 3 and dCas9 (0.5 μg each). sgRNA 4 and dCas9 (0.5 μg each). sgRNA 1+sgRNA 2+sgRNA 3+sgRNA 4 (0.125 μg of each) and dCas9 (0.5 μg).


Plasmid DNA purified using Qiagen Spin Miniprep Kit is suitable for transfection of a variety of cell lines, however, the resulting plasmid prep contains significant levels of endotoxins from E. coli that can result in decreased viability in some cell types. DNA precipitation with ethanol is usually sufficient to obtain transfection grade DNA suitable for use in most cell types. A control transfection reaction containing a GFP or similar expression plasmid should be used to ensure adequate transfection efficiency is achieved under identical experimental conditions and to serve as a negative control for qPCR.


2. For optimal transfection efficiency, low passage 293T cells in logarithmic growth are trypsinized, harvested, and resuspended at 106 cells/mL in DMEM.


3. As per manufacturer's instructions, the DNA is mixed with 50 μL of Opti-MEM in a microfuge tube and, in a separate tube, 2 μL of Lipofectamine 2000 are mixed with 50 μL of Opti-MEM. After 5 min, the contents of both tubes are combined and incubated for an additional 20 min. The 100 μL DNA-lipofectamine reagent mixture is pipetted into one well of a 24-well treated tissue culture dish and promptly mixed with 400 μL of freshly harvested and properly diluted cells. Transfections are typically performed in antibiotic free medium. Decreased transfection efficiency or viability by using antibiotics in 293T cells has not been observed.


4. Incubate the cells for 48-72 h before analyzing gene expression.


Analysis of Gene Expression by qPCR


1. The cells are trypsinized and washed with PBS once. Gene expression is analyzed in three independent experiments that are performed on three different days using biological duplicates in each experiment. Since RNA is unstable and degrades rapidly over time, it can be advantageous to harvest the cells and freeze cell pellets until all three experiments have been completed. At that point RNA extraction is performed from all samples simultaneously to minimize variability due to sample handling.


2. Total RNA is isolated using the RNeasy Plus RNA isolation kit (Qiagen) or another standard enzymatic removal method of genomic DNA after RNA isolation. The cells are lysed by adding an appropriate volume of RLT Plus with 10 μL/mL of β-mercaptoethanol and homogenized with QIAshredder columns. All other steps are performed according to manufacturer's instructions. It is recommended to prepare 70% ethanol and RPE buffer fresh before use.


3. cDNA synthesis is performed using the qScript cDNA SuperMix (Quanta Biosciences) by incubation of 1 μg of RNA with 4 μL of qScript cDNA SuperMix and RNase/DNase-free water up to 20 μL. The thermocycling parameters are: (a) 5 min at 25° C. (b) 30 min at 42° C. (c) 5 min at 85° C. For the cDNA synthesis reaction to occur identically in all samples, it is important to use equal amounts of RNA from all samples. cDNA can be prepared from 1 μg of RNA.


4. Real-time PCR is performed using PerfeCTa® SYBR® Green FastMix (Quanta Biosciences) with the CFX96 Real-Time PCR Detection System (Bio-Rad). The primers are designed using Primer3Plus, purchased from IDT and validated by agarose gel electrophoresis and melting curve analysis. For each sample, quantification of a housekeeping gene (such as GAPDH) must be performed in addition to analysis of the target gene. The qPCR reactions contain 10 μL PerfeCTa® SYBR® Green FastMix (2×), 2 μL forward primer (5 μM), 2 μL reverse primer (5 μM), cDNA and RNase/DNase-free water up to 20 μL. The optimal cycling parameters for each gene must be determined experimentally to ensure efficient amplification over an appropriate dynamic range. Standard curves are generated using tenfold dilutions with cDNA obtained from the sample presumed to have the highest transcript concentration. The use of plasmid DNA or other synthetic templates can lead to errors in determining the linear range of the PCR.


5. Calculate fold-increase mRNA expression of the gene of interest normalized to GAPDH expression using the ddCt method.


Example 5. Demonstration of a Universal System of NAVI-Based Gene Activation (NAVIa)

A nuclease-assisted vector integration (NAVI) for insertion of promoters at target sites was selected. NAVI can be rapidly adapted to integrate heterologous DNA at virtually any locus via two simultaneous DSBs: first in the genome, guided by a primary sgRNA, and second within the targeting vector (TV), guided by a universal secondary sgRNA. The TV is then integrated into the genomic locus through Non-Homologous End Joining (NHEJ). This platform is universal since vector integration at any target site can be simply accomplished by customizing the primary sgRNA.


To develop a universal system of NAVI-based gene activation (NAVIa), two vectors for constitutive expression and one vector for inducible expression were designed.


Cell Culture and Transfection


293T and HCT116 cells were obtained from the American Tissue Collection Center (ATCC) and were maintained in DMEM supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37° C. with 5% CO2. 293T and HCT116 cells were transfected with Lipofectamine 2000 (Invitrogen) according to manufacturer's instructions. Transfection efficiencies were routinely higher than 80% for 293T cells and higher than 50% for HCT116 cells as determined by fluorescent microscopy following delivery of a control GFP expression plasmid. Induction of gene expression, unless otherwise noted, was carried out with 200 ng/mL doxycycline in DMEM prepared with 10% tetracycline-free FBS for 4 days.


Plasmids and Oligonucleotides


The plasmids encoding SpCas9 (Plasmid #41815), sgRNA (#47108), SpdCas9-VPR (#63798) and sgRNA library (#1000000078) were obtained from Addgene. The backbone for the targeting vectors was synthesized by IDT Technologies as gene blocks and cloned into a pCDNA3.1 plasmid. Guide sequences were obtained from IDT Technologies, hybridized, phosphorylated and cloned in the sgRNA vector using BbsI sites (see also Example 3). The target sequences are provided in Table 8.









TABLE 8







Target Sequences




















SEQ

On-
Off-

BP
BP






ID.

target
target
5′
from
from
Pro-


Designation
GOI
Sequence
NO.
PAM
score
score
mismatch
TSS
ATG
moter





ASCL1.1
ASCL1
CACCGCTCTGATTCC
 73
TGG
43.9
82.4

 541
  −18
hU6




GCGACTCCT













ASCL1.1
ASCL1
AAACAGGAGTCGCGG
 74
TGG
43.9
82.4

 541
  −18
hU6




AATCAGAGC













ASCL1.2
ASCL1
CACCGCCAGAAGTGA
 75
GGG
54.5
44.5

  −9
 −568
hU6




GAGAGTGCT













ASCL1.2
ASCL1
AAACAGCACTCTCTC
 76
GGG
54.5
44.5

  −9
 −568
hU6




ACTTCTGGC













ASCL1.3
ASCL1
CACCGCGGGAGAAAG
 77
GGG
30.9
42.7

−196
 −755
hU6




GAACGGGAGG













ASCL1.3
ASCL1
AAACCCTCCCGTTCC
 78
GGG
30.9
42.7

−196
 −755
hU6




TTTCTCCCGC













ASCL1.4
ASCL1
CACCGAAGAACTTGA
 79
AGG
50.5
68.6
G
−451
−1010
hU6




AGCAAAGCGC













ASCL1.4
ASCL1
AAACGCGCTTTGCTT
 80
AGG
50.5
68.6
G
−451
−1010
hU6




CAAGTTCTTC













h7SK
ASCL1
CCTCGAAGAACTTGA
 81
AGG
50.5
68.6
G
−451
−1010
h7SK


ASCL1

AGCAAAGCGC













h7SK
ASCL1
CCTCGAGGCCAATAG
 82
AGG
50.5
68.6
G
−451
−1010
h7SK


ASCL1

GAACACTGCG













ASCL1.5
ASCL1
AAACCGGTGACCCTA
 83
AGG
68.4
76.3
G
−572
−1131
hU6




GAAATTGGAC













ASCL1.5
ASCL1
CACCGTCCAATTTCT
 84
AGG
68.4
76.3
G
−572
−1131
hU6




AGGGTCACCG













ASCL1.6
ASCL1
CACCGTTGTGAGCCG
 85
TGG
57.1
71.4

−886
−1445
hU6




TCCTGTAGG













ASCL1.6
ASCL1
AAACCCTACAGGACG
 86
TGG
57.1
71.4

−886
−1445
hU6




GCTCACAAC













1L1B
IL1B
TCCCAGTATTGGTGG
 87
GGG
41.4
51.8
A
  −9
 −683
hH1




AAGCTTCTTA













IL1B
IL1B
AAACTAAGAAGCTTC
 88
GGG
41.4
51.8
A
  −9
 −683
hH1




CACCAATACT













IL1R2
IL1R2
TTGTTTGAGAGAATC
 89
GGG
63.7
53.2

 −62
 −123
mU6




CCTTGAAGACG













IL1R2
IL1R2
AAACCGTCTTCAAGG
 90
GGG
63.7
53.2

 −62
 −123
mU6




GATTCTCTCAA













LIN28A
LIN28A
TTGTTTGCTTCCCCC
 91
TGG
56.2
91.2
G
  −5
 −119
mU6




GCACAATAGCGG













LIN28A
LIN28A
AAACCCGCTATTGTG
 92
TGG
56.2
91.2
G
  −5
 −119
mU6




CGGGGGAAGCAA













NEUROD1.1
NEURO
CACCGCGATTTCCTA
 93
GGG
51.9
47.5
G
1995
  −21
hU6



D1
CATTCAACAA













NEUROD1.1
NEURO
AAACTTGTTGAATGT
 94
GGG
51.9
47.5
G
1995
  −21
hU6



D1
AGGAAATCGC













NEUROD1.2
NEURO
CACCGAGGGGAGCGG
 95
AGG
30.9
69.3

 171
−1841
hU6



D1
TTGTCGGAGG













NEUROD1.2
NEURO
AAACCCTCCGACAAC
 96
AGG
30.9
69.3

 171
−1841
hU6



D1
CGCTCCCCTC













NEUROD1.3
NEURO
CACCGACCTGCCCAT
 97
CGG
55.4
80.8

  50
−1966
hU6



D1
TTGTATGCCG













NEUROD1.3
NEURO
AAACCGGCATACAAA
 98
CGG
55.4
80.8

  50
−1966
hU6



D1
TGGGCAGGTC













hH1
NEURO
TCCCACCTGCCCATT
 99
CGG
55.4
80.8

  50
−1966
hH1


NEUROD1
D1
TGTATGCCG













hH1
NEURO
AAACCGGCATACAAA
100
CGG
55.4
80.8

  50
−1966
hH1


NEUROD1
D1
TGGGCAGGT













NEUROD1.4
NEURO
CACCGAGGTCCGCGG
101
TGG
42.1
85.5
G
 −13
−2029
hU6



D1
AGTCTCTAAC













NEUROD1.4
NEURO
AAACGTTAGAGACTC
102
TGG
42.1
85.5
G
 −13
−2029
hU6



D1
CGCGGACCTC













NEUROD1.5
NEURO
CACCGTCGCCAGTTA
103
CGG
70.6
86.4

 −20
−2036
hU6



D1
GAGACTCCG













NEUROD1.5
NEURO
AAACCGGAGTCTCTA
104
CGG
70.6
86.4

 −20
−2036
hU6



D1
ACTGGCGAC













NEUROD1.6
NEURO
CACCGTAGAGGGGCC
105
AGG
38.8
83.2
G
−369
−2385
hU6



D1
GACGGAGATT













NEUROD1.6
NEURO
AAACAATCTCCGTCG
106
AGG
38.8
83.2
G
−369
−2385
hU6



D1
GCCCCTCTAC













POU5F1.1
P0U5F1
CACCGGTGAAATGAG
107
GGG
58.5
68.2

  24
  −49
hU6




GGCTTGCGAA













POU5F1.1
P0U5F1
AAACTTCGCAAGCCC
108
GGG
58.5
68.2

  24
  −49
hU6




TCATTTCACC













mU6
P0U5F1
TTGTTTGTGAAATGA
109
GGG
58.5
68.2
TT
  24
  −49
mU6


POU5F1

GGGCTTGCGAA













mU6
P0U5F1
AAACTTCGCAAGCCC
110
GGG
58.5
68.2
TT
  24
  −49
mU6


POU5F1

TCATTTCACAA













POU5F1.2
P0U5F1
CACCGCTCTCCTCCA
111
GGG
62.4
42
G
 −47
 −120
hU6




CCCATCCAGG













POU5F1.2
P0U5F1
AAACCCTGGATGGGT
112
GGG
62.4
42
G
 −47
 −120
hU6




GGAGGAGAGc













POU5F1.3
P0U5F1
CACCGACCTGCACTG
113
GGG
53.4
44.4

−165
 −238
hU6




AGGTCCTGGA













POU5F1.3
P0U5F1
AAACTCCAGGACCTC
114
GGG
53.4
44.4

−165
 −238
hU6




AGTGCAGGTC













POU5F1.4
POU5F1
CACCGCCTTTAATCA
115
CGG
72.7
40.9

−459
 −532
hU6




TGACACTGGG













POU5F1.4
POU5F1
AAACCCCAGTGTCAT
116
CGG
72.7
40.9

−459
 −532
hU6




GATTAAAGGC













POU5F1.5
POU5F1
CACCGGGAATGCCTA
117
TGG
62.5
55.8

−759
 −832
hU6




GGATTCTGGA













POU5F1.5
POU5F1
AAACTCCAGAATCCT
118
TGG
62.5
55.8

−759
 −832
hU6




AGGCATTCCC













CMV gRNA
TV
CACCGTCGATAAGCC
119
GGG
45.7
73.8



hU6


1

AGTAAGCAGT













CMV gRNA
TV
AAACACTGCTTACTG
120
GGG
45.7
73.8



hU6


1

GCTTATCGAC













h7SK CMV
TV
CCTCGTCGATAAGCC
121
GGG
45.7
73.8



h7SK




AGTAAGCAGT













h7SK CMV
TV
AAACACTGCTTACTG
122
GGG
45.7
73.8



h7SK




GCTTATCGAC













ZFP42
ZFP42
TCCCATTAGACCGCG
123
AGG
59.1
94

 −50
−7087
hH1




TCAGTCCGG













ZFP42
ZFP42
AAACCCGGACTGACG
124
AGG
59.1
94

 −50
−7087
hH1




CGGTCTAAT









PCR


Seventy-two hours after transfection, genomic DNA was isolated using DNeasy Blood & Tissue Kit (Qiagen). PCRs were performed using KAPA2G Robust PCR kits (KAPA Biosystems). A typical 25 μL reaction used 20-100 ng of genomic DNA, Buffer A (5 μL), Enhancer (5 μL), dNTPs (0.5 μL), 10 μM forward primer (1.25 μL), 10 μM reverse primer (1.25 μL), KAPA2G Robust DNA Polymerase (0.5 U) and water (up to 25 μL). The DNA sequence of the primers for each target and the cycling parameters for each reaction are provided in Table 9. The PCR products were visualized in 2% agarose gels and images were captured using a ChemiDoc-It2 (UVP).









TABLE 9







Integration Detection PCR Primers













SEQ





ID



Target
Sequence (5′->3′)
NO.







ASCL1
TTCCTTCTTTCACTCGCCCTCC
125







IL1B
CCAGTTTCTCCCTCGCTGTT
126







IL1R2
GGCCCACACTTTGCTTTCTG
127







LIN28A
CTTTGGGCAGCCTAGGACTC
128







NEUROD1
TGAGGGGCTAGCAGGTCTATGC
129







OCT4
GGAATCCCCCACACCTCAGAG
130







TV
TGCTAGCTACGATGCACATCCA
131







TV
GCCCCGAATTCGAGCTCGGTAC
132







ZFP42
TTTCCAATGCCACCTCCTCC
133










qPCR


Cells were harvested and flash-frozen in liquid nitrogen prior to RNA-extraction using the RNeasy Plus RNA isolation kit (Qiagen) according to manufacturer's instructions. cDNA synthesis was carried out using the qScript cDNA Synthesis Kit (Quanta Biosciences) from 1 μg of RNA and reactions were performed as directed by the supplier. For RT-qPCR, SsoFast EvaGreen Supermix (Bio-Rad) was added to cDNA and primers targeting the gene of interest and GAPDH (Table 10). Following 30 s at 95° C., qPCR (5 s at 95° C., 20 s at 55° C., 40 total cycles) preceded melt-curve analysis of the product by the CFX Connect Real-Time System (Bio-Rad). Ct values were used to calculate changes in expression level, relative to GAPDH and control samples by the 2−ΔΔCt method.









TABLE 10







RT-qPCR primers













SEQ





ID



Designation
Sequence (5′->3′)
NO.







ASCL1 qPCRFW
GGAGCTTCTCGACTTCACCA
 71







ASCL1 qPCRREV
AACGCCACTGACAAGAAAGC
 72







NEUROD1 qPCRFW
ATGACGATCAAAAGCCCAAG
134







NEUROD1
GAATAGCAAGGCACCACCTT
135



qPCRREV









IL1B qPCR F
AGCTGATGGCCCTAAACAGA
136







IL1B qPCR R
AAGCCCTTGCTGTAGTGGTG
137







IL1R2 qPCR F
CAGGAGGACTCTGGCACCTA
138







IL1R2 qPCR R
CGGCAGGAAAGCATCTGTAT
139







ZFP42 qPCR F
CTGGAGCCTGTGTGAACAGA
140







ZFP42 qPCR R
CAACCACCTCCAGGCAGTAG
141







LIN28A qPCR F
TTCGGCTTCCTGTCCATGAC
142







LIN28A qPCR R
CTGCCTCACCCTCCTTCAAG
143







POU5F1 qPCRFW
GAAGGAGAAGCTGGAGCAAA
144







POU5F1 qPCRREV
ATCCCAGGGTGATCCTCTTC
145







hGAPDH qPCRFW
CAATGACCCCTTCATTGACC
 39







hGAPDH qPCRREV
TTGATTTTGGAGGGATCTCG
 40










Results


The two constitutive vectors contain either one CMV promoter followed by a target site for a universal secondary sgRNA (constitutive single promoter targeting vector, cspTV) or two opposing constitutive promoters separated by the secondary sgRNA target site (constitutive dual promoter targeting vector, cdpTV), each containing a cassette for expression of the puromycin N-acetyl-transferase gene. The targeting vector for inducible expression (inducible dual promoter targeting vector, idpTV) includes two identical promoters in opposite orientations, each consisting of seven TetO repeats and a minimal CMV promoter (mCMV). The idpTV also carries a puromycin N-acetyl-transferase gene linked with a reverse tetracycline transactivator (rtTA) via a T2A peptide. As in the cdpTV, the opposing promoters of the idpTV flank a universal secondary sgRNA target sequence. A DSB introduced in either idpTV or cdpTV by Cas9 generates a linear fragment of DNA with diametric promoters oriented towards the free ends of the vector (FIG. 14A). The architecture of the dual promoter TV ensures that there is always a promoter correctly positioned regardless of integration orientation, thereby addressing NAVI's lack of directionality.


In order to evaluate this gene activation architecture in the context of the human genome, three target genes were selected whose reported levels of activation utilizing CRISPRa are either high (ASCL1, ˜103-fold), medium (NEUROD1, ˜102-fold), or low (POU5F1, ˜10-fold). The primary sgRNAs targeting the genome were co-transfected into 293T cells with three plasmids containing (1) an expression cassette for active Cas9, (2) customized cspTV, cdpTV or idpTV, and (3) a universal secondary sgRNA. Following transfection, cells with integration of the TV were selected using puromycin and, in cells transfected with the idpTV, gene expression was induced with doxycycline. In parallel, one sgRNA or a mixture of 4 sgRNAs (previously validated for use with CRISPRa) were co-transfected into 293 Ts with dCas9-VPR for comparison of the NAVIa with CRISPRa. Gene expression using an individual sgRNA directing dCas9-VPR to target promoters was increased ˜10-fold for all targets tested but not statistically significant. Utilization of 4 sgRNAs simultaneously activated gene expression more effectively than 1 sgRNA (ASCL1: ˜1800-fold, NEUROD1: ˜2900-fold, POU5F:1 ˜90-fold). The levels of gene activation using the cspTV (ASCL1: ˜730-fold, NEUROD1: ˜600-fold, POU5F:1 ˜200-fold) or cdpTV (ASCL1: ˜8500-fold, NEUROD1: ˜3000-fold, POU5F1: ˜1000-fold) were superior to CRISPRa using 1 sgRNA but lower or not statistically different from activation obtained using 4 sgRNA for two of the three targets. However, the idpTV (ASCL1: ˜7200-fold, NEUROD1: ˜76000-fold, POU5F1: ˜5370-fold) surpassed activation obtained using dCas9-VPR using 4 sgRNAs (FIG. 14B). Interestingly, in this experiment, the improvement of NAVIa over dCas9-VPR was higher for targets branded as difficult to regulate with CRISPRa (POU5F1: ˜60-fold improvement, NEUROD1: ˜26-fold improvement) than for a target considered easy to activate (ASCL1: ˜4-fold improvement).


To further explore the trends we observed in 293T cells, NeuroD1 was targeted using the cdpTV in other cell lines. NAVIa effectively activated expression of NeuroD1 in the human colorectal carcinoma cell line HCT116, the primary human fibroblast cell line MRC-5, and the mouse neuroblastoma cell line Neuro2A (FIG. 15).


When using CRISPRa it is difficult to predict optimal sgRNA target sites for efficient gene activation. While it is generally accepted that proximity to the TSS of the target site is important, other parameters such as presence of enhancers or local chromatin structure are also critical and, perhaps, more difficult to predict. We investigated a potential correlation between gene activation using NAVIa and distance between integration site and TSS by measuring gene expression induced with sgRNAs that target DNA sequences between positions −1010 and +1995, relative to the TSS of 3 different genes (FIG. 16). Plotting these data for all 3 genes showed that NAVIa can activate gene expression efficiently from any integration site on this range, with the most activity being derived from sgRNAs between −500 and +200 bp relative to the TSS.


These results demonstrate a novel platform to activate native gene expression based on integration of heterologous promoters that overcomes some of the limitations intrinsic to CRISPRa. Promoter integration is accomplished by NAVI, which utilizes NHEJ and therefore overcomes some of the intrinsic limitations of DNA integration platforms that rely on Homologous Recombination (HR). For example, NHEJ is more effective than HR in non-dividing cells and has been exploited to integrate therapeutic transgenes in post-mitotic cells. In addition, we demonstrate that since this integration mechanism requires only one element that is variable, it can be adapted for genome-scale screenings.


Although NAVI is subject to some shortcomings associated with its specific gene editing mechanism, such as the error-prone nature of NHEJ, only minor indels at target sites were observed (FIG. 17). Furthermore, as this system targets non-coding regions, supplanting basic functionality of the local sequence, imprecise genome editing is very unlikely to be prohibitive of endogenous gene activation.


One concern about the NAVIa system is that it is prone to Cas9 off-target nuclease activity. Such activity may lead to off-target vector integration and the inadvertent upregulation of additional genes. This problem could be lessened by using truncated sgRNAs or enhanced versions of Cas9 that have increased specificity. While CRISPRa is also susceptible to off-target activation, one fundamental difference between both systems is that, for sustained gene activation, CRISPRa necessitates the stable expression, or repeated introduction, of heterologous system components, which may have obvious negative implications on their own. In addition, it has been demonstrated that gene activation from viral vectors is less efficient than activation with episomal plasmids, presumably due to lower copy number. In contrast, NAVIa only necessitates transient nuclease activity to integrate a single synthetic element and is easily amenable to repeated customization to reduce or completely eliminate off-target effects.


Example 6. Temporal Control of Gene Expression with the NAVIa System

Since maximal gene activation may not be desirable in all experimental settings, CRISPRa has been adapted for tunable gene expression through combinatorial delivery of multiple sgRNAs. However, such efforts to modulate gene expression have proven unpredictable, with results that are difficult to reproduce. Alternatively, NAVIa enables facile customization of TV, including selection from a wide variety of gene regulatory mechanisms provided by existing artificial promoters. The idpTV used in these experiments introduces a doxycycline-inducible promoter and a precise temporal control of gene expression that could be tuned by the concentration of doxycycline in the growth medium. Induction of gene expression for 96 h with concentrations of doxycycline ranging from 2 ng/mL to 2 μg/mL led to a dose-dependent increase in gene expression ranging between ˜337-fold and ˜26015-fold (FIG. 18). Considering this result, 200 ng/mL doxycycline was used for a time course that demonstrated that induction of NEUROD1 is detectable 12 h after treatment (˜4000-fold) and continues to increase at 24 h (˜5000-fold), 48 h (˜10000-fold) and 96 h (˜15000-fold) (FIG. 19). In addition, a clonal population of SF7996 cells (primary glioblastoma cells) was derived in which expression of TERT is controlled by the idpTV and can be induced in a dose-dependent manner with doxycycline (FIG. 20). It is noteworthy that TERT expression could only be detected in the presence of doxycycline. Accordingly, since these cells depend on TERT expression for continued expansion, their proliferation rate in tetracycline-free medium decreased over time in comparison with the same cells treated with doxycycline (FIG. 21).


Tetracycline-inducible systems have been designed for high responsiveness to doxycycline, yet background expression in the absence of inducer, while low, continues to be a problem that hinders applications requiring precise control over gene activation. While inducibility is a significant advantage of NAVIa over CRISPRa, tetracycline-inducible promoters are typically used to modulate expression cassettes within a vector, and not in a genomic context where the surrounding transcriptional regulatory elements may contribute to undesired expression at steady state. Analysis of NEUROD1 activation within samples not induced with doxycycline revealed significant background expression (˜432-fold over basal expression, FIG. 22). While no correlation was identified between background and distance from the integration to ATG codons (FIG. 23) or between background expression and basal expression (FIG. 24), expression of rtTA from unintegrated plasmids still transiently present from the transfection might be partly responsible for high background levels of expression. Indeed, background expression in clones with heterozygous or homozygous integrations was significantly lower than in pooled populations, while gene induction in heterozygous clones was similar to that observed in pooled populations but significantly lower than activation in homozygous clones. The ratio of gene expression between samples with and without doxycycline treatment was improved from ˜22-fold induction in pooled cells to ˜426-fold and ˜1486-fold in heterozygous and homozygous clones respectively (FIG. 22).


One significant advantage of NAVIa over existing CRISPRa methods is the rapid and facile generation and screening of stable cell lines with tunable or programmable properties and a highly predictable pattern of integration. Inducible CRISPRa methods have been developed by integrating a tetracycline-inducible Cas9-based transcriptional activator at random genomic loci. Induction of target gene expression with these systems requires persistent expression of the sgRNA while expression of the ATF, and ultimately target gene activation, is controlled by treatment with doxycycline. Although these systems are tunable, they exhibit significant background expression in the absence of doxycycline. In contrast, NAVIa replaces native promoters via targeted integration of a tetracycline-inducible promoter to achieve a rapid response to the inducer while avoiding unpredictable lentiviral integration patterns. Further refinements of the minimal promoter, the positioning of TetO sites, and other attributes of the integrated vector will remove not only background expression but also basal expression, allowing generation of functional knock out or overexpression of a gene a single cell line by simply varying the concentration of inducer.


Another potential limitation of NAVIa in these experiments was the integration of two promoters in different orientations. While this approach ensures that one promoter is always positioned in the correct orientation for overexpression of the target gene, it is possible that the other promoter can modify expression in the opposite orientation. While this shortcoming also occurs with bidirectional gene activation induced by CRISPRa, it can be overcome in NAVIa by simply using a single promoter. This alternative strategy requires screening a few clones to identify those with the promoter in the correct orientation, but effectively prevents potential aberrant activation at the opposite end of the vector. Future iterations to enhance efficiency of this technique will require precise control over orientation by manipulating the DNA repair process.


Example 7. Multiplexability of the NAVIa System

One important feature of CRISPRa architectures is multiplexability. Different genes can be activated simultaneously by delivering sgRNAs targeting different promoter. Two benefits of NAVI over other integration platforms, such as those utilizing HR, are the universal adaptability of the system to target different genomic loci, by simply providing additional primary sgRNAs, and facile clone isolation upon selection. Since activation of different genes using NAVIa can be accomplished using a set of vectors in which the only variable element is the primary sgRNA, this flexible architecture is also compatible with multiplexing. To demonstrate these capabilities, sgRNAs were first identified for targeting additional genes with NAVIa including IL1B, IL1R2, LIN28A and ZFP42 (FIG. 25). To facilitate multiplexing, a custom Golden Gate cloning plasmid was utilized to prepare two multi-sgRNA (mgRNA) vectors capable of delivering a total of 7 individual sgRNAs targeting genes and one sgRNA for linearizing the idpTV, each under independent promoter control. Co-transfection of these plasmids alongside the idpTV and Cas9 vectors into 293T cells was followed by induction of gene expression with doxycycline for two days. Analysis of mRNA expression across all targeted genes demonstrates that multiplexed gene activation with NAVIa surpasses CRISPRa for all targets tested (ranging from ˜45-fold to ˜400-fold) (FIG. 26). When selection with puromycin was applied prior to induction of gene expression with doxycycline, even higher levels of gene activation of all targets compared with unselected populations was observed (FIG. 26). Together, these results emphasize the multiplexing capabilities of NAVIa, as well as a clear advantage over CRISPRa when only one sgRNA is employed.


Example 8. Genome-Scale Gain-of-Function Framework for the NAVIa System

CRISPRa gain-of-function genetic screenings rely on robust activation of native genes for efficient genome-scale interrogation. However, the required use of single sgRNAs, which are often insufficient for upregulating gene expression, may introduce important biases since only genes that are permissive for activation will be interrogated effectively. Previously, it was found that since shRNA and CRISPR-Cas9 knock down gene expression by different mechanisms, their application in parallel for genome-scale loss of function screenings generates results that are complementary. Unlike loss-of-function screenings, there are no alternative methods complementary of CRISPRa to perform gain-of-function screenings. However, since NAVIa requires only one sgRNA per target and achieves robust activation across targets, it was compatible with genome-scale activation screenings.


Transfection and Transduction of sgRNA Library


The human SAM library of sgRNAs, with 3× coverage of coding gene promoters, was prepared following the guidelines provided by Konermann et al., Nature, 517:583-588 (2015) and packaged into 2nd-generation lentivirus within 293T cells. The resultant library was transduced into MCF7 cells.


Following a brief recovery period over a single passage, 107 MCF7 cells were transfected with the NAVIa system plasmids (Cas9, TV, and secondary sgRNA) and selected by 1 μg/mL puromycin. Cells were split into two groups, which were either treated with 4-hydroxytamoxifen or not treated. The treated cells received 5 μM 4-hydroxytamoxifen for 14 days, replaced every two days. The untreated cells were handled identically receiving fresh media without 4-hydroxytamoxifen. After 14 days the cells were washed and recovered for isolation of genomic DNA.


NGS


The sgRNA expression cassettes from library genomic DNA samples and controls were amplified in two rounds using KAPA HiFi HotStart polymerase (KAPA Biosystems). The first round reactions amplified the entire human U6 sgRNA expression cassette (552 bp) and were separated in 2% agarose gels, excised using the QIAquick Gel Extraction Kit (Qiagen), and used as template with the NGS primers (FIG. 28) for second round amplification. Second round products were also gel excised, cleaned, pooled, and submitted to the DNA Services laboratory at the W. M. Keck Center at the University of Illinois at Urbana-Champaign for HiSeq.


The final pool was quantitated using Qubit (Life Technologies, Grand Island, N.Y.) and the average size determined on the on an Agilent bioanalyzer HS DNA chip (Agilent Technologies, Wilmington, Del.) and diluted to 5 nM final concentration. The 5 nM dilution was further quantitated by qPCR on a BioRad CFX Connect Real-Time System (Bio-Rad Laboratories, Inc. CA).


The final denatured library pool was spiked with 10% indexed PhiX control library and loaded at a concentration of 9 pM onto one lane of a 2-lane Rapid flowcell for cluster formation on the cBOT, and then sequenced on an Illumina HiSeq 2500 with version 2 SBS sequencing reagents for a total read length of 100 nt from one end of the molecules. The PhiX control library provides a balanced genome for calculation of matrix, phasing and prephasing, which are essential for accurate basecalling.


The run generated .bcl files, which were converted into demultiplexed compressed fastq files using bcl2fastq 2.17.1.14 (Illumina, CA). A secondary pipeline decompressed the fastq files, generated plots with quality scores using FastX Tool Kit, and generated a report with the number of reads per barcoded sample library. Final fastq file data sets were first parsed using Cutadapt, to isolate sgRNA targeting sequences from leading and trailing sequence, and then analyzed using MAGeCK.


Following trimming, counting, and normalization of read counts, it was determined that the number of sgRNAs transduced into MCF7 cells was 4,292 (Table 11). Of the unique reads detected, ˜85% were found to be within the CRISPRa samples and ˜93% for NAVIa. In total, 77% of the unique reads overlapped between the CRISPRa and NAVIa libraries. In all, one or more sgRNA covering 3,817 genes were found to have been covered by these reads, with 100% overlap between the CRISPRa and NAVIa libraries, thus enabling a direct comparison between both methods.


The normalized read counts from the CRISPRa and NAVIa experiments were separately scored by gene association and assigned p-values according to the MAGeCK-RRA algorithm.


NGS Hit Validation


The top two hits from each the CRISPRa (CHSY1, GDF9) and NAVIa screen (MFSD2B, HMGCL) as well as the hit identified by both approaches (IPO9) were chosen for further tamoxifen resistance study. For each target, the primary sgRNA identified in the screen was co-transfected into MCF7 cells with Cas9, the cdpTV, and the universal secondary sgRNA followed by selection with 1 μg/mL puromycin. Ten thousand cells of each selected pool, and 10,000 wild type MCF7 cells, were seeded into 4-hydroxytamoxifen (5 μM) and tamoxifen-free media. The cells were cultured for 10 days, and were trypsinized every other day to refresh media and treat experimental cells with 4-hydroxytamoxifen in suspension. On day 10 cells were again trypsinized and counted. The cell culture and counting was done in duplicate by two independent researchers (n=4).


Statistics


Statistical analysis was performed by two-way ANOVA with alpha equal to 0.05 or with t tests in Prism 7.


A genome-scale gain-of-function experimental framework for NAVIa was tested in which lentiviruses were first generated from a library of plasmids targeting the promoters of native transcription factors (library), which were transduced into 293T cells at MOI 0.2 (FIG. 27A). Recovery of the sgRNAs from the transduced cells followed by NGS demonstrated successful transduction of all sgRNAs (Table 11). These cells were transfected with plasmids encoding active Cas9, the cdpTV, and the universal sgRNA, and then selected with puromycin. In parallel, a CRISPRa screening was performed by transducing dCas9-VPR into the 293T cells pre-transduced with the sgRNA library.


Finally, side-by-side genome-scale screenings was performed between NAVIa and CRISPRa to evaluate their ability to identify transcription factors associated with rapid growth in 293T cells. While each method generated positive selection results, the enrichment observed with NAVIa was significantly more robust than that observed with CRISPRa. In addition, there is significant exclusivity, which highlights the differences between these approaches and suggests that NAVIa and CRISPRa could provide valuable complementary results. By combining results from each method, it is possible to identify a strong list of candidate genes with potential roles in the phenotype under investigation.


Example 9. NAVIa Genetic Screening

To demonstrate the applicability of NAVIa genetic screenings, in comparison with CRISPRa, transcription that confer a proliferative advantage in 293T cells were identified. After 14 days of growth, next generation sequencing of the sgRNA expression cassette was performed for each of the gain-of-function screenings. Examination of FDR q-values from the top scores from each method reveals a different distribution for the top 350 hits, with a shift in significance for all hits skewed toward NAVIa (FIG. 27B). While CRISPRa yielded 3 candidate genes for which positive selection scores were highly significant (FDR q-value≤0.01), NAVIa yielded 161. Similarly, CRISPRa generated 74 hits with moderate significance (FDR q-values≤0.05), while NAVIa generated 302 (FIG. 27C). Comparison of FDR q-values from top scoring hits from either CRISPRa or NAVIa screenings demonstrates hits distributed throughout the genome (FIG. 27D). Interestingly, the results indicate little overlap for top targets between NAVIa and CRISPRa. More specifically, the screenings identified by one hit with FDR q value <0.01 that appeared in both screenings (out of 3 in the CRISPRa screening and 161 in the NAVIa screening) and 13 hits with q value <0.05 (out of 161 in the CRISPRa screening and 302 in the NAVIa screening). (FIG. 27E)


To verify the results from the tamoxifen 252 resistance screen, the top two gene hits from each screen were validated, as well as IPO9. Target-specific primary sgRNAs in combination with cdpTV, Cas9 and the secondary sgRNA were delivered to MCF7 cells, which, after selection with puromycin, were treated with tamoxifen. Each of the cell lines generated displayed increased resistance to tamoxifen compared with wild type, although not all the measurements were significant due to large variability across samples (FIG. 27F). The top hits in the NAVIa screening were validated, MFSD2B (p<0.05) and HMGCL (p<0.1), as well as IPO9 (p<0.1), which was identified by both screenings. However, the top hits in the CRISPRa screening were not statistically significant suggesting that the different mechanism of gene activation utilized by each system yields non-overlapping results. In addition to validating the top screening hits through individual gene activation, the expression profile of the top screening hits were analyzed using TCGA data sets (tcga-data.nci.nih.gov/tcga). Using cBioPortal, the available data from breast cancer samples was mined to identify those that exhibited upregulation of the top screening candidate genes. By this metric, it was found that all the top 10 hits from NAVIa and 9 out of 10 from CRISPRa screenings are overexpressed in ER+ breast cancers (FIG. 27G). Notably, expression of all NAVIa hits is higher in ER tumors (˜4.6-fold) but in only 7 of the top CRISPRa hits (˜1.8-fold).


In summary, the robust levels of activation, multiplexing capabilities, and adaptability for genome-scale gain-of-function screenings make NAVIa an attractive new platform for a variety of synthetic biology applications including metabolic engineering, drug screening, and signal transduction pathway analysis.









TABLE 11







Library of sgRNAs transduced into MCF7 cells













SEQ





ID


Gene
Ref Seq #
sgRNA Sequence
NO:





AADAC
NM_001086
ACTCAATACATGCTGTTTAT
 221





AADAT
NM_001286683
TCTCGAAGATCTCAGCATTT
 222





AAGAB
NM_001271886
ACTGAAAACCACGACCCTGT
 223





AAR2
NM_015511
ATGGCTGGTGGCTGTGTTTC
 224





AARD
NM_001025357
TGCAGCATCCCACTTGGCAA
 225





AARSD1
NM_001261434
GTTGTTTAACGACTGTTCTA
 226





ABCA1
NM_005502
GGGGAAGGGGACGCAGACCG
 227





ABCA12
NM_015657
CATCTGCATATGCAGGTCCT
 228





ABCA3
NM_001089
ACATGCAGGGGGCACCGCGC
 229





ABCA5
NM_172232
ACGCTCGGCCCCGCGCGTCC
 230





ABCA6
NM_080284
ATTTTATTCCCAACCAACCA
 231





ABCB9
NM_001243014
GTTTGCCACAGGTGAGCAGG
 232





ABCC10
NM_001198934
GAGCGAATACTCCACGTGAG
 233





ABCC4
NM_005845
GCCGGGACCGACGGGTGACG
 234





ABCE1
NM_002940
TCAACTTCCTCTCAACTGTG
 235





ABCG1
NM_207627
TCTGTTCCCTCACAAGTCAC
 236





ABCG1
NM_207629
AACTATATCACTACCTCAAC
 237





ABCG2
NM_001257386
GAAGAGGATCCCACGCTGAC
 238





ABHD1
NM_032604
TGGGGGAGGCCGCTTGTCTC
 239





ABHD14B
NM_032750
TATCTGGCATTTACACAACG
 240





ABHD17A
NM_031213
AAACTTAGGTTTCATTCACT
 241





ABI3
NM_016428
CAGGCTTGCTAACACCCCTC
 242





ABL1
NM_005157
CCCGCGCCCGCCCATGGCCG
 243





ABL2
NM_001168239
ATTGCTGGAAATTTTCCTTT
 244





ABL2
NM_001168239
CGCAAAAGACTGAGTCAGAA
 245





ABRA
NM_139166
TGACAGCTCCAGTTTCATCA
 246





ACACA
NM_198836
TGAACGGCCTGGAGTAACCC
 247





ACAT1
NM_000019
GCAAGAAGCCAACCGCAGCG
 248





ACAT1
NM_000019
ACGAGCACCTGACACGCTGC
 249





ACBD5
NM_001042473
CAATCTCAAGACACTTAAGC
 250





ACBD6
NM_032360
CGGATCTGTTGCGTGCGCGT
 251





ACIN1
NM_001164817
CTACAGAGGCTTAACCCCCC
 252





ACIN1
NM_001164817
GGCCACAGGGAGCCGACTGC
 253





ACKR2
NM_001296
CTCTGTCTCATTATATGCTT
 254





ACKR4
NM_178445
AGAGAAGACAAGAATGAAGC
 255





ACOT12
NM_130767
TCCCCCACTCGCGATAGTCC
 256





ACOT6
NM_001037162
ACAGTCTCACTCTGTCGCCC
 257





ACOT6
NM_001037162
TTCAATACCTTTTGGTGTAC
 258





ACP2
NM_001610
AGACCTCATCTTGATTAAGA
 259





ACP5
NM_001611
GCACACGTGTGCAGCAGCCT
 260





ACRBP
NM_032489
CCAGAGCCCATCCAGATGGT
 261





ACSL1
NM_001286708
GTTCTATGAATATATCCTCA
 262





ACSL1
NM_001286711
TATGAAATCCGAGGCAGTCT
 263





ACSL1
NM_001286712
GCTTAAGCAAATCTAACTTT
 264





ACSL4
NM_022977
GAGGAAGGCGAGGCGGCTAA
 265





ACSL5
NM_203379
GTTACTACAAGTGTTTGAAC
 266





ACSL6
NM_001205251
GGGTCGCGGTTACCTGTCCT
 267





ACSM4
NM_001080454
GAGACTGGGAGGTGGATTTG
 268





ACSM4
NM_001080454
GGAAGGATGAGGTGTTTTTC
 269





ACTL10
NM_001024675
CCTACCTTATGACAACTCCC
 270





ACTL6B
NM_016188
CTAAGGAACTGGCGGCAGAG
 271





ACTL8
NM_030812
TGCTGATATTTCATTGTTGC
 272





ACTN4
NM_004924
CAAGGCCGCGCTCCGGAGCT
 273





ACTR3
NM_001277140
CTAGGACTGACAGCCGGCGG
 274





ACTR6
NM_022496
GGGGGCGTTCTACAAATTCC
 275





ACVR2A
NM_001616
GTTGTTGGCTTTTCGTTGTT
 276





ACVRL1
NM_001077401
TGTTTAAGTGACTGAGAGCT
 277





ACY1
NM_001198895
ACGGGACCGTCCTGAGCTCC
 278





ACYP1
NM_001107
GATTTCAGGACGCGGTTGTC
 279





ADAM2
NM_001278114
TTGCAGGACAAGCACTCCAC
 280





ADAMTS14
NM_139155
GCCCCGGGCTGTCGGAGCAC
 281





ADAMTSL3
NM_207517
ACGGCGTCTCTTCGCGCCCC
 282





ADAMTSL3
NM_207517
GGCAAGTGCACGGCGCGCCC
 283





ADAR
NM_015841
GAGTCTCGCTCTTTTTGCCC
 284





ADAT1
NM_012091
AGATACGTCATTCTAGTTGA
 285





ADAT2
NM_001286259
TGGCAATTTAGGTGGAATGG
 286





ADCY1
NM_021116
GGCTGCCCCGCGCGCGCGCC
 287





ADGB
NM_024694
ACTGAAATCCCACATCCCCG
 288





ADGRB1
NM_001702
AGCTTAGCCTGCTACCAACG
 289





ADGRE2
NM_013447
TCAACAGAGAATCATGTGAT
 290





ADGRF1
NM_153840
ATTCTCCCAGCAGACATAAA
 291





ADGRF3
NM_001145168
GCCTGTGACTCTGAGTGAAA
 292





ADGRF3
NM_153835
AGAGGAATTTGTGAAGCGCT
 293





ADGRG1
NM_001145770
AGGGGAGTCCTTGGGTTCTC
 294





ADGRG1
NM_001145771
GGAGCACTGAGAGGGGAGAC
 295





ADGRG1
NM_001290142
TCAGGTGTCCTGCAGGAGCC
 296





ADGRG5
NM_153837
AGCAGAGAGAAGTGCAGTGG
 297





ADGRG7
NM_032787
TGGTTGCCAGTAGTCACCTA
 298





ADGRL1
NM_014921
GATCGGGTCTGCGCCCCTCC
 299





ADH1B
NM_000668
TTTATCTGTTTTGACAGTCT
 300





ADIG
NM_001018082
AGCATGCAGGGGACACTTTG
 301





ADIG
NM_001018082
GGCTGAGAATTAAAAAGCCC
 302





ADIPOR2
NM_024551
CGCACGGCGTGTGGTCTTAT
 303





ADNP
NM_001282531
TGTGGGAGAGGCGGCTTCAC
 304





ADORA1
NM_000674
AAAAAATGTGAGCTTTTCGA
 305





ADORA2A
NM_001278500
TCACTGCAACCTCCACCTCC
 306





ADPRHL1
NM_199162
GACTGGGGCTGCCTCCTTCC
 307





ADRA2C
NM_000683
CTGGGCGCCGCGGTCCCCGG
 308





ADRB3
NM_000025
ACGTTTCCTTTAGCTAAATC
 309





ADSS
NM_001126
AATCCCAGCATGCAACGCTC
 310





AFAP1
NM_001134647
TACCCAGCTCAACGTCTACC
 311





AFF2
NM_001170628
GTTTGATAGTTTGAGTATTC
 312





AFF3
NM_001025108
TAGAACCGGAAGCCCCTCCA
 313





AFM
NM_001133
GAGTTGGAACAAAAGTCCAC
 314





AFM
NM_001133
TATTGTGCATACTTAGCCTG
 315





AGAP6
NM_001077665
GCATCATAAGCCACAGGGTG
 316





AGBL3
NM_178563
AGAGAGGCTTTGGGGTCTGT
 317





AGFG1
NM_001135187
GAGGCCGCAGTGACTCCTCC
 318





AGMO
NM_001004320
ATACAGTGCAGTTTGACTGT
 319





AGT
NM_000029
GGAAGTTTCCAGTGTAGCTG
 320





AHNAK
NM_024060
CAGGTCCGGGACAGGACAGG
 321





AIMP1
NM_001142415
GTCTCAAATAGATAGAAACC
 322





AIMP1
NM_001142416
TCTCGCTATATGTCCTTTCG
 323





AIPL1
NM_001285402
GACGGTGGGGGCGGTGACCT
 324





AK3
NM_001199855
AGGTAGGCCCTCTCGGCTCA
 325





AK4
NM_203464
TGCAGTAGACCGCGGTCCCC
 326





AK8
NM_152572
AGGGTGGGGAGGCCCGTTCC
 327





AKAP2
NM_001136562
AGGCCGGGCCTGCTCTGGCT
 328





AKAP4
NM_003886
CAACTAGATCAGCCTTTCTC
 329





AKAP8
NM_005858
CCGTGGCCTAATGGGAGTTG
 330





AKAP8L
NM_014371
GGGGGCGGAGCTGTGCACTA
 331





AKR7A3
NM_012067
AAATGGCTGTGGCTTCGTAC
 332





AKT1
NM_001014432
TCGGGAGCTGCCCCTCAGCC
 333





AKT1S1
NM_001278159
ACGGCCCAGGTAGAGATCCC
 334





AKT2
NM_001243028
CTGCGCACATTAGACAACTT
 335





AKT3
NM_005465
AAGTCTGGCTCTTCAAACTG
 336





AKTIP
NM_022476
GTGTGAGAGCCAGTTGGCGC
 337





ALDH3A1
NM_001135168
CGTGGTTTACACACCAAGCC
 338





ALDH3A1
NM_000691
ATCAGCAGCCCCCACGCCCA
 339





ALDH5A1
NM_001080
GCGGTGCAGCGAGAAAGACG
 340





ALG11
NM_001004127
TTACTGGTAGCCGCTTCCCA
 341





ALG12
NM_024105
CAATCCGAGTTCGCCACGAG
 342





ALG14
NM_144988
AGGTAAAATGGATTGTGACT
 343





ALKBH4
NM_017621
CCGCGGTAACTGAGCCCAGG
 344





ALKBH4
NM_017621
GCAGCCCGCGCTGACCCAGT
 345





ALMS1
NM_015120
CCCCGGAAGGCGCCCAGTCC
 346





ALMS1
NM_015120
CTGTAAGCTCACAATAAACC
 347





ALOX5AP
NM_001629
CAAGCCCTGCTTCTCCTGGT
 348





ALPK1
NM_025144
TCCTAAAGGGGTGTGTCTTA
 349





ALPK3
NM_020778
CAGGAGAATGGCATGAACCC
 350





ALS2CR12
NM_001127391
TCCACTTTCGTCATCAGTCA
 351





AMBRA1
NM_017749
ACTAAAATAGTGGGAGAATG
 352





AMD1
NM_001634
TGACAGGCGGCAGCAGCTAT
 353





AMER2
NM_152704
GAATCTCAGACCCACTCCAC
 354





AMOTL1
NM_130847
GGCGGCGGGTGTCTGCAGAC
 355





AMOTL2
NM_001278683
GTGTCTGCCCTGTCCATCTA
 356





AMPD2
NM_004037
GACAGAGACCCTAGCCTCTT
 357





AMPD2
NM_004037
TCCTCTGTCTCTGCACACTC
 358





AMPD3
NM_001172430
TATTGCAGTTCCAAACCCTC
 359





AMTN
NM_212557
TCATTTCCCAACACTTCATT
 360





AMY1A
NM_001008221
CTACTGGGTTTAGGCCAACC
 361





AMY1A
NM_001008221
CTGGAATCTATGAATAACAT
 362





AMY1B
NM_001008218
ACTTGTTGCTGATTTTGGCC
 363





ANGEL1
NM_015305
GCAGAAGTGGGAATAAACTG
 364





ANGPT4
NM_015985
ACTGAGGAAGGAGGAAGGGA
 365





ANK1
NM_020475
TCTTGTAATCTGCGGTCCCC
 366





ANKFY1
NM_001257999
AGAAGTGCGCGGCTCAACCG
 367





ANKH
NM_054027
AGGCGACGGCACAGGAAAGG
 368





ANKRD13A
NM_033121
CTTGGCCAAAGATCTCCACG
 369





ANKRD16
NM_019046
GAAAGTTTCCCGCTCCGCCC
 370





ANKRD17
NM_001286771
ATTTAACACGTCTGGCTTCC
 371





ANKRD23
NM_144994
GCCCCTGGGCCAGATGACTC
 372





ANKRD26
NM_014915
GGCCCAGACCTCGCAAATCT
 373





ANKRD27
NM_032139
CGTGCCCAGAACGTGAGGGG
 374





ANKRD35
NM_001280799
GATTTGAAGGGCGAGGTTCG
 375





ANKRD46
NM_001270378
GCTGCAGCGCGAGACCGCTC
 376





ANKRD50
NM_020337
GCCCAGGCACGGGATGCTGC
 377





ANKRD52
NM_173595
CTCCCCGCGCAAACGGACCC
 378





ANKRD54
NM_138797
ATGTCTGTCAGTCACGTTGC
 379





ANKRD55
NM_024669
TTGGAGAACGGAGCTGAAAG
 380





ANKRD62
NM_001277333
GCTGAGGTGCGCATGTGCCC
 381





ANKS1A
NM_015245
AGTCCACCTGCGCTGGTCCG
 382





ANKS1B
NM_001204065
ATTGTTCCGCGGCTGCTGCC
 383





ANKS1B
NM_181670
AAAAAATCTGCCTTATCTGA
 384





ANO3
NM_031418
TCAACGCCCACCCCTCACTG
 385





ANO6
NM_001142679
TGTGTGTCCACAGACGACCT
 386





ANP32A
NM_006305
AATCTAAAGGGGTCCGTCTC
 387





ANP32E
NM_001136478
TTAATTTTGATAGGTCCAGG
 388





ANP32E
NM_001136479
GCCTTCGCCCTGGGTAGGTG
 389





ANTXR2
NM_001145794
CCCATGGAATCCTTAGTCTT
 390





ANTXRL
NM_001278688
GAACAAACAGCAGGGTCTAG
 391





ANXA10
NM_007193
TTGAAAAAGCTGATGACTTA
 392





ANXA13
NM_004306
CAGATAAACTTAGACTGCCC
 393





ANXA3
NM_005139
TTAGACTGTCCCTATACCTA
 394





ANXA6
NM_001155
TCAGTCTCAGATCCGGGGGC
 395





ANXA8
NM_001271703
TGAGTGGGGCTTTCGCAGGC
 396





AOC2
NM_009590
GCATGTGGAAGCAGTGCCCT
 397





AOC2
NM_009590
TGTTCCAATTTTCTGTCCTG
 398





AP1G2
NM_001282474
TCATCTCCTTTGGGGTGCGA
 399





AP1G2
NM_001282475
AAAAAGCAATGGCTGAGCTA
 400





AP1S2
NM_003916
CCTCCTATCATTAAACAAGC
 401





AP2B1
NM_001282
ACATCCTCTGAGGCCCAGAT
 402





AP2B1
NM_001282
GGCTAGCTTGCCGGGACCAA
 403





AP2M1
NM_004068
CTTGCAATTTGAAGCGCTCT
 404





AP3M1
NM_207012
GGCACAGAATGGGCGGAGTC
 405





AP4E1
NM_007347
GTAGACCTCCTTTCTCGCGA
 406





AP4S1
NM_001254729
TCATAATGTGAACCTTTGAT
 407





APBA2
NM_005503
TCAGCTGCTCTGGAGAGCCT
 408





APBB3
NM_133172
AGGCACTTCCGGAGCATTTT
 409





APCDD1
NM_153000
GGAGACTTGAAAGGGCGCGT
 410





APEH
NM_001640
CAATGAGTCTTTGAGGATGA
 411





APEX1
NM_001641
CACACAATGTGCTGTGCATC
 412





APITD1-
NM_001243768
ATTCTCTTACCAACAGGTAC
 413


CORT








APITD1-
NM_198544
CCTGTTCCACTCGCTGAATG
 414


CORT








APLF
NM_138964
TGTCTTTCAAAGGTTTAGAA
 415





APOA1
NM_000039
CAGTGAGCAGCAACAGGGCC
 416





APOBEC3D
NM_152426
GAGCGGCCTGTCTTTATCAG
 417





APOBEC3G
NM_021822
CCAGGCGTCTGCCTCCCCCC
 418





APOBEC3G
NM_021822
CTGGGATGATCCCCGAGGGC
 419





APOC4-
NM_000483
GGAACCTTCTCTCAAGTGAC
 420


APOC2








APOD
NM_001647
TCATTTCCTGAAGTGGAACA
 421





APOM
NM_001256169
CCGTGGGAAGGCAGTAGACG
 422





APP
NM_000484
CCCACAGGTGCACGCGCCCT
 423





APP
NM_001136016
GGCTGTGGAGAAGGAACTGC
 424





APRT
NM_000485
TCTTAAAATCGATGGCGCCT
 425





AQP6
NM_001652
TCAGATCCCCGGCCTGCTTC
 426





AQR
NM_014691
TCTCTCTGCCGCCCGCTAGA
 427





AR
NM_001011645
GGCAGTAATTGGCATCAGGA
 428





ARAF
NM_001256196
AAGCAGAACACAGGTCATTT
 429





ARAF
NM_001256196
ATACGTCTATGCCACTGTTG
 430





AREG
NM_001657
CTAGCTGCAAGCCGTTTTTG
 431





ARFGAP3
NM_001142293
TGCTTCCATGGAAAGGTCAG
 432





ARGFX
NM_001012659
CTACCTTTGACAACCCTTCA
 433





ARGLU1
NM_018011
GGAGACTCTCCTTTTCGCCT
 434





ARHGAP18
NM_033515
GATCAGACTAACTTGGGGGT
 435





ARHGAP20
NM_001258416
ACTTTGCGGGGCTGGTTGAC
 436





ARHGAP31
NM_020754
GGAGTCGCAGAACTGCTCTC
 437





ARHGAP45
NM_001282334
AGACTACTGCCAACAATCAC
 438





ARHGAP6
NM_006125
GTTCTGCTTTCTCCTGCTCC
 439





ARHGEF2
NM_004723
TGGCGCCCAGAAAGCAGGCG
 440





ARHGEF25
NM_182947
AAGCGCTGGGGACGTGGAGT
 441





ARHGEF4
NM_015320
CTGCGGGACAAACTCGGGCC
 442





ARHGEF6
NM_004840
GGGAGATGTGCTGGCACAAC
 443





ARID4A
NM_002892
TTTCCGAAAACCAACTTTAT
 444





ARID5B
NM_001244638
CACGTTCCATGAATTTGACA
 445





ARL14EP
NM_152316
ATGATTCAAGGCGAGGCAAG
 446





ARL17A
NM_016632
AATCACAGTTAAACGAATTC
 447





ARL4D
NM_001661
GCTGCAGCCCCCACCATACG
 448





ARMC9
NM_001291656
ACGAAAGTGGAGTGGTGGAG
 449





ARMCX3
NM_016607
GGAAGGGAAACACAACTACA
 450





ARMCX4
NM_001256155
TTTTCCCTGTACCAGAATTA
 451





ARPC1A
NM_006409
TACTGTCGGCGGCCCTTCAG
 452





ARPC4
NM_001198780
CTTCCGGAAGTTTTCCACCT
 453





ARPIN
NM_182616
TTTTGTGCGTGTGCTGGGGC
 454





ARRDC3
NM_020801
GAGCTAGGGGAAGGAGATAC
 455





ARSB
NM_198709
TTCAATAAGCACGTGACTAA
 456





ARSB
NM_000046
CTGTTTGACTCATTATGTCA
 457





ARSF
NM_004042
TGCTGTTGTTTTTCTTTTCC
 458





ARSG
NM_001267727
GGCGGCAGCACGCACGGCCC
 459





ARSG
NM_014960
GGGCCGCGTTGCTCCCTCTT
 460





ARSK
NM_198150
AGCCTCGGCGTTTGTAGAAG
 461





ART1
NM_004314
TTCCTCCCTTAGAAGAACAC
 462





ART5
NM_001079536
GGGAGGAAACTTGTGAGACT
 463





ASAH2
NM_001143974
GAGCTAAGATATCTTAACCT
 464





ASAP2
NM_001135191
GGGAAGCGGATCCCGCAGGA
 465





ASB11
NM_001201583
AGGTTCTAATCTAACTGATT
 466





ASB11
NM_001201583
TAGTTTATTTAACACTGCTG
 467





ASB14
NM_001142733
ACATGTGGTTTAGCTCTTTT
 468





ASB15
NM_080928
GGGTTTTACCCCACAGTCAC
 469





ASB3
NM_145863
GGCGGGACTATAAAGCGCCC
 470





ASCC1
NM_001198798
ACTAGAAAAATGGAGAAGGT
 471





ASCL2
NM_005170
ACCCGTTTGGCCAATCGCGC
 472





ASCL4
NM_203436
CTAATCTCACCCAGGATATA
 473





ASF1B
NM_018154
CTCCCTCTCCGCAGCGTGTG
 474





ASH2L
NM_004674
AGGAAGCTAGATGGTTAGTG
 475





ASIC1
NM_020039
CCCCTCCTCGCGGCCGCTTT
 476





ASMT
NM_001171038
AGCACTCATTAATCGTCTTA
 477





ASMT
NM_004043
CACGGCCAGGCGCCCTCTCC
 478





ASMTL
NM_001173474
GGTCTCAGGGGAGATCAATG
 479





ASNA1
NM_004317
TTCCTCATTACTTGCCTTTT
 480





ASNSD1
NM_019048
GTTGAGATGCAGAAACGCTC
 481





ASPH
NM_001164751
TGGAGTTAGCTAGGACCAAC
 482





ASPH
NM_001164756
TCCAGTTTGTCTCGGTCCTT
 483





ASPM
NM_001206846
CGGCCGCCAATCGCTATCTG
 484





ASTN2
NM_198187
TGAGCCACGGCCCACGACTC
 485





ATAD2
NM_014109
GGACCTGAGCGGAGAGTCCT
 486





ATAD2
NM_014109
TCCTCCCATTTGTAGAGCGA
 487





ATAD3B
NM_031921
CTATGGCGTCACTGCCCTCG
 488





ATAD5
NM_024857
ATTCAAATTTCCAAACTCCC
 489





ATCAY
NM_033064
ATCTCCGAAAGCCACGCCAG
 490





ATF2
NM_001256093
GACGGAATCACCTGACTCGG
 491





ATF5
NM_001193646
AGCCTTTCCTTCCCACTCCT
 492





ATF5
NM_001290746
CCCACCCCTCAACTAACGGT
 493





ATF5
NM_012068
TTGAGTCTCATAAACCCACC
 494





ATF6B
NM_004381
CTTGGCGGTATGGCACTGTC
 495





ATG16L1
NM_017974
AGTAAGCAGTCAGGCGGAAA
 496





ATG16L2
NM_033388
ATCCCCGGCTTGTCCCAAGA
 497





ATG5
NM_001286106
GACGCCCAGATTCCGCGCTC
 498





ATG9A
NM_024085
CACAACAATCCCCGTCACTA
 499





ATP1A1
NM_001160234
ATTTCCAGAGACTTTCATTT
 500





ATP1A4
NM_001001734
AGAGTCAGCTTTGAATCACA
 501





ATP2C1
NM_001199184
CGCAGGCGCATTCGTGTTCA
 502





ATP2C1
NM_001001485
GTGGCCCGCCTTGTTCTTGC
 503





ATP5G3
NM_001002258
GTGGTTGTCGTTGTCCTTCC
 504





ATP5G3
NM_001689
TCTGTTTAGTCCTCTCTGCC
 505





ATP5S
NM_015684
GGCTAAAGAGCGCGGGTCCT
 506





ATP5SL
NM_001167867
GTGGCTAGTGGGGGCCAGGA
 507





ATP5SL
NM_001167867
TCTGTGAGGGTCGCAGGCGG
 508





ATP5SL
NM_001167871
CCTGTGAACCCAGCACTTTG
 509





ATP6AP2
NM_005765
GTAGGCAGCGATTGAAAAGT
 510





ATP6V1E1
NM_001039366
GGTAGGAGGAAGAAAAGATA
 511





ATP6V1E1
NM_001039366
TTCCTCTATCTGAAATTAGT
 512





ATP6V1F
NM_001198909
GTAAAGACAGGCCCGAACCA
 513





ATP6V1G2
NM_138282
AGCATAAAGGGTTGTGAATG
 514





ATP9B
NM_198531
GTAACGAGCGGCGGCGCGGA
 515





ATPAF2
NM_145691
GTAGTCTCCTCGCCGAGGCG
 516





ATXN10
NM_013236
AACACAGGTCCCCCTCCCCC
 517





ATXN1L
NM_001137675
CCTCCCTTCCCGGGGAGTCC
 518





ATXN7L1
NM_152749
CTGCTGCCCCTGGCGGCCGC
 519





AURKA
NM_003600
GCTGTTGCTTCACCGATAAA
 520





AURKB
NM_001284526
TCACGCTTGGCTTCCAGTTT
 521





AVIL
NM_006576
TGGTAATCCCCAGGCCAGCC
 522





AVL9
NM_015060
CAGGGCTGGGCAAGGCCGGG
 523





AVP
NM_000490
ACTGCTGACGGCTGGGGACC
 524





AWAT2
NM_001002254
AGTGGGCAGCTGGAAGGAAC
 525





AWAT2
NM_001002254
TCTGTGGAGGGGTGGTACAG
 526





B3GALNT1
NM_003781
GCCAAAATTAGACAACTTAG
 527





B3GALNT1
NM_003781
GTCACCTTGCATTCCGAGCA
 528





B3GALT1
NM_020981
TTAGGGTTTCAGCTGGTACT
 529





B3GAT3
NM_012200
CGAGATTCTGCACCTACCCG
 530





B4GALNT2
NM_001159387
CAGCGGAGGAGAAAAGTCCA
 531





B4GALNT2
NM_001159387
GGAGAGAGAAGCCCGATCAC
 532





B4GALNT2
NM_001159388
GTGTGGCTGAATCCTTCTAA
 533





BAD
NM_004322
CTCACACCTTGGGCGTGTGT
 534





BAG1
NM_001172415
GCAAAAGGACTTGGTGCTCT
 535





BAG6
NM_080702
ACCGTCCATAGCCCCTCTCG
 536





BAIAP2
NM_017451
GGGCGGTGATGCGGGCGCAA
 537





BAIAP2L1
NM_018842
TGCCCTGTCCGCCACAGGTG
 538





BAK1
NM_001188
TCAGGGATGGGAAAAGCAGT
 539





BAMBI
NM_012342
ATCCGCCCCGCAGCGGGGGG
 540





BATF
NM_006399
AAGTCCGTCTTCTGTCAACA
 541





BATF2
NM_138456
AGGAGGGAAGACCAAAGGCC
 542





BAX
NM_138764
TTGGACGGACGGCTGTTGGA
 543





BAZ1B
NM_032408
CTGCAACCCAACTACGCGAC
 544





BBS5
NM_152384
AAGCCCAGCTGTGTCCGCCA
 545





BCAN
NM_198427
GATGACGATGTTGCAGCTGG
 546





BCAP29
NM_001008405
CACGGACCCCGGTCAGGAAG
 547





BCAP31
NM_001256447
CGTCCGTCCGCTCCGCAGCC
 548





BCAR1
NM_001170716
CACCCACACAGAGATTCCCT
 549





BCAR1
NM_001170717
ATTTGCATGGAGAGCGGCGG
 550





BCAR3
NM_003567
ATGTCTCGGGGGGTTCCGCA
 551





BCHE
NM_000055
AGCACAGATTGAAGCTATAA
 552





BCKDHA
NM_001164783
AAGAAGAGGGCAACCTGACC
 553





BCKDHB
NM_000056
TTCTGCTCCTTGTGCGCATG
 554





BCL10
NM_003921
TGTGTGACCAAAACAGTAAC
 555





BCL2
NM_000633
CAGGCATGAATCTCTATCCA
 556





BCL2L12
NM_138639
TAGCTGATTAGAGAGCCTCT
 557





BCL2L15
NM_001010922
AAATACTTCCTCGACTTCTT
 558





BCLAF1
NM_001077441
AAGTCGCGTGGCTGGTCTCG
 559





BEND5
NM_024603
ATTGGCAGAACGGTGCTTTC
 560





BEND6
NM_152731
GAGGCTGCGACTCGGCGGCT
 561





BEST2
NM_017682
GGCAAGGGTCAGGACTGAAG
 562





BEST4
NM_153274
TACCTTGTCCAACTCTAGCC
 563





BFSP1
NM_001195
GAGCAGCGGCCCGCTTTGTG
 564





BICD2
NM_015250
CGGGCGGGCGCCGGGCATGA
 565





BID
NM_001244567
GTGGTCATTCTAGGTCCTCA
 566





BIRC2
NM_001166
TGAACCTCCGGGAAAGACGC
 567





BIRC6
NM_016252
GGACGCTGCGGACGCGGAAC
 568





BIVM
NM_017693
CCTGAGAGAGAGGAGCAGCG
 569





BLCAP
NM_001167820
ATTCGGGCTTGAAGATCTCG
 570





BLID
NM_001001786
TTACAATTCAGAAATCAACG
 571





BLK
NM_001715
ATCAGCATTAAATGGTAGAA
 572





BLK
NM_001715
TAGGGTACTGTAAAACACAT
 573





BLMH
NM_000386
TGGCTTCTCACAAGGCTTCC
 574





BLNK
NM_001258441
AATAATGAAACCTATTGGGC
 575





BLOC1S2
NM_001001342
TGAGTGTGTGGTGGCTCACC
 576





BLZF1
NM_003666
TCCCACGCCTCGTGCGACAG
 577





BMP4
NM_001202
TGGAGGGGAGGATGTGGGCG
 578





BMPR1A
NM_004329
GGGCGTCCGCGGGCCTTGCA
 579





BMX
NM_001721
AGTGGGTCCATCATACTCCC
 580





BOD1
NM_001159651
AGTTGTAGTTTCTCTCGGCT
 581





BOLA1
NM_016074
ACAGTTCCCATGAGCCCTCA
 582





BOLL
NM_197970
CCCTCTCGCCTTCTCTCAGA
 583





BOLL
NM_197970
GCGGAGCGAGGGCTCGGTTC
 584





BOP1
NM_015201
CCGCCCTCCCGCGTCACCCC
 585





BORA
NM_024808
TGATTGCCTCGGAGAGAGGA
 586





BPIFB6
NM_174897
ATGAGCACTGCCCTCTTCCA
 587





BPY2
NM_004678
AGTCACATCACCTAGGTGAT
 588





BPY2
NM_004678
ATATGTCACAATGCTCCATG
 589





BRAT1
NM_152743
AGCTAAATGACCAAGGGCTT
 590





BRD2
NM_001199455
TGTTTTAGACTGTGGGGCAT
 591





BRD2
NM_001199456
TCGCGGAAACGTACTTATTG
 592





BRI3BP
NM_080626
AAATGATGAGAAGCCGCACC
 593





BRINP3
NM_199051
AATCTGCAAAGAGAAGTAAA
 594





BRPF1
NM_004634
CCATCTTAGAGTGGAGTTTC
 595





BRPF3
NM_015695
TGCGGGCTCTCCCGCTGAAC
 596





BRPF3
NM_015695
TGGAGGTGGCGGGGGGAGGC
 597





BSDC1
NM_001143888
CCTAATGATGGCGCAGGGAG
 598





BTAF1
NM_003972
CGGTAAGCAGGGGTCCAAGA
 599





BTBD11
NM_001018072
CTGCAGCCTCGGTGTCCGCC
 600





BTBD3
NM_014962
ATAGGTGTCACTGTTTTGCT
 601





BTBD7
NM_001289133
CGGTGCGTTCGCTGGATCCA
 602





BTBD9
NM_052893
AGGAAGGTTCTCCAAGGAGT
 603





BTF3
NM_001037637
TGGGGCGCAGCCCGTACCTC
 604





BTK
NM_000061
AAGGGCGGGGACAGTTGAGG
 605





BTN1A1
NM_001732
AAGAACTGTAGAGAGGACTT
 606





BTN1A1
NM_001732
ATGACCAGAACACTTGCAGC
 607





BTN3A1
NM_001145008
GAAATATCAGCAGAACACAA
 608





BTNL3
NM_197975
ACTTGGAGGGACTTTGTTCT
 609





BTNL9
NM_152547
GGGTCACAGAAGGAGGGGAA
 610





BUD31
NM_003910
ATTCTATACAGGCATTGCTG
 611





BVES
NM_007073
AGCTGCTTGTTCTACGCGCC
 612





BVES
NM_147147
CGCAGAGCCTGCGTGCAGCC
 613





BZW2
NM_001159767
ATGTGGCGAAATATTTGAAC
 614





C19orf11
NM_032024
TGACTTCTAGTCCTCGCTGC
 615





C10orf120
NM_001010912
TAAGACATTGAATGATCCCC
 616





C10orf128
NM_001288743
AATACCCCAGCATGTACAAT
 617





C10orf128
NM_001288743
TAATCACAGCCAGCTTCTGG
 618





C10orf90
NM_001004298
CTCTTTGATGTTTACATTTG
 619





C11orf54
NM_001286071
GGCTGGTTATCGGGAGTTGG
 620





C11orf97
NM_001190462
TTTGGTGCGCGGAATACCTA
 621





C12orf40
NM_001031748
TGAAAGCCTAAATTTTTGAC
 622





C12orf65
NM_152269
GGCTGTCTCCGCCTCCTTCC
 623





C12orf74
NM_001178097
AGGTTGTGAGATGCATTCTT
 624





C14orf159
NM_001102367
TTCAAGCCAGATAGCACCTG
 625





C14orf180
NM_001286399
TCTGGTCTTATCTGAAATCA
 626





C15orf41
NM_032499
TAATCTTGAGGTTAAGGTTG
 627





C15orf57
NM_001289132
AAGGAATCAACCTGGCCCTC
 628





C15orf57
NM_001289132
GAGGGGAGGGGCAATGCTCA
 629





C16orf45
NM_033201
ACACAAAGGAAGTGAGAACA
 630





C16orf70
NM_025187
GCCAGCGCGAGGGAGGAGCC
 631





C16orf74
NM_206967
CGGGTCCTGGCACGCTCCCC
 632





C16orf74
NM_206967
GCGCCTGGCCCGTGCAATCC
 633





C16orf95
NM_001195125
GATGAGTGGCTCCAGTGGCC
 634





C17orf100
NM_001105520
AGAGCAAAAGCCCAGAGACG
 635





C17orf105
NM_001136483
TGTGTTTTTAATGCTAACCT
 636





C17orf50
NM_145272
TGGAAAAGGAAATTATTCCT
 637





C17orf51
NM_001113434
TGAGGGGACGGGGCGGGGCT
 638





C17orf80
NM_001100621
GCGAGCGCTTCTGCCACCCC
 639





C17orf96
NM_001130677
GTGCGGAATGGGGACGGGGG
 640





C18orf25
NM_145055
TGACGGTCTCAACAGAAGGA
 641





C18orf63
NM_001174123
GCAAGGCTTGCAGGGCATGC
 642





C19orf38
NM_001136482
ATCAGACCCGCGCACCTCTC
 643





Cl9orf44
NM_032207
GGGGGTGTGCACTGCGCTTC
 644





C19orf70
NM_205767
CCCAGCGCCGGAGCGTCGCC
 645





C1orf111
NM_182581
TCTACTACATTCTTCTCTCT
 646





C1orf123
NM_017887
TGCGAAAAGCCCAGTGGGCC
 647





C1orf127
NM_001170754
CTTCTCCCCATCCCTCTGCA
 648





C1orf131
NM_152379
GCAGAGGGTGCCGCCGCCCT
 649





C1orf141
NM_001276352
TTTTAGTGACAAAAGTCTGT
 650





C1orf159
NM_017891
GGCTGCACCAGGTTTGGCCG
 651





C1orf185
NM_001136508
GATGATCCCTAGGGAAACCT
 652





C1orf198
NM_001136495
GCTGTTGTAAGGATTAAATG
 653





C1orf52
NM_198077
GCTGCTTTTGCTCATTTCTG
 654





C1orf53
NM_001024594
GGCCCGCTGCGGAAATAAAA
 655





C1orf54
NM_024579
CCTCTCAATCTGGGCAGCTC
 656





C1QA
NM_015991
AAGCAGACTTCAGCAAGACT
 657





C1QL3
NM_001010908
AGTGGGGAAATCGGGGATTT
 658





C1QTNF3
NM_181435
ACTTCAACAGAAACGTGCCA
 659





C1QTNF4
NM_031909
GTCCTCTGGGTCTAGAGAGC
 660





C1QTNF5
NM_001278431
AGGGGGAGAGAGACTTGAGC
 661





C1QTNF6
NM_182486
ATTTCCTTTGCTTAACTCTT
 662





C1RL
NM_016546
TTAATTTTTGCCATGTGTGT
 663





C20orf194
NM_001009984
ACCCCACTTCTTAAGCTGCG
 664





C20orf194
NM_001009984
GCTCCCAACATCCGGTCCGG
 665





C20orf196
NM_152504
GGCTTGTCGATAAATGTGCT
 666





C20orf202
NM_001009612
CATCACATATTCTTGGCTTC
 667





C21orf140
NM_001282537
CTGTAAGAAAGCCCTTTATG
 668





C2CD2L
NM_001290474
GAGGTTCCGGGGTTGAAAAT
 669





C2CD4B
NM_001007595
AGGCACCTTGTGGTCAGCTC
 670





C2CD4C
NM_001136263
TGGCAGGGAGGAGCCTCGCC
 671





C2orf15
NM_144706
GGAGACGGGACGCTCGGCTC
 672





C2orf57
NM_152614
CAGTTTGTTGCCAACTTTGC
 673





C2orf68
NM_001013649
AAAACAAAAGCCCTCCGTCC
 674





C2orf81
NM_001145054
ATGTCACCACCAAGGGATCA
 675





C2orf83
NM_001162483
TGAGGCAGGCAGATCACTTG
 676





C3orf30
NM_152539
GAGTACGCCATGTCCTGAGA
 677





C3orf38
NM_173824
TTCTGCGGCCACTTCTGAGT
 678





C4BPB
NM_001017366
ATTTGGTTAACTCTGGACTC
 679





C4orf3
NM_001170330
TCACACATGCTGGAGTGCAG
 680





C5orf38
NM_178569
TGGCCGGGGACGGTGGGAGC
 681





C5orf67
NM_001287053
AAGTCCTTGCCCTCATTCCA
 682





C6orf10
NM_006781
AGGCAGAGGATCAAAAGGCT
 683





C6orf48
NM_001287484
TTCTGTGTGGACAAACAATG
 684





C7
NM_000587
CACAGATTAAGTACAAGGTC
 685





C7orf50
NM_001134396
GCCATTAGCCGGCGGAGAGA
 686





C8A
NM_000562
TTTGAAAAACAATATCCGTG
 687





C8B
NM_001278544
TTTTGCACCAACCTAGTCAG
 688





C8G
NM_000606
TCAACTCGGACTTTGTACAT
 689





C8orf22
NM_001256596
CTACATAAACCAGTTTCTTC
 690





C8orf22
NM_001256598
GCTTGCTTGCTGCCTCTGGC
 691





C8orf44-
NM_001204173
ACAAGTACCGTGAGGCCAAG
 692


SGK3








C8orf74
NM_001040032
CTGGTCACCTGCACCTGCTC
 693





C8orf88
NM_001190972
AGCGCGCGCCACCCTTTTAA
 694





C8orf89
NM_001243237
CTACAAGACAATGGAATACT
 695





C9orf131
NM_203299
GAATTATGCTTCAGGCATTG
 696





C9orf152
NM_001012993
GCCTCTGGATGTGTGCCCCG
 697





C9orf3
NM_001193329
CATGAAAGAAAGCTGCATTA
 698





C9orf57
NM_001128618
GTGCTGCTTTAAAGACTATA
 699





C9orf64
NM_032307
AACTCACGGCCGGTGAACGC
 700





C9orf72
NM_018325
CCAGAGCTTGCTACAGGCTG
 701





CA1
NM_001164830
AACATGAGTGAAACAGGACT
 702





CA1
NM_001164830
ACTCATGTTAGTAGAAGATA
 703





CA11
NM_001217
TCATAGCGGCAAACACTCCT
 704





CAAP1
NM_001167575
AAAACAAACTCTGACTAGAC
 705





CAB39
NM_016289
TTGGCTTCTGCTTTTCTCTG
 706





CAB39L
NM_001287339
AGGCACAGGGAAAATCCAGC
 707





CABIN1
NM_001201429
AGCAGCCCGCGGAGAGCGAG
 708





CABS1
NM_033122
CAGCCTAGAAACAACCTCCA
 709





CABYR
NM_138644
ACCCACCGAGGCCTCAGATT
 710





CACNA1F
NM_001256790
TGTCATTTTCCAGTAGTATA
 711





CACNA1H
NM_021098
CTCGCTGCCTCACCGGTCCC
 712





CACNA1I
NM_021096
CAGCCCCACCTGAGCCCCAC
 713





CACNA1S
NM_000069
TTTCAAGCCTGGGGCAACAG
 714





CACNB2
NM_201590
AGAACAACAGGTTGCATAAC
 715





CACNG2
NM_006078
TTAAGGCATCTCACTTGGGG
 716





CACNG5
NM_145811
CTTTACCCATCCATTGAGCC
 717





CACNG5
NM_145811
GCACCTCTGTTGCAGTGACC
 718





CACYBP
NM_001007214
ACAGTCCATGACTGAAAGGA
 719





CADM2
NM_001167674
AGAAGCCTGTTTGTTTTTCC
 720





CALCB
NM_000728
AGTGCGAGCTATGACGCAAT
 721





CALCOCO2
NM_001261393
GGACTTAGGAGAGCCATCAA
 722





CALHM1
NM_001001412
TGCTAGAGACCAGCTTTCTG
 723





CALN1
NM_001017440
GCGCAACCTGAGGAACGCCT
 724





CAMK2G
NM_001222
GGAGGCCCCTCCCCGGGGGC
 725





CAMKK1
NM_172206
AGCTCACCCAGCAGGTAGTG
 726





CAMTA2
NM_015099
ACTCCACGTGTGCTGACCCC
 727





CAPN1
NM_001198868
GCCCATGTGTCACCTTACCC
 728





CAPN2
NM_001748
ATCCTAGCCTTCTTCCCTAT
 729





CAPN3
NM_173088
GGCAGGACTGTGATAGGAGA
 730





CAPN7
NM_014296
CGCCCGGGATTGAGCAGCTG
 731





CAPN9
NM_006615
CACCTCTGCTTAGTGCGCTC
 732





CAPS2
NM_001286548
GCAAGCCTTGTCCCGCCTCC
 733





CAPZA3
NM_033328
TTCGAAGAAGACTGTTCAGG
 734





CARD14
NM_024110
AAGGAAGCTTCAATAGTTAC
 735





CARD19
NM_032310
GCCTATCCCAGGACGGCAAG
 736





CARHSP1
NM_001278260
GAACGCAGAGCGCGGGACGT
 737





CARHSP1
NM_001278263
GCCGCGCCAGCTGTGGCTCG
 738





CARMIL1
NM_017640
AACGCAGGAGGAAGAGGAGA
 739





CASP12
NM_001191016
CAACCCCGGAAGTGTGATTT
 740





CASP8
NM_033358
AAACGACAACTCACAGTGCC
 741





CASS4
NM_001164116
GGCCTAGTGGCCTCTCATCA
 742





CATSPERG
NM_021185
GCGCAACCCCTAAGGCACCG
 743





CBFB
NM_001755
GGGTGGCGCATGCGCGGCGT
 744





CBL
NM_005188
CTGCTCGAAGCCGGTGGCCC
 745





CBR3
NM_001236
CTGGACTGAAGAAATTATTT
 746





CBX1
NM_006807
GCAGCGCCCAAGAGCCCGAG
 747





CBX1
NM_001127228
CCCATATGTTCTAATATTCT
 748





CBY1
NM_015373
TGCTATCCCGAGGTGATTCA
 749





CCDC105
NM_173482
TGGAAGAAGGGCCATGTTGC
 750





CCDC110
NM_001145411
GGACCCACCGGGACCCCACC
 751





CCDC114
NM_144577
GGGAGGGAGAGTGTCTGTCC
 752





CCDC120
NM_001163321
TCACCCCTGGGGGCAGTTTC
 753





CCDC144A
NM_014695
TTGGCTTGGCCTTACCCACG
 754





CCDC148
NM_138803
GGCGGCGTGCTGACGTTCCC
 755





CCDC149
NM_173463
ATGTTAGTAAGGAGATGCTG
 756





CCDC153
NM_001145018
GGACTGAGGGCTGGAAGGTT
 757





CCDC155
NM_144688
GGTGGCTGCGCCCGCCATGC
 758





CCDC159
NM_001080503
GTGCAGATCTACGACCCGAT
 759





CCDC174
NM_016474
GTGTGGGCGCCATCTTGAGA
 760





CCDC175
NM_001164399
AACGCAATGGAAATTGAAAG
 761





CCDC18
NM_206886
GTGGGGGAAGCCATGGGAAC
 762





CCDC184
NM_001013635
GGCTCTGGAGTCTGGACTAG
 763





CCDC27
NM_152492
CAATATTGAAGGTTGCCTTC
 764





CCDC33
NM_001287181
TCCTTGGCCACAGAATTGTA
 765





CCDC38
NM_182496
ACATCTGCCCACAGGTTCTG
 766





CCDC43
NM_144609
AGCGCGTCTTCGCATACGTG
 767





CCDC57
NM_198082
CTTCGATCTGCGGCGGTGGT
 768





CCDC68
NM_001143829
TGAAAACAACTACACTTCTT
 769





CCDC68
NM_025214
TGTACAGGCGGGTGGGGGGA
 770





CCDC80
NM_199512
AATTCTCAGATTTCTGCATC
 771





CCDC90B
NM_021825
AATTCGGCTTCCCTAAAGAA
 772





CCK
NM_000729
TTAGAAAGTGGAGCAGCAAC
 773





CCL13
NM_005408
TGAATCTGCTGAGCTGGAGC
 774





CCL14
NM_032963
AAATGGTCTTCCATCCCCAG
 775





CCL15
NM_032965
GGTCTGCCAGCACTAGGGAG
 776





CCL2
NM_002982
CCTACTTCCTGGAAATCCAC
 777





CCL21
NM_002989
TGGGAATAGAAGGAAGGCTC
 778





CCL26
NM_006072
CTGGGTGGACAATGAATTCT
 779





CCL28
NM_148672
ATGTTTCTTTCCTTAAGACC
 780





CCL3L3
NM_021006
TGCTGAGTGTTGCACAACTC
 781





CCL5
NM_002985
AAGAAAACTGAAATAGCCTC
 782





CCNA2
NM_001237
TTAAAATAATCGGAAGCGTC
 783





CCND3
NM_001136017
TTGCCAACGCCGGGAGGCAG
 784





CCND3
NM_001760
GTGGGCCTCCTACCCACCCA
 785





CCNG1
NM_004060
GGAATTTGAGGCCAGATAAC
 786





CCNJ
NM_001134376
TGCGAAGCCGGCCTGATCGC
 787





CCNK
NM_001099402
CAGAGGGAGGAGCCAGCCAC
 788





CCRL2
NM_003965
TGCCGCTCTGAGTGGTAGCA
 789





CCRL2
NM_003965
TGGCATGTGACACTCTGAGT
 790





CCS
NM_005125
GGCCCTGCTTCGTCAGCCAC
 791





CCSER1
NM_001145065
GAGCGCGAGATCCACCTCCC
 792





CCSER2
NM_001284243
ACATAGCTACTGACTTAGGA
 793





CCSER2
NM_018999
CAAGGTCAGTGGAGGGGGCG
 794





CCT5
NM_012073
AGACACTTAGTGGAAATCTT
 795





CCT6B
NM_001193530
AGCAGCGTCTGAGCACCAGT
 796





CCZ1
NM_015622
CGGCCAGGAAACAGCCACCC
 797





CD101
NM_001256111
GGCTCACAGTATGTGTCATT
 798





CD14
NM_001174105
GGAGTAGAGTGCCATGATCT
 799





CD160
NM_007053
AGAAATAGACTAGGGTGCTG
 800





CD1A
NM_001763
AGGTGCTAAGAGAGACTGTT
 801





CD1C
NM_001765
GAATGGAGTGATGAGAAGAG
 802





CD200R1
NM_138806
ATTGGGAAATTTACAAGGAT
 803





CD200R1
NM_138806
CTGTGTACAGCAGAAGTGAG
 804





CD200R1L
NM_001199215
CAAAGGACACTTTGGAACAA
 805





CD300E
NM_181449
CAGATTTTCCTGTTTGTGCT
 806





CD300LG
NM_001168324
GTGGGCGCTCAGAAAAGGGA
 807





CD33
NM_001772
GAGGGTCAATCTGTGTGGAG
 808





CD3D
NM_000732
CAATAGGGACGCTAAAGTTC
 809





CD3D
NM_000732
GCTGGCAGAGAATATGGAAA
 810





CD3G
NM_000073
TGCCTTTTGTTTTTCCGTTA
 811





CD44
NM_001202557
CTCTCTCCAGCTCCTCTCCC
 812





CD53
NM_001040033
TACCCAGTGTGAGGAGATCT
 813





CD5L
NM_005894
CCCCTTTGCTATGTAAACAG
 814





CD63
NM_001257389
CGTCTGTGATAGCGAGGGCT
 815





CD63
NM_001780
CCTCCGTGCCAACTCGGGGT
 816





CD72
NM_001782
TGGGTTTAAGATGCATGGAG
 817





CD79A
NM_001783
CCTGCCCATGACACATGCCC
 818





CD80
NM_005191
CATGAAACACCACGAGCACC
 819





CD84
NM_001184879
TATTGCCAGCACCCAGAAGA
 820





CD8A
NM_171827
CTTAAACAGACCAGCATTCC
 821





CDC20B
NM_001145734
CTCTGACGACACCGCGGCGC
 822





CDC40
NM_015891
CTCATATTCTTTAGTCAACT
 823





CDC42BPA
NM_003607
CTCCCCCTTCTTCACACCCC
 824





CDC42EP3
NM_006449
AGAAACGCCTCCCTCTGGGT
 825





CDC45
NM_003504
CCTCAGAGGTGACGCTTCTT
 826





CDC7
NM_001134420
GTTTCCGACGGTTTGTTCCA
 827





CDCA5
NM_080668
TCCGCTGCCACGTCTCTTCC
 828





CDCP1
NM_022842
GTCCCTACTACTCCCCATTG
 829





CDH18
NM_001167667
AAATTCCACAGCAAGCAAAA
 830





CDH19
NM_021153
AATTCTCCCTTTATCAACTC
 831





CDH2
NM_001792
TGGGTGCAGCACGCACGACC
 832





CDH4
NM_001252339
GGACAGGGCTATTGTCTTGG
 833





CDH6
NM_004932
TGGAACACTCCTTCAGCCCC
 834





CDIP1
NM_001199055
GGCTGAGCACGTGGGATGGT
 835





CDK10
NM_052988
CCTTATTTTAGGGTGAAGCC
 836





CDK11A
NM_033529
GTGAGCTGCACTTCCGACTT
 837





CDK16
NM_001170460
AGTGTACACCAGCTCTTCTC
 838





CDK17
NM_001170464
TCGGAGCGGGCAGTTTCCCG
 839





CDK2
NM_052827
AGAGACATAGGTAGGAAACT
 840





CDK2AP1
NM_001270434
GGGTTCTCCAGTGCTCCTCC
 841





CDK2AP2
NM_005851
GCCACGTACCGTTCTTCCTG
 842





CDK5RAP3
NM_176096
ACGCAGATTGAGACGTCTGC
 843





CDKL5
NM_001037343
AAGCCTTCACTGTGACAGAA
 844





CDS1
NM_001263
GGCCTGAGAAAAGGTGGGAG
 845





CDYL
NM_001143970
ACAGACGGCACCTGGAAAAT
 846





CDYL
NM_004824
GGGGAGCAGTGGGCTCCGCT
 847





CEACAM21
NM_001288773
GGCAGCAAGACCCTCCCCAC
 848





CEACAM21
NM_001288773
TCTAAGAGTGCAAATGTCAG
 849





CEACAM7
NM_001291485
GCTGATGGACCCCTGTCCCC
 850





CELA2A
NM_033440
GGTGACATTTGGGAGGAAAT
 851





CELF1
NM_006560
TCTTTGTCTCCGATCCCTAC
 852





CELF5
NM_001172673
GCCCGCGCCCGCCCCGGCAT
 853





CELF5
NM_001172673
TCAGTTTCCCCCCGCGGCCC
 854





CENPA
NM_001042426
AATATAGCGGCGATGATAGG
 855





CENPL
NM_001127181
GACTGTTACTCCTTGTTTTC
 856





CENPM
NM_024053
TTCCACGCTCCACAGTAAGC
 857





CENPN
NM_018455
ATCTAGCAATTGAGAATTTG
 858





CEP152
NM_014985
GGATTCGAGAGCCAATTACG
 859





CEP164
NM_001271933
AAGTGGATTGAAAGTGTAGA
 860





CEP290
NM_025114
AGTCATGGTCTACCTCGTTC
 861





CEP44
NM_001040157
CAAACTTTACTTGTCCACAC
 862





CEP63
NM_025180
CAAATGAACTCACCCACATC
 863





CEP76
NM_024899
AGGCCCGTCCAGCTAACTGC
 864





CEPT1
NM_001007794
AGTTCTGGGTTCAGATACTT
 865





CERS1
NM_001290265
GGTCTGCACAGCGGGCTACT
 866





CERS1
NM_001290265
TCCCAGGCATCTTCTTCTGC
 867





CERS1
NM_021267
AGAAACCCAGGCGCGGGGGC
 868





CES1
NM_001266
GCCCAACTACTTGTTACATA
 869





CES2
NM_198061
CCCCAGAGCGCTGGTAGATG
 870





CETN1
NM_004066
GCGAGAATCCGCTGTCCCCT
 871





CFAP100
NM_182628
ATGTCCTCCCTGACGCCGCC
 872





CFAP43
NM_025145
GGTCTGTTTACCAGCAACAT
 873





CFAP43
NM_025145
TTGGCTTGCCGCTCACCCAT
 874





CFAP52
NM_001080556
TGCTATTTCTCTGGAAATTT
 875





CFAP52
NM_001080556
TGGGGACTGGAAGAGAGATG
 876





CFAP58
NM_001008723
GGGCGGTGCCCCTGAGAGGC
 877





CFC1
NM_032545
CTTGTACTGGGAGATGGTGA
 878





CFDP1
NM_006324
ATGCTGGAACTTGTAGTCTT
 879





CFHR3
NM_021023
TTTGATTGCCTGATATGTAC
 880





CGGBP1
NM_001195308
TGTCGCCCCTACGGCCCACT
 881





CHADL
NM_138481
CAGGCAAGCCAGGCTTCCCC
 882





CHAF1B
NM_005441
CCGCCCACTCATAGACGCCA
 883





CHAT
NM_020986
CTGGAAAAGAGGGTCTATCC
 884





CHD2
NM_001042572
AGAGACAGATCCTCCATCCC
 885





CHD4
NM_001273
GGGGGGGTTGGAGTTGGTTG
 886





CHD8
NM_020920
TAGGTTGAGAGCGCACGGAG
 887





CHFR
NM_018223
GGCCATCTTTGATCCTGACC
 888





CHID1
NM_001142676
GGAGCTGGTTATCAGGTTCC
 889





CHL1
NM_006614
CCCACCACGCCCTTAAATGA
 890





CHML
NM_001821
ATGCAACAATGACAATCCAT
 891





CHML
NM_001821
TTTAAGACATGCTTTAGTAG
 892





CHMP2A
NM_014453
CTGGCTTGGGTCACTCGGGC
 893





CHMP3
NM_016079
TACGAAAAGCACCGAATCCG
 894





CHMP4A
NM_014169
ATAGAAACTCCCCACACTGT
 895





CHMP4B
NM_176812
CTACAGCAAAAGACGCGCCG
 896





CHMP4B
NM_176812
GGCCGCGCCTCAAATCTAAT
 897





CHMP4C
NM_152284
GAAAAGACCGACAAAGACTG
 898





CHODL
NM_024944
ACTTCGTCTCTCCAGCCATG
 899





CHP1
NM_007236
CATCGCCCCTTTAAGGCCGG
 900





CHP2
NM_022097
GCACGGCTGGGATTCCAACA
 901





CHRNA10
NM_020402
GGCAGAGGCCAGAAGAGGCA
 902





CHRNB2
NM_000748
GGCAGGACCTGCAGCATGGT
 903





CHST1
NM_003654
CGTGGCTGCCCCCGGCGGGT
 904





CHST1
NM_003654
GGCTGCGGAGTGGGTGTCCA
 905





CHST8
NM_001127895
TCGCTGGAGCGATCCCCGCC
 906





CHSY1
NM_014918
GCGCAAAAGTGAATGAGGGG
 907





CIAO1
NM_004804
ACCCGGGGCCGATGCACTTC
 908





CIB3
NM_054113
AGGGAGATTTGCCCAGACAC
 909





CIDEA
NM_001279
GCGGGAGCCAGGACGACCGG
 910





CIDEA
NM_001279
GGATCGCGACTTCGCGCTCT
 911





CILP2
NM_153221
GGACTGAGTGGGCTCGGGGA
 912





CISD2
NM_001008388
ACGCTCGCGGCGGACTGCCG
 913





CITED2
NM_001168388
ATGTGCTGCTGAGCCGGTCC
 914





CKAP2L
NM_152515
TGCACGTTCTTCCAATCAAA
 915





CLASP1
NM_001142274
ACGCTCTCTATGGTGTACCC
 916





CLASP2
NM_001207044
ATTAACTGCTCTCATTATGC
 917





CLCN1
NM_000083
ACTGCCACATCTGATCTGCT
 918





CLDN1
NM_021101
TGAGCCGCCCTGAAACCGCC
 919





CLDN19
NM_001185117
AAAGCTCATGCCCAGCCCCC
 920





CLDN23
NM_194284
AGGTGAGCGCAGGAAGCGGC
 921





CLDN5
NM_001130861
CCGGGCATTCTTCTGCACAA
 922





CLDN8
NM_199328
TAAACATACTGCTGTCTTCT
 923





CLEC11A
NM_002975
GATCTTTGGGCTACAGCAGA
 924





CLEC11A
NM_002975
GGAGACCCAAGGCGGGATCT
 925





CLEC12A
NM_001207010
AAATGCCAGAGGTTCAGCCT
 926





CLEC12A
NM_201623
AGACATAGTGTAGGATTTAT
 927





CLEC17A
NM_001204118
AGGAATAATGACAACTGGCC
 928





CLEC17A
NM_001204118
TTCTGTGCGTGAATCCAAAC
 929





CLEC4D
NM_080387
GGTTTCTACTAACTGTTGTT
 930





CLIC3
NM_004669
GCTTCATCTGCCCGCCTAGG
 931





CLIC5
NM_001256023
TGGTCCTGGCAAAGCCACCA
 932





CLIP3
NM_015526
GGCCAGAGGCGGCGACTGAA
 933





CLK1
NM_001162407
TCATGCACGGGGCGAGCAGG
 934





CLN3
NM_001286110
GAGCCGTGACCTTAGATCAG
 935





CLNK
NM_052964
GCAATACGTGAAGCTTTCAG
 936





CLNS1A
NM_001293
GGAGGTCGGCTAAGAACGTG
 937





CLPTM1
NM_001282176
ACTGACTGGATAAGATATCC
 938





CLRN2
NM_001079827
ACACACTCCGCTACATAGTC
 939





CLVS1
NM_173519
TGTGTGGGGAGTGATGACGC
 940





CLVS2
NM_001010852
GGAGGCAATTTTGATGTAGA
 941





CMSS1
NM_001167924
CTTAGGAACAGATGCCCAGA
 942





CMSS1
NM_032359
TCCAAACTGCTTCTGCCTGT
 943





CMTM7
NM_138410
CCTGGGATTTTGTGTGGGTG
 944





CMTR2
NM_018348
GACGTGCTGGTTCCGCTCAC
 945





CNBP
NM_001127196
GATTTCCACCCAGTCTGGCC
 946





CNDP2
NM_001168499
CTTAGTCCAGAAACAGCCAA
 947





CNFN
NM_032488
ATCAGACCGGCTTGGCTCCC
 948





CNGA2
NM_005140
TCCCAAACTCAGTCCTTCAA
 949





CNIH3
NM_152495
TGGCTGCAGCAGTGGGTTTC
 950





CNN3
NM_001286056
ACGCCTCTCATCTCTTTCCC
 951





CNNM4
NM_020184
CGCCGCGCGAGAGCCGCCAG
 952





CNOT1
NM_001265612
CAATCACCGACAGGTGCCCG
 953





CNPPD1
NM_015680
TCCGCGAGGTGAGCGTCGCA
 954





CNPY1
NM_001103176
CGGCCGGAGGACTGGAAGCC
 955





CNTD1
NM_173478
AACATGGCGTCTTCGGGAGC
 956





CNTN4
NM_175613
ATGAAATGAGCATATCCTAT
 957





CNTN5
NM_001243271
ACAGCGCGGGCGGCCGGGGA
 958





CNTN6
NM_014461
CCAGTAACTCCTATTAGTGA
 959





CNTNAP2
NM_014141
GCGGCGTCTCCTGCTCTCCG
 960





CNTROB
NM_053051
GCCGAGCGAGAACCCCCCTA
 961





COA4
NM_016565
TCGAGATGGCGGCGCCTTTG
 962





COL18A1
NM_030582
AGGCACCAGCCTTGGAATCA
 963





COL28A1
NM_001037763
GGGATCAGTAAGCAATTTAA
 964





COL4A1
NM_001845
AGCGCGGAGCCCTGGTGTCC
 965





COL5A2
NM_000393
AGTTAAAGGGTGTGTGTCTG
 966





COL6A5
NM_001278298
TAACGCACCCCTGATGCTAG
 967





COL9A1
NM_001851
GAAATTCACCAGAAAGATCC
 968





COLEC11
NM_001255988
TCCACTTGGTTTCCAACAGC
 969





COLGALT2
NM_015101
TAGAACTCTACTCAGTCAAT
 970





COLQ
NM_005677
ACAGTTTAATGGGATATGGT
 971





COMMD1
NM_152516
TCTGCAACACCCATCCCCTT
 972





COMMD6
NM_203497
GAGAAGCGCTAATTAAATTT
 973





COMMD7
NM_053041
TCAGTTTCTTCCACTCCAGA
 974





COMT
NM_001135161
GGAACATCAGTGGCTCCTTT
 975





COMT
NM_001135162
AGAGTCTTGCTCTGTCGCCC
 976





COMT
NM_001135162
TCTGAGGCGCTAAGAGTCCC
 977





COMTD1
NM_144589
CAGGGGCGCAGTTCCCGGCG
 978





COPS3
NM_001199125
CTGTCAAGCAAAGCGCCCGG
 979





COQ10A
NM_144576
GGTCACAGGACCCGATAGGT
 980





COQ10A
NM_001099337
AGAACTTAGAGGGCCAGGCA
 981





COQ6
NM_182480
GTATAAAGTCCGAGAGGTTC
 982





COQ8B
NM_001142555
CCTGGAATTAAGGTGGGCAT
 983





CORO1C
NM_001105237
AAGTGGAGCCCAAGACCAGC
 984





CORO6
NM_032854
GAAGAAAGCTCCCTGCTTCT
 985





COX7A1
NM_001864
GTGCAGCACAGTTGTCCTAA
 986





COX7A2
NM_001865
ACTAGTTTTCTTTGATAGCC
 987





COX7A2
NM_001865
GATGAAGTCAATGTGAGACC
 988





COX8A
NM_004074
CGAGTTATGTTCCGCCTCCA
 989





CPA2
NM_001869
TTGTTATCTTATCCTAGGAA
 990





CPD
NM_001199775
TGGGCTCCAGTGTCCCTCCG
 991





CPE
NM_001873
CAGTGACGTGGGTGGGTCAT
 992





CPEB3
NM_001178137
ATACAGATTCTGAGGGGAAA
 993





CPED1
NM_001105533
TTCAGACTCCAGATATACTT
 994





CPNE1
NM_003915
TCAAGATCACCACATGAGGC
 995





CPNE4
NM_130808
TTAGTTGTCTAGTTTGTCTA
 996





CPNE6
NM_006032
CACATGCACCCACGACTCAC
 997





CPNE7
NM_153636
ATTAGAAGCTGTCTCCTCCC
 998





CPSF6
NM_007007
AAAAATTGGCCCCCACTCCC
 999





CPSF7
NM_001136040
GTGCCCGCGCAGCCGGTTTC
1000





CPSF7
NM_024811
CCGCCACTTCCGGCATGCGC
1001





CPT1B
NM_152245
ATGAAGACGACCCTGAGGTG
1002





CPXM2
NM_198148
CTGATTTACTTTAGGACCCT
1003





CRACR2B
NM_001286606
GGAGATCTGATCCCAAGTGA
1004





CRAT
NM_001257363
GGGCGAGTCATTGAGACCTG
1005





CRB2
NM_173689
GTCAGGAGGGAGAAACCAGT
1006





CRCT1
NM_019060
AGCATTGTAGGTGGTGCATG
1007





CREB3L2
NM_194071
CACTCCCCGGCTACATTCCA
1008





CREBRF
NM_001168393
ACGTGACAGGGGTGCCCGGC
1009





CREG2
NM_153836
GTCCAGGCTCGCAGAAGACC
1010





CRIP1
NM_001311
CTTTGCATTTTAGTGATGTT
1011





CRISP1
NM_001205220
ATATGTTCAGTGATTCTTTC
1012





CRISP3
NM_006061
TTATTTGGTGATTCCTCAAA
1013





CRTAC1
NM_018058
GTAACCTTCAGGCGGCAGCG
1014





CRTC2
NM_181715
ATTAGCCCTGAGACTACGAA
1015





CRTC2
NM_181715
TTCCCAGCTTGCACCTCTCA
1016





CRY1
NM_004075
GCGCTCGGCGATTCCTCCCG
1017





CRYGN
NM_144727
AGTGCAGCCCGCCCTGCCCG
1018





CRYL1
NM_015974
TGCTGACAGTCACAAGCGCG
1019





CS
NM_004077
ACAACTGCTGTCAAGGGCTA
1020





CS
NM_004077
CCCTTAATTAGCCCTAATCC
1021





CSDC2
NM_014460
ACGCAGCTGAGCCTCTCACC
1022





CSF1R
NM_001288705
CCCTTCTAAAGCCATCTTCA
1023





CSF2RA
NM_001161532
TGAACTCACGGAGCAATTAC
1024





CSGALNACT1
NM_001130518
CAGGGGCAGGGCAGGTCTGG
1025





CSGALNACT1
NM_001130518
CCCTGCAAGGCGCAATCTCC
1026





CSGALNACT2
NM_018590
CACTCTGCTGTCTCCACAAA
1027





CSH1
NM_001317
GACAAGTTGGGTGGAGTCTG
1028





CSMD3
NM_198123
TGGAGTTTATCAGAGAGCAG
1029





CSNK2B
NM_001282385
CCAGGGGACTGGCCTATCCT
1030





CSPG5
NM_001206945
AACATATTTTACTTGGTCCC
1031





CSPG5
NM_001206945
TCATAGTTTCATGCTGCCTC
1032





CSRNP3
NM_001172173
CAAAAAATAGCTCCCAACTA
1033





CST11
NM_080830
TCAGCTGCTGATGAAGGGGG
1034





CST9
NM_001008693
TCATCTCCTGTTTAGGGGAG
1035





CST9L
NM_080610
TCTTCGACGGGGTGAAGGAG
1036





CSTF2
NM_001325
GGAGTGAGAATATAGCCCTC
1037





CSTL1
NM_138283
GGGCATTCATGGGCTTTTGG
1038





CT47A1
NM_001080146
ATAGTGTTGCTCTGTTGCCC
1039





CT47A7
NM_001080140
CTTTGTCCAATGAATGATCA
1040





CT47A7
NM_001080140
TGAGTTGTCCTAGAGCTTAA
1041





CT83
NM_001017978
GGGATTTCTGGGAAGCCGAA
1042





CTAGE4
NM_198495
TTGTTACACTTCACATCCTG
1043





CTCFL
NM_001269051
GGTATCTCAGTGCCTCCTGT
1044





CTH
NM_001190463
TCCGCTTTGTGCACTGGGTG
1045





CTLA4
NM_005214
TACATTTTCCATCCATGGAT
1046





CTNNA2
NM_001282600
GAACATTTCAGTTTCCCACT
1047





CTNNBL1
NM_030877
CAATCAAGTTTGGTTTCTTC
1048





CTNND1
NM_001206886
GAGGAATTACTGCAGAGCTG
1049





CTRL
NM_001907
CCTAAAGGGCCTGTCTTGCC
1050





CTSC
NM_001814
CTGCAACTGGACCCAGAACT
1051





CTSD
NM_001909
ATTCCCGTTTCGGCCTGGCC
1052





CTSD
NM_001909
CAGACCCCAGAAGCTGGGCC
1053





CTSE
NM_148964
GGGAGAACTTGGGAGTCCTC
1054





CTTNBP2
NM_033427
AGCCCGCGGCTGGCGCCACC
1055





CTU1
NM_145232
ACTTCCGCTGGATGCGCCTA
1056





CUEDC1
NM_001271875
GAAATGCAGCTGTCCCTGCG
1057





CUL3
NM_003590
CGCTCAGATCTCGCGAGAAG
1058





CUL7
NM_014780
ATGGAAATAAATGACGTCCA
1059





CUTA
NM_015921
ACTCAGTGAGTGACGCCAAG
1060





CWC22
NM_020943
ATTCGCCTTCTTCCTACCGT
1061





CWC22
NM_020943
TTGACTCTGGTATTATGATA
1062





CWC27
NM_005869
CCCTCCAAAACTATCAGTAA
1063





CX3CR1
NM_001171172
ATACTAAGTTTGAGAAGCTT
1064





CXCL14
NM_004887
ACCTGAAAGGGTTTTGGAGC
1065





CXCL3
NM_002090
CATTTTCTGCCCCAAATTCC
1066





CXCL8
NM_000584
AATACTGAAGCTCCACAATT
1067





CXCL9
NM_002416
AAACCCTAGTCTCAGATCCA
1068





CXCR1
NM_000634
AGAGTGGAGAATTCAGATAA
1069





CXorf23
NM_198279
TCATTTCCATGTTAGAGATG
1070





CXorf49B
NM_001145139
CAGGCACCTCGCCCCACAAA
1071





CXorf49B
NM_001145139
CTCCATGCCCGTCATTTGAC
1072





CXorf56
NM_001170570
AGTCACTTCTCAATGAAGAT
1073





CXorf66
NM_001013403
CAGAAGCTTATGCTTCCCTA
1074





CYB561A3
NM_001161452
TCTCCCCTCACAGGACCAGA
1075





CYB561A3
NM_001161454
TCACCTCCAAACTCCAACGT
1076





CYB5R3
NM_001171660
ATTTCCTGTGAATGTAACTT
1077





CYC1
NM_001916
GGCAACAGAGAGACGCGACG
1078





CYFIP1
NM_001287810
ACCCAGGCCGGCAGGTAGCC
1079





CYFIP1
NM_001033028
TTCATTCTGTGTTTCTTGAT
1080





CYLC1
NM_021118
ACTTGAAGATGTCTTATTCT
1081





CYP11A1
NM_001099773
ATGTCACTGCACTCCCGCCC
1082





CYP11A1
NM_001099773
CAGGACACTCGCCCGAACCC
1083





CYP20A1
NM_177538
CACTGTAGCCTCTGCCTCCC
1084





CYP21A2
NM_001128590
TGGATGCAGGAAAAAGGTCA
1085





CYP2C9
NM_000771
TGGGTCAAAGTCCTTTCAGA
1086





CYP3A5
NM_000777
AAAGCTTAATCAGTGTTATC
1087





CYP4A22
NM_001010969
TGATCCACCTAGGGGAACAG
1088





CYP4F2
NM_001082
CTGATTCCTCTGCACCCAGC
1089





CYP4F8
NM_007253
AATTGGTTCTTCTACAGTTA
1090





DAAM2
NM_001201427
GGTTACTCTGAATTTTCCCT
1091





DAB2
NM_001244871
ACTCCTGACTTTTCTGACAA
1092





DAB2IP
NM_138709
ACGGTTGCCCCCATCTGCCT
1093





DAG1
NM_001177643
AAAAATAAAATTGGCCAAGC
1094





DAO
NM_001917
TGGCTGATCTCAAGCCCCTG
1095





DAOA
NM_001161812
ATGTGTGTGTGAGTAGTCAT
1096





DAOA
NM_001161814
TTGTATATCTGTGTGAACTA
1097





DAPK1
NM_001288731
TTCTCATATCCATACTGTCT
1098





DARS
NM_001349
AAGAGAGCTGGCATTCGCCC
1099





DAW1
NM_178821
GGAGGTGTCTAGAGTGAAAG
1100





DCAF1
NM_001171904
GAAGAGAACGCCTGCACGAT
1101





DCAF10
NM_024345
CCTGATCTGGGTGGCAGAGT
1102





DCAF11
NM_025230
CTGTCTCTGATTCAGGAAGC
1103





DCAF11
NM_181357
ATCAGAGCGCCCCCTTACAA
1104





DCAF11
NM_181357
CTTCCGAGAGGGATTTCGAT
1105





DCAF15
NM_138353
GACAGGCATAGCGCGAGTGC
1106





DCAF5
NM_001284206
GCTGGCCGGAAGAACGCGGG
1107





DCAF7
NM_005828
AGGCGCTTTGGCAGCCCCAA
1108





DCAF7
NM_005828
TACTCGCCCCGCCCAACTCT
1109





DCAKD
NM_001128631
CCCGCCCGCCCAACCTCTCC
1110





DCANP1
NM_130848
GCACTGATTGAATGCTTTAC
1111





DCBLD1
NM_173674
CGTTCCCAGGCAGTGACCGA
1112





DCC
NM_005215
GGCAAAGATTCCACGGGAAG
1113





DCLK3
NM_033403
AGCAGTATGCGAAGAGGTTA
1114





DCLRE1A
NM_001271816
CAACATGGAATAAGGCCTTA
1115





DCLRE1B
NM_022836
ACTTCCGCAGAAAGCAAGAT
1116





DCN
NM_133503
AAAAAATCAGACTGATTGCT
1117





DCP1A
NM_001290204
AACGACTGGGTCCTGGGATC
1118





DCTN1
NM_023019
GTGGGCAAGGGAGGGAAGAG
1119





DCTN4
NM_001135643
CCACTGCCCTTACTGCCATT
1120





DCUN1D1
NM_020640
GGAGGCAGCCCCGGACCTCG
1121





DCUN1D5
NM_032299
CCGTCGACTGCGGCAGTCCG
1122





DCX
NM_001195553
AGGTTTCATTTATAACCAAC
1123





DDA1
NM_024050
CAACCGAACTTGACCACAAT
1124





DDAH1
NM_001134445
TGGAGGTTGGGGATGGGGGA
1125





DDC
NM_001082971
GGGCTCCAAACTTGAAATCA
1126





DDI1
NM_001001711
AGGATCTTATCCTGTCACCC
1127





DDI2
NM_032341
GGAAGCCAGGAGAGGATAGG
1128





DDN
NM_015086
ATATATAGTTCCCAGTCCCC
1129





DDR1
NM_001202521
TAAGGGTTTAGGCCAGTGTC
1130





DDR2
NM_006182
AGACTATTTCTTTTGACCCA
1131





DDR2
NM_006182
AGCTTTGCCCATAGTCCCTT
1132





DDX1
NM_004939
GCCTTGGTGTGTGAATGACC
1133





DDX18
NM_006773
AAAATCTTTGCAGCGCCCCC
1134





DDX27
NM_017895
GTGGCAGTATTTGAGGAGGG
1135





DDX3X
NM_001193417
TGGCCGGACACCTTCCTGCG
1136





DDX50
NM_024045
ACCCTGGCCAATCTCCATAA
1137





DDX53
NM_182699
TTGATGGCCTGACCAATCAC
1138





DDX54
NM_001111322
AGAGGACCCTCTCCATGTTT
1139





DECR2
NM_020664
TCCCAGCAGGCCGCGGGCGG
1140





DEFA1B
NM_001042500
GGCTGACCAAGGTAGATGAG
1141





DEFA4
NM_001925
ATCAGGTGTCCTAATTTTTC
1142





DEFA6
NM_001926
TGTTTATTGAGTGTCTGTTC
1143





DEFB103B
NM_018661
ATGAGCAAGTATGCCCCCTT
1144





DEFB106A
NM_152251
GCTCATCATATTTCTGATTC
1145





DEFB108B
NM_001002035
GAGTCTTTGTGTACCTCATT
1146





DEFB112
NM_001037498
TTCACCTCCTTGTCCCCTTT
1147





DEFB119
NM_153289
AATTCCTTTGTGGGTCTCAC
1148





DEFB129
NM_080831
AAATTCCTTGCTCTTGATCC
1149





DEFB136
NM_001033018
ACAGGGTTCTGCAGAATTCG
1150





DEFB136
NM_001033018
GAGGTAGCACTGAAAGGCCA
1151





DEFB4A
NM_004942
GCAAGATAGGAGGAATTTTC
1152





DEFB4B
NM_001205266
TTAGAATTCAGCCACTTACC
1153





DENND1A
NM_020946
GTCCTCCGGGGCCCGCGCCC
1154





DENND1B
NM_001195215
AGCGCTCCCCCTGCACCCTC
1155





DENND1B
NM_001195215
TTTCTGGCTAGGTGGCAAAG
1156





DENND1C
NM_001290331
CTGGTTCCCCCCATCGTGCC
1157





DEPDC5
NM_001242897
GTCGTGTGCGGCCTCTTCCT
1158





DEXI
NM_014015
CGCCCCCTGCACGCGCTAAT
1159





DGAT2
NM_032564
AGCTCTGAGCCCTGCTTCCA
1160





DGKA
NM_201445
AGAAAATGTGTCCAAAGCCC
1161





DGKH
NM_152910
GAGCCGGGTGGACCCCTGCC
1162





DGKZ
NM_201533
AATGGAGAGGAAAACCAGAC
1163





DGUOK
NM_080918
TGCGAGTGGTTTTTGTTCAT
1164





DHDDS
NM_001243565
CCCGCTCGGTCACGTGAGCC
1165





DHDH
NM_014475
GTAGAAGCGACGTCAAGGTG
1166





DHFR2
NM_001195643
AATCTCAGCCCTCCAAGAGC
1167





DHFR2
NM_176815
ATGCTGACCCAGGTGAGACC
1168





DHRS11
NM_024308
GGCAGCGCTCACTGGGGAAG
1169





DHRS7C
NM_001105571
CCTCCAAGCTGAACACCCAG
1170





DHX30
NM_138615
CGTCAAGTTGCTGCCTTTCT
1171





DIABLO
NM_001278302
GAGGGCAGTTTGGGTTGAGA
1172





DIAPH3
NM_001258368
CGTCAGATTTGGAGAAGCGC
1173





DIDO1
NM_001193370
CGTCTTTCATACCTGCACTC
1174





DIDO1
NM_022105
CGCTCTCTTGCTGTCGCGAG
1175





DIO1
NM_213593
AGACCTTTGTGCACCTGGTT
1176





DIO2
NM_013989
GCCCATCAATTCATTCAATT
1177





DIO3
NM_001362
GGGGACCGGGAGCCCGACCA
1178





DIRAS1
NM_145173
TGGGAGAGGTCGCCAGGATC
1179





DISC1
NM_001164538
GGACTCGCTGAGGAGAAGAA
1180





DIXDC1
NM_001037954
TACACACACACACACTCACA
1181





DKK1
NM_012242
GGCGGGGTGAAGAGTGTCAA
1182





DKK2
NM_014421
CACTCTTGAATTGGGGGCGG
1183





DLG1
NM_001290983
ATACCTCTGAGTAGCTGTTA
1184





DLG4
NM_001128827
GCTGGCAGGAACCCGGATAA
1185





DLG5
NM_004747
GCGCTCCGGAGCCCGGGAGG
1186





DLGAP1
NM_001242763
AAGCTCTGCTTCTCTCTTTG
1187





DLGAP1
NM_001242763
TTTCTATAGAATCATGGCAA
1188





DLGAP1
NM_001242764
CAGCCGTAGAAACAGGAAAA
1189





DLGAP1
NM_001242764
TAAAATCTTGCTCTTCTGAA
1190





DLGAP3
NM_001080418
AGGCATCCTTGTATCCCTTT
1191





DLK1
NM_003836
GTGCACCCGTGTGCGCGAGC
1192





DLL4
NM_019074
CGCCCGACTGGCTGACGGGG
1193





DLX1
NM_178120
CCCGGCGCGCTCTGTTGCAG
1194





DLX5
NM_005221
TACTGTTGCTCCCGAGGCCC
1195





DLX6
NM_005222
GAGCTAAGGTGGCTGCAGAG
1196





DMBT1
NM_004406
AAAATTTCCAACTTCCCTCT
1197





DMC1
NM_007068
ACCGAAGGGCGGGGAACGAG
1198





DMGDH
NM_013391
AACTCACCTTCTTGGCCCCC
1199





DMRTC1B
NM_001080851
GACCGCTGCCACAACCATTT
1200





DMXL1
NM_005509
CTGGCCGGTGAGTCGGCCCC
1201





DMXL1
NM_005509
TCCCCTCACCGGCCACGACC
1202





DNAAF1
NM_178452
GGGGCGCGGTACCTGCAGGC
1203





DNAI2
NM_023036
TTAGTATGTTACCAACCTAT
1204





DNAJB2
NM_006736
AAAGTGACAGAGGAACCTGG
1205





DNAJB5
NM_001135005
GATTGGGTTCTGTGGGGCGG
1206





DNAJB7
NM_145174
GTTTCCCCTGTATGTTTCCC
1207





DNAJC15
NM_013238
GCCTCTTTAATTTCTCTCCC
1208





DNAJC19
NM_001190233
AGGCGTGCAGGTGTTGGCCG
1209





DNAJC22
NM_024902
ACGCCTTCATTTCAATGTCC
1210





DNAJC24
NM_181706
TTCACAGTTTGGGAACTTAC
1211





DNALI1
NM_003462
CCGGTTCGTCCCTGTACTCT
1212





DND1
NM_194249
AGTGGATACCTCCACCCCCC
1213





DNM1
NM_004408
GTCGTAGTTTTCACCTTCTG
1214





DNMT1
NM_001130823
AATGAATGAATGAATGCCTC
1215





DNMT3L
NM_175867
TTCAGGGCAAGGGTGAAGAA
1216





DNTT
NM_001017520
AATGTACTGAGGCCCTTCTG
1217





DOC2A
NM_001282062
GACTTTCACTCTTGTTGCCC
1218





DOCK6
NM_020812
GCCCGCCCAGCCTGGATCCC
1219





DOCK9
NM_001130050
ACAGCGTGGGCCAAATCAAT
1220





DOCK9
NM_001130050
ACTGCCTCTCTGATAAAGAC
1221





DOK1
NM_001381
GAGGCCAGGCCTCTGCGGTC
1222





DOLPP1
NM_020438
CCCACGGCCTGCACGCTGAA
1223





DOPEY1
NM_001199942
CGGCCATGGCTACCAATTTC
1224





DOT1L
NM_032482
CCTCTTTGTAGTCACAGGCC
1225





DPCR1
NM_080870
GCGTCATGGAGCCAGGCACC
1226





DPH5
NM_015958
AGTCGGCCGAGAGGAGTCCG
1227





DPH7
NM_138778
AATCCGCTCCTCCACAAAGC
1228





DPM2
NM_003863
CTCACCCATCCGGTCTCACT
1229





DPPA3
NM_199286
GGGTGTAGTTTAGACTCATA
1230





DPRX
NM_001012728
AGCGGAGACCAACGACTCAA
1231





DPYSL2
NM_001386
CCTGGGCCACGCGGGGACAA
1232





DPYSL4
NM_006426
CAGCGGTTCCAGCGCTGGGG
1233





DRC1
NM_145038
AGACCTGACATCCCACGGGC
1234





DRD3
NM_001282563
AATTTCCAACACACAAACTT
1235





DRD3
NM_033663
ATTGCCTTTCCAGATTTTGG
1236





DRG2
NM_001388
GGCCATGCTGTACTGGCCCA
1237





DSC3
NM_024423
GGCGTGGGAGAACTGGCAGA
1238





DST
NM_001144770
ACTTGAAGCGGAAAGGAGTT
1239





DTHD1
NM_001136536
ACAGAATACATTAATCACTG
1240





DTNA
NM_001198944
GGTTCATACTTTTGTTTTCT
1241





DTNB
NM_001256308
ACCCCTATGCTGAGTTTTGA
1242





DTNB
NM_001256308
TATGCTCCAGGCACTATTCT
1243





DTNB
NM_021907
GCGGGAAGCTGGCTCCATCC
1244





DTWD1
NM_001144955
GGTGTCGCACTTCTCCCGAG
1245





DTWD2
NM_173666
GGAGGTCCCACCCTGCCGCT
1246





DTX1
NM_004416
CGAGAAGCCCCACTGAAGCC
1247





DUOXA1
NM_001276264
GGCCCGGCTCGGCTCAGCCA
1248





DUOXA1
NM_001276266
CTAAAAGATGGGGAGATGGA
1249





DUOXA1
NM_001276267
GCAGAGGCACCGGACGAGAG
1250





DUXA
NM_001012729
AAATATCAATTGACGGAAAG
1251





DXO
NM_005510
GAAGAGGCATCACCTGATCC
1252





DYNC1H1
NM_001376
ACTCGCAGTGCGGAGGCTGC
1253





DYNC1LI1
NM_016141
GGGCTTCAGTTGCAGCATAG
1254





DYNC2LI1
NM_016008
TAACAAGGAGTTACTAACTT
1255





DYNLL1
NM_003746
AGACCACAATGCACCGCTCA
1256





DYNLRB2
NM_130897
cCCGGGAGGGAAGAGGGAAG
1257





DYRK1A
NM_001396
AAGTAAATGGTGGAATATTC
1258





DYRK1A
NM_130436
ACACTAGACCTACAACTAGC
1259





DYRK2
NM_006482
GCCGGGCGGGAGGTTGGGTG
1260





DYSF
NM_001130455
CGCCGCGGGCAGGGCGGATC
1261





DYX1C1
NM_001033560
AGACTCTCACTCTGTCGCCC
1262





DZANK1
NM_001099407
CTTGGCCACCTCCCGCCGAA
1263





DZIP1L
NM_001170538
GTCATCTCTGTTGAGGTCTC
1264





E2F4
NM_001950
GGAGGCTGGACATTTGCTAC
1265





EBF2
NM_022659
TTTTACAACTGATCCTGTTG
1266





EBNA1BP2
NM_001159936
GGGAGGAGCAAAGGGCGGGG
1267





ECH1
NM_001398
AAAGGGTCCATTTCTGAGCC
1268





ECHDC2
NM_018281
CCCAGCTCCTCTGTGTGATT
1269





ECI2
NM_001166010
CGCCATCGCCATCCCTTGGG
1270





ECT2
NM_001258316
GCCACCTCCTGGCCACATCC
1271





ECT2
NM_001258316
GGAGTTTGCAGAGAAGTGCC
1272





EDA2R
NM_001199687
AAGAACAGTGACCCAGCCAC
1273





EDAR
NM_022336
CCCCCCACTGAGATGGCTAC
1274





EDN1
NM_001955
ACGCCCGCCGTCTGACAATT
1275





EDN3
NM_207034
TGGATGGGGGGCTGCTACTC
1276





EEF1E1
NM_001135650
GGAGCTAGTTACTGGTAGAA
1277





EEF2
NM_001961
CCCCCGCCCGTTAACCCATT
1278





EFCAB12
NM_207307
ATCCACGCCCCGCCCAGTTC
1279





EFCAB12
NM_207307
CACTGGATTCAGGGACTACT
1280





EFCAB7
NM_032437
AGCGCGCGCTTTTCATGCCT
1281





EFCAB7
NM_032437
GCTGGGTTCGTTTTATTCAG
1282





EFNA5
NM_001962
CGCGCTGCAGCCGCCCGGCC
1283





EFS
NM_005864
TTCCAGGGGTGCCTGCGTGC
1284





EGFL6
NM_015507
TCAACTAAATTCTTAAGTCC
1285





EGFR
NM_201284
GACCCAAGGCCAGCGGCCGC
1286





EGR2
NM_000399
CTGATTTGCATACACGGGCT
1287





EHBP1
NM_001142615
GGCAGAGGTGGTCTGTGACC
1288





EHD1
NM_006795
GAAGGCGAGGAGCGGGCGTT
1289





EHD2
NM_014601
AATAGTAACAATAACAGGTC
1290





EHHADH
NM_001966
TGGAAAACAGCTGTAATTGC
1291





EI24
NM_001290135
CGGGATCGGCGAGGAGGCGA
1292





EIF2AK4
NM_001013703
TCCGCGCCGGGAGCTAGCTC
1293





EIF3D
NM_003753
CGAGACGCGAGAGGTGTGAT
1294





EIF3L
NM_001242923
TCAGGCTGGTCTCAAACCCC
1295





EIF4E3
NM_001134650
GTAAAGGAGGAGACTGAGTT
1296





EIF4E3
NM_173359
GAGCAGGAAGAGCAGCGTGA
1297





EIF4EBP1
NM_004095
AGCAGACGGGAGTGGGTCGG
1298





EIF4G3
NM_001198803
TGGATTGAAAATCACGAACT
1299





EIF4G3
NM_003760
ATCCGTTGGTGCTCTTAATT
1300





EIF5
NM_183004
GGGAGGGGGCGAGGCCGGGC
1301





EIF5AL1
NM_001099692
ACCATGAATCAAGTAGTGTG
1302





ELAVL2
NM_001171197
CTGCAGCTTCGAGTCACAGC
1303





ELF3
NM_001114309
CACTTGGCCCGGATCTTAGC
1304





ELF5
NM_001243081
CCAATTAAGCATCTACACAT
1305





ELMOD2
NM_153702
TCTCCAGCGTTAGCAATAGG
1306





ELOF1
NM_032377
CTCAAATAGCAGCGCTCCGA
1307





ELOVL3
NM_152310
GGCGGGGTGTGCGAAACGCC
1308





ELOVL4
NM_022726
GAGGCGACTTGTGCGGGGAG
1309





ELOVL7
NM_024930
GGAGGAGCCGGGGCGGCGCG
1310





EMC1
NM_015047
GGCAGGCTGCAGTGCACATT
1311





EMC6
NM_031298
TTAACAAAGGCCGCCCCGCT
1312





EMCN
NM_016242
CCTATGATCCATTCTCAAGA
1313





EMCN
NM_016242
TTTGTTCTTCTTCAACAGAA
1314





EME2
NM_001257370
GGTGCGTCCGCGGCTGATCG
1315





EML4
NM_001145076
CGTCACGTGGGAGGCGGAGT
1316





EML6
NM_001039753
CGGCGGCGGCTTGTCTGCGG
1317





ENOPH1
NM_021204
AGAGCGCGCCCTCCGCAGAC
1318





ENPP1
NM_006208
GCCAAGGATCTGACCGCGAG
1319





ENPP3
NM_005021
AGTCTGAAATTTCTGTGACA
1320





ENPP3
NM_005021
GTGACAAGGCTTTTTGTTCG
1321





ENPP4
NM_014936
GGTTAGACAGGTGCTTGGAG
1322





ENSA
NM_207047
AGTACTGTACTCTTCCTGAT
1323





ENSA
NM_207047
TGCTTTGGCGCTGGTTAGTT
1324





ENTPD7
NM_020354
TGACCGAGCTGGTTCGCCCC
1325





ENTPD8
NM_198585
CTCCTGCCTCCCACCCCCCC
1326





EOMES
NM_005442
AAAAAGGAAAAGAAAGTCAC
1327





EOMES
NM_005442
GAGGTGACACTAATTCAATT
1328





EP300
NM_001429
GCCGCCGCACCGGCCCCTAA
1329





EPB41L2
NM_001135554
GAAAGACGTCCTCCACCCCC
1330





EPB41L5
NM_020909
CCGAAACCCAGTTCCCGCTG
1331





EPCAM
NM_002354
TGCTGAGACTTCCTTTTAAC
1332





EPHA10
NM_001099439
TCCTGCAGATCTCCAAACCG
1333





EPHA5
NM_004439
TCGACGAAGTCACACACCCA
1334





EPHB6
NM_001280795
GGGGCAGTGAAGCAGTGAAG
1335





EPHX1
NM_001291163
TAAGTAGCCCGTTTTATCCC
1336





EPM2A
NM_005670
ACCAAGTCACTTACTCTAGC
1337





EPM2A
NM_005670
TAGGGAGCGCTCCAGAGACC
1338





EPN2
NM_001102664
CGCGCAGGGGCCACTAGGGA
1339





EPRS
NM_004446
CACGATAGCCATGATTACGT
1340





EPSTI1
NM_033255
TTGGTCGGCTACAGGTGAGA
1341





EPX
NM_000502
GGAGTTCTGAAACTTCTCTC
1342





ERAP2
NM_001130140
GCTAAATCTGGGTACTGGAA
1343





ERBB2
NM_001289936
CTCCCAGGGCGACCGTGAGC
1344





ERBB2
NM_004448
GTCACCAGCCTCTGCATTTA
1345





ERBB3
NM_001005915
GCTCACCCTAATTTTTCTGC
1346





ERC1
NM_178040
GAGCGTGACGCGGCGGCCCG
1347





EREG
NM_001432
CACTACTCTCAGGTGCTCCA
1348





ERGIC1
NM_001031711
ATGAGTACTGGAGTCTTTGG
1349





ERI1
NM_153332
CAAGGATCTAGTCCAGTCAC
1350





ERICH4
NM_001130514
GAAGGAAAAAGAAAAGCACA
1351





ERLIN2
NM_001003790
CCCGCCCCTCGCGCTCCCAG
1352





ERMAP
NM_018538
GAGGAGGCTCCCAAAAATGA
1353





ERMARD
NM_001278533
TGGGGCTCGACTTCACGCCT
1354





ERN2
NM_033266
CCTCTGTAATCCCAGCACTT
1355





ESAM
NM_138961
CTTCCCCCTCTACTCGTACC
1356





ESAM
NM_138961
TGATGCCCCACGAGCCAGCC
1357





ESCO1
NM_052911
GTTTTTCACCCCGGCCCGGA
1358





ESCO2
NM_001017420
AGAGATTTTTCACCTCACCA
1359





ESF1
NM_016649
CGCATGCGCACAAAAAGCGC
1360





ESPL1
NM_012291
CAGAGCAGCAAGACCCTCCG
1361





ESR2
NM_001437
AATCTGAGACTGGGGCTGCG
1362





ESRRA
NM_001282451
CGGACGAGTCGGGGCGGAGC
1363





ESRRG
NM_001243507
GTCATTGCACTGGCAGTTAG
1364





ESRRG
NM_001243511
ACAGCCCTGAGTGTATGTGT
1365





ESRRG
NM_001243511
TGTGCTTAACTCTATTGCCT
1366





ETFBKMT
NM_001135863
TCATTAAGAGAAATACCAAG
1367





ETFBKMT
NM_173802
TTAACGTTCCCTTATTTTCC
1368





ETV1
NM_001163149
GGTTACCCTGGATACCCGTC
1369





ETV2
NM_014209
GATGTCAATATTGCTATGAT
1370





ETV7
NM_001207037
GTGCAGGACCCACGCCTCCC
1371





EVA1A
NM_001135032
AACTAACTTGGCGCGGAGGG
1372





EVA1A
NM_032181
GGACAAAGGTGAGCAATTCT
1373





EVA1B
NM_018166
ACAAGAGCGCAGGAGCTCGC
1374





EVI2A
NM_014210
TGACAGTATGCTCATTCTAT
1375





EVI2B
NM_006495
CTGTTTACTTGTATGACCTT
1376





EXD3
NM_017820
GGCTGCGGGGTCTCCGAGGC
1377





EXO1
NM_130398
CCGTCTCGCTGGGTAGACAG
1378





EXOC7
NM_001145299
ACCGACGGCCATTTTGAGCG
1379





EXOSC10
NM_002685
GGGAAGCCTGCGATTAGGTT
1380





EXOSC8
NM_181503
ACCAGTGAAGAGGCAAGGCC
1381





EZH1
NM_001991
GCTTCCAAAGCGGCGCTGGC
1382





F11
NM_000128
GCTGGGGGAGAGCGGACGGA
1383





F13B
NM_001994
ATCAGTTATCATGCTCTTAC
1384





F2RL2
NM_004101
TGCTGTTCAACATCTGTTTT
1385





F2RL3
NM_003950
ATCTTGCTGGCCTGGCACCT
1386





F8A2
NM_001007523
ACCTCATCAGGGCAAGGGGC
1387





F8A3
NM_001007524
ACCTCACCAGGGCAAGGGGC
1388





FABP3
NM_004102
GCTAGCAGGGCGCCACTGGC
1389





FAF1
NM_007051
GAAGCTTCAAGTCTCGCAAC
1390





FAIM
NM_018147
CACAGGTGAGGCAGCAGACC
1391





FAM104A
NM_032837
CGAGCGCTTCTGCCACCCCA
1392





FAM107B
NM_001282700
CCTCCTGAGGCTGGGATTCA
1393





FAM110A
NM_031424
TCAGGTTGCCCAGGTCGCCC
1394





FAM120B
NM_001286380
TTACTTCTTAAAGCTGTCTT
1395





FAM122B
NM_001166599
ATGCCATCGAGGAAGGCGCC
1396





FAM122B
NM_001166600
ATCAGCTTTCAGGAGGAGTT
1397





FAM124A
NM_001242312
ACACCGCATGCACAGACGCA
1398





FAM129A
NM_052966
GGGGCATCCAAGAAACACCT
1399





FAM129B
NM_001035534
GCAGGAAACAAAGTCTAGCA
1400





FAM129C
NM_173544
ATGTGCAGGAGCCCAGCACA
1401





FAM129C
NM_173544
TAGACTCTCTGGTGCTTTCA
1402





FAM131C
NM_182623
CCCCACCTCCTGGGGTTGCC
1403





FAM133B
NM_001288584
GCGAGAACCCTCGCTGTTCC
1404





FAM133B
NM_152789
ACTGCAGCGATCTCTGGAGC
1405





FAM135A
NM_001162529
TGCAGTCCGCAGTCTGGCCT
1406





FAM13A
NM_001265580
TTGGCTCTTGCTGCAGTTAT
1407





FAM13C
NM_001166698
AGGTGCTCCTCGCTGGATCC
1408





FAM156A
NM_001242491
TTCTCGCGACCCACGCCGCT
1409





FAM156B
NM_001099684
TAAGTTTTTTGTTGAGATGG
1410





FAM159B
NM_001164442
GGGACAGGGCAGGTGGATTC
1411





FAM162A
NM_014367
CGGCGCCAGGGGCACTAGGC
1412





FAM162B
NM_001085480
AGCCTGCCTCTGTTTGAAAC
1413





FAM162B
NM_001085480
AGTAGAAATGTATTCCCGCC
1414





FAM170A
NM_182761
GGGAGAGTTGAATTCATTAG
1415





FAM170A
NM_182761
TTCTGCCACATTTGAAATAC
1416





FAM170B
NM_001164484
ACAGAAAAGGAGTTCCCATG
1417





FAM171A1
NM_001010924
TCTTCGGGGAAACCCGGCGC
1418





FAM174B
NM_207446
GGCCAGCCCAAGTGTCATCG
1419





FAM177A1
NM_173607
CTGGCCAACTGCAGTCTGGG
1420





FAM178B
NM_016490
TTCATGGTGAAGTGCCCTGC
1421





FAM178B
NM_001122646
GCATCCACGTGCGCGGGAAT
1422





FAM185A
NM_001145268
GCCCTTTGTCTCAAGACCAT
1423





FAM186B
NM_032130
TCACTGCAACCTCCACTTCC
1424





FAM189A2
NM_001127608
ATATTTCCTCGGAAGTTTGG
1425





FAM193B
NM_001190946
GGTCACCACCCGGAGTTCGC
1426





FAM198B
NM_016613
TTCTGAGTCTGTTTGCGAAC
1427





FAM199X
NM_207318
AGGGATTCAGGCCGCTAGAA
1428





FAM209B
NM_001013646
CGGGGTGCCAATTCCCTGCC
1429





FAM20A
NM_017565
ATCCTCAGGAGAGACGCCCC
1430





FAM214A
NM_001286495
TTACAAACTCAGCTGTGTTT
1431





FAM217B
NM_022106
TACAAGGCTGCAACTTGACC
1432





FAM219B
NM_020447
TTGGGTTGAAGAGTCATATG
1433





FAM21A
NM_001005751
GTTGGGGCGGAGGAAGCTGG
1434





FAM220A
NM_001037163
GTCTTACCTGCCAAAAAGAA
1435





FAM227A
NM_001013647
CCTGACGCGTCCCAGAAGCC
1436





FAM228A
NM_001040710
TCACCGTCCAGCTGGCGTCG
1437





FAM229A
NM_001167676
CCGCCGCGTCTGTGTGGACC
1438





FAM234A
NM_032039
GGCCTTGAAATACGGTGCCA
1439





FAM24B
NM_152644
GCATTTGAAATGATGTAAGC
1440





FAM25C
NM_001137548
GCTGGACAGGTGAGTCAGTG
1441





FAM3D
NM_138805
CCCTAAGCCACTCCTCAGCC
1442





FAM43B
NM_207334
GGGTTCCCGAATGCGCCAAG
1443





FAM46A
NM_017633
GTCGTCCCGCACTAACTGCT
1444





FAM46D
NM_152630
ACTTAAGTTCAAGTATCTTG
1445





FAM47C
NM_001013736
TAGAATCTGGGCTGCGCAGG
1446





FAM49B
NM_001256763
GTGGCCACCCCCTTGCACCC
1447





FAM50A
NM_004699
CGAGGCAGCGCGAGGGGCTG
1448





FAM53B
NM_014661
GGGCCACTTCCCGCGTCCCG
1449





FAM71C
NM_153364
AGTAGTCCCTGCCTCAGAGC
1450





FAM72C
NM_001287385
CGTAGGCACCGCCCCAGTAA
1451





FAM72C
NM_001287385
CTGAGATCAATTCGGCTTTC
1452





FAM83E
NM_017708
GGCTGCTGCAGGGAGCCATT
1453





FAM84B
NM_174911
GCGGGTGGATTATTTACAGG
1454





FAM96B
NM_016062
TGACCGCGGCCCTGGCTGCT
1455





FAM98A
NM_015475
AACGCGCATGTGCAAAACTG
1456





FAN1
NM_001146096
GGGAAAGGAAGGAGGTGCCC
1457





FANCM
NM_020937
CAAAACACCGGAACCGCACC
1458





FARP2
NM_014808
ATATAAATCTGTGCAGCGCT
1459





FBLIM1
NM_001024216
ACAGGACCCACCAGGGAACT
1460





FBN3
NM_032447
GGGGCAGCCCCGGGGCCTCT
1461





FBP2
NM_003837
TACAGACTGCTGCGGCTCCC
1462





FBXL19
NM_001282351
GCAGGCTACCTAGCCTCTCC
1463





FBXL19
NM_001099784
GGGAGCCATCTCTCCCTTCT
1464





FBXL22
NM_203373
CCAGGACCCAGACACATGTG
1465





FBXL5
NM_001193534
TCGTCTTCATAAGCCGCAGA
1466





FBXO17
NM_024907
ACATCCCCAAGACGCCCCCG
1467





FBXO17
NM_024907
CCCAGTTGCCGCGAGGCCAG
1468





FBXO17
NM_024907
GCTCTCCCAGGGGTGGGCCC
1469





FBXO18
NM_001258453
GGGGGCGCGGCCACAGCTAC
1470





FBXO31
NM_024735
CGGAGCTCTACGTAGGGGCG
1471





FBXO41
NM_001080410
GGGTATCGCTGCTCCCACCC
1472





FBXO45
NM_001105573
CGGCTCCGCCATGCGGGTTG
1473





FBXO47
NM_001008777
TCCCAGAAGCCCTAGCGGGA
1474





FBXW2
NM_012164
GGCCCTCACGGTGCTTAGGC
1475





FBXW8
NM_153348
GCACGTGGTGGTCCGGCTTG
1476





FCGBP
NM_003890
GGCCAGGGGGTATGGATCCA
1477





FCGR2A
NM_021642
AGAACAGTAACCCCTCCCCG
1478





FCGR2A
NM_021642
TACTCTAAGGAGGGGTATAC
1479





FCGR2A
NM_201563
GGCTACACCAGATTTATTCT
1480





FCGR3A
NM_001127592
GGGTCTCACTGTCCCATTCT
1481





FCGR3B
NM_001271037
TTTACTCCCTCCTGTCTAGT
1482





FCGRT
NM_001136019
CGAGACCAGCCTGGCCAATA
1483





FCGRT
NM_001136019
GGCCTGTGGTCCCAGCTACT
1484





FCRL6
NM_001004310
TAATACTTCTTCAACCAAAG
1485





FDCSP
NM_152997
GTTTCTAGGAAACTAAACAT
1486





FDXACB1
NM_138378
AGATAGGAGATTTAAGCACC
1487





FDXACB1
NM_138378
TGAGCAGCAGAGACACTGGG
1488





FDXR
NM_001258012
CGACGGTGGGGCGTAGTTAA
1489





FERD3L
NM_152898
TTCCATAAGCTTCGAGAGAA
1490





FERMT2
NM_006832
AGGCCGGCCGGACCCGCTCA
1491





FEV
NM_017521
GGAGAAGAGGAGGAGGGAGC
1492





FGB
NM_001184741
AAGATACACATCTCTCTTTG
1493





FGD2
NM_173558
CCCTGTTGCCACCTCTTAGG
1494





FGD2
NM_173558
GTGAAAGGTCAGCCCCCCTG
1495





FGD3
NM_001286993
CCACAAGTTAGAAGGTGAAG
1496





FGD5
NM_152536
AGCCTAAGACAAAGCACGGG
1497





FGF1
NM_001257209
AAGCAGATAGCACTGGAACC
1498





FGF1
NM_033137
TGAGTAAGCACAGCCTGCCC
1499





FGF18
NM_003862
GATGTGGGCTGGGCGCACCC
1500





FGF2
NM_002006
GGCAGGGCTTTGGCATTCCC
1501





FGFBP3
NM_152429
GACCGCTTCCATCATCCATC
1502





FGFR1
NM_001174066
AGCCACGGCGGACTCTCCCG
1503





FGFR1
NM_001174066
CGGAACCTCCACGCCGAGCG
1504





FGFR4
NM_213647
GGGGGGGGGGCGTGGAAGGA
1505





FGFRL1
NM_021923
CCGCTGCGGCTTCCTCCGCC
1506





FGL1
NM_147203
CCAGGATCCTGTAACTGCAT
1507





FGL1
NM_201552
AAGCTAAAAGAGAAGATTCA
1508





FHL1
NM_001159699
ACCGGAATAAAATTTGGACT
1509





FHL1
NM_001159699
TACAGGGATGACTTTCTATG
1510





FHL1
NM_001159700
CACGGGGGTTGAGCCTTAGA
1511





FHL1
NM_001167819
GTGACTTGTGCTCTACATTC
1512





FHL2
NM_001450
TTTCGGACGAGGCCTGGGCG
1513





FIG4
NM_014845
ATTTATCTCCTCCCTCTCTT
1514





FILIP1
NM_001289987
AAAACCGGCAGGCCCTTTTA
1515





FILIP1
NM_001289987
GCTCACCCTGTAAAAGATTG
1516





FILIP1L
NM_001042459
GAAACTTCCCAAGCACAACC
1517





FKBP10
NM_021939
ATGAACCTTGCTTCTTTCGC
1518





FKBP11
NM_001143782
ACTAGCTCCTGACACACAGT
1519





FKBP14
NM_017946
ACCAGCGTGGATTTTGGGAG
1520





FKBP2
NM_004470
CCACAGCACTCCTGTTTTCC
1521





FKBP5
NM_001145775
AGGAAGAGACTCTGAACTCT
1522





FKBP6
NM_003602
GACACGTAACGGGACCACGC
1523





FKBP9
NM_001284343
GAAAGCCTTAAAAGTAACCA
1524





FLNA
NM_001110556
CTTAATTGGTAAAATTGCCC
1525





FLNC
NM_001127487
GCGGGGCGTCCTGTGCGGCG
1526





FLRT1
NM_013280
GGTTCCGACTCCCTGTTCGT
1527





FMN1
NM_001103184
TTTCAGAAGAGCAGCCTCCC
1528





FMR1NB
NM_152578
AGCAGAAGACGTCATCGTGA
1529





FNDC3A
NM_001079673
GCGTTCCGGTGAGAGAGCCC
1530





FNDC7
NM_001144937
GTATAACACCGTTGGTCGCT
1531





FNDC8
NM_017559
AGTCACACTGGCCCTTGGTC
1532





FNTB
NM_002028
CGAGATGGCGTAGGACGCCT
1533





FOXB2
NM_001013735
ACTTTGCCCTCTCGCCCTCC
1534





FOXB2
NM_001013735
CCAGGCAATTCGGAGAAGGC
1535





FOXD3
NM_012183
GCAGGTGGCTTGGGGCCCGC
1536





FOXD4
NM_207305
CCTTTGCACGGGTTCTGTTA
1537





FOXD4L6
NM_001085476
TGACAATATTCCCAGGCTTC
1538





FOXG1
NM_005249
ACTGCTGCTGCGAGAGGAGG
1539





FOXJ3
NM_014947
GAAGCGACCGTGACCGCGCA
1540





FOXJ3
NM_014947
GTAGTGCCCTGAGACTCCCG
1541





FOXK2
NM_004514
GGCAGTGGGGCTACCGAAGC
1542





FOXN1
NM_003593
TCTCTCATCAGATGGCTGAC
1543





FOXP1
NM_001244816
ACAGAAAGCCTGAGAGCTGC
1544





FOXR1
NM_181721
GCAAGGGGCTTGGGCAAACG
1545





FOXR2
NM_198451
TATTTCTGAGTCTTCCTTAA
1546





FOXRED2
NM_001102371
GGGCTAGCGCGCACCCGCGA
1547





FPGT-
NM_001112808
CATCCAAGTTCTCCACATCA
1548


TNNI3K








FREM1
NM_001177704
CAACTGCGGTGACCTCACAG
1549





FREM3
NM_001168235
CTCTTGCTGGATCCGCAAGT
1550





FRG2C
NM_001124759
TGGGGACCTAGACACAGTTA
1551





FRMD3
NM_001244961
AGATCAGTTAGATTTTGCTG
1552





FRMD3
NM_001244962
AATGATGAGGCATTTGGACA
1553





FRMD4A
NM_018027
AGGCAGCCCTGTGGAGAGAT
1554





FRMD6
NM_001267047
AATACACTTGGTACTATGGT
1555





FRRS1
NM_001013660
TCTCGCTCTGTCCGCCAGGC
1556





FSBP
NM_001256141
AGCTTTATGTAGGTCAGGCT
1557





FSD2
NM_001281805
TTTGGACCTTCACTCATGGC
1558





FSHR
NM_181446
ATAGAACCATTAGGCATGTC
1559





FSHR
NM_181446
TTGCTGTGTGCCTTAGGTCA
1560





FUBP1
NM_003902
ACCTCCTCTCCGCGCGTTCT
1561





FUBP1
NM_003902
CGCGAGAACAGAATTTCTTT
1562





FUNDC1
NM_173794
GTCCGTTGCCTTCCGCAACT
1563





FURIN
NM_001289823
AGGCGATCCCAAAGTCCTCG
1564





FUT2
NM_000511
ATGGACTTTGTGGCCGGCAA
1565





FUT4
NM_002033
GCCTTCAGAGTCTCTGCATT
1566





FUT6
NM_000150
GCACTGAGATAGTAGAACTC
1567





FXN
NM_001161706
TACACAAGGCATCCGTCTCC
1568





FXYD5
NM_001164605
GGGACTTACGTCGGAGCTGG
1569





FYN
NM_153047
GGCTATTTCAGGCCTATTAG
1570





FZD6
NM_001164615
AGCAGTTCAACTTCCTATTA
1571





G0S2
NM_015714
GTCCCACTCCAGGCGAGCGC
1572





GABARAPL2
NM_007285
CTTCTTCGCCACCGCAGCCC
1573





GABPB1
NM_005254
CCTACCCACCGCAGAACAGG
1574





GABRA1
NM_001127644
GTTCATTCATATGCAGGCAG
1575





GABRA1
NM_000806
AGGTCTTAGTAAGCGCTCCC
1576





GABRA4
NM_001204266
AAGGCAGGTTCCGCCTCCCC
1577





GABRA4
NM_001204266
GAGCGAGAAAGGAGGGGGCG
1578





GABRA6
NM_000811
ATAATAAACGCTGAGCCTAT
1579





GABRE
NM_004961
CCATCGGGGCGGGCCTGGGG
1580





GABRG2
NM_000816
TTTAAATACACACACCCACA
1581





GADD45A
NM_001924
TGGGGTCAAATTGCTGGAGC
1582





GAGE1
NM_001040663
AAGATGGGGTGAGTTTTGAG
1583





GAGE1
NM_001040663
AGGAAACAGCAGAGGGAGGT
1584





GAGE1
NM_001040663
CTCCATGCCCATCCTCATTG
1585





GAGE10
NM_001098413
AAGATGGAGTGAGTTTTGAG
1586





GAGE10
NM_001098413
GCATAGGAAACAGCAGAGGG
1587





GAL3ST1
NM_004861
CCAGTGGAGGCAGAAGGCCT
1588





GAL3ST2
NM_022134
GGTTTTAACTGTTCTGTTCT
1589





GAL3ST3
NM_033036
TGGTTCCCTGGCTTGCCCGC
1590





GALNT10
NM_198321
ACGCGGGGGCAGGCGGCGCG
1591





GALNT4
NM_003774
TAGGAGGCTCTTGGCCGGGC
1592





GALNTL6
NM_001034845
GTGGGAGCTCCCAGCCTGCG
1593





GALR2
NM_003857
GAGCAAGAGACAGGAGGGCG
1594





GALR3
NM_003614
GTGACACTCAGCGATGACTT
1595





GAN
NM_022041
CCCGCCTGACCAGCTGCGGC
1596





GAPT
NM_152687
TTAATACTTGCAAAGTTTCC
1597





GARNL3
NM_001286779
AGCGGCCAGTGATGCGGGCT
1598





GART
NM_001136005
CGGTCTCTCGCCTTCCTGAT
1599





GAS7
NM_001130831
TTGGGGAAGAGAGAACTTGC
1600





GAS7
NM_201432
TGGGCCTGCCCAAGCCCTGC
1601





GAST
NM_000805
AAAGGGCGGGGCAGGGTGAT
1602





GATA2
NM_001145661
AAATGCCACCTCTTGCCCGG
1603





GATB
NM_004564
GGAGGTGTGACTCCTCCTAG
1604





GATC
NM_176818
GTTCGCCGAGAAATTTCTCA
1605





GBA
NM_001005742
CTTCCTCTTTAGAGAGCCTC
1606





GBA3
NM_001277225
TCTGGACTCCTGCCTTGCAC
1607





GBP3
NM_018284
TGTGAATTGTCTCCTGTTAT
1608





GBP7
NM_207398
CTGACAGCTGTGCTAGTGAG
1609





GC
NM_001204306
TTAGCATCATTCCACCTTTC
1610





GC
NM_001204307
TATGCAGTGTAAAAGCAGCT
1611





GCDH
NM_000159
GTAGCCTTGCCTGTGGAAAT
1612





GCFC2
NM_001201335
TCAGTCCACGCAACCTAACC
1613





GCFC2
NM_001201335
TGCAAAGCATTCCCTTTGCC
1614





GCH1
NM_000161
ACGGCCCTCGCCGCGCCCCT
1615





GCNT1
NM_001097634
GTAATTCCAGTGGGTAGCAA
1616





GCNT1
NM_001097634
GTTCCATAAGTAATTCCAGT
1617





GCNT2
NM_145655
GAAACTCGGCTCCAGTGAAA
1618





GCOM1
NM_001285900
ATGGGCGTCCAGGCTGTCCA
1619





GCSAML
NM_001281834
TCGTTTCTTGTTCAGCAAAA
1620





GDF11
NM_005811
GGCCAGGCCCTTTATAGCCC
1621





GDF6
NM_001001557
CACCTCCGGCCCGCACCACC
1622





GDF6
NM_001001557
GGAGAGGGGCCGCGGTGCGC
1623





GDF7
NM_182828
AGGGAGGGCGAGGAGCTGAA
1624





GDF9
NM_001288828
AGCTGAGCCCTGTGCGTGAG
1625





GDPD1
NM_182569
AGGTGACAAACGCTCAGTCC
1626





GFIl
NM_005263
CCTGGCTTGCCCCGGCAGGG
1627





GFI1B
NM_004188
CATTTCTAACCCTCGACACT
1628





GFM2
NM_032380
CTTCACATTCGAGACACAGA
1629





GFOD1
NM_001242628
GGCATCTGATCTTCCTAGTT
1630





GFRA1
NM_005264
AAACTTTGTGTTCCGAAGAA
1631





GFY
NM_001195256
GCAAGTCCCTTGGAGGCTTG
1632





GGA3
NM_001172704
GGAATATTATCGCAAGCCAG
1633





GGA3
NM_001291642
TGCGTTTCTCTCCACTGATC
1634





GGPS1
NM_001037277
GGTCGTCTAAGAGGCCATCC
1635





GGT6
NM_153338
GCATGTGAGCCTGCCCCATT
1636





GH2
NM_022556
AGGGTCACGTGGGTGCCCTC
1637





GHITM
NM_014394
TCCCTGCAACAATCCTCAAC
1638





GHR
NM_001242462
TAGGACAATATGAGACTCTG
1639





GHRL
NM_001134946
ACGGAACAGAGGAGAGATGC
1640





GIN1
NM_017676
TCCTGAGGTGTAGTAGCCTG
1641





GJA9
NM_030772
AAGTGTTCAATAGCTACATT
1642





GJB1
NM_000166
CTATGGGGCGGGTGCGGCGA
1643





GJB1
NM_000166
TGTAGGGTGGGCGGAAGTCA
1644





GJB3
NM_001005752
TTTCCTTCCCAAGTCTAGGC
1645





GJC2
NM_020435
AGGCAGGCAGGGTGCCCGGC
1646





GK5
NM_001039547
GGAGTCTCACTCTGTCGCCC
1647





GKN1
NM_019617
CTTAGCAAGGAACTTTCACA
1648





GLB1L
NM_001286427
CCAGCTTCATCGACATCACC
1649





GLB1L
NM_024506
CTGCCGGACTGACCTGGCTC
1650





GLG1
NM_001145666
CTTACCCGGGGGGGTTGCTG
1651





GLIPR2
NM_001287013
CTCCTTATAAGGCGGGGGCC
1652





GLIPR2
NM_001287013
GAGGCCCACGGGGTGGCCCC
1653





GLIPR2
NM_022343
TCGCGGCACGAGGGGCGTTC
1654





GLIS1
NM_147193
TCTGGACAAATGGAATCATG
1655





GLP2R
NM_004246
AGGCGGTCTAGAGCAATCTA
1656





GLRA1
NM_000171
TCGCCCAATCCAACGGTCCG
1657





GLRX5
NM_016417
GTTGCCGACGACCAATAGTA
1658





GLT8D1
NM_001278280
GCGAGGGCGACCGAGACTTA
1659





GLYAT
NM_201648
ACAATGCTTTTTGTCCTCAC
1660





GNA12
NM_001282440
CAGCACTCCTCCCACGGGCC
1661





GNA12
NM_007353
GGCGAGATGAGCCAATCGAA
1662





GNA15
NM_002068
CCTGATTGGCTCCGAGGAGG
1663





GNAI2
NM_001282620
GCCTGACCTTGGGGGAAGCC
1664





GNB5
NM_006578
TCTCTCCTCCGGGAGAGGCA
1665





GNE
NM_001190388
GGAATGGGAAATCCAAAACA
1666





GNG10
NM_001198664
CGGGTCCCCGCCTCGGTTCC
1667





GNG11
NM_004126
AAAACTCTTTGAGAGGTGAA
1668





GNG7
NM_052847
CAGGGTGACTTCGTGACGTC
1669





GNGT1
NM_021955
TTGGAATTGAAAGTAAGGAT
1670





GNPAT
NM_014236
CACCAAAGTCGTAAAGGTTC
1671





GNRH1
NM_001083111
ACGTCCACGGTTGCACCTCT
1672





GOLGA3
NM_005895
GCCGCCCGGCCCGGATGCTC
1673





GOLGA6D
NM_001145224
GGCAGGGACAGCAGTCGCAT
1674





GOLGA6L22
NM_001271664
AGCTTTCCTTGTGACAACAC
1675





GOLGA6L4
NM_001267536
AGCTTTCCTTATGATGCCAC
1676





GOLGA8K
NM_001282493
CAGCTTTCCTTGTGAGCCAC
1677





GOLGA8M
NM_001282468
GGTGCGGAGAGCGGTCGCAT
1678





GOLGA8N
NM_001282494
AGCTTTCCTTGTGAGCCACA
1679





GORASP1
NM_031899
GCAGAATGGTTTTAAGGCGA
1680





GP5
NM_004488
CTATCTCAGAGCCCTTGTTC
1681





GPAM
NM_001244949
GAGTACACACATTACACCCT
1682





GPANK1
NM_001199240
AATACAGTTTTGTGCTCACT
1683





GPATCH2L
NM_017972
TCTAAGTGTAGCCAGATGAA
1684





GPATCH4
NM_015590
GGCAACCATACCGGCAAATT
1685





GPBP1
NM_001127236
GGATGACTGCAAGAAAGAAG
1686





GPC6
NM_005708
GGACTGGATCTCTTCCTAGT
1687





GPHB5
NM_145171
TGTGTTTAGTAGTTCCTGTA
1688





GPM6B
NM_001001994
GAGTCTGCAGGCAAAGCTCG
1689





GPR101
NM_054021
GCAGAGTTAGTCACCCGTCA
1690





GPR107
NM_001136558
GGGACCCCTGATCTCAGGGT
1691





GPR135
NM_022571
CCGCGACACCGCCACTCCGG
1692





GPR146
NM_138445
CCACAGAGCGAGGCTGCCTT
1693





GPR150
NM_199243
GTTCCCAAAGTTAGTTGAAA
1694





GPR160
NM_014373
GGTCTCACTGAGCCCCCAAG
1695





GPR161
NM_001267609
CCTGATGCTGTGCTTAGAGC
1696





GPR161
NM_001267609
GGAAAGAAGGAAGGACAAAC
1697





GPR161
NM_001267613
GCCGAGGCGGGGAGGCGGCT
1698





GPR161
NM_001267613
GGAGCGAAGCGGGGCTCGGT
1699





GPR174
NM_032553
ATTTCTCTAGAGTAACTACA
1700





GPR3
NM_005281
GGCAGACTCGGGAGGGGGCG
1701





GPR33
NM_001197184
GTGAGGTCTTTTCCTCTTTT
1702





GPR37L1
NM_004767
ATGCTGTAGGGCCTGAGAAG
1703





GPR63
NM_001143957
GAGGAGGCAAGTAAAGAGGG
1704





GPR68
NM_001177676
AAGTCGCTGGAGGGAGAGCT
1705





GPR85
NM_001146265
CATTTCAGTATTACCAACAT
1706





GPRASP1
NM_001184727
TGGTGCCAACCCGCAGGCCC
1707





GPRASP1
NM_001099411
TCTGGCGCTGCTATAATATA
1708





GPRC5C
NM_018653
GAGACAGTGGGACCTAACCA
1709





GPRIN3
NM_198281
CCCTGGAGACCAGAGACAGA
1710





GPRIN3
NM_198281
GGGCTGCAACACTTTCCCCC
1711





GPSM1
NM_001145638
GCCCTCTCCCCTGCATTCCC
1712





GPT
NM_005309
TCTGTACCTACCCCCCATGT
1713





GPT2
NM_133443
AGTCCCACAGCGCCCCGCGC
1714





GPT2
NM_133443
CCTGGGCCCTGTAGTTCCCC
1715





GRAMD1B
NM_001286563
ACTTCTGTCAGCATCCACTC
1716





GRAPL
NM_001129778
GGGGAGTCTCCCTGAAGCTC
1717





GRASP
NM_001271856
GGCCTGCCCGCTGGACACAA
1718





GRB2
NM_203506
CATGCGCCCTGACACCTAGC
1719





GRB7
NM_001242443
GGCCCCGGTAAAGCTTCGGT
1720





GREM2
NM_022469
TTGCAAGCGACTGAAGTGTG
1721





GRIA1
NM_001258022
TGGAAGCATCTTCGTTGGTT
1722





GRIA1
NM_001258022
TGTCAGTGTCGTTTGTGTCC
1723





GRIA4
NM_000829
TGAAAGGGTTCAGAGAGGGA
1724





GRIK2
NM_001166247
CAGTCTTTCTCACTTAATCT
1725





GRIK4
NM_001282473
AGTTTACAAATGGAATCCGG
1726





GRIN2A
NM_000833
GCCCGGTCCTCTGAGCGCGC
1727





GRIP1
NM_001178074
CTTGATGCTGAGAAGGAAAG
1728





GRK2
NM_001619
TCAGACCCTGGCCGTGACCT
1729





GRPR
NM_005314
GTCAATATTGCTATCAAATG
1730





GRSF1
NM_001098477
CTGGAGGCCACGCGTCTGGG
1731





GSDMA
NM_178171
ACGTGTGCCCTGGCCTCCTG
1732





GSDMB
NM_001042471
GGAGTCTTGCTCTATCGCCG
1733





GSDMD
NM_024736
AGTTTGAGGCTACCAGGATG
1734





GSG1
NM_001206843
GGTAACTGGTGTGAATGGAT
1735





GSG1
NM_001206843
TCCACTGCCTGCCATTCCCT
1736





GSPT1
NM_001130006
GCGGTTTTCCCGGGGGCCGA
1737





GSTK1
NM_001143680
CCAGCCTACGGCCCCCAGCC
1738





GTDC1
NM_001284233
ATTCCACCATAGCAGTGAAG
1739





GTF2F2
NM_004128
GGAAATTTCTTGAGTGGGCG
1740





GTF2H5
NM_207118
ACCCTCCACCCGGCGGCTGG
1741





GTF2H5
NM_207118
TCTTTCCGCGGCTCCCGGCC
1742





GTF2IRD2
NM_173537
AATGCACAGCGCGGCTAAAT
1743





GTPBP1
NM_004286
TCAGGCGGGTAGCGGGGACT
1744





GTPBP3
NM_001195422
AACCCTAGAGTGACGTGCAT
1745





GTPBP3
NM_001195422
CGGGAAGGAGAATCGAGGTT
1746





GTSF1
NM_144594
GAGTTCACCTGTGAGCCCCT
1747





GUCA1A
NM_000409
CAAGGTTAAAAGACCCTTCC
1748





GUCA2A
NM_033553
CTGTCAGGCCTTATCAGATA
1749





GUCA2B
NM_007102
AGCTGGCTCTCTGACAAGCC
1750





GUCY1A3
NM_001130685
CCTCCGCCTGGGTCTGTTCC
1751





GUCY1A3
NM_001130687
AACTTCCCCAGCAGAAATGT
1752





GXYLT1
NM_001099650
GCTAGCGCAGGCCGACGCGC
1753





GYPA
NM_002099
TTAACTTTGCATCAGTTAAG
1754





GZF1
NM_022482
TTAACAACCTAGCTTTACTC
1755





GZMK
NM_002104
GGAGTCTCTCTCTGTCGCCC
1756





H2AFB3
NM_080720
TGTGGTGACGGCCCCTCACA
1757





H2AFY
NM_138609
CCAGGCACCAGCCCGCACCC
1758





H2AFY2
NM_018649
GCTCTGGGGAGAGTCTTCGA
1759





H2AFZ
NM_002106
TTCTAATCTCAAGCCGCGAT
1760





H2BFM
NM_001164416
CTGACATGATTCCAAGCAAC
1761





H2BFWT
NM_001002916
TGTGTAACTTTCTCCGAGCT
1762





HABP2
NM_004132
CATGAAGTGGTTTCTCTTCT
1763





HABP2
NM_004132
GCTATGTCAGCTACTTTCTT
1764





HABP4
NM_014282
TCGCGTGACGTGACAGCAGC
1765





HACE1
NM_020771
AAACTGCTCCTGTACAACTT
1766





HAMP
NM_021175
ATAAGCGGGAACAGAGCGAC
1767





HAPLN4
NM_023002
GGCGAGGCGGGGTGTATTAA
1768





HARS2
NM_012208
GGCGGCTCAAGTGGACAGCC
1769





HAS3
NM_001199280
TACTGTCGATAAGGTCAGTT
1770





HAUS3
NM_024511
AGGATGCCCGCAGCGGCCGG
1771





HAVCR1
NM_001173393
GCTATTACTGCATATGATGT
1772





HBE1
NM_005330
GAGATTTGCTCCTTTATATG
1773





HBZ
NM_005332
CCCTCAGGGCCTGGTGGGAC
1774





HCLS1
NM_005335
ATTTAAGTGTCTAAAGCAGA
1775





HDAC9
NM_001204147
CAATGGTGGATACACAGAGT
1776





HEATR4
NM_001220484
TGGTAGTTTCATGGAGTTTT
1777





HEATR5A
NM_015473
CTTCACCGTCGAAAGAGCGA
1778





HEATR5B
NM_019024
TAGGAAACTGGTGGGAGCCG
1779





HECTD2
NM_173497
GCCTTCTCTCCGGGCCCTCG
1780





HECW1
NM_015052
GGGTGTTGGAAGGATGGGGC
1781





HEMGN
NM_018437
AGAATTAGGGCTCAAAACTA
1782





HEPACAM
NM_152722
GTTTTCCAGTCTTCTTCCTT
1783





HEPHL1
NM_001098672
AAATGACTGATGTCAGAGCA
1784





HERC3
NM_001271602
ACGGGTGTGTCAGCCGAAAT
1785





HERPUD1
NM_014685
GCCGCGTCTGCGTCACCCAG
1786





HHLA3
NM_001036645
GATGGCCGTGCCCTGTTTTT
1787





HIF1AN
NM_017902
AGGCTCCACTGCTGAAGAAA
1788





HIF3A
NM_152795
CCCAATCAGAGCCTCAGGCC
1789





HIF3A
NM_152796
AACTCTATCCCACCCCTTTT
1790





HIGD1A
NM_014056
CCGCCAGTACGCTAGAGCCG
1791





HIGD1A
NM_014056
GGGCTTTGGCTCCTGGCCCA
1792





HIGD2A
NM_138820
GGGAGTCGTAGTGCTCAGCA
1793





HINT3
NM_138571
ATGGAGCTTGTTGGGTGTTC
1794





HIPK1
NM_181358
CGAAACCAGCCTGGCCAACA
1795





HIPK1
NM_198269
TTTCTTCATCTGTAAAATGG
1796





HIPK3
NM_001278163
TGGGCTTTACTGTATAACCT
1797





HIST1H1A
NM_005325
CTGAGACTGGGCGAAACCCT
1798





HIST1H1B
NM_005322
TTGGCACTTTGAAGCTCCAA
1799





HIST1H1C
NM_005319
ATTCCCCGCACCAAATCACT
1800





HIST1H2AB
NM_003513
AACATAAACCTTACACCAGA
1801





HIST1H2AH
NM_080596
CTTCACCTTATTTGCATGAG
1802





HIST1H2BK
NM_080593
ACCAATGGAAGTACGTCTTT
1803





HIST1H2BN
NM_003520
GAAGTTGTGCGTTTAACCAG
1804





HIST1H2BN
NM_003520
TTTCAAAACCGCAATCCCAT
1805





HIST1H2BO
NM_003527
GAAGCTGCAAGCTTAGCCAA
1806





HIST1H4I
NM_003495
AGCAGGCCTGTTTCCCTTTT
1807





HIST1H4K
NM_003541
AGATTTCCCCTCCCCCACCG
1808





HIST1H4K
NM_003541
TAAAGGGCCAAACCGAAATA
1809





HIST2H2BE
NM_003528
ACACCGACTCTTGACTTGAT
1810





HIST2H2BF
NM_001024599
GTCTTGTTATCCTATCAGAA
1811





HJURP
NM_001282963
AGCCACGCCCCAATGTCCGG
1812





HJURP
NM_001282963
CAAATTTGCGTCCCACCTTC
1813





HK1
NM_033498
ACATGTTTGGCAGGTTAGGG
1814





HLA-A
NM_002116
GAGACTCTGAGAGCCACGCC
1815





HLA-DPA1
NM_001242525
TTGTGTCTGCACATCCTGTC
1816





HLA-DRB5
NM_002125
TATTGAACTCAGATGCTGAT
1817





HLX
NM_021958
TGTGCGCTACTAAGCCCACG
1818





HMG20A
NM_018200
GGGATTATTTTGCCCCAATG
1819





HMGB4
NM_145205
GACCTTGGCTATGGATTTTT
1820





HMGCL
NM_000191
CTCGGAATCAAAACGGAGAG
1821





HMX1
NM_018942
GGCTCAGCGGGCCGCCCTCC
1822





HMX3
NM_001105574
TCAACTACGGGGCGCAAAGT
1823





HN1
NM_001288609
GTCGACTCCCTTGAAGGTGG
1824





HN1
NM_016185
AAGGCGAATCTACCTCGCGC
1825





HN1
NM_016185
TTCTTGGGGAGTTACAACCT
1826





HNF4G
NM_004133
AGAATATGGCCTGCTGAAGA
1827





HNRNPF
NM_001098208
AGCGCTAGCTTGGCGGGCCG
1828





HNRNPH3
NM_012207
GCGCGCTGCAGCTCTTTAAC
1829





HNRNPK
NM_031263
AAAAGTAAACGCAGCCTTTC
1830





HOMER1
NM_004272
ATGGAAGTGTGAAGAGGCGG
1831





HOMER3
NM_004838
CCCAGTGCAAAAAGCCGGCA
1832





HOOK3
NM_032410
CACTGCGCACGCTCGCGCCC
1833





HOXA4
NM_002141
GGCGCTGCACGTGGGGCACG
1834





HOXA5
NM_019102
CATCAGGCAGGATTTACGAC
1835





HOXA9
NM_152739
ATCACTCCGCACGCTATTAA
1836





HOXB2
NM_002145
AATGCTCTCTGTTTTCCACC
1837





HOXC8
NM_022658
GGGAGTCTGAGGAATTCGCC
1838





HOXD11
NM_021192
GATTTTTGCTTAGTTGATCC
1839





HOXD11
NM_021192
TTGCACGTCAGCGCCCGGTG
1840





HOXD12
NM_021193
GTGTTATCATAATACTCTGA
1841





HOXD4
NM_014621
GGGAGAATGAATCCTCCTAT
1842





HP1BP3
NM_016287
GCGTCCCAGCGCGCCTGCGT
1843





HPCAL1
NM_001258358
TTACTCTGTGATTAAAAGCC
1844





HPCAL4
NM_001282397
GGTGCAGCCCTCCCGCTTCC
1845





HPGD
NM_001256301
CGGATACTGGAGATGAGAAG
1846





HPGDS
NM_014485
CTTCGCAGGCTTGAACTGCC
1847





HPR
NM_020995
CTTCACACTTGATTTTCCCG
1848





HPRT1
NM_000194
CAACTCAGTCTCCTATTCAG
1849





HPRT1
NM_000194
TTTTCTCCCAGAAGAAGCCG
1850





HPS1
NM_000195
AGAGAAGAAATAACTTGCTG
1851





HPS4
NM_152841
GCGTGTTTGCTCAGCAACCG
1852





HRASLS2
NM_017878
CGAGACCATCCTGACTAACA
1853





HRH1
NM_001098211
TGGGTTGTGGTCGGGTGCGG
1854





HRH2
NM_022304
AACCGCTCCAGGCAAGAGCC
1855





HRH4
NM_001143828
TTGTTGTTGTTGTTGTTGTT
1856





HS3ST2
NM_006043
ATGCAACCGCCTGTTCCCCG
1857





HSD17B12
NM_016142
TCAGAGAAGCCGCTAGTGAA
1858





HSD17B4
NM_001199291
TTAAGAGTGACTCCACTCGC
1859





HSD3B2
NM_000198
CACAGTGTGATAAAGAGTCT
1860





HSDL1
NM_001146051
GTTCGCGGCGGACGTCGCTA
1861





HSFX2
NM_001164415
GATGTGACCGCAGACACCCG
1862





HSFX2
NM_001164415
TTCTCTGGAGACACTGGCCA
1863





HSP90AB1
NM_007355
GGACATGACTCCATCAAGAG
1864





HSPA12A
NM_025015
CGGGCCGGCCGGGAAAGGTC
1865





HSPA5
NM_005347
AGGGGGCCGCTTCGAATCGG
1866





HSPA6
NM_002155
TTCGCATGGTAACATATCTT
1867





HSPA8
NM_006597
GAGTCCTCAGTTACCCCGGG
1868





HSPB6
NM_144617
CGTGGCCAGACCCGGCCATT
1869





HSPB6
NM_144617
TAGAAACCCAAACAATGACT
1870





HSPBP1
NM_012267
GCCTTTCAGACTCTCCCAGT
1871





HSPD1
NM_002156
GAAAGTTCTGGAACCGAGCG
1872





HSPD1
NM_199440
AGAGACTCGCAGTCCGGCCC
1873





HTATSF1
NM_014500
CCGCTAGGTCCAGGGCGCTG
1874





HTN1
NM_002159
TGATCTATTGTAAAATCACC
1875





HTR1F
NM_000866
GACTGTCAATCCGATTCATA
1876





HTRA1
NM_002775
GGACCGGGACCGCCCGCGGA
1877





HTRA2
NM_013247
GGTGGTGACTGTGTGGCCTC
1878





HUWE1
NM_031407
AGCGACCCTATCATCCTCTA
1879





HVCN1
NM_001040107
TGGGGAGAGGCTCACCTCCT
1880





HYAL1
NM_153281
ACGCTCCTCACTTTCCAGAC
1881





HYAL1
NM_153283
CCTGGCAAAGGGATCTTGGT
1882





HYAL2
NM_033158
AGATCCTACTCGGGAAGGGT
1883





HYAL2
NM_033158
GTCACCTGGCGCAGCTGGCG
1884





HYKK
NM_001083612
GCAGCCTCCTAGGCGGGGCC
1885





ICA1
NM_001136020
CCACCTTCCCCCGGTCACCC
1886





ICA1
NM_001276478
ACTTGATTTCCAGGTACAGC
1887





ICAM2
NM_001099789
AGACTGAGTCTCAGTCACCC
1888





ICOS
NM_012092
ATTGATGATTTTGAAGACAG
1889





ICOS
NM_012092
GACATGAGTTAAACAATGCA
1890





ID3
NM_002167
CAGCAAATTGGGGAACAAGG
1891





IDNK
NM_001256915
GGAGACGCGAGTGCCAGGCC
1892





IDO1
NM_002164
TCATTTTCTTACTGCCATAT
1893





IDO1
NM_002164
TGTTTTCCTTCAGGCCTTTC
1894





IER5L
NM_203434
TGGCCAGCCGAGTAGCCCCG
1895





IFI16
NM_005531
AATCTCTGACTTCACCAATA
1896





IFI30
NM_006332
TGCGCCAGGGCTCACGTGCC
1897





IFIT3
NM_001549
GGTTAACTTTGGAATGCCCT
1898





IFITM1
NM_003641
ACTAGTGACTTCCTAAGTGT
1899





IFNA1
NM_024013
GCAAAAACAGAAATGGAAAG
1900





IFNA5
NM_002169
CTCTTTCTACATAGATGTAC
1901





IFNA8
NM_002170
ATGCAGTAGCATTCAGAAAA
1902





IFRD1
NM_001550
CCAGTCTTCCGTCCGCGCCC
1903





IFT122
NM_018262
CTTTCGCAACATTCAGACCT
1904





IFT27
NM_001177701
AGTTCAGTCTGCTTGACGAG
1905





IFT80
NM_001190242
AAAAATGCTTCATTTTGGCC
1906





IGF2
NM_001007139
GCTTTACTTAGAGTGACACT
1907





IGFBP1
NM_000596
AACAAGTGCTCAGCTGGGAG
1908





IGFBP4
NM_001552
AAGAAGGAAGCGGCGCAGTT
1909





IGFBP5
NM_000599
GCGCTGTTCAGGGAGCGAAG
1910





IGFL1
NM_198541
ACAATGACACGTACCCTGCC
1911





IGFL2
NM_001135113
GTTTTTTCTTATGCTTTCTG
1912





IGSF1
NM_001170963
TTGAAGGCCCGCTCCGATGT
1913





IGSF21
NM_032880
CCGCTAAGCCGATTTATTGC
1914





IGSF8
NM_001206665
GCCCGGGGCGGATCCAGGGC
1915





IKBKAP
NM_003640
TCGGTAGCCATGGCGACCTC
1916





IKZF3
NM_012481
CCCGCGCACCGGCAGGTCGC
1917





IL10
NM_000572
GCATCGTAAGCAAAAATGAT
1918





IL11
NM_000641
AGGGTGAGTCAGGATGTGTC
1919





IL12RB1
NM_001290024
GCGCCTGACCCAGTCATTGC
1920





IL12RB2
NM_001258214
TATAGGTCCCGTGTTATAAG
1921





IL15RA
NM_002189
ACCCCTGTCCCCGGGACGCA
1922





IL16
NM_172217
GGAGTGGGTGTTAACCGCTT
1923





IL17RE
NM_153483
TCTTAAGCACTACTCAGCAC
1924





IL18BP
NM_005699
GCTGCGTGTGAACCCACCAC
1925





IL18RAP
NM_003853
AATAAACTACCTCTTTCAGT
1926





IL19
NM_013371
CCTCTGGGAGAACCAGAGAA
1927





IL1A
NM_000575
CCCTGTAGTCCCAGCTATTC
1928





IL1R2
NM_001261419
ATTACGTACTTCCAGCCGAG
1929





IL1RAPL1
NM_014271
TCACATAGCAGTACTGTACA
1930





IL1RL2
NM_003854
CATCTAAGTCCTTCATCACC
1931





IL2
NM_000586
ACCCCCAAAGACTGACTGAA
1932





IL20RA
NM_014432
TGTAAGAGGCTATACCATAT
1933





IL21
NM_001207006
ATGTGCTAATGTGTGGGGGC
1934





IL22RA2
NM_181310
TAAACGATTCGAGAAGCCAA
1935





IL27
NM_145659
GGAAATGTAATTTCCCTTCC
1936





IL3
NM_000588
GGAAGGATCTTTATCTGACA
1937





IL36A
NM_014440
GACTGGGGTCACTGCTGGGC
1938





IL36G
NM_001278568
TTTCTTCCTCCGAGCCTCAC
1939





IL37
NM_173205
ACTGATGTTACTGCTGCTGT
1940





IL4
NM_172348
CCAATCAGCACCTCTCTTCC
1941





IL9R
NM_002186
GTCAGTTTAATGAATCTCAG
1942





ILDR1
NM_001199800
AGAGGGGGATACATTTGCAG
1943





ILDR1
NM_001199800
GGGACGGTGTTTCAGCGAGC
1944





IMPDH1
NM_001142574
GGCGGCGGTTTCCGCGGGAG
1945





IMPG2
NM_016247
TGGACTGCTTGTTAAAGGCA
1946





INA
NM_032727
CGGAGCTCCTGCTCAGAGTC
1947





INO80B
NM_031288
TGTCCCGACCTCAGAGGGAC
1948





INO80C
NM_194281
GCGGGCGTTGTCCTGCCACT
1949





INO80D
NM_017759
CTCTGGAAAAAAGTCCACAC
1950





INPP5J
NM_001284285
GGAGAGTGTACCCATCTGCC
1951





INPP5K
NM_130766
GGCGGGGGAGACCGGATCCC
1952





INSL6
NM_007179
GGGGCGTCGCCAGAACTTCA
1953





INSM1
NM_002196
GTACATCTGCCGCACCTACC
1954





INTS6L
NM_182540
GGGAGTTGAAGTTTGAACCC
1955





INTS7
NM_001199812
CTTACAGTGGCGGGAGTTGG
1956





IP6K1
NM_001006115
TCAGCAGGAAGCACTTCCCC
1957





IP6K2
NM_001005909
GGACAATGCTCCGCCCTCTC
1958





IPCEF1
NM_015553
TGTCCTGGATATGGGCATCA
1959





IPO11
NM_001134779
AAGTTGTCCTCTATTTAAAG
1960





IPO8
NM_006390
CCAGCTCAAGTTTCCTCACC
1961





IPO9
NM_018085
GAAAGGTGCAGTTCTCGTTC
1962





IPO9
NM_018085
GTGAAAACTGAGCCCCAGAC
1963





IPPK
NM_022755
CCCAGACACCCTGGCTACCC
1964





IQCK
NM_153208
AAGGTGTAATACAATGATAC
1965





IQGAP2
NM_001285460
GTCCAAAGTTAACCCTTTCT
1966





IQGAP2
NM_006633
CCCCCGCACAGCTGGTGGCC
1967





IQGAP3
NM_178229
TTCCTCGTCTTGTTCCTTCC
1968





IQSEC2
NM_001111125
CACTGCGCAGCGCGGCCGCG
1969





IQUB
NM_001282855
AGGCGACATGGGAAGTCCGC
1970





IQUB
NM_001282855
GAATTTTCTCCCCTCTGCTC
1971





IRAK2
NM_001570
ACACGGGAATTCTGCCGCAG
1972





IRF5
NM_032643
CGCCGGGCGCGGACGCAGAG
1973





IRGM
NM_001145805
CATTTTGACAGGGTGCTGAT
1974





IRX4
NM_016358
GTCGCCGCTGCGAGGCCGCT
1975





ISG20
NM_002201
CATCCCCAGGACTGGAGCTC
1976





ISL2
NM_145805
GGGATCCAGGGGCTGATGGG
1977





ISLR2
NM_020851
GCTTATATCAGCCCAGATCC
1978





IST1
NM_001270976
AAGTCATCTGCTCCCTGCTG
1979





ISY1
NM_001199469
CCGGTCCTCCCTTTCACTTC
1980





ISYNA1
NM_001253389
CGAAGCTCTGTGGGGCGGGA
1981





ITFG1
NM_030790
CTGTCGGGAGGCGCGCCTGC
1982





ITFG1
NM_030790
GCCGCCCTCACGCTCACTTC
1983





ITGA2B
NM_000419
ATTCTAGCCACCATGAGTCC
1984





ITGA7
NM_001144997
CTGGCTGGGCCAAACAGGGC
1985





ITGA7
NM_001144997
GGAAGCTGCTGAGTTGTTAG
1986





ITGA9
NM_002207
ACTGAGGACGCCGCCGCTCG
1987





ITGAM
NM_001145808
TTTGTCACCCACTTGTTTCT
1988





ITGB1BP2
NM_012278
GAGGCGTACACCTCCTAACA
1989





ITGB5
NM_002213
TCCCCTGCCAGGCCCTCGCC
1990





ITGBL1
NM_001271755
TGACAAGAGAATATTTGGAC
1991





ITGBL1
NM_001271756
CTCATCCCAAGCAGGACATT
1992





ITIH1
NM_001166436
TGATGTGCTCTTCTTGGGCA
1993





ITPKC
NM_025194
CCCCGCCCCACCGGACGTGA
1994





IZUMO3
NM_001271706
ACTAAAGATTGCCCGATAGT
1995





JAGN1
NM_032492
TAATCCCCAGCCTCTTTTGC
1996





JARID2
NM_001267040
GCTCGGTTCCCCGACGCTCC
1997





JARID2
NM_001267040
GTCACAATGACAACAGAGTG
1998





JMJD7-
NM_005090
CAGTCGCTCCACCGCTTCGG
1999


PLA2G4B








JMY
NM_152405
CCGCGCAGCCTCCAGTTCCC
2000





JOSD1
NM_014876
CTCCATCCCCTCGGGTACGG
2001





JOSD2
NM_001270640
AGGCTCTCGCGATAGCTTCC
2002





JPH2
NM_020433
ACATGTGCTTCCGAAAGCAG
2003





JRK
NM_003724
GTGGCCGCGGAGGGCGTGGG
2004





JSRP1
NM_144616
CCCTGCCCTGCTGCAATGGC
2005





JTB
NM_006694
AAGGACCAGCTCTGAGGAGT
2006





KANK2
NM_015493
CTATGAGTGGGTCCCAGACC
2007





KANSL1
NM_001193465
ACACAGAGACAGAGACGCCA
2008





KANSL1
NM_001193466
GGAGAGCGGCGGGCCCGGGC
2009





KARS
NM_001130089
GTAGTGCTCGGCGTCAGACA
2010





KAT2A
NM_021078
AGTGAAGAGGGGTCAATGTG
2011





KAZN
NM_201628
CTTCGGAGACACACCCCCCG
2012





KBTBD3
NM_152433
TTGGCCAGTTCGTCTTTGCC
2013





KCNAB2
NM_001199861
TTGGCCAGAGCCTCGGGGTT
2014





KCNE4
NM_080671
AAGACAGTTGGAAGCAAGTG
2015





KCNF1
NM_002236
TGCGCCCGAGGAGGGGCCGG
2016





KCNJ10
NM_002241
CAGGCTCGAGCCGCCGAGAT
2017





KCNJ15
NM_170737
ACAGTCCTCTGGCATCATTA
2018





KCNJ6
NM_002240
AGCGCGTCGAGGACCGGGCT
2019





KCNK17
NM_031460
AGGAAATGTGAGGGGGCTCT
2020





KCNK7
NM_033348
TGAATGAATGAATGTGGTAT
2021





KCNMB2
NM_181361
TTCTATATGGAAAGCGAACT
2022





KCNMB3
NM_171829
AGAGAAAGAATTCACCAACC
2023





KCNRG
NM_199464
ATGTTAGGAATGAGACAGCC
2024





KCTD1
NM_001136205
GGACCCTTCCCCACCCGCCC
2025





KCTD1
NM_001258221
AGAACAGCCGAGGTCCCCGG
2026





KCTD13
NM_178863
GGTCGGCCGCATCCTCGATC
2027





KCTD14
NM_023930
AAGGGGTCTGCTCCATTTCT
2028





KCTD21
NM_001029859
TCTCGACGCGCCGAGCTGCG
2029





KCTD6
NM_153331
GCTGAGGCAGGAGGATCACC
2030





KCTD8
NM_198353
GCTAACTACTCCTGGCAGCA
2031





KDELR1
NM_006801
GAAAGTGCCAAATCCAGCAC
2032





KDM4A
NM_014663
CGATCCAGCTAGAGGCTCAC
2033





KDM5D
NM_001146706
AGTAAACACTTTCACATGAA
2034





KDM7A
NM_030647
GGCCCAGACTCGGCTGCTTC
2035





KDR
NM_002253
TCCCCATTTCCCCACACAAC
2036





KERA
NM_007035
TTTATTCCAAGTACCTGCTA
2037





KHDC3L
NM_001017361
GGCCTGGGACCCAATAAGAA
2038





KHDRBS2
NM_152688
GCAGCTGCCTCCTGCCAGTC
2039





KIAA0100
NM_014680
CCAAGAGCTGAAACACGCCC
2040





KIAA0101
NM_014736
ACCCACTAGTCGGGTACCCC
2041





KIAA0141
NM_014773
GGGGCGGTGACGTGCGGCAA
2042





KIAA0586
NM_001244189
GAGATTTTAGAATTCGCTGA
2043





KIAA0907
NM_014949
ATCGGAATCGACATTTTCAC
2044





KIAA0930
NM_001009880
ACCGGGGCCGGGCCGGGCCG
2045





KIAA1109
NM_015312
ATACTCTGGCTCAAAATAAC
2046





KIAA1147
NM_001080392
GGAACCGCGAGCCTATTCGG
2047





KIAA1211
NM_020722
TCCTCCTCCATCCCCTGTAA
2048





KIAA1522
NM_001198973
TCCTCCTAATCATACTCTAC
2049





KIAA2013
NM_138346
GGACTTCACTCTTCCGGCCT
2050





KIDINS220
NM_020738
CTTGCCTGGGGCGCTTGTCC
2051





KIF12
NM_138424
CTTATCATACCTGCACCTAG
2052





KIF1BP
NM_015634
ATCTCCAGATTGACCCTGTG
2053





KIF23
NM_001281301
CTCCATCACAAGAAGTTCAA
2054





KIF25
NM_030615
CTTCTTCTCTTTATGGGGGT
2055





KIF25
NM_030615
TTTCGTCGTTGAAGGCCACG
2056





KIF27
NM_001271928
CGCGTTGGTGGGACACAACT
2057





KIF2B
NM_032559
CAGAGAAGCAACGGGAACCA
2058





KIF2C
NM_006845
GGGGGTGTGGCCAGACGCAT
2059





KIF3B
NM_004798
AGCGGGGGCCCAACACACCT
2060





KIF5C
NM_004522
GTAGAGTGACTACAAGTCCC
2061





KIFC3
NM_001130100
GGGAGGCCCCGCGAAGGAGT
2062





KIR3DL2
NM_001242867
GGCTCTTTCTACCTTGCATG
2063





KITLG
NM_003994
GCCAACCTTGTCCGCTCGCC
2064





KLF11
NM_001177718
GGGAACGCGGCACGGTTTTG
2065





KLF12
NM_007249
GGCTGCCGAGTTGCGAGCCC
2066





KLF14
NM_138693
AGGGGCGCGTCAGGCGGGGC
2067





KLF15
NM_014079
GGACGTGTGACGCGCAGCGC
2068





KLF7
NM_001270944
ACACGTGTGCAGCTGTGCTT
2069





KLHDC8A
NM_001271865
TGGGAATCTCGCACCCACGC
2070





KLHL12
NM_021633
CGCCTATAATCCCGGCACTT
2071





KLHL13
NM_033495
ACCACTCCAAAGCTCAACAG
2072





KLHL14
NM_020805
TGGAGAGACTCGCAAAATTA
2073





KLK15
NM_017509
AGTAAACCTTCCAGAGATGG
2074





KLK8
NM_144507
CTCTACGATCTGAAACATAA
2075





KLRC1
NM_002259
CTTGGTCTATTAAAAGTACA
2076





KLRF1
NM_016523
TACCCTTAAAGTCAAGGGAA
2077





KLRK1
NM_001199805
AAAGGCAGCGAGGGTCACTT
2078





KLRK1
NM_007360
GAGTTAAGACCACCCATTGT
2079





KLRK1
NM_007360
TCAATTCCAGTTAATACCTC
2080





KMT2E
NM_018682
GAGGCTCGAAGATAGCAAAC
2081





KNOP1
NM_001012991
CGGTAACCGCGTTCGCCGGA
2082





KPNA1
NM_002264
AGGTTTGCAGACCATGGCAA
2083





KPNB1
NM_001276453
AAAAGAAAAAACCCCAAGAG
2084





KPNB1
NM_001276453
AGAGGAATAACCGAGCAAAG
2085





KRAS
NM_004985
GGGGAGGCAGCGAGCGCCGG
2086





KRIT1
NM_194454
GGCAGGCGACTAGGAGACTA
2087





KRT10
NM_000421
AAACCTCCTGTTTATTCTTA
2088





KRT2
NM_000423
GTCTGCCTGGGAGCTATTCC
2089





KRT23
NM_015515
CATCTGTCCAATTAGTGGCT
2090





KRT7
NM_005556
TGAGTCCGTTTCCAATGGGC
2091





KRT82
NM_033033
GGGCCAATGGTCAGTGCTGG
2092





KRT85
NM_002283
ATAACATCTTCAAGACTTCA
2093





KRT9
NM_000226
GTCTGGGATACGGAGGCAGC
2094





KRTAP10-10
NM_181688
AGAAATAATGAGGGTCCTCC
2095





KRTAP10-2
NM_198693
AACGCCCTCCACTTCCGTGT
2096





KRTAP1-1
NM_030967
TTACCAAGGACAAACACATT
2097





KRTAP13-1
NM_181599
CACCCTTCATCTTATATTTA
2098





KRTAP13-2
NM_181621
TAAAAAGTGAGCAAGGAGAA
2099





KRTAP13-4
NM_181600
CAGTTACACATATGTAAATG
2100





KRTAP1-5
NM_031957
TGTTTAAATTTGTTACTCCG
2101





KRTAP19-1
NM_181607
ATCTTACTGAGTGTTGTCAG
2102





KRTAP19-7
NM_181614
AACAAGGAAGAGAGTGGGAT
2103





KRTAP2-2
NM_033032
AGGAAGAATAAGTGAAAACA
2104





KRTAP2-3
NM_001165252
ATCCAGAGTTCTCATTTCAA
2105





KRTAP27-1
NM_001077711
ATAACATCTCATTACCACTT
2106





KRTAP29-1
NM_001257309
CATGCAAACATCTGATTAGC
2107





KRTAP3-1
NM_031958
TGAGGTGAGCAGTGTATCTT
2108





KRTAP4-2
NM_033062
GGTTAACTTATCCACATAGA
2109





KRTAP4-8
NM_031960
ATAACAAGGAAATAATGACG
2110





KRTAP5-1
NM_001005922
CCAGCCTCACACATGACCCT
2111





KRTAP5-11
NM_001005405
GTGTAAACAGTCACAAGGAA
2112





KRTAP5-2
NM_001004325
GTGTAAACAGTCACAAGAAA
2113





KRTAP5-4
NM_001012709
AAATGTAGTCACTTCCTCCT
2114





KRTAP5-7
NM_001012503
AAATAGCGTAAACAGTCACA
2115





KRTAP5-8
NM_021046
TGTGTTCAGTATAAACACCT
2116





KRTAP5-9
NM_005553
GTGCTAGCAACACCAGCCTC
2117





KRTAP6-1
NM_181602
GGTTTTCAATCGTGGCCTTG
2118





KRTAP6-3
NM_181605
GAAATCAGAGAGATACGTAA
2119





KRTAP9-3
NM_031962
AAACAATGTAAACAGCAACA
2120





KRTAP9-4
NM_033191
AGTCCGTTTGTGATTCTCAA
2121





KRTAP9-9
NM_030975
TGGTGGAAACTTTGGAAGCC
2122





KRTCAP2
NM_173852
ATGCGTCGAGGGGGCATCCT
2123





KSR1
NM_014238
ACTGAGGTGTGTAGGGACTT
2124





KXD1
NM_001171949
AGTCACACTATCTACAAAAT
2125





L2HGDH
NM_024884
GCGCGCGCGTCGGAGGGCGA
2126





L3MBTL4
NM_173464
GTTCCACACCCCGGGGAGCC
2127





LACRT
NM_033277
TGCGGAAGTCACACCTCTCC
2128





LAMA3
NM_001127717
CTCAGCTCTGGAACCTGCCG
2129





LAMB1
NM_002291
AACGTAAATGCGCGAGTCCG
2130





LAMB3
NM_001017402
ACAGGAGAAGGTTTGCCTCC
2131





LAMB4
NM_007356
ACCCACACACACACATAAAC
2132





LAMC3
NM_006059
CACGTCCAGCAGGTGGGAGT
2133





LAMP3
NM_014398
GAAGTCTCGCTCTGTCGCCC
2134





LAMP5
NM_012261
TGGCAACAGTTTCCTGAATT
2135





LAPTM4B
NM_018407
CAGGAGAATCGCTTGAACCC
2136





LARGE2
NM_152312
ACAGCCTGAGCCCCCTTTCC
2137





LARP4B
NM_015155
GGTGTTGCGGCGCGCTGATT
2138





LARS
NM_020117
CAAGGGACTCCAACCTAACC
2139





LAS1L
NM_001170650
GGCGCCGACCTAATGACATG
2140





LAYN
NM_001258391
CTGGAGAGAGAGGCGATGCG
2141





LBR
NM_002296
TCATCCCCGGCGCTGTCGAT
2142





LBX1
NM_006562
TCGGCAGTGGCTCCTGGCCC
2143





LCAT
NM_000229
CGCCTTCTTCTCTTGGCGCC
2144





LCE1E
NM_178353
CTTGCCCCCTGATACCCACG
2145





LCE2C
NM_178429
GGAATGACCCAGCGTGTGCC
2146





LCE2D
NM_178430
GAGCTTCTAGGACTCCTCTC
2147





LCE3D
NM_032563
CAAGACTAGGTTTGTAGCTT
2148





LCE3E
NM_178435
ATCTTGGTGAGTACACAGGA
2149





LCE3E
NM_178435
TGCCTGGCTGTCACCTCCCC
2150





LCK
NM_001042771
GTCAGGTCTCTCCCAGGCTT
2151





LCOR
NM_015652
GCATTCTCTCTTCCATCTAC
2152





LCP1
NM_002298
AAAGACAGCTGGAGGAGAAA
2153





LCT
NM_002299
CAGGTGTGAGCCACCACGCC
2154





LDB3
NM_001171610
CCTGGTTGGTGAGAATGCTC
2155





LDB3
NM_001171610
CTCCTTGCTCCTGTGTCCTC
2156





LDHAL6A
NM_144972
ATTTCTAACCAAACCTTGTC
2157





LDLR
NM_001195803
AAACATCGAGAAATTTCAGG
2158





LDLRAD1
NM_001276395
TTCCAAGCAGAGGCAAAGGC
2159





LDLRAD4
NM_001276251
AGCAGCAGGCGCGCCTCTGG
2160





LDLRAD4
NM_001276251
GCATTTCCCTCGCCCGCCAC
2161





LDLRAD4
NM_181481
GGCATCAAGTAATAAAGGGA
2162





LECT1
NM_007015
TGTTTGGGGGGCCAGTAGAC
2163





LEF1
NM_001130714
TTTCTTTTCCCAGATCCTGT
2164





LELP1
NM_001010857
GCTTGTTGTGCTGGGAGCTA
2165





LEPROTL1
NM_001128208
CCAGGTCTTGAATTCCTGTC
2166





LEPROTL1
NM_001128208
CCCCCTGCCTCTCTTCTCCG
2167





LETM2
NM_001199660
GTTTTGCTCCCGTGTGGTGA
2168





LEXM
NM_152607
GGCCCTTCTTGTATTTAATA
2169





LGALS12
NM_001142536
TGGAGTCTTGCTCTCTTGCC
2170





LGALS12
NM_001142538
ACCTCTAATCCCAGCTACTC
2171





LGALS12
NM_001142538
TGCAACCTCCTCCATCTCCC
2172





LGALS3
NM_002306
CGACCTCCGCTGCCACCGTT
2173





LGALS4
NM_006149
AAGTCTGGGCAGGGTTTTAT
2174





LGMN
NM_005606
AGTAGTTGCGCACTGAAGTG
2175





LGR4
NM_018490
GAGCTCATTACTATGCAGAG
2176





LGR6
NM_001017403
CGGTGCAGCCCGCCGGGACC
2177





LHPP
NM_022126
CTTTCTTCCCAGGAGATCAG
2178





LHX2
NM_004789
GCACGCGCTGCCAGGGCCTG
2179





LHX3
NM_014564
CACCGCAGGTCCCGGCGCAA
2180





LHX5
NM_022363
GGCAACTTCTGCAAGTTCCA
2181





LHX6
NM_001242334
CAGGGAGAGGGGGAGAGAGA
2182





LIFR
NM_001127671
GGAGGAACGCGGCCGCGCGA
2183





LIG4
NM_002312
ATCCGGTCGTGGGGGTGTCT
2184





LILRA2
NM_001290270
ATGACAGCCAGGCTCCTGAG
2185





LILRB1
NM_001081637
CAGTGTCCAACCCCACCCCC
2186





LILRB3
NM_006864
CTGCCCCCACTTCAGCCCTG
2187





LILRB4
NM_001278427
AACCAAAAACCTGCATTTTC
2188





LIM2
NM_001161748
ATTCGCTGAAGCAGGCATCC
2189





LIMCH1
NM_001289124
TTAACTGTGTAACAATTTGG
2190





LIMCH1
NM_001112718
ACCCGCGGGAGCGAGCGCGG
2191





LIMS4
NM_001205288
CAATGCCGTGCTTTTCACTC
2192





LIN54
NM_001115008
AAGGGCCGTGCAAGTGCACA
2193





LIPA
NM_001127605
GAGCCCGTCCTCCGCCTCGC
2194





LIPF
NM_001198830
TATTGGCCAAAGTAGTTCTG
2195





LIPH
NM_139248
AGGAGTCAAAGATCCTGAAA
2196





LIPT2
NM_001144869
TCCAGCTTTTAACACGCACC
2197





LLGL2
NM_004524
GCTGCGCTCCTGCCAATCCG
2198





LMAN2
NM_006816
GGGGCGGATTCGCGAAGACT
2199





LMNB2
NM_032737
GACTCCAGAGACAGACTTCC
2200





LMNTD1
NM_001145727
AGTCAGCGGCAGGCACTTTA
2201





LMO1
NM_002315
AGCGTCTTTGCTCCGATCCC
2202





LMO3
NM_001001395
TAACAGATCATACAGTTGGA
2203





LMO7DN
NM_001257995
GGCCGTTGGCTTATTGTCTG
2204





LMX1A
NM_177398
CGTGTGGTGGCCGCGCAGCC
2205





LMX1A
NM_177398
GCGTGTCCGAGAGCTCCCAG
2206





LONP2
NM_031490
ATACTCTGTAAGTGAGGCGA
2207





LOXHD1
NM_001145472
CAAACCCACAGCCCCCACCC
2208





LOXL2
NM_002318
AACCCGGGCGCGAGGAGCCT
2209





LOXL3
NM_032603
AGAGGAGGGAACTGGCCGGG
2210





LOXL4
NM_032211
ACCTGGCCTGTGTCCCGACG
2211





LPAR5
NM_020400
AGGCTGGTGGGTTAGTCATC
2212





LPIN1
NM_001261428
CTTCTGGAAGTTTTGCATCC
2213





LPP
NM_001167672
GCTCTGCGCGGCGGCTTCGC
2214





LPP
NM_005578
ACACGATGTCCAGCCCCCAC
2215





LPXN
NM_004811
CATGAATCCAAGATGAATCC
2216





LRBA
NM_001199282
CGGTGGCCGCTGGGTTTCTC
2217





LRCH3
NM_032773
AAAGCGCATCATGTGGGCGG
2218





LRFN5
NM_152447
GACTTTGATAACCTCCCTGC
2219





LRIG3
NM_153377
GCGTAGGCCCCCGGCTGGAG
2220





LRP3
NM_002333
CGGGCGGGGGTCTTCCCTGG
2221





LRP8
NM_004631
GTCTGCAGAGCCCAGCACTC
2222





LRRC20
NM_207119
GACGAGGTGCCATTGGCTGC
2223





LRRC23
NM_006992
GTTATTTTCAGGTAGACCTT
2224





LRRC29
NM_001004055
GTGCTTAGTGATTGCGGTTT
2225





LRRC30
NM_001105581
GTGAGAACCAACTTGTGACT
2226





LRRC32
NM_005512
CCAAAGGAATGTGGCTGTGA
2227





LRRC32
NM_005512
GAATTTCAGGCAGCTCGGCG
2228





LRRC36
NM_001161575
TTCCCTACAATTACTTTCCC
2229





LRRC55
NM_001005210
ACGTGCCCTTTAAAGATCCT
2230





LRRC61
NM_001142928
AATCTAGGCCGCCATCCGTC
2231





LRRC72
NM_001195280
CGGACGCATCACCATGAGCA
2232





LRRC75A
NM_207387
GAGGGAGGCGCGCGACGCCG
2233





LRRN2
NM_201630
CGTTCGCAGGTGCCCGGAGC
2234





LRRN3
NM_001099660
TTCCCAACATTCCCTCAGAA
2235





LRRN4CL
NM_203422
AGAGCTGGGAGACATCATTC
2236





LRSAM1
NM_001005374
CCGACGTCCAGCCTAGATGC
2237





LSM3
NM_014463
CGGGTGCGTCACTCGCGAAG
2238





LSM5
NM_001130710
GAGATCGACTCTGTGGGGCG
2239





LSM7
NM_016199
GCGGGCACCGGCCGACATGG
2240





LSM8
NM_016200
GGGTTTCCAATCCGAGTAAA
2241





LSMEM1
NM_001134468
TACAGACCCACCACAGGTGA
2242





LSMEM1
NM_182597
TTGCAAGTCAGTCATCATAG
2243





LSP1
NM_001289005
CCAGACATCCCCGTTTAAAG
2244





LSP1
NM_002339
CAGCTCTTCATGGCTCGGGG
2245





LTA
NM_000595
GAACCACAGGCTGGGGGTTC
2246





LTA4H
NM_000895
TACCTGGGAGCGTGTGTGTT
2247





LTN1
NM_015565
AGGACAGGATTTGGCGCCAC
2248





LUC7L2
NM_001270643
ACCAGAGTATCGCGAGATCC
2249





LURAP1
NM_001013615
CGCCCAGCCCCACGCAATCC
2250





LUZP4
NM_016383
GCTCGCTAGAAGAAAAAAAA
2251





LY6G5C
NM_025262
TTCTGCCCCTCTGGCTGGTC
2252





LY6G6D
NM_021246
GATGCTGAGAGCATGCTGTG
2253





LY6G6F
NM_001003693
AGCCCAGCAGCATGTCTACT
2254





LY6G6F
NM_001003693
TGACCACCACTTTTCTATCC
2255





LY86
NM_004271
GGACCTTGAATCTACAGGTG
2256





LY96
NM_015364
CAGGCATGAGCCACCGTGCC
2257





LYPD4
NM_173506
GGCTCAACTCGAAGCGCTAT
2258





LYPD5
NM_182573
AACCTGTGCTCCGAGTGCGT
2259





LYPD6
NM_001195685
TTTTGCACCAAACCCATAAC
2260





LYPD6B
NM_177964
AACTAACTCACCTGCACCCT
2261





LYRM7
NM_181705
TGCTAAAGGCGTTTGCTAAA
2262





LYRM9
NM_001076680
AGCTTTCAACTGGGTGGGGT
2263





LYSMD2
NM_153374
TGAGGCTGTTGAGATGGACC
2264





LYSMD3
NM_198273
GCGGGTCCAATCCCCGGGCC
2265





LYSMD3
NM_198273
TGGTTGGACTCCCCCGTTTT
2266





M1AP
NM_138804
ACCAACACCTGCCTGAGGAC
2267





MAFF
NM_001161574
GTGTCATTGGCTCATTTTAC
2268





MAG
NM_001199216
GGGTTCTCCTAGCTCTTTCC
2269





MAGEA12
NM_001166386
ATCCGGCCCCGTGACTTCCC
2270





MAGEA12
NM_005367
TTGGGGGTAGGGGTAGGGAT
2271





MAGEA4
NM_001011549
CGGTGGAGGGGGCGGGTTTT
2272





MAGEA9B
NM_001080790
GGGGCCCTCAGTCATCCCTC
2273





MAGEB1
NM_177404
CACCTTAGTATCTAGCAGTC
2274





MAGEB1
NM_177404
GGTCCCTACGTCCCCACTAG
2275





MAGEB4
NM_002367
AATTCTAAAGGTAATCAGAG
2276





MAGED2
NM_177433
GGAGATGAGTGGCCTTTCAT
2277





MAGED4
NM_001272062
AGAGGTGAAGTGGATCTGGC
2278





MAGIX
NM_001099681
GGATGTTGCTATTCCAGCAT
2279





MALSU1
NM_138446
AGTGACCCGGAAGAGCTACT
2280





MAN2A2
NM_006122
TGCTTGTGCTACTTGGAGCC
2281





MAP1A
NM_002373
GCTGGTCCGTGACGAGGCAC
2282





MAP2
NM_031847
AAATAAGGCGAGTGGGAGAG
2283





MAP2
NM_031847
TTTTCCTGTTCGCCACTGCG
2284





MAP2
NM_001039538
GGCTGCGGCAGAAGGCGAAG
2285





MAP2K1
NM_002755
CCGCCGAGGCTTGCCCCCAT
2286





MAP3K15
NM_001001671
ATCGAGGGAACGGAGCGCAC
2287





MAP3K2
NM_006609
TGAATACCTGCTTTTCTTCT
2288





MAP4K4
NM_001242559
GGCTGCGCTCTCGGGCCGCT
2289





MAP7
NM_003980
GCTTCCTAAAGCGCAGATCC
2290





MAP7D2
NM_001168466
CAGTCCTCACACAGCGCGTA
2291





MAPK15
NM_139021
AGGTGGGGTGGGCCCACTGT
2292





MAPK7
NM_139033
GGAAGGAAAGGTTTTCTAAA
2293





MAPK8IP2
NM_012324
GGCGTCGGGCCCCGCCCTGG
2294





MARCH10
NM_001288780
AGGAGGCGGTTGGCTTTGTC
2295





MARCH10
NM_001288780
GGAACGAGGCGGGCTGCAGT
2296





MARCH7
NM_001282807
CTTCTGTTATCTCAGGCACT
2297





MARCH7
NM_001282807
GCTTCAGAGAAAAGAGGGTC
2298





MARK1
NM_018650
GGCGGGCAAGAGAGCGCGGG
2299





MARK2
NM_017490
ACAAAGCCTCCAATAGGGCT
2300





MASTL
NM_001172304
CACTGCAACCTCTGCTCCCC
2301





MAT2A
NM_005911
GGCCGGGATAGCTTTCCCGG
2302





MATK
NM_002378
CTTCCGAGAGCCGCCTCTCC
2303





MATN2
NM_030583
GCGAGGGCGGCCCCACCCTG
2304





MAU2
NM_015329
TGTAAAAGGGCGACGCCGTT
2305





MAZ
NM_002383
AGGCCCCGCGGGGCCGGGGC
2306





MBD2
NM_003927
ATTAATTGGGAAGCAAACAT
2307





MBNL3
NM_001170701
GGAAGGTGGAGTGGCTGCCA
2308





MBOAT2
NM_138799
GACGGGGGCGACGGCAGGAC
2309





MBTPS1
NM_003791
CGACGCGCAGAGCGGACCAA
2310





MC5R
NM_005913
GTGTCCAGGGGCACTCTTCC
2311





MCF2L2
NM_015078
ACAGTCCCTGGAGGCGGCGC
2312





MCFD2
NM_001171511
TAACTCTGTCTACCGTGAAA
2313





MCHR2
NM_032503
AGTGTTTATTGATGTACCAA
2314





MCM3
NM_002388
GAGGCTGGTCATTGAGCAGC
2315





MCM4
NM_005914
GCAGGAGACCTTGTCCGCTG
2316





MCM5
NM_006739
TTTGGCGCGAAACTTCTGGC
2317





MCM9
NM_017696
GGGTTAATATGAAGGAAATT
2318





MCPH1
NM_024596
CCGTCGTCCTCCTTACTCCC
2319





MCRIP2
NM_138418
CAGGCAGCAACGGCCTTCCC
2320





MCRIP2
NM_138418
GCGGTGCCCCGACACTGACA
2321





MCRS1
NM_006337
ACGTTAAGGATTATAGGCAC
2322





MCRS1
NM_006337
GGAGAGGTAACCCGGCTTGA
2323





MCTP1
NM_024717
CTGAAGTCGCTGGGCACTCC
2324





MCTP2
NM_001159644
AGAGATATTATACCAGAACA
2325





MCU
NM_001270680
CGGCGGCGACCAGGAAGGGA
2326





MCU
NM_001270680
TGAAGGGCACGGCGGCTCCT
2327





MDGA2
NM_182830
TCCCTTAATGGTTTTCACGA
2328





MDH2
NM_001282403
TTCTAGCGTAGCCGTCTGTG
2329





ME3
NM_001014811
GCAGGCGGGGTGAGGAGCTG
2330





MECOM
NM_001105077
CGACGGACAGAGACACACGG
2331





MECOM
NM_001105077
GGGTTTCTCTGCCGGCTTGT
2332





MECOM
NM_001105078
AGAGAACTCCTCACTTTAAA
2333





MECP2
NM_004992
GCTGCGAGCCCGCCCGTCAT
2334





MED12
NM_005120
CCCAGCTCATTCTGCGCCTC
2335





MED17
NM_004268
AAACGCAGGCTTAAAAAGCA
2336





MED21
NM_001271811
GGCTGGATCTTTTGAGTAAC
2337





MED24
NM_001079518
GGGTGTGGCGTTCAGCAATA
2338





MED29
NM_017592
ATCCGTGTGTGGTTCCGAGC
2339





MEDAG
NM_032849
GAGGTGGGGAGAGTCCTCCC
2340





MEF2C
NM_002397
GAAGACGGAGCACGAATGGT
2341





MEF2D
NM_001271629
CTTGCCAGGGAGAAGAGGGC
2342





MEGF11
NM_032445
GAAGGAGAGGGAGGGGCCGA
2343





MEGF8
NM_001271938
CAAATGGGCGGGGATTTCCC
2344





MEIS2
NM_002399
GGAGGAAAAGACGGAGAGAG
2345





MEIS3
NM_020160
GGTGGGAGTCGGGGAGGGGC
2346





MEN1
NM_130801
CCCGGCCCGCCACTATTTCC
2347





MEN1
NM_130804
CACTGAAGCCTCCGCCTCCC
2348





MEOX1
NM_001040002
TCTGAAGTGAAATGTGAGAG
2349





MEPE
NM_001184694
CAAAAGCAGACACTGAGACA
2350





MEPE
NM_001184694
TTTTGAGAAAGCCTAACCTC
2351





MEPE
NM_020203
TAAAATTACTTCACCCCCTA
2352





METAP1
NM_015143
ACGCAGGCACCGCCGGCGGG
2353





METTL22
NM_024109
CTCCTATTTAAGTCTTTTAG
2354





MFAP1
NM_005926
TTCCTTTGGGCTTTGCTGTT
2355





MFN2
NM_014874
AAGATTACAGAATGCAAATC
2356





MFNG
NM_002405
CACAACAAACCCTCCGTGCC
2357





MFSD10
NM_001120
ATGGGGTGCACACCGGACGC
2358





MFSD2B
NM_001080473
GGGAAACGCAGAAACCGCGA
2359





MFSD4B
NM_153369
CTCTTGATTTCCCTGGTCCC
2360





MFSD8
NM_152778
TTCCTTGTGACGAAAGGAGC
2361





MFSD9
NM_032718
TCATCATTATCATCACAAAC
2362





MGAT1
NM_001114619
AGGTCCTCGCCTCCACGCAG
2363





MGAT4D
NM_001277353
GCTCTAGTGTTTCTCAGCTT
2364





MGAT5
NM_002410
CTGTAAGCTGAGGGGAAATC
2365





MGST1
NM_145764
TCGAGAGATCAAGTCCATCC
2366





MIB1
NM_020774
GGCCGGGGGAGGCTAGCCCG
2367





MICAL2
NM_001282667
TGCCACATCGACAGGCCAAA
2368





MICB
NM_001289160
CAGGAGACTCACTTGAACCC
2369





MID2
NM_052817
ACACACACGCACACCCGTCC
2370





MIEF1
NM_019008
CTCCGTGTGTGACCTCACCA
2371





MIEF2
NM_148886
CTTGGTTTATCCTGCGAACG
2372





MIGA1
NM_001270384
GTTTTTGCATCCACTTGACG
2373





MIIP
NM_021933
GGAGTCTCACTCTGTTGCCC
2374





MINK1
NM_153827
GCGCACGCGCACCAGCTGGT
2375





MINPP1
NM_001178118
CATAATCATGCTTCAACTAC
2376





MIS18BP1
NM_018353
GCTACGGCGCACAGCCTGTA
2377





MITF
NM_198177
TGCTGTTGCAGACAGAAACC
2378





MKL1
NM_001282662
GCCTGACTTCCTGTGACTGA
2379





MLC1
NM_015166
GGGTTCATGGTTTAAGGAGC
2380





MLYCD
NM_012213
CGGCTGGGGACGCGGCCAAT
2381





MMADHC
NM_015702
GAGGACTATCAAACGCATCA
2382





MMD
NM_012329
ACGCTGCCATTCATTCCCGC
2383





MMD
NM_012329
CGGGGTGCCGATTGGCTGAC
2384





MME
NM_007288
GCTCTCCTGGGACTCACCAG
2385





MMP11
NM_005940
CTGAACTCTCCTAGCAGCCG
2386





MMP17
NM_016155
GGCGTTTCCCCGGGTGTCTT
2387





MMP20
NM_004771
CTCATTTCTCTCCCTGATGA
2388





MMP24
NM_006690
TGGCTCCCCGACCAGCCCTG
2389





MMP27
NM_022122
TGTGTTTACTAAACAATTGC
2390





MMRN2
NM_024756
GTCCCTGAGCCAAGTCCTCA
2391





MOCS3
NM_014484
ATTGATCGCTAGTTCTTCTA
2392





MOK
NM_014226
AAGGCTATCGTCCACGTAGT
2393





MOK
NM_014226
CAAATCCCCGCCTTTGACAC
2394





MON1A
NM_032355
AAATGAACTGCTAGCTGGCT
2395





MON1B
NM_001286640
GGAGACGTCAATCAATGGAT
2396





MORC3
NM_015358
GGGAAGATGAATTGCCTGAC
2397





MORF4L2
NM_001142421
CTTCTGTAAATAGCACTAGT
2398





MORF4L2
NM_001142421
GAGCAAAATTATTTGGATCT
2399





MOSPD2
NM_001177475
TTGAGTTCCCCTTATGATTC
2400





MPDU1
NM_004870
AAGACAAGATGGCGCCCAGC
2401





MPHOSPH10
NM_005791
GGCACCGGCGACCTTCGCCA
2402





MPP2
NM_001278374
CGAGAGCCTCTTTTAGGTCT
2403





MPP2
NM_001278376
GTGCAGAGCAGGCGGTAACC
2404





MPP6
NM_016447
GCGGCGGCGGCTGGAGGAGG
2405





MPP7
NM_173496
AAGCGGGCAGCCACATTTGC
2406





MPZL3
NM_001286152
CTTTTGCTTGAAAATGAAGT
2407





MRE11
NM_005590
TGGGTTGTTATTCCCTGTCC
2408





MREG
NM_018000
CCCTGGAGCCACAGAGCACG
2409





MRFAP1L1
NM_203462
GATGGACGTGCGCGCGCCCG
2410





MRGBP
NM_018270
TTTCTTACTGTGCTTTAAAG
2411





MRM2
NM_013393
AGACTAGGGGAGCTGAGCCA
2412





MRNIP
NM_016175
AGGGGCGGGGCCGCGGCGGC
2413





MROH5
NM_207414
GAGAAGGAAGGGGCAGGCCC
2414





MRPL12
NM_002949
CGGGCGACCCTCGTCCCGCC
2415





MRPL18
NM_014161
TAAGCAACAAGCGTGGTCTT
2416





MRPL27
NM_016504
CTGCAGAGCGGTGTTCAGGA
2417





MRPL3
NM_007208
GAATAAGGACAGACTTCCTG
2418





MRPL35
NM_145644
GTAAAACGACTGCCTATAGA
2419





MRPL37
NM_016491
CCAGGTTCCTCCCAGTCTCT
2420





MRPL38
NM_032478
AGGGGTGCGAGCTCCGATTC
2421





MRPL38
NM_032478
CGCTGCGTCCTGATTTCCCC
2422





MRPL52
NM_181306
GAGAGACAAAACTGCAGTAC
2423





MRPL58
NM_001545
ACCGTCTTCCCCAGCCAACC
2424





MRPS18C
NM_016067
AGCTCTCAGGGCTCGCGGAC
2425





MRPS28
NM_014018
GAAGAGACTTAAGCTAAAAT
2426





MRPS33
NM_016071
GATGGCTGCGAAGTCTACGG
2427





MRPS33
NM_016071
TCATTAGTGACCAGCTCGGG
2428





MRPS35
NM_001190864
ACTGATTCACTCGATTTTTA
2429





MRVI1
NM_001206880
GATTGCCAGAGAGAATGGCC
2430





MS4A14
NM_032597
AAGATAACTACGTGAGGTGA
2431





MSANTD1
NM_001042690
GCCGGGGCGGCACTGAACTG
2432





MSANTD3
NM_001198805
CGCCTCGCCGGCCCCTCCCC
2433





MSANTD3
NM_001198806
GAATGAATGTTATCACGGAC
2434





MSH5
NM_172165
TCTGCCGTTGCTTAGCAGCC
2435





MSL3
NM_001193270
GGGCTGGGGGACCCGGGACC
2436





MSLN
NM_001177355
CAGGAAGGCAAAGCTGCCCT
2437





MSMB
NM_002443
AGGTAAACACATAACTTGGG
2438





MSMO1
NM_001017369
CTGCAGAGCCAGCCAATGGT
2439





MSR1
NM_138715
CACACCACTGCACTCCACCC
2440





MSTN
NM_005259
GACTGTAACAAAATACTGCT
2441





MSX1
NM_002448
GCGGGCCCGGAGCGATCCAT
2442





MT1B
NM_005947
CAGGTCACTGCTCATGGCCC
2443





MT3
NM_005954
TGCGCGCTTCCACGCAGTGG
2444





MTIF3
NM_152912
TGTCGAATTTCTGCAGCAAT
2445





MTMR4
NM_004687
ACCCCACTCATTGGTCGAGT
2446





MTNR1A
NM_005958
GCGGGCTCGCGGCGGACACC
2447





MTR
NM_000254
AGGCTTACACTTCCGGATCC
2448





MTRNR2L10
NM_001190708
TCGTCTGGTTTTGGGGAACT
2449





MTRNR2L7
NM_001190489
TATTCACAACAGCAAAGACA
2450





MTTP
NM_000253
TCCCTGTCAACTCTTCAGCT
2451





MTUS1
NM_001166393
AGGCTCAGAGATGTTGTCAC
2452





MTUS1
NM_001001931
TGTTGTGGCAACAGAATTTG
2453





MTUS1
NM_020749
ACTTTAATTCCCACATGCTG
2454





MTUS2
NM_015233
TATTGATTTGCCTCACCCTG
2455





MURC
NM_001018116
AGTCAGTCAGCAAGCATGTT
2456





MUS81
NM_025128
ACTGGTCTTGAAAAGAGTCC
2457





MUSTN1
NM_205853
ACTGGGATGAACCCTTGCAG
2458





MUSTN1
NM_205853
TTCAGATGGTCACACATTCC
2459





MUTYH
NM_001048172
ATGGCCGCCGACAGTGACGA
2460





MVB12A
NM_138401
CCTCGCCACCACGCGTCGCC
2461





MXI1
NM_001008541
TGGTGGCCACGCCGGAGCCC
2462





MXI1
NM_130439
GGCTTCCCTGCCTCTCCCCA
2463





MYADM
NM_001020818
GCTCTCAGCCCATGTTTATA
2464





MYADM
NM_001020820
ACAGACCCTCTTTGTCACTC
2465





MYCN
NM_005378
GGCTTTTGGCGCGAAAGCCT
2466





MYCT1
NM_025107
CCTAAAAGCAGTTTTGGAGG
2467





MYD88
NM_001172569
GTGGAGCCACAGTTCTTCCA
2468





MYF6
NM_002469
GTGATTCTCTCTGTGTAACC
2469





MYH1
NM_005963
AATATGAGGGGAATTAGGCT
2470





MYH13
NM_003802
TTACTTGGATAAATGACCAG
2471





MYH14
NM_001145809
GGCCAATCAGAAGTTGTCGA
2472





MYH8
NM_002472
AATGTCTTGCCCTAACAAAG
2473





MYH8
NM_002472
GTCACTACAAACTATGCTGA
2474





MYL10
NM_138403
ACAAAGGGCTTTTTGTATCC
2475





MYL10
NM_138403
TACACCAAGGCAAGAACCCC
2476





MYL3
NM_000258
GGAGGGCATTGTTCAGGCTC
2477





MYL7
NM_021223
TTGAGGACATGAAGGTCATC
2478





MYL9
NM_006097
CAAGGCCCTCTGTGCAGCCC
2479





MYLK4
NM_001012418
CAGGTAAGGAGAGGATGAAC
2480





MYNN
NM_001185119
ACATACATGGTTAAGAATGA
2481





MYO16
NM_015011
TCCAGAAAACACATCAGCTC
2482





MYOCD
NM_001146312
CCAATCAGGAGCGGCGAGCG
2483





MYRF
NM_013279
CCCAGCCCACCACCGGCACA
2484





N4BP1
NM_153029
GTCACCCTCAGTCGCCATGT
2485





N4BP2L1
NM_052818
GTGCGTCACCCTTGTTTTCC
2486





NAA35
NM_024635
CTGTCGGAGTCCTGGGTAGT
2487





NABP1
NM_001031716
TGCTTCCCCTCCCCAGCACC
2488





NACAD
NM_001146334
CACCCACTGCCCCCACCGCC
2489





NADSYN1
NM_018161
TTGCCCGCAAGGGCCGGGCC
2490





NAE1
NM_003905
GGGCAAATTGGCAGGCTAGC
2491





NAGS
NM_153006
CGGGGTCCGGACAGGGGACC
2492





NANOG
NM_024865
AGAGTAACCCAGACTAGGTG
2493





NAP1L5
NM_153757
GATGTCAGGGTAGCAACAGG
2494





NARS2
NM_001243251
AGATTATCGCTGAAAGAACG
2495





NASP
NM_152298
CACCTCCTGCCCTCTCCATA
2496





NAT8B
NM_016347
CTACCTTCTCCCAGTGGCAG
2497





NAT8L
NM_178557
GGGCGGCCGGGGCGCGCGCA
2498





NAV2
NM_001111019
AAAATATGCATTAATTCCGC
2499





NAXE
NM_144772
GGTCCAGCTTCCCTTCCACT
2500





NBL1
NM_005380
ACGGGCCAGGGCGCCCGGCT
2501





NBL1
NM_005380
TTCGGCGCGCTCCGACGGCG
2502





NBPF1
NM_017940
CAGGTTAGGGGCCGCGCAGG
2503





NBPF11
NM_001101663
AGCTTCTCTCAGGCCACACA
2504





NBPF12
NM_001278141
CGAATTGCAGGGTCAAGGGC
2505





NBPF20
NM_001278267
CATCTTCAAATAAGTACACA
2506





NBPF3
NM_001256417
CGAGCAGGTTAGGGGCCCTG
2507





NBPF4
NM_001143989
CACCCTTGTGACAATGCTAC
2508





NBPF6
NM_001143987
CACCCTTGTGACAATGCTAT
2509





NCALD
NM_001040629
GGGGGGCCAAGATGAGGCGC
2510





NCK2
NM_001004720
AGTGTGGCTTCCAGTGCTCC
2511





NCK2
NM_003581
CTCCGGCCTGACGATCCCCG
2512





NCKAP1L
NM_001184976
AAAACAAATCACCAGGAACA
2513





NCMAP
NM_001010980
CCCCGCTCCTGGGTCCTTTT
2514





NCMAP
NM_001010980
CTCTACTGGACTGAGTGCCC
2515





NCR3LG1
NM_001202439
GCGCAACCTCGTGCCGCGGG
2516





NCSTN
NM_015331
GAATTTGGTTAACATCTCTC
2517





NDFIP1
NM_030571
TCGTCGGAGCAACTACACCA
2518





NDN
NM_002487
CATGGCGAGGCTTCACCTGC
2519





NDP
NM_000266
TTGGAAATACAAAGGCAGTG
2520





NDRG2
NM_201538
GGACGCTTCCAGGCTCTGCT
2521





NDUFA12
NM_018838
GCTTCCCAAGTAGGCAGAAT
2522





NDUFB2
NM_004546
GGGCTTTGCTCTCGGGAGAG
2523





NDUFB3
NM_002491
GTAGGCGGCGGTGCTGTCTT
2524





NDUFB7
NM_004146
CCTGTCCGCGAGGTGACGCC
2525





NDUFS1
NM_001199984
GAGGTCTTGTATGGATGGGA
2526





NDUFS6
NM_004553
ACAGTACTCGGTGTAATCAG
2527





NDUFV2
NM_021074
GGCGGGGACCAGTCCGTGCT
2528





NECAB3
NM_031232
TGGGTAGGCCCGCAGCCCCT
2529





NECAP1
NM_015509
TGGAAATCTCTGTCCTGGAG
2530





NECAP2
NM_001145277
ACAGACCCCTCTGTAACCCG
2531





NEDD4
NM_006154
CATGGCGTGGGGAGCGCGCG
2532





NEDD4
NM_198400
AAGTCGGCTGGAGAAAGTAT
2533





NEDD4L
NM_001144970
ACACACGTCTCATGGCAAGT
2534





NEIL1
NM_024608
GAAGTGCAGACTCCACACGG
2535





NEK8
NM_178170
CCGCCACGCGTCCGTATTTG
2536





NELFE
NM_002904
TCGCTCTGTCTCCATCATCC
2537





NENF
NM_013349
GGCTACTCGGGCCACGCAGC
2538





NET1
NM_005863
TCGGGAATGCATTTTAAATC
2539





NETO1
NM_001201465
GGCGGTCGCAGGGCGAGCCC
2540





NETO2
NM_001201477
GCCGGTCACTGCCCCGGCGC
2541





NEU1
NM_000434
TTTTGATTGGCCGCGGCACC
2542





NEURL1
NM_004210
GGCGGAGCGCGGGGCGTTCT
2543





NEXN
NM_001172309
GCGAGCTGACCCCCTAACTT
2544





NFATC4
NM_001198967
GACTGGGGGGGTGGTCCCCT
2545





NFIA
NM_001145511
CGACTGGCGGGGAGACAGAC
2546





NFKBIL1
NM_001144962
ATGAGATTGGGAGAGACACT
2547





NFRKB
NM_001143835
TTGCGCGTCTCACCTGATTT
2548





NFYB
NM_006166
GCTCCGGATGCCGCTCCTCT
2549





NGEF
NM_001114090
GCCCGGGTCGCGCCCAGCCC
2550





NGLY1
NM_001145294
TGAATGTAAAGGAGGAAAGG
2551





NHLRC2
NM_198514
ACATCCCCAACCCTCCACAT
2552





NHLRC3
NM_001017370
ACATCCTATTCCTACCATCC
2553





NHLRC3
NM_001017370
AGGCATCCATAGCGGATGCC
2554





NHLRC4
NM_176677
GAAGCTTCAGGGGCCAAGGC
2555





NID2
NM_007361
TCCCGGGTCATCCTCTCATC
2556





NIF3L1
NM_021824
AGTGTAAGGCGAAACTACCT
2557





NINJ1
NM_004148
CGCGACGCCGATGGCCCCAG
2558





NINJ2
NM_016533
TGAGCTAGTAGCTTTATGAC
2559





NIPA1
NM_144599
GTGCCAGGGACCGGCGCCTT
2560





NKIRAS1
NM_020345
ACAGCTCTTTCCTTTCCGTC
2561





NKIRAS1
NM_020345
GGAAGACGATCAAAGGCGGA
2562





NKIRAS2
NM_001001349
GAGCTGCTCTATGCTCCAAC
2563





NKRF
NM_001173488
ATAAAAAATGATCATCAGGC
2564





NKX2-2
NM_002509
GCGGGAGAAGGGTGGAAAAA
2565





NLGN4Y
NM_014893
ACTGCCTGGGGTGCTTCTTT
2566





NLRC3
NM_178844
GCCCCCGTGCAAGTTAAGTG
2567





NLRC4
NM_001199139
CCTCCGGAGTATAAACAGCC
2568





NLRP12
NM_144687
ACTGTTTTGTCAAGAGATCC
2569





NLRP14
NM_176822
CGAGTGTCTACTCCAAGACC
2570





NLRP3
NM_001127461
GTTCACCTTGCTCTCCTCTG
2571





NLRP6
NM_138329
GTGGACCCGGGGAATGGACC
2572





NLRP8
NM_176811
GGATTAGTCCATTAGACTAA
2573





NM_000645
NM_000645
AGAGAAAGCTAGTTTCTCTA
2574





NM_
NM_001001435
CCTCTCAGCTTCTCTTCCCC
2575


001001435








NM_
NM_001004727
AAGGGAAGAGCATTCCAAGA
2576


001004727








NM_
NM_001004727
TTGGAAATTGAAAGGTGAGT
2577


001004727








NM_
NM_001014444
AGGGTCCCTCCCATAACACG
2578


001014444








NM_
NM_001017436
TGCAGAACCTTCTCACCCAG
2579


001017436








NM_
NM_001024607
CACACTGTAACTCCCATTGT
2580


001024607








NM_
NM_001033019
CAGTCCTATACAAACCTCTC
2581


001033019








NM_
NM_001039517
GTGCCCTCTTCATCCCGCGT
2582


001039517








NM_
NM_001039841
ACTTACAGCGACCTTCTTTC
2583


001039841








NM_
NM_001040282
CGTGCGTGCACACGTGTATG
2584


001040282








NM_
NM_001042389
GGTATAGCATATTTAAGCTC
2585


001042389








NM_
NM_001042391
GTGGGTTGTGGCCCTGGCCC
2586


001042391








NM_
NM_001042395
CTCTCAGTGCCTTGGAAGAC
2587


001042395








NM_
NM_001042395
GAGGCAGGTTCTGTCTCTCC
2588


001042395








NM_
NM_001042402
CGCGGGGCCGCTAAGGGTTG
2589


001042402








NM_
NM_001077685
GACCAGCCGGCTTATTTAAT
2590


001077685








NM_
NM_001079809
CCGGCACCCGCGAATCAAGC
2591


001079809








NM_
NM_001080826
TTAAGAGCCTTGTGACAAAT
2592


001080826








NM_
NM_001097616
AATCATTGACTGTTTACTCT
2593


001097616








NM_
NM_001099414
AGCAAATGCCAGCCTTCCAG
2594


001099414








NM_
NM_001099435
TCACTGCAACATCCATCTCC
2595


001099435








NM_
NM_001101337
CTAAATCCTAATTCAGTGCC
2596


001101337








NM_
NM_001101337
GTTAACACTTCCTAGAAGCC
2597


001101337








NM_
NM_001103169
GTGGCTGGATCCGGCTGGAT
2598


001103169








NM_
NM_001104548
GGGTGTGGGTTCTGAGAGGT
2599


001104548








NM_
NM_001123065
AGAGCAGAGCTCCTATACCC
2600


001123065








NM_
NM_001123228
TAGTCTTATGAACAGAGTGA
2601


001123228








NM_
NM_001123228
TGTTTCATTTCTTGTCCCAA
2602


001123228








NM_
NM_001127386
CTCCACCCCTTCATGAATGG
2603


001127386








NM_
NM_001129826
CTGACTTAAGACATAACTTC
2604


001129826








NM_
NM_001129895
CCCCCCTCAGAGGCTCCACG
2605


001129895








NM_
NM_001139502
ATATTGTGGGAGAGACCCGG
2606


001139502








NM_
NM_001142861
AATGTGCTATCAACACTACT
2607


001142861








NM_
NM_001163391
ACAATGGCTGGGTAAAGAAG
2608


001163391








NM_
NM_001164182
CTAGCTTCATAATTGCAGTA
2609


001164182








NM_
NM_001170721
TCAGCCCCACTGCTAATCAC
2610


001170721








NM_
NM_001184963
CTGGGCCGAAGACCCTCTTT
2611


001184963








NM_
NM_001190943
AAGAGCTGTCCCTGGGCAGT
2612


001190943








NM_
NM_001193523
AGGACGATCCTCTCCGGCTT
2613


001193523








NM_
NM_001195017
GGAAAAAGTTAAGCAGAATC
2614


001195017








NM_
NM_001195150
GGGCATGGCAAGTAGAACCC
2615


001195150








NM_
NM_001195190
GCATATTTTGCTGACTGGCA
2616


001195190








NM_
NM_001195257
GGACATAAAACAGCTTCCGT
2617


001195257








NM_
NM_001199053
GCCAACGCCAGCGCTGGACC
2618


001199053








NM_
NM_001199057
GCGCTGTGTGGCTCCCGAGT
2619


001199057








NM_
NM_001207030
CAATCCATCTTGAATCCTAT
2620


001207030








NM_
NM_001242348
GGACCAATCTTGAGGTGGCA
2621


001242348








NM_
NM_001242473
AGCTACCTGTGGGTGACTTC
2622


001242473








NM_
NM_001242668
TTAGTCTCTTAGTGATCAAT
2623


001242668








NM_
NM_001242713
TGGGGAGCGCATAGGCTCAT
2624


001242713








NM_
NM_001242812
AGGGAGGGGGATGCAGAACT
2625


001242812








NM_
NM_001242853
GAGTGATTATTGAACCTTTC
2626


001242853








NM_
NM_001242885
GATGCTGTCAAGACCGGCCC
2627


001242885








NM_
NM_001243466
TAATGGGAATGAAAACAATG
2628


001243466








NM_
NM_001243476
TCTTCCCCTAAGAGGTGCCC
2629


001243476








NM_
NM_001244193
AATGGCAGTCTGGCCAGGCG
2630


001244193








NM_
NM_001247987
GCCGGAGCCTTCCAGGTGGA
2631


001247987








NM_
NM_001253913
AGACTGAATAGCTTTGTGGG
2632


001253913








NM_
NM_001257177
ACCATGGGTGAGATAGGTTT
2633


001257177








NM_
NM_001258300
GTGCTAGGAGGCGAGGCGAG
2634


001258300








NM_
NM_001278082
CGGAGATCCGTTTTCCATGC
2635


001278082








NM_
NM_001278094
GAGATTCTAACAGTTGACAC
2636


001278094








NM_
NM_001278319
GGAAGCAGAACTACCCTACC
2637


001278319








NM_
NM_001278420
GGCACCTGTTCTTCCGGGGG
2638


001278420








NM_
NM_001278502
AAGGACTGATTGATCAGCTG
2639


001278502








NM_
NM_001278606
ACAACATCACATCTTGCAAT
2640


001278606








NM_
NM_001278606
GTTTGCCTCATTTACACGTA
2641


001278606








NM_
NM_001278674
AGTTGACATTGGGGGAGGCT
2642


001278674








NM_
NM_001281518
AGTTAGGAACAGGTAATTAA
2643


001281518








NM_
NM_001282503
AGCTTTCCTTATGATGCTAC
2644


001282503








NM_
NM_001282507
ACATTCATTTTAAGCATGCA
2645


001282507








NM_
NM_001282578
GTGGGGACTTGCAGGTTGCT
2646


001282578








NM_
NM_001282670
GACAAAGCTCTCCGTGGCTG
2647


001282670








NM_
NM_001284235
ACCTCGCGCCAGCGGAGTCC
2648


001284235








NM_
NM_001284235
GCGGGAGCGCCGCTGACTCA
2649


001284235








NM_
NM_001286517
CGAAGCACAGGGGACACGCC
2650


001286517








NM_
NM_001287428
TCTGGTGAGAGCACAGAGCC
2651


001287428








NM_
NM_001287430
GAGGAAGGTGGGGGCGGGCG
2652


001287430








NM_
NM_001287601
GGAGCTGGCTGAGAGGGGAC
2653


001287601








NM_
NM_001287807
ACACTGGGAGATACAAATTA
2654


001287807








NM_
NM_001287807
CTTTGATTATGTCACAGGCT
2655


001287807








NM_
NM_001287812
GGGGAATGTGGACATATACC
2656


001287812








NM_
NM_001289922
ACTGGGCAGGTGCCCAGATC
2657


001289922








NM_
NM_001289933
CGGTGCCTTCATGTCCCCGC
2658


001289933








NM_
NM_001290021
GTCTGTGGCATGGTTGCTAT
2659


001290021








NM_
NM_001290031
GAGATGGGTGTCCCTGGTAG
2660


001290031








NM_
NM_001291410
GAACCGCTGACTGCGAAGTC
2661


001291410








NM_
NM_001291420
GCTGGCGTCTCTGAGGACCT
2662


001291420








NM_
NM_001291717
ATTGTTTTATCAGTCAGGCC
2663


001291717








NM_004542
NM_004542
CACAAGTAGAGGCGAAAGCA
2664





NM_004542
NM_004542
TCTGTGCGACGGCCCGCTTT
2665





NM_006250
NM_006250
AGTGTATCCCTCATTTCTTT
2666





NM_014577
NM_014577
CCAACAGGGGAGCCCTGTAC
2667





NM_014577
NM_014577
CCTGTCCATCCTCTATAGAC
2668





NM_015372
NM_015372
TAAAATGAAACGTGACTTCT
2669





NM_018232
NM_018232
ATAACAAGCATGTTGTACTT
2670





NM_022896
NM_022896
AGGGCGCCCTTTGGCCTCGG
2671





NM_025170
NM_025170
AGACAGAAGACTTTACATGC
2672





NM_130387
NM_130387
TAGACAATATGGGAAGCCTC
2673





NM_138464
NM_138464
GAGTCGGTGGCAGGTCCTGA
2674





NM_144728
NM_144728
AGAAGCTTCTAGACATTTCC
2675





NM_144729
NM_144729
GGGTCCTCGGTGTTAAAACA
2676





NM_145813
NM_145813
CCTGTTCAAGGAGGGACTCG
2677





NM_173600
NM_173600
TAGAAGATGTCATAGGAGTA
2678





NM_173687
NM_173687
GTTCTTATCTCCCTTGTATT
2679





NM_175895
NM_175895
GCCGGGAGTAGCCGAGCCGC
2680





NM_178342
NM_178342
ACTGGGTTTCAGGCAAGTTC
2681





NM_207313
NM_207313
GCATTCATTTGCACCTGACC
2682





NMD3
NM_015938
ACTGACGGCAAATGAGCCCC
2683





NME1
NM_000269
TGAGTCAGAGAACCCGGGGG
2684





NME4
NM_001286440
AGCGCAAGGAAGGCAGAGGC
2685





NME5
NM_003551
TCATCCTTCTTCCCGTTTGA
2686





NME7
NM_013330
ATTTGTTTACCCTGCTCTTT
2687





NMRAL1
NM_020677
CAGGAGAATCTCTTGAACCC
2688





NMU
NM_006681
CGAGGTAGGCCGGGGGCGGC
2689





NOC3L
NM_022451
CTCTCGCGGTGACTGTCTCG
2690





NOD2
NM_022162
GGGACAGGCCACAAGTAAGT
2691





NOL6
NM_022917
GCCTCTTCGCGACGCTAGAA
2692





NOMO2
NM_173614
CTCTTCTGGGGCTGTGAACG
2693





NONO
NM_001145408
CTAGATGCTTCTCCTGTTGC
2694





NOP2
NM_001258310
AGACGCGCAGCTTACACCCG
2695





NOS1
NM_001204218
CAGGGCAGGGCAGGTCTATT
2696





NOS1AP
NM_014697
CAGCGCGGGGGCGGACCCGG
2697





NOS3
NM_000603
AACTACTTACCCTGCCAATC
2698





NOSIP
NM_015953
GTTCCGGATATTGAAACTGG
2699





NOSTRIN
NM_001171631
ATCTCAGGTGTTAGGTAAGT
2700





NOTO
NM_001134462
TGATAAGTACATTTTCCATC
2701





NOX1
NM_007052
GGAAGGCAATGCTTCACATT
2702





NOX5
NM_001184779
CCCACAGTCCCTCATAAAAC
2703





NPAS4
NM_178864
GGGAGCCGCTGACTGGGGAG
2704





NPIPB5
NM_001135865
ACTTGTCGAATCAATGCATG
2705





NPIPB9
NM_001287251
AAAGTACAGGAATTTGAACT
2706





NPM2
NM_001286681
CAAGCCCGGGCTAAGAAGCC
2707





NPS
NM_001030013
GAACAATTAGTCATATAGGA
2708





NPTXR
NM_014293
CCCCGCCCCACTCGCTTCCC
2709





NQO1
NM_001286137
TTGACTTCCACCAGTTGCTC
2710





NR0B1
NM_000475
GGCGGGTGCTCTTTAAAAGC
2711





NR1H4
NM_001206993
TCCAGTTTAAGAACTTTTAG
2712





NR2F2
NM_001145157
GCTTTCGCTCTGCGCGAGTT
2713





NR3C1
NM_001018074
TTCCTAATTTCTCATTCCCA
2714





NR3C1
NM_001018076
CTCGCTGGAGGTTTTGCATT
2715





NR4A1
NM_001202233
TAGAGTCCCAAGGATCTGTG
2716





NRAP
NM_006175
ACAACAGCATCATGTTTATG
2717





NRARP
NM_001004354
CGGTGCCGTGCGCAGGGGTC
2718





NREP
NM_001142480
TGGGGACGGCGCGGCGAGCG
2719





NRF1
NM_005011
CACGGAGCGCTTCAGAGGTT
2720





NRF1
NM_001040110
GATTCTTCAAGTCATCAATG
2721





NRIP1
NM_003489
GGCGAGGCGCAGGGACGACC
2722





NRL
NM_006177
CCTGAGGCCTCCAACCAATA
2723





NRM
NM_001270709
TCTAACATTCCCTTCTGTGA
2724





NRN1L
NM_198443
CTCAGAGAGCAGAAATTCGC
2725





NRTN
NM_004558
GGGTGGTGTTTAGGACAGTC
2726





NT5C1B
NM_001199088
AATGACTTTGCCATTCATTT
2727





NT5E
NM_001204813
TCGTGCGTTCTCAACCCAAC
2728





NTAN1
NM_173474
AAATCCAGGACATGGCCGCA
2729





NTHL1
NM_002528
GGAAGTGCGGGTCGCGCTTC
2730





NTM
NM_016522
CAGCCCGCACCGGAGCCGCG
2731





NTNG1
NM_014917
TGGACGGCGGCAGAAGTGGG
2732





NTNG2
NM_032536
GGCGTCTCGTCGGGGAGCCG
2733





NTSR1
NM_002531
CCGCGCGGCGCGCCCAGCAG
2734





NUBP1
NM_002484
ATGATAGGAAATCTCTGAAA
2735





NUDCD3
NM_015332
GATTTTTGTCACGTTGTCTG
2736





NUDT1
NM_002452
GCGCTCGCTGAGTGCGGGGA
2737





NUDT12
NM_031438
AGATGTAGTTTGAAGCCCAC
2738





NUDT13
NM_001283014
GGGAGAGGATGAAGCAGGGG
2739





NUDT22
NM_032344
GGCGGCGGGGACAAACCTCC
2740





NUDT22
NM_032344
TGCGCCCCGCAGGGTGGTCC
2741





NUDT9
NM_198038
GGAACTGGAACGGGAATAAG
2742





NUMA1
NM_006185
CTTGGCGTCCCACTGCCTCA
2743





NUMB
NM_001005744
GGTAAAGAGCGATGACGGGC
2744





NUMBL
NM_001289980
GGCCCTGGAAATAGGGATCC
2745





NUP205
NM_015135
GGATTATTCCCATTCAAATA
2746





NUP54
NM_017426
TCACTGTTAAGGTAAAATGC
2747





NUP58
NM_014089
ACTGACATAATCCGCACTTT
2748





NUP62
NM_016553
GGGGCAGGGAGGGTGGAGGA
2749





NUP93
NM_001242796
ACTTGAGGAGCTGTCAATTG
2750





NUP93
NM_001242796
CAGGAGAGCTGCTCAGCAGA
2751





NUTM1
NM_175741
AACCGGAAGTCTCTCTCTCC
2752





NWD1
NM_001007525
TGCCCAATTCTCCCAGCAAC
2753





NXF5
NM_032946
AAAATTGGAGCGAGGGGTTG
2754





NXN
NM_022463
CGAGGGCAGCCGAAGGGGCG
2755





NXT2
NM_001242618
GACCTTGTAGCAGTGTGTTC
2756





NYAP1
NM_173564
CGGGGGAGCCGCGGAGCCTG
2757





OARD1
NM_145063
AACGAAACTGCCCCACGAGT
2758





OAZ3
NM_001134939
AACTATTGTGATTGTGACAC
2759





OBSCN
NM_052843
AGCCCAGCCCCAAAATAGCC
2760





OCM2
NM_006188
TGTGCCACTGCACTCCAGCC
2761





ODF3L2
NM_182577
CGTGGCCCCGTTTCTACACC
2762





ODF4
NM_153007
GGGATGCAGTGGCACAACCT
2763





OGFR
NM_007346
TCCCCCAACGTCCGCCCGGG
2764





OGN
NM_014057
AGCAGATTGTTTGATCTCCT
2765





OLFM3
NM_058170
CCTTCTGCTGTCATTGACAG
2766





OLFML1
NM_198474
ACAGGGCTACATCGCCCCTT
2767





OLFML2A
NM_001282715
TTCATTCTCGCCTGCGGAAT
2768





OLFML2A
NM_182487
GCGCGGGCAGGGATGCCCTT
2769





OLIG2
NM_005806
TTCATTGAGCGGAATTAGCC
2770





OMA1
NM_145243
GGCGCTCTAGCGCCTCCGTG
2771





ONECUT3
NM_001080488
ACCAGGATGTGGCAGGGGAG
2772





OPRK1
NM_000912
GGGAGCTGGGGGCTGACTCC
2773





OPRM1
NM_001145286
TGAGCCTCTGTGAACTACTA
2774





OR10A2
NM_001004460
CAAGGCACTTCCTCTGCCTG
2775





OR10A6
NM_001004461
AAGAAAATTTCTGTCAGGAT
2776





OR10C1
NM_013941
AAGGGTGGAATATGGACTCC
2777





OR10H2
NM_013939
TCACCTTAAGTGCTTTGTGC
2778





OR10W1
NM_207374
TATCACTTATTCAATACCCC
2779





OR11G2
NM_001005503
GAAATCATTGCAGCTTTTTG
2780





OR12D3
NM_030959
CTAGGAAGTGCAAGATTTGA
2781





OR13A1
NM_001004297
CAGTTTTCTAGATTTTATGC
2782





OR14I1
NM_001004734
ATGCAGAATTTCAAGTCTCA
2783





OR14I1
NM_001004734
GTTACTCAACTCATAGTCTT
2784





OR1B1
NM_001004450
CCATCTACTCTCCCTCCCTA
2785





OR1E2
NM_003554
GAGTGTTTTAGAAAGAAAGG
2786





OR1J4
NM_001004452
ATAATTCGCCAAGAGAGTAG
2787





OR1K1
NM_080859
ATAAATTGTTCAAGGCTTCC
2788





OR1L3
NM_001005234
AGTTCTGATTCTCCATGCTC
2789





OR1S1
NM_001004458
AAAATGCCTTAGAAAAAGAC
2790





OR1S1
NM_001004458
ATTTCAGCAGTGCAGAGATT
2791





OR2A7
NM_001005328
CAGGCGTGAGCTACCGCACC
2792





OR2AE1
NM_001005276
GTGCTTTTCCTTGGGTATAC
2793





OR2AP1
NM_001258285
ATTCAAATGGGCCACTGGTC
2794





OR2B6
NM_012367
TTTGGGGAACAGGAGGTGTT
2795





OR2C1
NM_012368
AGAGTCTCTCACTGTCACCC
2796





OR2G2
NM_001001915
CAATACTTTTTTGGGTAGGC
2797





OR2J3
NM_001005216
AATAAAATCACTGGTTATGG
2798





OR2M2
NM_001004688
TAGGAACTATCTGTTTGCTT
2799





OR2T10
NM_001004693
ATCTGATTCCCCATCTAGAA
2800





OR2T12
NM_001004692
CAGGAAAAGCTGTGCCTACT
2801





OR2T3
NM_001005495
TGTCTTACCAGAAAAAGGTC
2802





OR2T6
NM_001005471
TCATTCATCTTCATCCCATG
2803





OR3A1
NM_002550
TAAGGAATTTTGCGCTCCTT
2804





OR4A47
NM_001005512
CACTAAATCAAACTAGGATC
2805





OR4D2
NM_001004707
CAAGACAGCACCTAGTATAA
2806





OR4D9
NM_001004711
GCAAGTCAGTATGCCACCAC
2807





OR4F15
NM_001001674
ATAGTTATTTTCATGGCTGG
2808





OR4K14
NM_001004712
TGTATTAAGTGAAATAAGCC
2809





OR4K5
NM_001005483
AGAGGCCATAATAGTATGTC
2810





OR4N2
NM_001004723
TTTTTTGTTGTATCTCTGCC
2811





OR4S1
NM_001004725
ATTTTTTGTGATGGGGATGA
2812





OR51B4
NM_033179
ATTGTAAGCCTGTACTCACA
2813





OR51B5
NM_001005567
CCACAGAGCCAAATCATATC
2814





OR51E1
NM_152430
ACCCCCAGGCATATCCTCCC
2815





OR52D1
NM_001005163
AATGATGTGCAGGATATGGA
2816





OR52H1
NM_001005289
ATTTGTATCTGGAACAATCT
2817





OR52K1
NM_001005171
CCTAGCAGCCTTCATAGACA
2818





OR5A2
NM_001001954
GACTGTTTGTATGATCTTCT
2819





OR5D16
NM_001005496
ATCTCTGTTAATATCCTGAT
2820





OR5D18
NM_001001952
AACAACAAACTCATAGATTC
2821





OR5M11
NM_001005245
GGATAGATAGATACAGGTGT
2822





OR5M8
NM_001005282
TTTCTACTGAACTTTGTTTC
2823





OR5T2
NM_001004746
AACAGCTTAATACAATTCAG
2824





OR5V1
NM_030876
ATCTGTGTTGCATGGTAGGT
2825





OR5V1
NM_030876
GTATTTATATCTGTGTTGCA
2826





OR5W2
NM_001001960
TTTGAAAGTGACACTCACCT
2827





OR6C1
NM_001005182
AAAGGACCACTGTTATTATC
2828





OR6C6
NM_001005493
GCAAATTTTGAATTCACCTA
2829





OR6K6
NM_001005184
GCAAGTATTTCAGATGATTT
2830





OR6P1
NM_001160325
GTCTGTTAACTTTTCCTATA
2831





OR6S1
NM_001001968
TAAGTGCTTCAGATCTTAAC
2832





OR7D2
NM_175883
CTACTGATGTAGCATAAATC
2833





OR7D4
NM_001005191
TAGAAATCTCTCTCTTTGGC
2834





OR7G1
NM_001005192
GAATCTACCCCTTTTCAAGA
2835





OR8B12
NM_001005195
AGAGAGATTTGAACTTTGGT
2836





OR9A2
NM_001001658
GTGACATGTCCCTGCTACTG
2837





OR9Q1
NM_001005212
GTCACAGCTTCATTGCCATC
2838





ORC4
NM_001190882
GGAACGGAAGTGGGCGTGGA
2839





OSBPL1A
NM_018030
GTTCCAAAACCAAGACTGAA
2840





OSBPL1A
NM_018030
TGAAGACTGCCTTTCAGTCT
2841





OSBPL6
NM_001201481
ATGCTGCGCACCCGCCCTAC
2842





OSGEP
NM_017807
AGGAGGAGCTAGGCTGCCAT
2843





OSMR
NM_003999
CACAACCCGGACTTTGCGGG
2844





OSR2
NM_001142462
CCACTCTGTTTACTTCTGTT
2845





OTOA
NM_001161683
CACTGGGCATGTCTGTTTAA
2846





OTOA
NM_001161683
GATTTGCATGTGGCTTGTCT
2847





OTUD1
NM_001145373
AGCGCGTCCCGCCGGCGAGG
2848





OTX2
NM_001270525
AGATTGTAATTGCTTTCTTC
2849





OXGR1
NM_080818
AGAACACGCACTTGCTCGCT
2850





OXSM
NM_017897
AGCTACCCAGCCGCCTCCCA
2851





OXT
NM_000915
CAACGCGGTGACCTTGACCC
2852





P2RX6
NM_005446
AGGGACACTTCCACTAAAGC
2853





P2RY14
NM_001081455
TGGTTTTCCAACTAATTTCA
2854





P2RY6
NM_176797
GGGGAGGTGATGTCTGGAAG
2855





P2RY8
NM_178129
CACAGCGACGTTACTCCAGT
2856





P3H2
NM_018192
CGGTTTGATTCAGTCTGAAA
2857





P3H4
NM_006455
AGACACTCGGAGGGTGCAGG
2858





P4HB
NM_000918
GCTTTCGCCTGCACCTTCCA
2859





PAAF1
NM_001267803
TCAGGAACCAGCCCCTCGTG
2860





PABPC1
NM_002568
CTCCGCGTCTCCTCCTACTC
2861





PABPC1L2A
NM_001012977
CGCCCGGGTGGCAACGGTGG
2862





PACRG
NM_001080378
TCGTTCACAAACTTGCACCT
2863





PACS2
NM_001100913
GCGGGAAAGTGTCGAGGCCG
2864





PACSIN1
NM_020804
GGCGGGTGGCGGGTGGGGTC
2865





PACSIN3
NM_001184974
TTCTCTGCTTCGCCCGTGTG
2866





PADI3
NM_016233
CAGGTTCGTATACAAATACT
2867





PADI4
NM_012387
TCTCAAAATCTCCTCTGCCC
2868





PAEP
NM_002571
AACCTCCTCTGTGTCCGGGC
2869





PAGE1
NM_003785
ATGAAACAGCAGAGGGAGGT
2870





PAK2
NM_002577
GAGACGAGCGCCACCTCCCA
2871





PAK5
NM_020341
TGTTGGGGGAGAGGGCGTGC
2872





PAK6
NM_001276717
CCGCCTCCCGACTGAACTCC
2873





PAK6
NM_001276718
GAGGAGGAAGGGCTGCCTGC
2874





PAK6
NM_001276718
TATCTGCCTTTCTTTGCTGA
2875





PALB2
NM_024675
TCAGAGATTCCGGCTACTTC
2876





PALLD
NM_001166108
ATAAAGCCACTTAACATAGA
2877





PALLD
NM_001166108
GGTGCTTCCCAGCCCGCTGC
2878





PALM2
NM_001037293
AATTGGATAATGTTGTTCGC
2879





PALM3
NM_001145028
GACTCTTCCCAGGTGCAAAG
2880





PALMD
NM_017734
AAATCCAATCAGTGGAAGAA
2881





PAMR1
NM_001001991
CTTTTGCAACTACAGGCTAC
2882





PANK2
NM_153640
CTCGGCTGAGGGCACGAGGC
2883





PAPD5
NM_001040285
ACAGCCTATAACACTTTTTC
2884





PAPOLB
NM_020144
GGATTCACGTTGTTGATGAC
2885





PAQR7
NM_178422
AGAGGGTGAACCAAATTAGC
2886





PARD6B
NM_032521
TGGGTGTGGGCGGAACGCGA
2887





PARM1
NM_015393
TGTCCAGCAGAGGCCGCTCT
2888





PARP10
NM_032789
AATACCTCCTGGTCAGCTGG
2889





PARP15
NM_152615
TGAGTAAACTAACACTGTCC
2890





PARP3
NM_005485
GTCACGTTCCAGAACGCGAA
2891





PARP4
NM_006437
CAGGAGGGATTTTGTCAATG
2892





PARVA
NM_018222
ACTGCCCCTTGCAGGACAGG
2893





PARVB
NM_001243385
AGCTATCGCTGGAAACACCC
2894





PARVB
NM_001003828
CTGATGAAACCGTTTGTTAA
2895





PASK
NM_001252120
TGGCCCGCACCTTGCAGCCA
2896





PAWR
NM_002583
AAAGGCCGAGGCGGCGCGCG
2897





PAX3
NM_001127366
CCACTTTCTCTTCCCATCTC
2898





PAX4
NM_006193
ATCAGGACGGTGAGGAGCCT
2899





PAX6
NM_001258463
TGTGTGTGTGTGTGTCCCAC
2900





PBK
NM_018492
ATCTGCTCCCCAGGAGGGGA
2901





PBX4
NM_025245
GAGGAGGAGCAGGAACTCTG
2902





PBXIP1
NM_020524
AGACCTCCCTTCCCCTCCCC
2903





PCBD2
NM_032151
GGAAGCGCCCAGCCTTCCCG
2904





PCDH10
NM_032961
TGTCTGTTTGGCGGCCAGTT
2905





PCDH11Y
NM_032971
AACTGCTGAGTACCCCCCTC
2906





PCDH11Y
NM_032971
GGTTCTCCGTCAGCGGGGAG
2907





PCDHA2
NM_018905
TTTACTCATAGCTTTCATCT
2908





PCDHB14
NM_018934
GAGAACATGAATCATTATAC
2909





PCDHB7
NM_018940
AGCATTACTGTGACCATTTG
2910





PCDHB9
NM_019119
GTGTTAGATTTAGCTGTGTT
2911





PCDHGA12
NM_003735
AGATTGTGCAGTAATTGGTT
2912





PCDHGA7
NM_018920
GTGTATTGTGTGCATCAATG
2913





PCID2
NM_001127203
GGGCCCGGGGTCTTTCTGCC
2914





PCIF1
NM_022104
GGAAGGGGAGACAGCTTTGT
2915





PCNA
NM_002592
CGGTCCGGAATATCCACCAA
2916





PCNA
NM_182649
CCCGGACTTGTTCTGCGGCC
2917





PCNP
NM_020357
ATGTCATCGAGTAGCCGCCT
2918





PCNX2
NM_014801
GCGAAGGCTAAGGAGGGACT
2919





PCNX4
NM_022495
AGACAGCCTGACCCGACCTC
2920





PCOLCE2
NM_013363
GGAGTGGCACCCCAGCGGCC
2921





PCSK1N
NM_013271
GCGGTTGCCATGGCAGTCGG
2922





PCYOX1
NM_016297
GAGGCGGCAGGATGTGCTTA
2923





PCYT1B
NM_001163264
TGACATAGTTAATTCACCAA
2924





PCYT2
NM_001282204
CCCGCGCCCGTTCCGGATCA
2925





PDCD2
NM_001199461
AAGACATGTGCAGAGGTGAG
2926





PDCD2
NM_001199464
CAGAACCATCCCAGAGCACC
2927





PDCD2
NM_001199464
GAGGCACCAGGAAAGCGGCT
2928





PDCD6IP
NM_013374
ATATTTTGCAGCACAGTACA
2929





PDCD7
NM_005707
CCGTTCTTATTGAGCATCCT
2930





PDCL2
NM_152401
CCCAACACAGGGGATGGTTG
2931





PDDC1
NM_182612
GAACCCGCCGGGGCCAAAGC
2932





PDE1A
NM_001003683
AAAAACCTTGGCATTTAAAC
2933





PDE4D
NM_006203
AGGTATGGGTCCATCCATTT
2934





PDE4DIP
NM_001195261
TAAATGACTTGTGGCTGATT
2935





PDE5A
NM_033437
GGGTTTTGCTGATTGGATTT
2936





PDE7A
NM_001242318
GCAGTGCAAGAAAAGACAGC
2937





PDE7A
NM_001242318
GGCCGAGAGGAGCAGGTACC
2938





PDE7A
NM_002603
TAGAACTGCCTAAGTAATGT
2939





PDGFB
NM_033016
GCTTCCTCTGGCTTTGCTAA
2940





PDGFRB
NM_002609
GGGGAAAAGAAAGAGAGAGG
2941





PDIA6
NM_001282705
TTTGGGGAGCTTGAGGAGGC
2942





PDIA6
NM_001282706
ACACTAAAAAATCGGGGCTG
2943





PDK1
NM_002610
ATGGGACTGGGGACACTAAG
2944





PDK4
NM_002612
ACCACGGAGTGCCCTGGCAC
2945





PDP2
NM_020786
ATCTCAGGCACGTGACTGCC
2946





PDSS2
NM_020381
GGAGCTGAACCTCCCAACCC
2947





PDXK
NM_003681
GCTGCAGAGCCCTCTCCAGG
2948





PDYN
NM_001190892
AAACAAGCTCTTTCGATTAT
2949





PDZD11
NM_016484
ATTGGTTGGCGTCTCCGGGA
2950





PDZD8
NM_173791
GTCAGAGGCGTGCTCGCTCC
2951





PDZRN4
NM_013377
CACTATTAATATTCATGAGC
2952





PECR
NM_018441
AGTCTCACCCACACCTGCCC
2953





PEG10
NM_001172438
GCCCGCCGCTAGAGGGAGTA
2954





PEG3
NM_001146185
TGTGGCAACCGCAGCCTGAT
2955





PERP
NM_022121
AACACGCGCCTGGAGAGGCC
2956





PEX2
NM_000318
CATCGCGAAGGGCCTCTGGC
2957





PEX26
NM_001127649
ACAAACTGGTGCTACAGCTT
2958





PEX5
NM_000319
ACCGACCTCCCTCGAACTCC
2959





PEX5L
NM_001256753
CGGCAAGGCGAGGTGCCGGC
2960





PFKFB1
NM_001271804
CGAGAGGTTGGGCAGAGGTC
2961





PFN3
NM_001029886
ACGCCCCACGTGCCCCAGCC
2962





PGA3
NM_001079807
GCTGGAAAGATCTCAGAATG
2963





PGA5
NM_014224
GCTGGAAAGGTCTCAGAATG
2964





PGAM1
NM_002629
CAGAGCGAGTGGAAAGATTT
2965





PGAP2
NM_001145438
GTGGACGCGGCCGCCACTCT
2966





PGAP2
NM_001256235
CCGCAACGAGCCTCTGACGC
2967





PGF
NM_002632
CACCTGGGATGGGGGCATCC
2968





PGK1
NM_000291
GGAAGGTTCCTTGCGGTTCG
2969





PGK2
NM_138733
AAGAAACCCCAGAATAAGAA
2970





PGLYRP1
NM_005091
GAACTTACATCGCAGAGGCC
2971





PGM1
NM_001172818
CTTCAGCTGTAAACACCAGG
2972





PGR
NM_000926
CAAAACGTAATATGCTTATG
2973





PHACTR2
NM_014721
GATTCAAGTACCCACTTGAT
2974





PHC2
NM_198040
AATATTTTTGATCCTGTGGT
2975





PHF11
NM_001040444
AAGTTCGTCCAGCGCCGCCC
2976





PHF11
NM_001040444
GTGCCTGTTGGTGGGGGAGG
2977





PHF19
NM_001286843
GCGGCCACTAGCCAGGACCC
2978





PHF20
NM_016436
TCGTGTTCCTGCTAGGGCGC
2979





PHF21A
NM_016621
GTCCCTCTCGCCCGGCTCTC
2980





PHF21B
NM_001284296
AGTGCGAATAGGCCCCCTTC
2981





PHF23
NM_001284517
CAAAGTTCCGGAGGTTCATG
2982





PHF24
NM_015297
GGACGGCTCCGATGAGCAGA
2983





PHLDA2
NM_003311
CTTGGGGAGGGTATGGCCCG
2984





PHOX2A
NM_005169
GATGCGCGGGACCCTATCCC
2985





PHYHIPL
NM_001143774
TTGCCGCAGTCCGGATTTCC
2986





PI4K2A
NM_018425
GCGTAGGAGCAGGTTCTGAT
2987





PI4K2B
NM_018323
GCCACCTGCTTCCGTGAGCG
2988





PICALM
NM_001206946
CCGCCCTCCCTCGCTCAGCG
2989





PICALM
NM_001206947
AGACCATAGAAGGAAGTGAG
2990





PIDD1
NM_145887
TGCGCGGGCGGCTCGGCAGA
2991





PIF1
NM_025049
ATTGGTACAGCCCAAGCTCC
2992





PIGA
NM_002641
ACATCTCGCGCTTAAGGGTG
2993





PIGR
NM_002644
CAGAGTCTCCCCAAGGTCAA
2994





PIGS
NM_033198
CCTCCGTGTTTGAGGCTTTG
2995





PIGS
NM_033198
CTAGTATGTTTTAGCACAAT
2996





PIGV
NM_001202554
GGCGTCTGTCTCATTTCTAC
2997





PIK3C2A
NM_002645
ACCCCATTTCCTGACACAAC
2998





PIK3C2B
NM_002646
TGCAGGATAGGTCCTTTCAC
2999





PIK3C2G
NM_001288772
TTTGGCAGGTTGGGCGTGTT
3000





PILRB
NM_178238
CCTTCTCTTGTTCCTGATCT
3001





PINK1
NM_032409
AAAGGGAAAGTCACTGCTAG
3002





PINLYP
NM_001193622
TCCTCTCTCAGATCCTGCCA
3003





PITPNB
NM_012399
AGGCTGCGCAACCGCAGTGG
3004





PITPNC1
NM_012417
GGCTGCTCCGGAGCGGAGCC
3005





PITRM1
NM_001242307
GCAAGGCGAGGGGCGTGGTA
3006





PITX1
NM_002653
AAGGTGGCTGCGGAGGGGGA
3007





PKD1
NM_000296
CCAGTCCCTCATCGCTGGCC
3008





PKD2L2
NM_001258449
GCCAACTTCTGGGAATAACC
3009





PKD2L2
NM_001258449
GCTGCTGGGGTCTGGTGCGG
3010





PKIG
NM_001281445
TTTCCTTTGGACAATGAGCC
3011





PKLR
NM_181871
TGGCTAGGTGGGTTTTGGAG
3012





PKN1
NM_213560
TCCCTTAGATGCCCTGGAGT
3013





PKN3
NM_013355
CTCTTTGTCTCGCACGTTGT
3014





PLA2G12A
NM_030821
GCGGGGCCTCCATGCCCACG
3015





PLA2G15
NM_012320
TCAGCGTGGTCCAGGAAGCA
3016





PLA2G2D
NM_012400
GCCTCCATGAGAGTGGGGGC
3017





PLA2G4A
NM_024420
GAAATCCACAACAGCACTCA
3018





PLA2G4B
NM_001114633
AAGGCTGGCGAGTGCCACAG
3019





PLA2G4D
NM_178034
CGGAGCACCTCTTCCAGACC
3020





PLA2G7
NM_005084
GACACCACCCAGGCATTGCC
3021





PLAC1
NM_021796
CTCTGCAGCATTTCCCAGTT
3022





PLAGL1
NM_001080956
GCGCTGTACCTGGGCGACCT
3023





PLAUR
NM_001005376
TTTGACGGTAAATATGAATG
3024





PLB1
NM_153021
CCGCCACTACCCCCTTTCAA
3025





PLCG1
NM_002660
CCCCAGACAGGCCGCAGGCG
3026





PLCH1
NM_001130961
CATTATGCACATTTAATGTC
3027





PLCL1
NM_006226
AGACTTGTTTTGACAGCCCT
3028





PLCXD1
NM_018390
ACAGGTGTGGTTGCTTCTCT
3029





PLD3
NM_001291311
GGCATTGAGACGGGCTGAGG
3030





PLD3
NM_012268
CCACCCGTCCCTACCGCAAC
3031





PLEC
NM_000445
GATCTCGGGAGCGGCGGGGC
3032





PLEC
NM_201378
ACGGGAAAGGGCGTGCGTGC
3033





PLEK
NM_002664
TGGTAGTAAGAATTTCCCTT
3034





PLEKHA1
NM_001195608
ATAGCAGTATTAGTCATAAC
3035





PLEKHA5
NM_019012
CGCGCCCCAGACCCCTCCCT
3036





PLEKHB1
NM_001130033
GTTCTTGAGTCGGCTAAGAG
3037





PLEKHG1
NM_001029884
GGACGAGCGATCCACTGCTC
3038





PLEKHG1
NM_001029884
TTGGCAAGGCTCCAGAGACA
3039





PLEKHG4
NM_001129727
CCCCCAGGAGCCCTAAGAGC
3040





PLEKHG4B
NM_052909
CTCAGACAGGGACTTCGAAA
3041





PLEKHG5
NM_001265593
GAGGGAGGTGTCCGCCTTCC
3042





PLEKHG5
NM_020631
GGTGCTCACTACCTCCACTT
3043





PLEKHG6
NM_001144857
GGTGTGATATCCCTGGAGCC
3044





PLEKHO1
NM_016274
GGAGCTGCGGGGTGCGGACT
3045





PLIN3
NM_001164189
GGACCCTGTGAAGTTGGCCC
3046





PLK4
NM_001190799
TAAACTCTCCGCAGCGCTTC
3047





PLK4
NM_001190801
CTCGATCTTCTCCCCGATGC
3048





PLOD1
NM_000302
TGCCCTAATAAGGAGAGGCC
3049





PLOD2
NM_000935
TGCAGTCACTTCAGACTGGG
3050





PLP1
NM_001128834
TATTTTCCAAGGAATCGGGA
3051





PLPP1
NM_176895
GCCTCATCCCTCCCGACCTG
3052





PLPP4
NM_001030059
GCACGCACGTGGGCATGTAG
3053





PLPP6
NM_203453
TTCCAATGTGAGGAGAGCAG
3054





PLS1
NM_001172312
ATAGGAAAAGGGAAGGGCTG
3055





PLSCR2
NM_001199979
TGCTGCCATTCCAACACCAT
3056





PLTP
NM_001242921
AGTGGCCTTCTTTGCCCCGC
3057





PLTP
NM_001242921
ATCTCTGAGTAAGTGGGGGG
3058





PLXNA4
NM_020911
GTTGGACATTACGCCCACCT
3059





PLXNC1
NM_005761
GGAAGAGAGGATGAGGAAGG
3060





PMEPA1
NM_020182
GCTCTTAAAGGGCCAGAGCT
3061





PMEPA1
NM_199170
CCAAGGGGCCTCCGGCTGGG
3062





PMM2
NM_000303
CATGCTCGAATGTACAAGGC
3063





PMP22
NM_153321
TGAGAAAGCTCAGCCGCCTC
3064





PMP22
NM_000304
ATAATCCCAAGAGGCCCTGC
3065





PMPCA
NM_001282944
CAGCGGCGGCTCCATGGCCC
3066





PNISR
NM_032870
GGTGTTGACCAGAGTAGAGA
3067





PNKD
NM_015488
CAGCCAACCTTCGTAGCTAT
3068





PNKP
NM_007254
CAGCAAGAGAGATGAAGGTC
3069





PNLIPRP1
NM_006229
GTATTAAGTGCGCACAGCAT
3070





PNMA6A
NM_032882
ACGTGACCCGCCCGCGGCAA
3071





PNPLA1
NM_001145717
GCTGGGTAGGGAGTTCCTAC
3072





PNPLA6
NM_001166113
TGGAAGATACTGAGAGATGC
3073





PNRC1
NM_006813
GCGCTGCCAGCGAGCTCTTT
3074





POC1A
NM_001161581
GGCCTTAAGGATCCCGGAAG
3075





POC5
NM_152408
TCTTCATACACTCTGTACAA
3076





POLD4
NM_021173
TGAAGTCGGGGCATCCCGAC
3077





POLE3
NM_017443
TTTAGCAACCCTAAGCGGTT
3078





POLI
NM_007195
GCTTTCAATCTCTCCGCTTC
3079





POLL
NM_013274
CTCCTTCGTTTTTTTCCCTC
3080





POLR1D
NM_015972
AAAGGTACCAGAGTTGAGCC
3081





POLR2F
NM_021974
TCCACATAGAAGTGGGCTCC
3082





POLR2L
NM_021128
CCGCTCGTTCTCCGCTGTTC
3083





POM121
NM_001257190
TGGGGAGCGCGTAGGCTCAT
3084





POM121C
NM_001099415
GGGGGAGCGCGTAGGCTCCT
3085





POM121L2
NM_033482
GAACAGCAAAGCAAGTTACT
3086





POMGNT2
NM_032806
CCCGCGCCGCCACCAGCCTG
3087





POMGNT2
NM_032806
GAGTGATAATTTGCGCCGAG
3088





POMP
NM_015932
GGGAGGGAAGACACGGACTC
3089





POMZP3
NM_012230
CAGAAACAGGCGTTGAAGGC
3090





PON2
NM_000305
CACATCATGAGCCTAATGTA
3091





POPDC2
NM_022135
TTCCTTGGTTCCATGTTTCT
3092





POR
NM_000941
TTTGCGCTCTTGGTACGGCC
3093





POU2AF1
NM_006235
TTTTGGGCTCATCACTGGCC
3094





POU2F3
NM_014352
CATACATGGAGCTGGGGACC
3095





POU3F4
NM_000307
AATCAATCTTTCAGCTCCAT
3096





POU4F2
NM_004575
CGGCGTTTCCTGGCAAGGGA
3097





POU4F2
NM_004575
GCAGAAAGGACTCAAGCCTG
3098





PPA2
NM_176869
GCATAGTGCGCACAACTGGC
3099





PPARG
NM_138711
ACTTCGCCTTTCCAGCCCCC
3100





PPEF2
NM_006239
ACTCTGCTATTTCAGGGCTA
3101





PPEF2
NM_006239
AGGCTTCTCAGATGTGGCCT
3102





PPIAL4A
NM_001143883
ACTGAATAATATTCCACTGT
3103





PPIAL4A
NM_001143883
ACTGTGGTATATTCCTACAG
3104





PPID
NM_005038
CGAGAAGAATAATGAGAACT
3105





PPIL1
NM_016059
GAATTTCTTAGTCTCACAAT
3106





PPIP5K1
NM_014659
AAGAAGAGGTTTAAGGGGAA
3107





PPM1B
NM_002706
ACGAAGTACGGAGGTGCCGA
3108





PPM1H
NM_020700
TGCATGGAGCGGGCCGACCG
3109





PPM1K
NM_152542
GGACTGTAGTTGTGACAGCC
3110





PPM1N
NM_001080401
CCGCCTAAAGAGCAGGTCAA
3111





PPDX
NM_000309
AGGCGGCGAGCGCTTAATGC
3112





PPP1R3D
NM_006242
CTCCCTGGCTGAGCTGAGGC
3113





PPP1R3E
NM_001276318
TTCACTCGGGACCGCAAAGG
3114





PPP1R42
NM_001013626
AACAGGACTCTAGTCGGAGT
3115





PPP1R9A
NM_001166162
TTATCATTCTGATTGGTCTT
3116





PPP2R2B
NM_181678
ATGGTTGAGCGGCCAGTAAG
3117





PPP2R2D
NM_001291310
TCTGCACCAGAACCAATAAG
3118





PPP6R3
NM_001164164
GCCAATCGGAATGTAGTCAA
3119





PPY
NM_002722
GCCAGTACTGAGGCCAGAGA
3120





PQLC2
NM_001040126
AGCAGCGGCGCCTGCGCGTT
3121





PRAME
NM_001291715
GAGAGGAAGTTGGAGAGCAG
3122





PRAMEF12
NM_001080830
AGAATGTCTTCCAAACAATG
3123





PRAMEF15
NM_001098376
GGAGAGCCAAAAACCCAATC
3124





PRAMEF15
NM_001098376
TGACTCAATCCATTAATCTG
3125





PRAMEF17
NM_001099851
AGGGCAGAACTATGCCTCTG
3126





PRAMEF20
NM_001099852
TCCACCCAGTTAATCCTGAT
3127





PRAMEF6
NM_001010889
TTTGGCTCTCCCCAGATTAC
3128





PRCD
NM_001077620
TGTGGCATTGAGCACGTATT
3129





PRDM16
NM_022114
CCGCGCCGAGGCGGCGGCGG
3130





PRDM2
NM_001007257
CGATGGCAAACAGCTGTCGG
3131





PRDM2
NM_012231
GACCTATGTTAAACTCTGGT
3132





PRDX1
NM_001202431
CTTTGGGAGGCCAAGGCGGG
3133





PRDX1
NM_001202431
TAAGCGCGAGCCACCGCACC
3134





PRELP
NM_002725
GAGGAGAGAGGGAGGGAGCT
3135





PREPL
NM_001171603
GACTCGCGACTCCATCTCAC
3136





PREPL
NM_001171613
AGCTCGAGATGAAGCACAGA
3137





PREPL
NM_001171613
ATTTCGAGACTAAAGAACCC
3138





PREPL
NM_006036
CAGTTGCTATTATTTACGAC
3139





PRG2
NM_001243245
AATGAATGAGTGGGCTCCCC
3140





PRG3
NM_006093
CAAACAAGGCAGTAGGCCCC
3141





PRG3
NM_006093
GACTGCAGGGACCTGCCTCC
3142





PRH2
NM_001110213
AGTGTATCCCTCATTTCTTC
3143





PRH2
NM_001110213
GTTGGGGAGGATGTTGTTTG
3144





PRIM2
NM_001282488
TTTGAGATGCTATGGTTCAG
3145





PRIMA1
NM_178013
GGCTTTAAATGGGGGCTGTC
3146





PRIMPOL
NM_152683
GGAGCACATCTCCCGGCGGC
3147





PRKAA1
NM_206907
AGGGCGGTGACTCGGCTCGG
3148





PRKACB
NM_001242860
TACTAGTGATATCTCATGCT
3149





PRKAG3
NM_017431
AGGATCGGTTTCTCTCTGAT
3150





PRKAR1A
NM_212471
TCGGCAGGGCTCAGGTTTCC
3151





PRKAR1B
NM_001164761
GGCAGGTGAGTGCAGGACCC
3152





PRKAR1B
NM_001164762
AGGTGGGAAAGAATTTAGGA
3153





PRKCSH
NM_002743
CTTAGAGAGGATAGTTCTGA
3154





PRKCSH
NM_002743
GGGCGGTGCCAGAGCCGAGA
3155





PRKCZ
NM_001033582
AGCCCAGGCAGGGAGCATCC
3156





PRL
NM_001163558
TTTTCAAAGGGCAAGCAGTT
3157





PRLR
NM_001204314
AACATTGGCCCCTCAGTGAT
3158





PRLR
NM_001204314
ATGAGACAGCTCTAGTGTTC
3159





PRLR
NM_001204314
TACGTAGCATGGCTGAACAT
3160





PRM3
NM_021247
GCAGGATGCTGACATCACAA
3161





PRMT9
NM_138364
TCACTGCTGCCCATTCCCGC
3162





PRODH2
NM_021232
CACTGCACCCTTGACCTCCC
3163





PROSER1
NM_025138
GATGTTTTGATTTTGCCCTC
3164





PROSER2
NM_153256
CCCGGCCCTTTAAGCGCCGC
3165





PROX1
NM_001270616
GATAGCAAGGCAAGAGAACT
3166





PROX1
NM_002763
CGTGTTTTCCTCTCTCTGCC
3167





PRPF38B
NM_018061
TTCAGCGTGCAGAGAACGCG
3168





PRPF40B
NM_001031698
CGACTGCGAAGCCAGGACGC
3169





PRPH
NM_006262
GTGGGTAGAGGCCTGCAACC
3170





PRPSAP1
NM_002766
GGTTGACCGCAGTACTGAAG
3171





PRR14
NM_024031
TCTTCCGCAGCTCCCACCTC
3172





PRR20D
NM_001130406
CCAGTCCCCTGCCAGTCAAA
3173





PRR20D
NM_001130406
GAAATGGCGGCATCTCAGAA
3174





PRR21
NM_001080835
GAGACATGGGATTTAATGGG
3175





PRR5-
NM_181334
GCGGAAACTCCGGCGAGAGC
3176


ARHGAP8








PRR9
NM_001195571
GAGGTCTGGTGAGGACCCAC
3177





PRRC2B
NM_013318
GTGGTGAGAGCAGTTTTCTA
3178





PRSS21
NM_006799
GAGGTTGTAGGTGGAGGACG
3179





PRSS3
NM_002771
GCTGCAGGTGTGTTTGTGCT
3180





PRSS3
NM_002771
TGATGCAAGACCCTGGCAAG
3181





PRSS53
NM_001039503
GAGCTAGGAACTGCTGGCTA
3182





PRSS55
NM_198464
TTTTCTGGCTGCTTTGTTTC
3183





PRSS56
NM_001195129
TGATGAGACTTCAGAGGTGA
3184





PRSS57
NM_214710
GAAACGCCCGCCTGGGCTCC
3185





PRTG
NM_173814
GGCCGCTCGCGAGAAGCAAG
3186





PRTN3
NM_002777
TGGCTGTCACCCACCCAAGT
3187





PRX
NM_181882
CGGGGGTGTGACGTCACCAG
3188





PSD3
NM_015310
GGCCGACGCCTCGGGGAGGG
3189





PSENEN
NM_172341
GACGTAAGAGCAGCCAGACC
3190





PSMB2
NM_002794
CAGGCGTGAGCCACTGCGCC
3191





PSMB4
NM_002796
ATGCGATGCGAAGCGATGTT
3192





PSMD1
NM_002807
GGAACACTGGTCTGCACCTG
3193





PSME4
NM_014614
AACGAACTGAGAGCCGCGTG
3194





PSORS1C2
NM_014069
CACTGTCCCAGCTGCATCCC
3195





PSPH
NM_004577
CGCCGCCGCCATTGGGCCAC
3196





PSRC1
NM_032636
GTTCCCAGAAGACTGCATCC
3197





PTAFR
NM_001164723
CTTGTTCCTCTCATCTCTCC
3198





PTGDR2
NM_004778
CACCCATCCCCGCTTCATGA
3199





PTGES
NM_004878
TTTCTCTTCACAGGAGAAGG
3200





PTGFR
NM_000959
GAGCAGTACTGGGAGAGAAG
3201





PTGIS
NM_000961
GGGTTTCTAACAGAGCGCCC
3202





PTGS1
NM_001271166
TCTGCCAGAAATGAAAAGAC
3203





PTGS2
NM_000963
GCGTAAGCCCGGTGGGGGCA
3204





PTH1R
NM_001184744
CGAGGCCCGGAGTCTTACGG
3205





PTH1R
NM_001184744
GGGGGGCGGAAGGCTCCTCT
3206





PTHLH
NM_002820
AGGGTTGACTTTTTAAAGCC
3207





PTK2B
NM_173174
CGTGCGGGGGGGATGGCGAG
3208





PTP4A2
NM_001195101
CAGGCATCAGCCACCACACC
3209





PTPDC1
NM_001253830
GGGGACCCTAAGTAAGGGGA
3210





PTPN12
NM_001131008
ACGCGAAGGGAGCGGCCGCG
3211





PTPN5
NM_001278236
ATGAAATGGAGTGCTAGTGT
3212





PTPRA
NM_080840
CGTTCTCCTGGTAGCTCCAG
3213





PTPRE
NM_006504
TGTGGGCATCCGTTTACTCA
3214





PTPRH
NM_001161440
ATCTCCAGTGTCAGAGCTAG
3215





PTX3
NM_002852
TACGCTGCAGTCAGATTAAT
3216





PUS1
NM_025215
GTGCTGGATGCAGGAGGGCC
3217





PUS7
NM_019042
CTCTGCCGCTGGTGCGACTC
3218





PVRIG
NM_024070
GGATGTGACCTCAGAAACAG
3219





PXMP2
NM_018663
ACCGGGGAAAAGTGTGTGGT
3220





PXYLP1
NM_152282
TGCTGAGAGGACACTGCCTC
3221





PYGM
NM_005609
GGGAAGGGCTCAAAGCTGTG
3222





PYROXD1
NM_024854
TTCATGGAATAACTACATTC
3223





QPCTL
NM_001163377
ACGTCAGTAACGCGTCCCAG
3224





R3HDM4
NM_138774
AAACCCAGGCGCGCGGGGAG
3225





RAB10
NM_016131
TTTCTCTGCACAGCGCTTGT
3226





RAB11FIP4
NM_032932
GTCGCGGAGGACGCGGCCGT
3227





RAB14
NM_016322
AGAACTAGGGTTGTCGCTCG
3228





RAB1A
NM_015543
GACTTCGCTCGGACTCCCCC
3229





RAB27A
NM_183234
AACAGCTGAGACTAATTAGC
3230





RAB28
NM_001159601
GAGGCGCTGCGTTTCCCTTC
3231





RAB2B
NM_032846
CCCTTATCCCTCCAAACTCC
3232





RAB30
NM_001286061
AGAAAGCCTTGAGAACTAAG
3233





RAB31
NM_006868
CCCGGGACCTGCGGCGTCGC
3234





RAB33A
NM_004794
GACCCGAGGGAAGAAGCCTC
3235





RAB33B
NM_031296
GGCGTGTACCTGGAGAGCAA
3236





RAB39A
NM_017516
AGGCGGGGCCAGGCCCGGCT
3237





RAB40A
NM_080879
GCTTCATTTGTGAAAACAAA
3238





RAB43
NM_198490
GTCGGGGGCGGGGACGTAGG
3239





RAB44
NM_001257357
CTTCCTGTGGAAGCGACCAC
3240





RAB4A
NM_001271998
GCTGAGTCCCGATTTCCCTG
3241





RAB6A
NM_001243718
TGGCTTGCCCCGCCTCCTCC
3242





RABAC1
NM_006423
CCTGACGGTGACTAAGAGGA
3243





RABGAP1L
NM_001243763
TTTGATAGAACCTATCGAAT
3244





RABL2A
NM_013412
GTGTGGTACTGAGGCTTCAG
3245





RABL2B
NM_001130920
GTGTGGTACCGAGGCTTCAG
3246





RABL6
NM_001173988
CCCAGCGTCCGCAGCAGTCC
3247





RACGAP1
NM_001126103
ATGGCATCCTGAATGACTTC
3248





RAD17
NM_133338
ACACATTTCCGTCGCAAAGT
3249





RAD23B
NM_001244724
GCTCCACGCCATCTGCCACC
3250





RAD50
NM_005732
CCAAAAGTCAGTGCCTCTCC
3251





RAD51
NM_001164269
CTAATTCAAACTTTATGCCG
3252





RAD51D
NM_133629
CAGAAGGCTCTTTAGAAGGT
3253





RAD52
NM_134424
AAGAGCCGCAAAGCCTTCTG
3254





RALA
NM_005402
AGCTCAGAGAGCCGGGGGTG
3255





RANBP1
NM_002882
GCAACGTCATCGTCACGCGC
3256





RANBP6
NM_012416
AAACAAATGGAGGATGCCAT
3257





RAP1B
NM_015646
AGAGGCCGGCGCCGAGGACC
3258





RAP2C
NM_001271186
TTACAAGCACGGCTGGTGGA
3259





RARA
NM_000964
TGTCTCAAATACACAGCATA
3260





RARB
NM_001290216
GACCTTGCTTCTTCCCAGCA
3261





RARS
NM_002887
AGGAGAACCCGCGGGGATTT
3262





RASA3
NM_007368
GTTGGCAGGGACGGCGCTGG
3263





RASAL2
NM_004841
ACCCTTCCTTACTCACTCAC
3264





RASGEF1B
NM_152545
TGACGCGCTGCGGGAGTCTG
3265





RASGEF1C
NM_175062
CGCAGCGCCGCGTTGCTCCG
3266





RASGRP4
NM_001146203
TATTGAAGTATGACAGTGAC
3267





RASL10A
NM_006477
AGGGGCTTCTATTTTGGAGC
3268





RASSF1
NM_001206957
GGAGATACCCGTGTTTCTGG
3269





RASSF5
NM_182665
AAGTGGACTCAGGGAACTGC
3270





RASSF6
NM_001270391
TTAACATCAGTCAAATCCCG
3271





RAX2
NM_032753
TTGAGGCGGCCCCTCCCACT
3272





RBBP7
NM_002893
AGGGCTCGCCCGGCGCTCCC
3273





RBBP9
NM_006606
AAGCTCGCAGGCTTTGTTCT
3274





RBFOX1
NM_001142334
GCATTTGTGTGTGTATGTGT
3275





RBFOX2
NM_014309
GAGGGGCAAGCGCCATGTGC
3276





RBM12
NM_152838
TTGCACAGTCTTGCAGTGAA
3277





RBM19
NM_001146699
CGTCTCACAGAATCCGCCCA
3278





RBM3
NM_006743
GAGAAGGTTCCTTTGTGGAA
3279





RBM39
NM_001242600
GTCTCTAGGGCAAAGACAGT
3280





RBM48
NM_032120
TCTTCGCACGCAGGAAACGA
3281





RBMS1
NM_002897
TTAACCACTCCTCACCTCCC
3282





RBMY1J
NM_001006117
CCTGCGGCTCCATCATCTCG
3283





RBMY1J
NM_001006117
TGAGGCCGCTCCGCCCCAGC
3284





RCAN1
NM_004414
CGGTGGCCGGCCCTAGGGGC
3285





RCBTB1
NM_018191
GTTGTAGGGCCCGAAGAGCA
3286





RCCD1
NM_033544
GGTTGGTGGCCAGCTGAGCC
3287





RCN2
NM_002902
TGCTTTTAGAAGCGTTTCGG
3288





RDM1
NM_001163130
AGATTTTTAGAGTCCCGGAG
3289





REEP1
NM_001164730
TCTTTTCCCTCCAGGCATCT
3290





REG4
NM_001159352
ACATAAGGGGAGAGGAAGAT
3291





RELB
NM_006509
TGGGGGTTTTCCCGTTCCCC
3292





RELT
NM_152222
GTTCCCAGGGGCGCGAGAGA
3293





REM1
NM_014012
CGCCCCATTAGGGCAGCCCC
3294





RENBP
NM_002910
CCTTGGCCCTACCAAGCCTG
3295





REP15
NM_001029874
CTTTAACTTAATAAACCAGC
3296





REPS1
NM_001128617
GATCTCAGCAGCAAGACCCC
3297





REST
NM_005612
GCTCGCCTGGGGGCGCGTCT
3298





RET
NM_020975
GGAGCTCAGTGCGGGACGCG
3299





RETNLB
NM_032579
TAATACACCTGGTATTAACC
3300





REXO2
NM_015523
TGCTAAGTTTGTTTGCTTCC
3301





REXO4
NM_001279350
ACCCGGTAGGGCAGCTGAGC
3302





RFC2
NM_002914
GCGACGCCTTCCGAGAAAGC
3303





RFK
NM_018339
AAGCCCGGGATCCAGACATT
3304





RFPL4A
NM_001145014
AACACAGTCGTCTTCCTTTA
3305





RFPL4A
NM_001145014
TGAGATTGTTACTATTGGAC
3306





RFPL4B
NM_001013734
ATCATCATAAACGGAAGGGT
3307





RFWD2
NM_022457
ACAGACAGACTCCCTTCGCC
3308





RFX1
NM_002918
CAGATCGCCGGGAAGTCCAG
3309





RFX4
NM_032491
TGAATAGTCAAGAAGTGGTC
3310





RFX7
NM_022841
AAAGCGACTCACTCGAGCCC
3311





RFX7
NM_022841
CCCCCTTCGTCCTCCCCTCC
3312





RGL3
NM_001035223
CAGATATGTCCTTTCTTCTG
3313





RGL3
NM_001035223
GAAGAGCCAGGACCTCTCCT
3314





RGL4
NM_153615
GTAACACCATGGACCACCAG
3315





RGMA
NM_001166287
CCCTTACACCGTGTGCGGGC
3316





RGMB
NM_001012761
GAGAGAACTGATCCAGGACC
3317





RGPD1
NM_001024457
AATGTCCACAGTGCTCCAGT
3318





RGPD1
NM_001024457
CAGTTCAGATGCTTGTCAAG
3319





RGPD4
NM_182588
GCAAGACACCCTCAGAGCAC
3320





RGPD5
NM_005054
ACAGTGCTGAGGCAGAACGC
3321





RGR
NM_002921
TGAATGGGTTCCTTCTGCTT
3322





RGS10
NM_002925
GGAGGCTACAAATAACAGTT
3323





RGS19
NM_001039467
GTGGGGGCCGACGCGCGGGC
3324





RGS5
NM_001195303
AAGTGGGCTAAACGATCTCC
3325





RHBDD1
NM_001167608
TTACTGCCATAAATAGCCAC
3326





RHBDL3
NM_138328
CGCGCCCGCCCCCATGGCCC
3327





RHEB
NM_005614
TTGAAGCCTTCAAACCTAGC
3328





RHOQ
NM_012249
GCCGCGGGAGGGGCCCGGGT
3329





RHOU
NM_021205
AGGAGCATTCACAATGGAGC
3330





RHOV
NM_133639
TGCCTGCCTTTCCTCCTCCC
3331





RHPN1
NM_052924
CAACCAGAGTTCCAGGAAGG
3332





RIBC1
NM_001031745
CGGAAGGCGAAAATCCCGTT
3333





RILP
NM_031430
TAAGCTTTCTGTGTCAGTCC
3334





RILPL1
NM_178314
GGGATCCGAGTTGCGCTCAA
3335





RIMS2
NM_001100117
GGGAAATGTTTCTTCTTCCC
3336





RIOK3
NM_003831
AACAAGTGGCAAAGCTAATA
3337





RIOK3
NM_003831
GAGGTCACACAGATAACAAG
3338





RIT1
NM_001256821
GTCATGTGACTGAACTGTCT
3339





RIT2
NM_002930
GGGGTAGGCAGGAAAGAGAA
3340





RLF
NM_012421
CGTAGGCCACTGAGAGCACC
3341





RLIM
NM_016120
GATTCCTCGAAAAGGCTCCG
3342





RMDN2
NM_001170791
CACACGGTCCGGCGCGAGCC
3343





RNASEH2A
NM_006397
CTATGGCCGAACACTCAGCT
3344





RNF123
NM_022064
ACATGCTAACCGGAATCCCT
3345





RNF130
NM_018434
ACCAGCACCAGCGGCTGACC
3346





RNF14
NM_183399
GACATCATGTCAGAGGTCAC
3347





RNF14
NM_183399
GTCAATTTTGAGGACAAGAT
3348





RNF146
NM_001242846
CTTCGCTGCTTGCATTCTTC
3349





RNF146
NM_001242851
GGAGGAAGTAAAACGTGTGT
3350





RNF151
NM_174903
GGGTCTCTGGGTCCTGAACC
3351





RNF20
NM_019592
TACTCTTAGAGGTCGTAGCC
3352





RNF212
NM_194439
ACCTGAGGACCGCCAAGACA
3353





RNF214
NM_001278249
CGCCGCCAGAGGGCGCCGTC
3354





RNF217
NM_001286398
CAGTGGCTCGGCTCGACTCG
3355





RNF225
NM_001195135
ACGCTAGCTACACCCTTCTC
3356





RNF32
NM_001184997
CACGTCCTCCCCATGTGCTG
3357





RNF6
NM_183043
TGGGCTCGAGGGAAAGATCT
3358





RNF6
NM_183044
TAAGAAGGCAGTTAACCAAT
3359





RNF7
NM_183237
TCAGCGGCGTCGCCCCATAA
3360





RNPEPL1
NM_018226
CGGCGGGGCGCGGGCACAAC
3361





ROCK1
NM_005406
CCTGCATGGCTCCTCAGAGC
3362





ROS1
NM_002944
AGCTCAGAGAAGTAAGGTGG
3363





ROS1
NM_002944
TGACACATGCAGTCTGAAAC
3364





RP1
NM_006269
AGGCAAGAAAGAAGATGCAA
3365





RP9
NM_203288
CTGAGACTTCGGGGCCGCCG
3366





RPAP3
NM_001146076
GGAACCAGCTTGGTGGCTTG
3367





RPE
NM_199229
AAGATCCAAACAGCACAAGA
3368





RPF2
NM_001289111
AAATCCGTAACCAAGACAAC
3369





RPGR
NM_000328
CGGAGGCCGGGTGGCTGGTA
3370





RPGRIP1
NM_020366
ATTTCTCAGCACTTTCATGA
3371





RPL10
NM_001256577
GCGGGCTTCTCGCGACCATG
3372





RPL13
NM_033251
CGGCAACATGTCTGCGACGG
3373





RPL15
NM_001253380
AGAACCAGAACTGAGCACCA
3374





RPL17
NM_001199340
GCCATTTACAAACCACTTTC
3375





RPL17
NM_001199342
CGAGATCTGAGGAGGCAGGA
3376





RPL26L1
NM_016093
AAGCAGGCCCTTGTACTCAC
3377





RPL28
NM_000991
ATTCGGAACTCTTCGGTTAG
3378





RPL32
NM_001007074
CTACCGGAAGGACCATCTGG
3379





RPL35A
NM_000996
TGTAAGAGTGCTATTGAATG
3380





RPL36
NM_015414
ACGCGCATGCTCAGGGAGCT
3381





RPL36
NM_033643
CTCATTTCACAGGCAGAGGG
3382





RPL36AL
NM_001001
GTTGTCATAACGGTCCCCGC
3383





RPL7
NM_000971
AGTTCTTTGCGTCTGCAAGG
3384





RPL7
NM_000971
TTTAGTTCTGGATTCTTTTC
3385





RPL7A
NM_000972
CTGACTAGGTTTTCGGACCG
3386





RPL7L1
NM_198486
TGGCAGGAATCGGGGTTAGC
3387





RPN1
NM_002950
TATCCCGAGCAGCTCTGAGA
3388





RPP38
NM_006414
GTATGTATCGCGAGACCATG
3389





RPP40
NM_006638
GAGCAGTTCTTAGACTTCTT
3390





RPRD1B
NM_021215
GCTACTTAGCGCGTCACTTC
3391





RPS15A
NM_001019
TCGATGGAATCGACCTCCCC
3392





RPS17
NM_001021
CTCCCCCATCTGATTTTTAA
3393





RPS20
NM_001146227
ACCTGAGAAACTCCTCTGTC
3394





RPS24
NM_033022
GAGTTGTTCTGGTTCTGGAT
3395





RPS27
NM_001030
AGTTAAAGACCTTCCGAAAA
3396





RPS29
NM_001030001
GTATGGTGACGTCATCAACT
3397





RPS6
NM_001010
TGGGTCTGAGGTTGTGCCAG
3398





RPS6KA2
NM_001006932
GCCCCAGCCCGAGCGGGAAG
3399





RPS6KA4
NM_003942
GGAGACAGGGCGGCCCCAGC
3400





RPS6KL1
NM_031464
CTTCTACCCCCCATCCAACG
3401





RPSA
NM_002295
CTGAAGAAAAAGCCCAGTCC
3402





RPTN
NM_001122965
AAGCTGGGCTGAGCTGGGCT
3403





RPUSD2
NM_152260
TAACGTCGTATCTCCCTAAT
3404





RRAS2
NM_001177314
AAGATGGCTTTTCTGTTCTA
3405





RRAS2
NM_001177315
TCGCGCTCCTGCCTCCTCCC
3406





RRM1
NM_001033
ATTAACCGCCTTTCCTCCGG
3407





RRM2
NM_001034
CGCAGCGCGGGAGCCTCCGC
3408





RSBN1L
NM_198467
TCCACCTAAGAGCCAATCAA
3409





RSC1A1
NM_006511
CTGTTTAGATTTGTATCCTC
3410





RSC1A1
NM_006511
TAAAATAAGGTCCTCAAACT
3411





RSF1
NM_016578
TTGCCACTGCCTCGTGTGAC
3412





RSL24D1
NM_016304
AGACCTGTTCGCTGTTACTT
3413





RSPO2
NM_178565
AAGAGGATTCGCTCCAAGTT
3414





RTBDN
NM_001080997
GAGCCCTGCCACACCAGCCT
3415





RTF1
NM_015138
CTTCCCCCGTCGCTGGTTCC
3416





RTKN
NM_033046
GGGGCAAGGGGACGCGACAA
3417





RTL1
NM_001134888
ccCCAAGTGACCAGCCAAAG
3418





RTN4RL2
NM_178570
TTAACCCTTTCTCGACCACT
3419





RTP2
NM_001004312
TTTCCTGATCTGATCTGCTT
3420





RTP3
NM_031440
CCCCAAGGACAAAGGTCAGT
3421





RTP3
NM_031440
GTGTCTTTTGAAATTCCTTG
3422





RUNX1T1
NM_175635
TCAGAAGTAAAAGCCTTGTC
3423





RUSC2
NM_014806
GGAAAGCTCTGCGCGTGACT
3424





RXFP1
NM_001253729
TCCTATTCCTGTGTCATTAG
3425





RXFP2
NM_001166058
CTCACTGGCATGAAGGGAGA
3426





RXRG
NM_001256571
TCAGATGGAAGCTTTGGTCC
3427





RXRG
NM_006917
TTCTATCTGTCCAATGTACT
3428





RYK
NM_002958
CGGACGATGCAGCGAGGAGG
3429





S100A10
NM_002966
GGCGGCACCTCCCCAGAAGC
3430





S100A13
NM_005979
GGTGTTCGTCTGTGAAGGGG
3431





S100A4
NM_019554
TGGGCTGGTGGAGGGTGCTG
3432





S100A7L2
NM_001045479
GGATTTCTGGCCAGAATCCC
3433





S100B
NM_006272
AAGCAGCCCCGGGGACTTGC
3434





S100PBP
NM_001256121
ACTGTCACGCGAGTCCAGCC
3435





S1PR4
NM_003775
CCCGGGTGGGGGCCGACCGT
3436





S1PR5
NM_001166215
GTCGGGGGAACACGGAATCC
3437





SAAL1
NM_138421
TTATGAGTATGTTCGTGCCA
3438





SAC3D1
NM_013299
GTCCCTTCCACCCAATAAAC
3439





SALL1
NM_002968
GGGGCTCTTTGAAAGGCGAT
3440





SAMD13
NM_001010971
ACCCCAATGAAGTTTTAAGC
3441





SAMD3
NM_001258275
CTGGAGCTCCCCAGCCGCTC
3442





SAMD7
NM_182610
CCTTGCAGGGCACTTTCCTT
3443





SAMHD1
NM_015474
CCGGCACCGCACCCCCAATT
3444





SAMSN1
NM_001256370
GTAAAATTCAGGAACAGATG
3445





SARAF
NM_001284239
GCGCGGCGGCGACAGGCCCT
3446





SARS2
NM_017827
TGGTAGATTTGGAGGACCCC
3447





SART1
NM_005146
GTGCAGTCGAGCGCTGATCC
3448





SCAF1
NM_021228
GGGGTCCGCGCGATGCACGC
3449





SCAP
NM_012235
TATGGACGGCCGGGCCGGGC
3450





SCAPER
NM_020843
ATGCTATATTATACCCCAAC
3451





SCARA3
NM_016240
GGGATGCGCGCTCTGGGCGG
3452





SCARA5
NM_173833
CTGAGGATGAATGTGACTCC
3453





SCARF1
NM_145350
CTGACTGGCCTGGGCCTGGA
3454





SCD5
NM_001037582
GGCCGAACTGGGGAGCCCGC
3455





SCEL
NM_144777
TCAGTTAAAAGGGTGATCAC
3456





SCG2
NM_003469
AATGTGTCCTCCATTCATCT
3457





SCG5
NM_003020
GAGGAGGTGAATGACTTACA
3458





SCGB1A1
NM_003357
TGGCATTGGCTTGGTGGGAT
3459





SCGN
NM_006998
TTTAACTTGCTTCTCAGACT
3460





SCIMP
NM_207103
TCTGGCTTCTGGACAGCCGT
3461





SCML2
NM_006089
TGGTCCGCCACTGCCTGCGG
3462





SCML4
NM_001286408
GTTCTTTAAAAGCCAGTGGT
3463





SCN11A
NM_001287223
AATCATAGTTCACACATGTC
3464





SCN1A
NM_001165964
TCTGTGACACACCCAGAAGA
3465





SCN1A
NM_001165964
TGAACCACTTTTAAAACTCA
3466





SCN1B
NM_199037
ACCCCGGTCCCGCTCCGGCT
3467





SCN2A
NM_001040143
TAGATCTCCATGTGAGCAAA
3468





SCN4A
NM_000334
GTGGGCGTGCAGACTCTATC
3469





SCN4B
NM_001142349
CGCCCTGCGCGTCCTGGAGT
3470





SCN4B
NM_174934
GCGGTGGCCGCCGCGTAGGC
3471





SCN5A
NM_001099405
CCAAGCCCCAGGCCGAACCC
3472





SCN5A
NM_001099405
CGCGCCCAGGGCTCCGCACG
3473





SCNM1
NM_001204848
TTGACCTTTGTCTTATTTCT
3474





SCP2
NM_001193617
CAGTGGGGCCTAAGACTGAG
3475





SCRN1
NM_014766
CTCGACGGTGAGCAGCGCCG
3476





SCUBE1
NM_173050
CCTCCGGCCCTCCGAGGAAG
3477





SDC4
NM_002999
CCGCAGGCCTCGCTTCCACT
3478





SDCBP
NM_005625
CTCCAGGTATCCGGCAAAGT
3479





SDPR
NM_004657
CGTTACAATAACTTGTATCC
3480





SDSL
NM_138432
ATGAGTCATAGGCAGTGCCC
3481





SEC13
NM_001136026
CGCAGTTACCCTGACCCGGA
3482





SEC14L1
NM_003003
ATCCAGCAGTGCGACGGGGC
3483





SEC16A
NM_001276418
CGATGGCTGCCGCCAGTCCC
3484





SEC24D
NM_014822
GTTAAAGGCTTTGACCTGTA
3485





SECISBP2
NM_024077
TTGGATCTGCCTTTTAGTGC
3486





SEL1L3
NM_015187
GCGCCCGCTGCTCCGAGGGG
3487





SELENOT
NM_016275
GTCCTGACTCACCACCATCT
3488





SELPLG
NM_003006
CTCCCCAGAAAGCTTCTACT
3489





SEMA3B
NM_001290060
CTAGGCTGGCATGAAGTGGG
3490





SEMA3B
NM_001290061
ACGCCACTGGGCACACCCTC
3491





SEMA4D
NM_001142287
AGAACAAAGCTTCCACAGTG
3492





SEMA4G
NM_001203244
ATTGTGAGTCGATCCTGGCG
3493





SEMA4G
NM_001203244
CTATCGCTTTGCTCTGATGC
3494





SEMG2
NM_003008
GTCCCCATGCTAAGTCCCTG
3495





SENP1
NM_001267595
CGCTAGGTGGCTGAAGAGGA
3496





SEPT10
NM_144710
GCGTCTGAGGCCAGAGGACT
3497





SEPT11
NM_018243
CGGAGACGGTCGTTTGGGGA
3498





SEPT8
NM_001098813
GTTTTGAGCAGTGACATTAG
3499





SEPT9
NM_006640
TAAGCAGCCTCTGAGGACCC
3500





SERF1B
NM_022978
ATTCAACAAGCTCGGAGCCC
3501





SERF1B
NM_022978
TTAGTGCTAATGTAGCATGA
3502





SERF2
NM_001018108
TTCACATTTAAAGTTTCTGG
3503





SERINC1
NM_020755
ACTGCTGGCTGGAAACTTAA
3504





SERINC1
NM_020755
CTTTCCTGGAGAATTTCTCA
3505





SERPINA10
NM_016186
CAGGACCCAAGGCCACACAC
3506





SERPINB11
NM_080475
TGCACCATGTGCACTGACAC
3507





SERPINB12
NM_080474
TAATTTCTTATGGCAGCCCC
3508





SERPINB2
NM_002575
AATACTTGTTTGTAAAGGCA
3509





SERPINB2
NM_002575
GCATGGTTTAAGAAATTTTG
3510





SERPINB6
NM_001271825
CACATGAGTTTCACTGTGTC
3511





SERPINB6
NM_001271825
TGAACTGGAGAAACCAAAGC
3512





SERPINB7
NM_001040147
GTGCAGTCTGGGATGAAGGA
3513





SERPINE3
NM_001101320
TTTCTAATGCTGAAACAAGA
3514





SERTAD3
NM_203344
GTGGAAGGAAGCGGTTCTGT
3515





SESN1
NM_001199934
TTCTGCCCAGGGACGACTCA
3516





SESTD1
NM_178123
GGGTCGCGCGGACGCGGCTC
3517





SET
NM_001248000
GGTTGTGGTGGAGCCTTCCT
3518





SET
NM_001248000
TAGGTCTGGCTCATAGGGGA
3519





SETDB1
NM_012432
GCGGAGACTCGGTAATATAC
3520





SETDB2
NM_031915
ACTTACCGCTGGCACCGCAG
3521





SETDB2
NM_031915
GCGACCAATCAATGGGCTCC
3522





SF1
NM_201995
CCGCGACTCTCGCTTAATCC
3523





SF3B2
NM_006842
CCCTCGGCGGTCTGGTCGCG
3524





SF3B2
NM_006842
GCAGACGCACCTTTCTCTAG
3525





SFRP2
NM_003013
AAGTAGTGACCAGCCCTCCT
3526





SFXN3
NM_030971
GCGGCGCCACACCAGCGACC
3527





SGCE
NM_001099401
GCAGACTGTGAGCCTTATAT
3528





SGIP1
NM_032291
GTGACAAGCGGGAGGCGATG
3529





SGK2
NM_170693
CACAACTTGTTATGTGACCA
3530





SGMS2
NM_001136257
TGTGAAGAGCTTTGTGCCCC
3531





SGO1
NM_001012413
CGGAGCCTGCGGTCGGGTCT
3532





SH2B1
NM_015503
TCCTTCAGCGACGGGAAAGG
3533





SH2B3
NM_001291424
ATTATTTATCTGATCCTGGG
3534





SH2D3C
NM_001142533
GCGGAGCGGAGGACCTGCCA
3535





SH3BGRL
NM_003022
CAGAAAAATCACTACGTAAT
3536





SH3BGRL3
NM_031286
CAACACGCACCACTAACCCT
3537





SH3D19
NM_001009555
AAATTTTTGATCGTCACAAC
3538





SH3D19
NM_001009555
TGGGAAGAAGGGAACTCTCA
3539





SH3D21
NM_001162530
GCTGCACAGGCCAGAGACCC
3540





SH3GLB2
NM_001287046
GGGGCGGAGCGAGAGGGCAG
3541





SH3RF2
NM_152550
AAAATATAAGCCAGTCCCTA
3542





SH3RF3
NM_001099289
AAGAAAGTCACGGCGGAGCC
3543





SHANK1
NM_016148
CTACCCCCACTGCCCAAGAT
3544





SHBG
NM_001146281
GAGTCTTGTGACTGGGCCCC
3545





SHC1
NM_003029
GTTTGAAAGCGAGGCCAAAG
3546





SHC2
NM_012435
ACATCACCGGGCCGGGGGGC
3547





SHC3
NM_016848
TATAGTGTGCTGTCAGCGGG
3548





SHFM1
NM_006304
AACTACACGGATCTCAACTT
3549





SHFM1
NM_006304
TTGGTCTCTACCTTGTTATT
3550





SHISA4
NM_198149
GGGCATTCGGAGGTGGCACC
3551





SHISA5
NM_001272082
GGTCGCCCTCTGGGCCTAGA
3552





SHMT2
NM_001166357
GCATCAGGCAGGGGTCCCGG
3553





SHOC2
NM_007373
AGGAACTGAGGAAAGGACAA
3554





SIGLEC10
NM_001171156
CACAGTGAGCTACCCTTATC
3555





SIGLEC12
NM_053003
TCTCTGGCCTCAGGGTCCCC
3556





SIGLEC8
NM_014442
CACCACCCCATTTCCACTCC
3557





SIGLEC8
NM_014442
TCTCTGGCCTCAGGGTTCCC
3558





SIMC1
NM_198567
GCCTCGGCGTCTCGCACGCC
3559





SIPA1L1
NM_001284245
GAGTTTCACTCTTGTTGCCC
3560





SIRPA
NM_001040022
TACAAAAATAGCGTGTGTGT
3561





SIRPB2
NM_001134836
AATCTTGCACAGCCAAGAAG
3562





SIRT5
NM_012241
CTCGCGAGCGGAGGTGGCAC
3563





SIVA1
NM_006427
TCGACGCCGCGGGAAAGGCC
3564





SIX1
NM_005982
AGCGTCCCCGGCACGCTGAT
3565





SIX5
NM_175875
ACGCCACGCGCATCCGCTCC
3566





SIX6
NM_007374
TGACTGACAGGGGGTCTCCA
3567





SKAP1
NM_003726
GGTGCACGTGGCGCTCACGC
3568





SKIL
NM_001248008
AAAAAATTAGCCGGGTGTCG
3569





SKOR1
NM_001258024
CTGGAGTCAGCAGCGGAACC
3570





SKOR2
NM_001278063
GGTTAAGACACGATTATTAC
3571





SLAIN2
NM_020846
TGGCGGCAGGGGCCGGATAT
3572





SLBP
NM_006527
AGACCATCGGGCCACGCCGC
3573





SLC10A1
NM_003049
GAGGAGTACAAGTAGCACCC
3574





SLC10A3
NM_001142392
CGCTGCCTGGACCAATCGCT
3575





SLC10A4
NM_152679
TTCTGTTATCGAGTGTAGCC
3576





SLC10A5
NM_001010893
TTGTAGGATCAAAGTCCAGT
3577





SLC11A2
NM_000617
GGCCAACGCAAGCAGCAACT
3578





SLC12A3
NM_000339
ATCAAATGGTGTTCTGCCTC
3579





SLC12A8
NM_024628
GCAGAGGCTTTCCCTCCGCA
3580





SLC13A3
NM_022829
CGGGAACGTTGGAGAAAGTT
3581





SLC15A5
NM_001170798
CTCCATGCTAGAATTTCATA
3582





SLC17A2
NM_005835
AGGGCTCCTGAAATCAGTGA
3583





SLC17A3
NM_006632
ATGCTTCTTCAAAGCCTATT
3584





SLC17A8
NM_139319
TAGGCCACGGATACTGCTGC
3585





SLC1A2
NM_004171
CCCAAGCCTTCCCGGACGAG
3586





SLC1A5
NM_001145145
ACACTGTCACACAAGAGTAA
3587





SLC1A6
NM_001272088
CCCCTTCTCCCACACGGCTG
3588





SLC1A6
NM_005071
GGACTCTCAGAAGGCGGGGG
3589





SLC22A1
NM_003057
GCTGAACTTCAATTCTCTTC
3590





SLC22A14
NM_004803
CCCCCCTGGCCCAACCATCC
3591





SLC22A17
NM_001289050
TAGGAAGGCAGTCAGGGGCG
3592





SLC22A18AS
NM_007105
GCTTCCAGAGCCACACACTG
3593





SLC22A2
NM_003058
GTGGAGCACCGACAAGCCTG
3594





SLC22A3
NM_021977
GGCCGCGAGCCGGACGCACC
3595





SLC22A7
NM_006672
GGTCACTGGCTCGTGGCTCT
3596





SLC23A2
NM_005116
GGGAGCGCTGCCGGGTGCCA
3597





SLC24A5
NM_205850
AATCTGCCCTTAGAGACTGT
3598





SLC25A18
NM_031481
TCCAGATGCCTTCGCCTTCT
3599





SLC25A18
NM_031481
TGGCTAGTATTTTTCACTGA
3600





SLC25A19
NM_001126122
CCGTCCAGCTGTCCTGCCCT
3601





SLC25A24
NM_013386
CCAGTCCCGCTGTCAGCATG
3602





SLC25A28
NM_031212
AAGGGGAAAAGGTGGGATGT
3603





SLC25A34
NM_207348
ACTGGAGGGAGAGCGTGGAT
3604





SLC25A41
NM_173637
TCACGCTGCCCACCACACCT
3605





SLC25A42
NM_178526
ATTGGCGAGTATGAAGCAGA
3606





SLC25A43
NM_145305
AGCAAGATGTCTAGCAGGCT
3607





SLC25A45
NM_001077241
TCAGTCAGCCTTCTGTCTCC
3608





SLC25A48
NM_145282
GGCTCATCCCAGACACAAAG
3609





SLC25A51
NM_033412
GTCGGTTTTAGGGGCCTTGT
3610





SLC25A6
NM_001636
CATACCTAGGGGTGCGGGGC
3611





SLC25A6
NM_001636
GCGGGACGCAGCGGGATTCC
3612





SLC26A5
NM_206885
AGCACGCTTTGGAAAGTTCT
3613





SLC26A7
NM_052832
TGGGCTATGCTAATGAAACC
3614





SLC27A6
NM_001017372
GGTCCCGGAGAACTGCTCCT
3615





SLC29A2
NM_001532
GTCCCGGATCCCTGCGGCGG
3616





SLC2A10
NM_030777
GGGGAGCCCAGGACCGCCCC
3617





SLC2A14
NM_001286237
TCACTGCAACCTCTGCCTCC
3618





SLC30A5
NM_022902
GGAATCCGCTGTACTTCTGA
3619





SLC32A1
NM_080552
GGGGACGTGAGGAAGGGGCT
3620





SLC34A2
NM_001177999
AGAATGGAAGACGGCAGCCC
3621





SLC35A1
NM_006416
ATCCAAGCTACACCCCAAAA
3622





SLC35A5
NM_017945
GTGCGTCCGCTTCTCACCTC
3623





SLC35B1
NM_005827
GAAGTGGTTGCTGGGTTCTG
3624





SLC35B2
NM_001286511
CTGAGGAGTATCATCTCAAC
3625





SLC35C1
NM_001145266
CCTGTGGTCTGCCACTCACC
3626





SLC35E1
NM_024881
AAGCGCATCTACAGTGGACT
3627





SLC35E1
NM_024881
AATGGGAAACGGCGTAGACC
3628





SLC38A1
NM_001278389
AGTCTATTTCCCCCTGAGAA
3629





SLC38A1
NM_001278390
ACACAGGAAATTTTCACCAA
3630





SLC38A1
NM_030674
CCAACGCTGCCCGTAGTCCC
3631





SLC38A10
NM_001037984
AGCTGTCCGGTTCGCCAAGC
3632





SLC38A11
NM_173512
ACTCTTCCCTGGAGCTGCAG
3633





SLC38A11
NM_173512
AGGAACGGACTGCAACGAGG
3634





SLC38A11
NM_173512
AGTTAGCTTCTCCTTTGCTG
3635





SLC39A1
NM_014437
TCCAATCAGGACTCAGCTTT
3636





SLC39A5
NM_173596
AAAATAGGTTACAGGTAAGG
3637





SLC39A5
NM_173596
AACTAGGCATTTGGGAAGGT
3638





SLC39A9
NM_001252148
TCTGATGTCACTGTCTATAC
3639





SLC43A1
NM_001198810
TGAGACCGAGGAAAGCGGAG
3640





SLC45A3
NM_033102
AAAGCGGGAGGTCTCGAAGC
3641





SLC45A4
NM_001286648
ATTGACCCCTGAGCTTAGCC
3642





SLC45A4
NM_001286648
CAGGCCATGTCCTGCAGCCC
3643





SLC46A1
NM_080669
GGTGAGGTCATCCCGCGGGC
3644





SLC46A3
NM_001135919
CGCGGCCCACCACTCAACAG
3645





SLC4A11
NM_001174089
GGCGGCCGGGTCCCAGCCCT
3646





SLC5A10
NM_001270649
CTCCCTGACTCCTGCGCTCT
3647





SLC5A5
NM_000453
ACAGGCCAGGACAGGCTATC
3648





SLC6Al2
NM_003044
AGGTGGAAGGAGAAGTGGAC
3649





SLC6Al2
NM_001122847
GTCTCCAACTGCTGCTCAGA
3650





SLC6A17
NM_001010898
GGCAGCGAGCGAGGCTCTGA
3651





SLC7A8
NM_001267037
TTGGACAGGCCAAGCCGAAG
3652





SLC8A3
NM_033262
CAGATCCAACCCCTGCCCCG
3653





SLC8A3
NM_182936
CCTTGGCTGTGGACTGTTCC
3654





SLC9A1
NM_003047
CTTCTTTCCCTCGGCGACAG
3655





SLCO1C1
NM_001145944
TATAAACTTCCGCCCTCCTC
3656





SLCO2B1
NM_001145211
GGGGTCAGCTGGTCACTGAA
3657





SLCO4A1
NM_016354
GGAACGCGCGGCGGGGGACC
3658





SLCO5A1
NM_001146008
GAAAATGCCCAAAAGAACAA
3659





SLCO5A1
NM_030958
TTGGGCCCCCGCAGCCACGC
3660





SLF2
NM_018121
CAACAAGAACCGTCGTAGAA
3661





SLITRK4
NM_001184749
GGAAAGGGGGTTGGAGAACA
3662





SLITRK6
NM_032229
TCTCTTGTGTTATATGACAC
3663





SLU7
NM_006425
TAGGAGCTTTCTTTTAGAAT
3664





SLU7
NM_006425
TGCGTATCGCGCTATTTACC
3665





SMAD1
NM_001003688
GGCCGAGAAGAAAACCCGTG
3666





SMAD3
NM_001145103
TTAGCGACAGAGAAAATAGG
3667





SMAD4
NM_005359
GAGCGACCCTCCCCGTCACT
3668





SMAP2
NM_001198980
GATTGCATAAGCCTTTATTT
3669





SMAP2
NM_001198980
TGCAAGTGTTCTGAAAGCAG
3670





SMARCA2
NM_001289398
GAAATTTCTTCCATGTGCAA
3671





SMARCAL1
NM_014140
TTTGGAAACCTCAACGTCCT
3672





SMARCAL1
NM_001127207
CAGAGCCTCCCGAGCGGGAC
3673





SMARCB1
NM_003073
CCAGTCCTGGCTGTAAGACT
3674





SMARCD1
NM_003076
GGAAGACAAGGACCTGGAAA
3675





SMC3
NM_005445
CAGTCCTCCACAGCGTTTTT
3676





SMG8
NM_018149
TAGGAGAGGAGAAGAGGAGG
3677





SMIM1
NM_001163724
GGTGGCGGGGCTAGAGTGGT
3678





SMIM19
NM_001135675
GCCACTCACGCTGCCGGCTC
3679





SMIM22
NM_001253791
CAGCTCCTGGAAGCTCCACC
3680





SMOX
NM_175842
GGCAGGGATCCAGCAGTCTC
3681





SMTNL2
NM_001114974
TCCGGGACACCCCCCTGCCC
3682





SMYD3
NM_022743
GGTATGAGTCATGGTCCAGA
3683





SMYD5
NM_006062
ACACTCCCGTCAACAAACCA
3684





SMYD5
NM_006062
CTGCCTTTGTGCTTTTACAT
3685





SNAI1
NM_005985
CGTGGCGGTGAGAGCCCGGG
3686





SNAP47
NM_053052
CACGGTCCATGCCATCTCCC
3687





SNAP91
NM_001256717
TCTCGGGTTCTACTCTGTGA
3688





SNCA
NM_001146055
GTCTGATTCTTGCGCTAATT
3689





SNRNP35
NM_180699
CAGGCGTGAACCACCGCGCC
3690





SNRPA1
NM_003090
GGGTGTGTTTCGGAGTCTGG
3691





SNTB1
NM_021021
AGGAGGCACGCTGGCGGTGA
3692





SNUPN
NM_001042588
TGCCAGGGTGTAGCCTCTGC
3693





SNURF
NM_022804
TAGACATGTCCATTGATCCC
3694





SNW1
NM_012245
ATTATTCCTTGATAACCGCT
3695





SNX1
NM_003099
ATATCTCAGCATCGCGAACC
3696





SNX13
NM_015132
TCGGCTTGGCGCTGACTTGT
3697





SNX18
NM_052870
TCGCGGCACCGGCCACTAGA
3698





SNX21
NM_001042633
GATGACTCTGCGGCAGGCCT
3699





SNX24
NM_014035
AGATCAGCTGGGCCCGAAAG
3700





SOAT2
NM_003578
CTCACTCTGCTGTCTGTCGC
3701





SOBP
NM_018013
GCCACGCCCGCTCGAGAGCC
3702





SOCS2
NM_001270471
GGTGACTATTTGCTCTTCCT
3703





SOCS2
NM_003877
AGAATTATGTACTCAAAAGC
3704





SOCS5
NM_144949
AATAGCAGGCAGGGCTTTAG
3705





SOGA1
NM_199181
AATAGAGGGGTTATTACTGG
3706





SON
NM_138927
ATGGCGGACATAGTCGTGCG
3707





SON
NM_138927
GCAGGGCCGTGCTCACTGAT
3708





SORBS2
NM_001145672
ACTCGGAAAGGAGGTGTGAA
3709





SORBS2
NM_001145674
TCTATTGCCCTAAGCCTCCT
3710





SORBS3
NM_001018003
GCCCTGTATTTTATTTATGG
3711





SOS1
NM_005633
CCAGCCGTGGAGAACGGACG
3712





SOS2
NM_006939
AGCGCGGCGACCCGCAAGCC
3713





SOST
NM_025237
GCAAACTTCCAAATTGCTGC
3714





SOWAHB
NM_001029870
AGGTGACACTCGCCCGGCCA
3715





SOWAHC
NM_023016
ACGGCGCGAGGAATGCAGGC
3716





SOX13
NM_005686
GGGGACTTGCAGAAGAAGGG
3717





SOX14
NM_004189
GCGCTCTCTGTTTCTTGCAC
3718





SOX5
NM_178010
CTCACACCTGTCCTTCTCCA
3719





SOX5
NM_178010
GTGTATGTGTGTGTGTTTAA
3720





SOX6
NM_033326
TGCAGTGTTTGTTCTACCTA
3721





SP110
NM_004510
GATGTGGTTAGGGAAGCATT
3722





SP110
NM_004510
GGTACAGCCCCAGCGGCAAT
3723





SP4
NM_003112
GGCCGACTCCCCACCCCCCT
3724





SP6
NM_199262
CAGGAAGAGGGGATGGAATT
3725





SP7
NM_152860
AGCAAATGGAGCAGGAAATT
3726





SPACA1
NM_030960
CTCCTTGAGCCTTCCGGGTG
3727





SPAG11B
NM_058203
TGAGAAGCGTTTGAGGACAT
3728





SPAM1
NM_001174045
AGAGTCTCACTCTGTCACCC
3729





SPAM1
NM_001174045
CATGCCACTACACTCCATCC
3730





SPANXA1
NM_013453
TGTGATGTGAAGCCACCCTA
3731





SPARC
NM_003118
GGCACTCTGTGAGTCGGTTT
3732





SPATA17
NM_138796
AAAGCAGCATGAGAGAAAAG
3733





SPATA20
NM_001258373
GGGGAGGACAGCCCTTCTCA
3734





SPATA31D3
NM_207416
CCAGGAAGGTGGAGTCAGCT
3735





SPATA32
NM_152343
GAGGAAGGAGTTCTGGCTTC
3736





SPATA5
NM_145207
TCAGGAATTTACAATCTAAG
3737





SPATA6
NM_019073
CGTCAAACTGCGCCCAAAGC
3738





SPATA6L
NM_001039395
CACACGTTTGTTATTGACGG
3739





SPATC1
NM_198572
TCACGGAAGAGGCACCATGA
3740





SPC25
NM_020675
GGATTGGTTGAACTCACCCT
3741





SPDYC
NM_001008778
GGAGAGGCTTTCAAACCCTG
3742





SPDYE3
NM_001004351
CACTGTCCAAAAGCATCTTC
3743





SPEF2
NM_144722
CCAGCGCAGGAGGAAGCCGT
3744





SPG21
NM_016630
GGAGAGGGCTGAGTTACGTC
3745





SPHAR
NM_006542
TGTTGGTTATATTGCACAAT
3746





SPI1
NM_003120
AGGGCTGGCCTGGGAAGCCA
3747





SPIN1
NM_006717
CGCCTGCCGCCGCCCATTCC
3748





SPIN2B
NM_001006683
GAAGGGGCCACAGGGTTCCG
3749





SPINK2
NM_021114
TTCTTGTATGTCGGAGGGAG
3750





SPINK4
NM_014471
CAGCGTGCAAAGATTAACTC
3751





SPINK9
NM_001040433
TTGGGGACTAGCTATTAAAA
3752





SPIRE1
NM_001128627
CACAACAAATTTTCACATAC
3753





SPOCK2
NM_001134434
TCTGACCATTTCATCTGCCT
3754





SPON1
NM_006108
AGCAGCAGCCTCCTAGGCGA
3755





SPON2
NM_012445
GTGGCACCTAGGGAGGCACC
3756





SPRED2
NM_001128210
GATTGGTAATCATAACTTAC
3757





SPRED3
NM_001042522
AGACATGGAGAAGAAGATAG
3758





SPRR1A
NM_005987
GAACACCACCTGATATTTTT
3759





SPRR2D
NM_006945
GTATCCATATCTGGCATGAG
3760





SPRR2E
NM_001024209
CTATCCATAACTGGCATGAC
3761





SPRYD4
NM_207344
AACAGAAACCACTACCTTGG
3762





SPTB
NM_001024858
CTGTCAGGATCTACTCACGT
3763





SRC
NM_005417
TGGTTCTTGCAAGTAGGTAA
3764





SRCIN1
NM_025248
CCGCGCGCTGCGGGATCACG
3765





SREK1
NM_139168
CCGGGTGCCCTAATCAAATA
3766





SRF
NM_003131
TATCATTCTCGGGTTCAGGG
3767





SRGAP1
NM_020762
GACTAGATTAGCCCGGGCGC
3768





SRGN
NM_002727
TTTGAAAAAGCAGGCCTGGG
3769





SRI
NM_001256891
ACGAAGAAGCGCGCAGGCAG
3770





SRI
NM_001256891
GCACTGCATTAGCGCCGTAA
3771





SRI
NM_198901
ATTTCCAATTAGCCCTATAG
3772





SRI
NM_198901
TTTCATAGAGGGCCTCTATA
3773





SRP68
NM_001260503
GAAGCTCTCATGATTCTCCC
3774





SRP68
NM_001260503
TATATTGAAGGCTTCCTGTT
3775





SRR
NM_021947
ACGACGGTGGCCGCGCTGGG
3776





SRRD
NM_001013694
GCGGGGCGGCGCGTGACCTA
3777





SRRM2
NM_016333
GGGAGACGATATCCCAGCCG
3778





SRRM3
NM_001110199
GCCTGGAGGAACGCCCGCAG
3779





SRRM4
NM_194286
TCTGCATAACAAAAGCCCGC
3780





SRRM5
NM_001145641
GGTGAGTGGTATGAAGTCAG
3781





SRRT
NM_015908
GGAACTACGGGACCTCGGCT
3782





SSBP3
NM_145716
GAGCCGCTGCCTGCTCCTGC
3783





SSH2
NM_033389
GGTGGTGGGTGCGGAGTCTG
3784





SSR3
NM_007107
GGGCGAGCGGGCCAGACTTC
3785





SSSCA1
NM_006396
GCTGCTACCGAGAACCTGCT
3786





SSTR1
NM_001049
CTGAGGCTTGATTTGTGAGC
3787





SSTR2
NM_001050
GAGACCGGCTGAAACGCCTG
3788





SSUH2
NM_001256748
TGGTCAGTAGAAGGCTCTTG
3789





SSX2B
NM_001164417
CTACTGTTCTGACTTCTAAT
3790





SSX2B
NM_001164417
GGCAGTTAGTGAACTCCATC
3791





SSX5
NM_175723
CGGAACAAGCGAAGCTGATG
3792





ST6GAL1
NM_003032
AGAGTCTCGCTCTGTCGCCC
3793





ST6GAL2
NM_001142351
GCCCGCTAGAGCTGGGACCC
3794





ST6GAL2
NM_001142351
GGCGGGAGTCGTCCTGCCGC
3795





ST6GALNAC6
NM_001287001
CCGAAGCCGAGCTCCGGATG
3796





STAG2
NM_006603
TCCTTTCTCCCCTCCCCCCT
3797





STAM2
NM_005843
CTAAATTCGTGACAAGAACT
3798





STAMBP
NM_201647
GAACGACACAGCGGCCATCT
3799





STAP1
NM_012108
AGGTGTAGACTGACTTTCAG
3800





STARD8
NM_014725
AATGTTCAGGGAATTTCAAT
3801





STAT6
NM_001178079
GGGATCCTCGTCCGCCCGCT
3802





STIM2
NM_001169118
CTTTAGCGAGCCGCGAAGAT
3803





STK10
NM_005990
CTTCCCCAAAGCCCAGCCCG
3804





STK19
NM_004197
AATGTTTCAAGGCCAGAGCC
3805





STK19
NM_004197
TCTGTACCCCTGCTTGTCTT
3806





STK25
NM_001271978
CTCTGTTCGCCCGGGGACCC
3807





STON1-
NM_001198594
TCTCTTGGATAACATTTGCA
3808


GTF2A1L








STOX1
NM_001130161
AAGTCGAGGGCATCGCCAGG
3809





STPG1
NM_178122
ATCACAAGATTTTTGAAGCA
3810





STRADB
NM_018571
GACTTCACAACATCATCACT
3811





STRBP
NM_018387
CGCGCGGCGAACGAGGGGGC
3812





STUB1
NM_005861
GGGGCCTCTGCTGATGGGGC
3813





STX4
NM_001272096
CATCATGGGACCTTGAAAAT
3814





STX6
NM_001286210
TGGCTTGTTCCCTCAGAACT
3815





STXBP2
NM_006949
GGACTCAACTTCCTGGGCCT
3816





SUCNR1
NM_033050
TGGCTGCAGGATATGCAAAT
3817





SUGCT
NM_001193312
CAGACCAAGGGCACTCAGAC
3818





SUGT1
NM_006704
GTAACGTACTGTCATCCCTA
3819





SULF2
NM_018837
GGCCATCGATCAGGTCCACT
3820





SULT1A1
NM_177529
AGCAAACTCAGTCGTGGCTT
3821





SULT1A2
NM_001054
GTGATCTCCAAAGCCACGAC
3822





SULT1C2
NM_176825
AGGCTAAGGAGGAAGGAAAA
3823





SULT1C3
NM_001008743
TTCCCGATTAACAAGTAATA
3824





SULT1C4
NM_006588
GGAACGGGACCCAGCCAGCA
3825





SULT2A1
NM_003167
AAGATCGAATAACAAACACG
3826





SULT2A1
NM_003167
AGCTCAGATGACCCCTAAAA
3827





SULT2B1
NM_004605
TTTTGTCTTTTTAGTAGGGG
3828





SUN1
NM_001171945
ATTGGCCAGAACGCTTCGGG
3829





SUN2
NM_015374
CCTCCCACGCGCGGACTCCT
3830





SUN5
NM_080675
ATTGAGGCATCAAGACAGGA
3831





SUPT20H
NM_001278482
CCAAGACGGCGCCGCCTGCT
3832





SUPT20H
NM_017569
CCAGGATCTCTGCTCAATCC
3833





SURF4
NM_001280788
AGGAGGTGAGCAGCAGGCAG
3834





SURF4
NM_001280788
GGGTGGTAATGCGAGCCATG
3835





SURF4
NM_001280792
CGCGTTCCGCCGGGCCGGGA
3836





SVIL
NM_021738
TGGGCTCCTCTGAATTTCCA
3837





SVOP
NM_018711
TTACTGAGCACCTATGTGCC
3838





SWSAP1
NM_175871
GAACTGTACCGATGCGGCCA
3839





SWT1
NM_017673
AACTGCGCAGAAGCGTACTG
3840





SWT1
NM_017673
CGGTTTCTACGGTGCGTCTC
3841





SYBU
NM_001099748
CAGAGTCTCACTCTGTCGCC
3842





SYBU
NM_001099751
TTCGAGCACTTTGAGAGGCC
3843





SYCE2
NM_001105578
TTCTCAAAGAGGGCGGGGCC
3844





SYCP2L
NM_001040274
CAGGCGTGAGCCACCGCGCC
3845





SYK
NM_001174167
AAAGAGGCCCCGTGCTGCTG
3846





SYNE1
NM_033071
GGAACCGGTCGCGGAGGGCG
3847





SYNPO2
NM_001128933
CTGTTAGTGCAAGATAACTT
3848





SYT12
NM_177963
TCGAGCGCTGTCTCTGCTCC
3849





SYT4
NM_020783
AACTGACAGGGATCAGTTTC
3850





SYT7
NM_004200
GCGCGCAGGCCGGAGGGAGG
3851





TAB2
NM_015093
TTAGAAGCGAACGCCCCGCA
3852





TAC4
NM_001077506
TTAAGCTGAAGGAAGGAATC
3853





TACC2
NM_206862
ACTCTGACATTTTGCCCCTT
3854





TACO1
NM_016360
AACAAAGTCCGGCGCTCTCT
3855





TAF12
NM_001135218
GAGCTCTGCGTATTCCAACC
3856





TAF13
NM_005645
GGGAGGACGGTGGTGCTTTC
3857





TAF13
NM_005645
GGGATTACAGGGAGGCGCTC
3858





TAF1L
NM_153809
GCCTGTAGTCCCAGCTACTC
3859





TAF4B
NM_005640
CCCTCCTTGCTGGCGATTCT
3860





TAF6L
NM_006473
TTATTTCCTCGTTACTATTG
3861





TAF7L
NM_024885
CTACAATCTTGAACCGGCAC
3862





TAF9
NM_003187
GAAATGTGTCATCGAAAGCC
3863





TAF9
NM_001015892
CCTGTAATCAGTGGGGTGCC
3864





TAGAP
NM_138810
AAGGCTCTGATTAATGTCAT
3865





TAGLN3
NM_001008273
CTGCAGTTCAACATGAAAGG
3866





TAL1
NM_001287347
GCTTCTAAGTGTGGTCTTCT
3867





TAL1
NM_001290404
CTCGGTTCCTTTCGATGGCC
3868





TAL1
NM_003189
GAGCGTTGGACGCGCTGTCT
3869





TANC2
NM_025185
TACATGAGATGTTTTGATAC
3870





TANGO2
NM_001283179
ATTTGCTGTCAGATGGGGCG
3871





TANGO6
NM_024562
GGCTTAGTCCGGGGGGTAAG
3872





TAOK1
NM_025142
TGAGGGCGCCTCCTCGACCC
3873





TAOK1
NM_025142
TGGGCTCAGTTAAGATGGCG
3874





TARBP2
NM_004178
AAGGAAGGTTGTGATTGGTC
3875





TARM1
NM_001135686
GGAAACTGAAAGGCTAGGAA
3876





TAS2R16
NM_016945
TTTGTTTATGCTTTGCTTGC
3877





TAS2R20
NM_176889
ACTCATTCATTAGTTTAAGC
3878





TAS2R41
NM_176883
TTCCTAGGAGTGCTAAAGAG
3879





TAS2R43
NM_176884
GGTTTATTGAGAAGAGAGAA
3880





TAX1BP1
NM_001206901
GACATTAGCTTTGATAACAT
3881





TBC1D12
NM_015188
AGAACTGTCACGCTTAGAGC
3882





TBC1D12
NM_015188
AGCGAGCAATACCCGCGCTT
3883





TBC1D14
NM_001113361
AGACGGCCCGGGCCCCGCCG
3884





TBC1D14
NM_001113363
CAACACGTTTCTCAGCTCTC
3885





TBC1D16
NM_001271844
TGTCAGCTGCAGTTTTGCCC
3886





TBC1D22A
NM_014346
GGAGTCCGTTGCGGGCAGGT
3887





TBC1D25
NM_002536
GCTCCTGGCAACAGCACTCT
3888





TBC1D26
NM_178571
GAGGGTGCTGGCTCTGGTCC
3889





TBC1D3F
NM_032258
TGCACAAACACGTTGCAAGC
3890





TBC1D3H
NM_001123392
TGCACAAACACGTTGCAGGC
3891





TBCCD1
NM_018138
GGGTCGAGAGTCCGCAACAG
3892





TBCCD1
NM_018138
TCAAGCGTCTGAGAAAATCT
3893





TBL1x
NM_005647
CTCGCGGCAGCTCCCCGTGG
3894





TBR1
NM_006593
TTTAGGAAGATTCAAAGATG
3895





TBX1
NM_080646
GTCGCAGGGTCTGATTCCTC
3896





TBX21
NM_013351
GAGTACTGCAGGGCCCCCCA
3897





TBX22
NM_001109878
AAGTTGCTGGAGTCCAACCC
3898





TBX6
NM_004608
CCGACCGCGAGGGGGCTGCG
3899





TC2N
NM_001128596
AGGCCTAAGATACTACTAAG
3900





TC2N
NM_152332
GCGCGGCTCAGGTACGCGGG
3901





TCEA2
NM_003195
ACACTTAACTCCAGTTTCAC
3902





TCEA2
NM_198723
GTCGAGTGTGGAGGACACCC
3903





TCEAL1
NM_004780
GGCAGGGCCGCAGATCAAAG
3904





TCEB3B
NM_016427
ATTAACCTAATCAACCTCTG
3905





TCEB3B
NM_016427
CGTTGACCTTCCATGTTCGC
3906





TCEB3CL
NM_001100817
GGTGGCCGGTCCTCGCTGCC
3907





TCF15
NM_004609
CGAGGGAGGGGCCAATGGCA
3908





TCF25
NM_014972
CCGGAACTTTCCCGCTTCAG
3909





TCF3
NM_003200
GGGTCGCGCGTGGGCGGCGG
3910





TCF4
NM_001243226
CATTTTCCTCCTACCATTTC
3911





TCF4
NM_001243235
ATCGATCTCGCGTATGCATT
3912





TCF4
NM_001243235
GGAAGGCAGCCCGGCCCTGA
3913





TCF7
NM_003202
CCTTAAAGGGCTCGCTCTTC
3914





TCHP
NM_001143852
ACGTCGCTGCTCCTTGAAAT
3915





TCP10
NM_004610
ACTCTCTCCAGTGTCCTTTG
3916





TCP11L1
NM_001145541
ATCTCTTCGCCTCTTCCCGT
3917





TCTEX1D1
NM_152665
GGGTTGGCGGCGAGCTGGAG
3918





TDG
NM_003211
CGCTCCTAGTCCCCGTCTTC
3919





TDGF1
NM_001174136
CTTGTTAATGAAGTGTGGCC
3920





TDP2
NM_016614
GAGCAGCGCATTTCCCCGCC
3921





TDRKH
NM_006862
CTAGCCGCTGCCCAATTACC
3922





TEAD2
NM_003598
GCTGGTAGGAACTCAGGATT
3923





TECRL
NM_001010874
CTGTCTAAGGTAAAGAGAAG
3924





TECTA
NM_005422
CATGAAGTGTTGAACTTCGG
3925





TEFM
NM_024683
CGGACGACCCACTGCTCAGC
3926





TEK
NM_000459
CAGGTTGTATTTTCTCATCA
3927





TEK
NM_000459
TTTTCTCATTTTAACCCACA
3928





TEN1-CDK3
NM_001258
CCTCCTCTGAAGGCAGAGCC
3929





TENM3
NM_001080477
CTACCATCCCAGATTGAGAA
3930





TENM4
NM_001098816
AGCTGCAATCCCGAGGCTTC
3931





TENM4
NM_001098816
GCACGACCGGCTCCCGCTCC
3932





TERF2
NM_005652
GTAGCTGTTTTCTGTAAATT
3933





TERF2IP
NM_018975
ACTCACTTCTTGCTCAGTTT
3934





TESC
NM_001168325
GCAGGTGTGCGGAAGGGACG
3935





TESPA1
NM_001098815
AGGTCTTATGGGCCACATCA
3936





TEX101
NM_031451
TCTTTGAAAGGCAGGCATCC
3937





TEX13B
NM_031273
GAAGGCCTCTGCCATTCCAC
3938





TEX2
NM_001288733
TAGTCAGCTGATGTGCACTC
3939





TEX22
NM_001195082
TGGGCTCCGTTGCGGCGGGT
3940





TF
NM_001063
GACTGCGCAGATAGGACTGG
3941





TFAP2E
NM_178548
GTCTCTTTAATGCGCGCCCC
3942





TFDP2
NM_001178139
TGCACTCAGCCACCGCCCCT
3943





TFEB
NM_007162
GTCCTGCTTCCCTCTCCTGC
3944





TFEC
NM_012252
AGTGCTCTTTCTCAAATTAG
3945





TFPI
NM_006287
ACTGATTACAAAAACAATCC
3946





TFPI2
NM_006528
CGGAGCGGGATTCGTTGCAA
3947





TGDS
NM_014305
TCGCCCGGATGGTAGGGGTA
3948





TGFB3
NM_003239
GAGCGAGAGAGGCAGAGACA
3949





TGFBI
NM_000358
TAGGTCCCTTAGGCCTCCTG
3950





TGFBI
NM_000358
TGGCAGTGAGGGCAAGGGCT
3951





TGFBR1
NM_001130916
CTGCGGATTGGCTGCCTGGC
3952





TGFBR3
NM_001195683
ACAGGCTCGAGCAGCATTCG
3953





TGIF1
NM_170695
GGTTGTAAGTGCAAAGAGCA
3954





TGIF1
NM_173207
TCAGATACCAGCAATTGCTT
3955





TGIF1
NM_173209
GGAACTCGCAGCTTTAGCCC
3956





TGIF2LX
NM_138960
CTGCGTGAAATCAAGTGCAT
3957





TGIF2LY
NM_139214
CTGCGTGAAATGAAGTGCAT
3958





THAP2
NM_031435
GGCCGCTTGGTGTCCGAGTA
3959





THAP5
NM_182529
CCTGCATCCGTCGCCGGCCC
3960





THBS2
NM_003247
AAGTTGCCAACATTTATCTC
3961





THEM6
NM_016647
GCGAGGGTGCACGCGCGCCC
3962





THEMIS
NM_001164687
ATTGCAGGAAATACTGAATC
3963





THEMIS
NM_001010923
TTCTGACATTGAAGTTGAAC
3964





THG1L
NM_017872
CTGATTTGCCGCAGGACGGG
3965





THOC2
NM_001081550
CCCTTTGCGAGGTTACTACA
3966





THOC2
NM_001081550
CCTTGCCTCGGGTTTCCGCT
3967





THOC3
NM_032361
TATTACTAAGTAAGCAGACG
3968





THOC5
NM_001002879
GTAAGGAAGGGGCGGCCGAC
3969





THOC6
NM_024339
CCTGGACGCCAGGTGCGTGT
3970





THPO
NM_000460
GATCCATCTTTTCCTGGACA
3971





THSD1
NM_199263
TAATACCAATTCTGACCCCA
3972





THUMPD2
NM_025264
GAGGGGACAGATGGTCAACC
3973





TIAF1
NM_004740
TTTGGGAGAAAGAAAAGAGA
3974





TIAM2
NM_012454
TGCTTCTCCAGTTAGGATGT
3975





TICRR
NM_152259
CTCCAGGAACTGCTGCTATT
3976





TIGAR
NM_020375
CCTGCGCGCCGGCCTGTGAT
3977





TIGD3
NM_145719
ACGTCCAATGAAACTTAGCC
3978





TIGIT
NM_173799
AACAAATACACAAACTGCAT
3979





TIMM10
NM_012456
ACCAAAGTACCATAGAAGCT
3980





TIMM10B
NM_012192
GCGACGGGAACTGGAGCCCG
3981





TIMM22
NM_013337
GTCTCGCTGGTGTGCGCACC
3982





TIMM23
NM_006327
GCCAGTGGAAGAGAGAAAGC
3983





TIMM44
NM_006351
GTGACGGAATACACGCCCCT
3984





TIMM50
NM_001001563
GATCATTCTTGGGTGTTTCT
3985





TIMM9
NM_012460
CGCATGCGTGTTGTGTCTCA
3986





TJP2
NM_001170415
ATGCTCTAGTTCCCTGGCAA
3987





TJP2
NM_001170416
ACGTAAGGCGGATACAATAG
3988





TK2
NM_001272050
GCGTCTTGGTCCCGCCTCCC
3989





TKTL1
NM_001145934
ACAGACTGAGAAATTTGTCA
3990





TKTL2
NM_032136
TACTAAAAATCCATTCAGCT
3991





TLDC2
NM_080628
AAGGGCAGCTGGCGTGGGCA
3992





TLE2
NM_003260
CCTTAAGGCGGCTCAGCCCG
3993





TLE6
NM_024760
ACGCGACCCACGTGCGTAAA
3994





TLL2
NM_012465
GATTGGCTGCTTAGGGCCCC
3995





TLR10
NM_030956
CACACCACTGCACTCCAGCC
3996





TLR2
NM_003264
GCGAGGTCCAGAGTTCCCTC
3997





TM4SF18
NM_001184723
CAACAACTGAAGAGCTGAGC
3998





TM4SF4
NM_004617
CATGGGCACTGTCAGATTAA
3999





TM4SF5
NM_003963
ATCAGAATGATAAGGGAGAG
4000





TM9SF2
NM_004800
TGGAATTGGAACGTGAGCGC
4001





TMBIM4
NM_016056
GTTTCACTTCAGATGACGCC
4002





TMBIM6
NM_001098576
GTACGTCTGAACCTAGTACT
4003





TMC2
NM_080751
TCTTGGTTTGAGATTGAATG
4004





TMC3
NM_001080532
TGCTCTGCCCGCTAGTTCTC
4005





TMC5
NM_001105248
AGAATTGAGCCAGTTCCTGC
4006





TMC7
NM_024847
TGCTTGTCGCCACCGCTGGA
4007





TMCO1
NM_019026
GCTGGCGCGCGCCTTTTTCT
4008





TMCO2
NM_001008740
AATGAACTGAAAACCCAGGC
4009





TMED1
NM_006858
AAAGGCTTCGGCTCTCTTCT
4010





TMEM100
NM_018286
AAAAGCTGGCTCCTGTCTCT
4011





TMEM107
NM_032354
AGTACATTCTCCGGCTGCTG
4012





TMEM123
NM_052932
AGGGGATGGGATTCACTCTA
4013





TMEM125
NM_144626
GAACTCTTGAGTTCAAAAAC
4014





TMEM126A
NM_001244735
AAACGAGCACACTCTACGCC
4015





TMEM128
NM_032927
CACACTTGCCGACATGAGAG
4016





TMEM132D
NM_133448
GGGTGGCCGGGCTCGCTGGG
4017





TMEM135
NM_001168724
GTACGCGAGGGAGCGCAGCT
4018





TMEM143
NM_018273
AGGGAGTCGGCGGTGAGAAA
4019





TMEM150B
NM_001085488
GAGTTTCGCTCTTGTTGCCC
4020





TMEM154
NM_152680
ACAGCTTCTTCCTAGGGTCT
4021





TMEM154
NM_152680
AGTGAGAATGCGTGTGGTCC
4022





TMEM155
NM_152399
GGAAGGCTTTGGTGCCAGCT
4023





TMEM161B
NM_001289007
CTGCGCTTGCGAGGACCCTG
4024





TMEM185A
NM_001174092
GATCTGCCCGCCAGACTCCC
4025





TMEM196
NM_152774
ATCTTCGCACCACCGAACCC
4026





TMEM203
NM_053045
CGAAGAGCACCAGAAGCTGC
4027





TMEM208
NM_014187
GGTGAGAGGAAGCCGCCCTC
4028





TMEM218
NM_001258241
CCATCTCTCCGTAACTCATT
4029





TMEM251
NM_001098621
CCGGGCTGGAGCCGGAGCTC
4030





TMEM256-
NM_001201576
TCGCTGCGAGGTGCCCGTGT
4031


PLSCR3








TMEM257
NM_004709
TAAATACAGAATACAGAGGT
4032





TMEM266
NM_152335
TCGGCCAAGCCGCCGGCGCG
4033





TMEM42
NM_144638
CCACGCTCCGGCAGGCCCCT
4034





TMEM61
NM_182532
TGCCCGAGGACGCGGAGGAG
4035





TMEM67
NM_153704
AGAGTTCCTCTACTTACGAT
4036





TMEM79
NM_032323
AAGGGGTAAGTTCACATTCT
4037





TMEM8B
NM_016446
TGCTTGGGGTGAGAAAGGCA
4038





TMEM9
NM_001288571
ACGTCAGCCTTCCAAACTCC
4039





TMEM95
NM_198154
TGGCACTGCCCATCCTCAGC
4040





TMEM99
NM_145274
GGCTACGGTGGTGGCAGTTC
4041





TMIGD3
NM_001081976
TCATGAGTTTTAGGAGCTTA
4042





TMOD2
NM_001142885
AGAGGACACCTGTCGGGGAA
4043





TMOD4
NM_013353
TCAGCCAGTTCCTCCTTATT
4044





TMPRSS15
NM_002772
GTGAGTTGTGTATGTCTCTT
4045





TMPRSS2
NM_001135099
ATCTCAGGAGGCGGTGTCCC
4046





TMX2
NM_015959
GTCGCCTTATGAGAACGTTC
4047





TNC
NM_002160
GCCATAAATTGTATGCAAAT
4048





TNFAIP2
NM_006291
TGTTTCACCCATTCAGCCAC
4049





TNFAIP3
NM_006290
CCGCCCCGCCCGGTCCCTGC
4050





TNFAIP8
NM_001286813
GAGGAACTGGAGGCTCAGAG
4051





TNFAIP8L1
NM_001167942
CAGAGCAGAGCCCCACGCCA
4052





TNFRSF12A
NM_016639
TCTGCGTCCCTGCGGGGTCC
4053





TNFSF18
NM_005092
TTTATGTTCTGAGTTTGTGT
4054





TNIP1
NM_001258456
GGCAGTCCCCCACTTTAAGC
4055





TNIP3
NM_001128843
TCTAATACATAGAGCATGAA
4056





TNIP3
NM_024873
AATCGTCATTCTTCCTTTAC
4057





TNNI2
NM_001145841
GAAGTGATTCCCCTGTGACC
4058





TNNI2
NM_003282
CCGCCCAGTCCAAGAAGTCT
4059





TNNT2
NM_000364
TGTTCCTGTAGCCTTGTCCC
4060





TNPO1
NM_002270
AGCACCAGACTTCACCGGCC
4061





TNPO2
NM_013433
CTGAGTGAGGCCCACTTACC
4062





TNRC6A
NM_014494
TAGCAACTGGACCCGCAGAT
4063





TNS2
NM_170754
GAGGGGGGAGGATGTGGGGG
4064





TNS3
NM_022748
ATTGTTAGGGTGATGAGGCC
4065





TNS3
NM_022748
CGCCTCCAGGCGCCCTTCAC
4066





TOM1
NM_001135730
CCTTTAGACCTCGCCCTAAA
4067





TOMM6
NM_001134493
AGGCGGCGAGGTGACAAGTT
4068





TOP1MT
NM_001258447
CAGCCACCGGACGCCCCGCG
4069





TOPAZ1
NM_001145030
AGTGGGGCTCATCACATAAC
4070





TOPAZ1
NM_001145030
CCGCGCCCGATTGCATTGCG
4071





TOR1A
NM_000113
GCGGAGCAGAACCGAGTTTC
4072





TOR1AIP1
NM_001267578
AAATTTTTGCCACGAAAACA
4073





TOX2
NM_001098798
GAGATGGATTTTGATAAAAG
4074





TP53
NM_001126117
GGTCTTGAACTCCTGGGCTC
4075





TP53I11
NM_001258320
ACTCGGTTTCCCCTCTCCCC
4076





TP53I11
NM_001258321
AGCCTTCAGGCTTCCAGCCT
4077





TP53I11
NM_001258321
TGTGCTTAGTCCCATTTTAC
4078





TP53I11
NM_006034
ACTTGCCAGGAAAGTCATCC
4079





TP53I11
NM_006034
CAAGGCTATTTAAGATGGTG
4080





TP53RK
NM_033550
CGAGAGTCACCGAAGATTTC
4081





TP53TG3C
NM_001205259
CAAGGGGATTAAATCAGGAG
4082





TP53TG3C
NM_001205259
GCTTCGTTTACCAAGCTTGC
4083





TPD52L1
NM_001003395
GGCAGCAGGCATTATACCAA
4084





TPD52L1
NM_003287
CTCGCTTTATTGCGGGGGTC
4085





TPM1
NM_001018008
GGGGCGCGCGCCGTGGATCC
4086





TPPP3
NM_016140
GAGACCAGCGCTCTGCAGTT
4087





TPR
NM_003292
GCGGTGCAGCATTGGGCTCC
4088





TPRA1
NM_001136053
TGTCTCTTTAAGAGGTCAGC
4089





TPSAB1
NM_003294
TGGCAGCTCCACCTGTCAGC
4090





TPSG1
NM_012467
CACCTCCATTTATCCCTGTG
4091





TPTE
NM_199259
CGCCATCCGGCTTAACGTGG
4092





TRA2A
NM_001282759
GGCGGCCTGCGCTCTCAACC
4093





TRA2B
NM_004593
AATCCCTTCTAGAACTTTCC
4094





TRABD2A
NM_001080824
GGGTGCCTCTTGATTGAAAG
4095





TRAF3IP2
NM_001164281
CGAGACCATCCTGGCTAACA
4096





TRAF3IP2
NM_001164283
AGCCGTGCAAAGACTTGGAA
4097





TRAF3IP2
NM_001164283
CCAACAAGGGAGGCTTTGTT
4098





TRAK2
NM_015049
GGTGCAGAGTTCCAAGCCCA
4099





TRAM2
NM_012288
AGGCGTACGGGGGCGGCGAG
4100





TRANK1
NM_014831
AGCACTCGTTTATTCAAAGG
4101





TRAPPC10
NM_003274
GGGACCGGGAGGTGGGAAGT
4102





TRAPPC13
NM_001093756
GGACAAAACGATTAAAGTTT
4103





TRAPPC9
NM_031466
GGCGCCAAGCTTGCTAAGTG
4104





TRDN
NM_006073
TCTAAGATAATTACAGATCC
4105





TREH
NM_007180
CAAAGTAGAAGCAAGGGAGG
4106





TREH
NM_007180
CTGAGACTGTGAAATAGAAG
4107





TREM1
NM_001242590
CTTAACTGAGAAGTGAGTCT
4108





TREML1
NM_001271808
GCAGGCTTCTAGCTTTCTTC
4109





TREX2
NM_080701
AAAGCAGATAGCATCTCCCG
4110





TRIB2
NM_021643
CTTTGTTTACCTCCCCGGCC
4111





TRIB3
NM_021158
ACAGGCGCCCGCACCACGCC
4112





TRIM2
NM_001130067
TTCCCCGCCTGTCATCTTTG
4113





TRIM2
NM_015271
GAGCCAATGATCAGCCTCTT
4114





TRIM21
NM_003141
TTCAGAGGCTCTGCATGCCC
4115





TRIM22
NM_001199573
AGACTGCATTTCAAGAAGCT
4116





TRIM26
NM_001242783
ACTGAAATCAGGCGGGACCG
4117





TRIM3
NM_006458
ACCAAGGAGGCAGCGTCCGC
4118





TRIM34
NM_001003827
CTAGAGTAGTGGTGTGATCT
4119





TRIM34
NM_001003827
TCACTGCAACCTCTGTCTCC
4120





TRIM42
NM_152616
CAAATGACAACTAAACTTCC
4121





TRIM46
NM_001256601
CCCTCTCTTCGCAGCCATCC
4122





TRIM48
NM_024114
ATTTAGATCACACCTTTGCA
4123





TRIM49D1
NM_001206627
ACAGGCACTAGGAGTAGAAG
4124





TRIM50
NM_001281451
GGTGCTGGCCTTGGCCACTG
4125





TRIM54
NM_187841
ACTCCCTTGAGCAAGGGCAG
4126





TRIM59
NM_173084
GGCCAATGGGAACTATTGCT
4127





TRIM63
NM_032588
GAGGGCCAGTCTTTCAGGCC
4128





TRIM64
NM_001136486
TACTATGTCTCAGTTTGTGC
4129





TRIM66
NM_014818
CACACATTTACGATGCACAA
4130





TRIM73
NM_198924
GCACGGTGAGTTGCCAGGTG
4131





TRIML1
NM_178556
TGGTGAGGAGCCCAGTATAC
4132





TRMT2B
NM_001167972
GAGAAAACTATTCCTTGAGT
4133





TRMT5
NM_020810
GTCGTCGGTCGCGCCAGAGG
4134





TRMT61A
NM_152307
AAACAGAGCAGCTCACATGA
4135





TRMT61A
NM_152307
TCGCCCAGGAAACGTCCTCT
4136





TRNAU1AP
NM_017846
GGGTTTTTCCTGCAACCCAC
4137





TRNT1
NM_182916
ACCGGCTGAGGTTCGCCTCA
4138





TRPC7
NM_001167576
TACGTCGGGGAGAGGGGGTG
4139





TRPM6
NM_001177311
CCGGAGGGAGAGGAGTTCGG
4140





TRPM6
NM_001177311
GGCAGCTCTGATTCCGCTCC
4141





TRPM8
NM_024080
CTGCTATGCTTGGAGGCTTT
4142





TRPT1
NM_001160393
GAGCGCTGGGTGGGAGTATA
4143





TRPV1
NM_018727
GCTGCGGCTCTGATTCCCAG
4144





TRPV1
NM_080704
AAGCCTTCTTGTGATTGGTA
4145





TRPV1
NM_080704
GCAGAAACATCCATTTGAGT
4146





TRPV3
NM_001258205
ATGATAACATCTACTTTCCA
4147





TRUB1
NM_139169
TTAAATGTTGACTTTTCCTG
4148





TSC1
NM_000368
TCCACTCATAACTGACGATG
4149





TSC2
NM_000548
GCGGTCATGCCGGACTCCTG
4150





TSC22D1
NM_001243798
GTTTCTACTTAAAGGGGCAG
4151





TSC22D2
NM_014779
TCTCTGACTGAGGGAAGGAG
4152





TSEN15
NM_052965
CGCGCAGGTTCTAGCTACCT
4153





TSEN2
NM_001145395
TGCGCACTCGGCTGGCTTTG
4154





TSFM
NM_001172697
TACCCCCCACCTCCCACCCC
4155





TSGA10
NM_025244
ACCCTTACTTAGCACTCCTG
4156





TSGA10
NM_182911
AGCCACCGCCGCGAAGCAGC
4157





TSLP
NM_033035
AAAAGGAGTAGCTAAATCTA
4158





TSPAN10
NM_001290212
CGGAGCCGGGCGGGCGAAGC
4159





TSPAN19
NM_001100917
GAATCCCAGTCTTAAGACCC
4160





TSPO
NM_001256530
AGTCTGGGCCTCCGCGGCCG
4161





TSPY4
NM_001164471
GCTTGGGCAGGGAAGGCGGG
4162





TSPYL1
NM_003309
AAACATTTGTTTTCAGACAC
4163





TSSK1B
NM_032028
TCGTGTCTTGCTGGGACCTG
4164





TSSK3
NM_052841
GGAGGGCAGCATTGTGACCC
4165





TSSK6
NM_032037
CCAGGGCTCCACGTAGTCAC
4166





TST
NM_001270483
AGAGCGGCAGAGCGAGTTGC
4167





TSTD2
NM_139246
CGCCTGGCCTCTCGGTTCCG
4168





TTBK2
NM_173500
GCGTTCCGAACTCGCAGCGT
4169





TTC21A
NM_145755
CCAGTCCCGCTGCGCCTACC
4170





TTC36
NM_001080441
AAATGCTACAGCCATGGACA
4171





TTC39B
NM_001168342
CATGATTTTTCACCTAATCC
4172





TTC7B
NM_001010854
TCCGGCCCCGGTCAGTGCTG
4173





TTC9B
NM_152479
GAGCATGGGGGAAGTCTCGA
4174





TTF1
NM_007344
GCTCCTGAAACGAAGAAAGT
4175





TTI2
NM_025115
TTTTGTTTCTACCTTAGCAA
4176





TTLL12
NM_015140
CTGGGAGGAGGACGGGGCGG
4177





TTYH2
NM_052869
GGGGGACATCCCTAAGGAAC
4178





TUBA3D
NM_080386
CGCAGTAGCTGTTCCAACCC
4179





TUBB2A
NM_001069
GGGACTGCGGCACCGCGAGG
4180





TULP3
NM_003324
GGGAGTTAAACGCGCCTGCG
4181





TULP4
NM_020245
CTGAAAAGTAACTCCTACTG
4182





TUSC5
NM_172367
GAGGCAAAATCCTGCCAGGG
4183





TVP23C
NM_145301
AAGCTTCATGGTCTGTTTTA
4184





TXLNA
NM_175852
AGGCGGGCGCCCCGGCAGGG
4185





TXNDC17
NM_032731
AGGATCCAGGTGTTGCAAGG
4186





TXNIP
NM_006472
CAACAACCATTTTCCCAGCC
4187





TXNL1
NM_004786
GCAGACTGAGACTCAAAAGT
4188





TXNL4A
NM_006701
GCGCCGCGCGAACGTGTAGT
4189





TXNRD1
NM_001093771
TGGAAAATGCAGAAATGGAA
4190





TXNRD3NB
NM_001039783
TGTTTCTGTATTAAAGGATC
4191





TYMS
NM_001071
TGTGGCACAGAACGGAGCCC
4192





TYR
NM_000372
CATAGGCCTATCCCACTGGT
4193





TYSND1
NM_173555
GTCACGAGGAATCAGAGGAG
4194





TYW3
NM_138467
TGGGTGGAGCCTGCAAAAGT
4195





U2SURP
NM_001080415
GTCCGGGAATTCAGAGAATC
4196





UACA
NM_001008224
AGTTCTACTTTAGATTCCAT
4197





UACA
NM_001008224
CATTCAGCTGTCAAGTCCTA
4198





UAP1
NM_003115
GCTCCAGAACTATTCCCATT
4199





UBA52
NM_001033930
CGCCCACCCGCTTCCGGTTG
4200





UBAC2
NM_001144072
GGGCCGACTGTCGTGGTCCC
4201





UBB
NM_001281718
CCCCAAGGTCGTTACGGCTG
4202





UBE2C
NM_181801
GAGAACACACCAGGAGCTCG
4203





UBE2D1
NM_003338
AGCTCTCACCTTAAGCTGCC
4204





UBE2I
NM_194260
GACCGACGGGAGGAGAAGTG
4205





UBE2L3
NM_003347
CAGGCGTGAGCCCCCGCGCC
4206





UBE2Q2L
NM_001243531
GTGTGTGTGTGTGTCTCCCA
4207





UBE2V2
NM_003350
AGCGAGGCCCCGCGACCCCT
4208





UBE2Z
NM_023079
CGTGTGGGTCCTGCGCTGTG
4209





UBIAD1
NM_013319
GGCGGGCAGGGCCGAGTCAG
4210





UBP1
NM_014517
CGGGGAGTGGCCCTAAGCGC
4211





UBR5
NM_015902
GTTGAGCAGCCCAATCGAGG
4212





UBR7
NM_175748
GGGTGACGGCGACCCTTTCC
4213





UCHL5
NM_015984
ATCCGGGATCCTCGCCCCTC
4214





UCMA
NM_145314
TGCTTCTGGAGACATTTGCC
4215





UEVLD
NM_001261385
AGCATGCAAGTTTTGTAGTC
4216





UGT1A7
NM_019077
TAAGTACACGCCTTCTTTTG
4217





UGT2B11
NM_001073
TATAATAGTGTCAAGAACAG
4218





UGT2B7
NM_001074
AGATCCTTGATATTAGCTGA
4219





UHMK1
NM_001184763
TTCGAGTTTTCCCACCTTTC
4220





UHRF1
NM_001290050
ATCACTCAGCTCAGAGTTCC
4221





UHRF1BP1L
NM_015054
GTCGCGAGGGCTAAGAACCC
4222





UIMC1
NM_001199298
AGACCGCGCAAGGTGCGAGC
4223





UIMC1
NM_001199298
GTATAGAACGGCCACTTTTG
4224





ULBP1
NM_025218
AGGGGAGAGTTGCGTCAGCC
4225





ULK1
NM_003565
GGGCGTGACGAACAGACGGG
4226





UNC13B
NM_006377
GCAAGAAAGAAAGGAGGAAG
4227





UNC45A
NM_018671
TGAGCTTTCTCCGGACTCCC
4228





UNC45A
NM_001039675
GGCCATGGGGAGGGATTGCC
4229





UNC5B
NM_170744
GCGCAGCGTTTTGAAAAACC
4230





UNC5CL
NM_173561
AATGCCAGGCCACTCCTGCC
4231





UNC93A
NM_001143947
AAACATATCACTTTACCATC
4232





UPF2
NM_015542
AGTCCTGATCGTCTTCCCTG
4233





UPK3A
NM_006953
GGCCGCGGATTGGCCAGCCC
4234





UQCR10
NM_013387
CCACAGAGGTATTCCTATCC
4235





UQCRHL
NM_001089591
ATAAAGAGAAGTTTCTGGCC
4236





UQCRQ
NM_014402
AGGCTCCACCCCACCGGCCC
4237





URB2
NM_014777
TTGCGCGTTGGAGGCCCGAG
4238





UROD
NM_000374
TGGGACTTGCGCCAAGCCTC
4239





USH1G
NM_001282489
GCAGGGTGTTTAGGACCCAG
4240





USP10
NM_001272075
TGAGCCCCGCGACCCTCGGG
4241





USP16
NM_006447
TGCGCCGGATGTTCGGGTTT
4242





USP17L2
NM_201402
GGGGTGTTCGCGGTTGGTGG
4243





USP17L25
NM_001242326
ATTGAGTGCTGATATTTGAT
4244





USP17L25
NM_001242326
TCGCGCACCTGATGAGTGGG
4245





USP17L3
NM_001256871
GAGTTCTATAAGGGATGATG
4246





USP39
NM_001256727
TTCATGTCCAGCCGCCCCCC
4247





USP42
NM_032172
GGGTCGTCGCCCAAGAGCCG
4248





USP46
NM_001286767
CGGGGCCCGGGAACCCAGCC
4249





USP9Y
NM_004654
TTCTGGGTTGTGTTTCATAC
4250





UTP11
NM_016037
AAGGCGAGATCTGGGTAGCG
4251





UTP14A
NM_006649
CGCGCGGGTGTCTGTCCTCC
4252





UTP15
NM_001284431
GTGTAGTACTCCGGCAGGAT
4253





UTP20
NM_014503
GGTGTTCTTTTCACTCCCTT
4254





UTRN
NM_007124
CATAACACCATTGCCTGGCT
4255





UTS2B
NM_198152
TGCAAAGCCCTTGGAACTTA
4256





UVSSA
NM_020894
CCCAAGACCTCTACCGCCAT
4257





UXS1
NM_001253875
AGTTGCCGCCTTTCTTGCCT
4258





UXT
NM_004182
GCAGGGCTTCACGGAATCCG
4259





VAMP2
NM_014232
AGGGAGCTGCCGGGGCATGG
4260





VAMP8
NM_003761
CTGACAAGTTAGAAGACCTT
4261





VAPA
NM_003574
GGAACGGGTGTGGAAGGAGG
4262





VCAN
NM_001126336
CGCCAAGAGGTGGGAGTGCC
4263





VCL
NM_014000
GGGTTTGGCGGCGCGGTGGC
4264





VCX3B
NM_001001888
CAGGCTGGGTTCCTCAGAGA
4265





VGLL4
NM_001128219
GGGGAGAGACTCTAGAGACG
4266





VGLL4
NM_001128221
CAATGTCACTGCTTGGAATC
4267





VHL
NM_198156
CACTGCAGCCTTGACCTCCC
4268





VILL
NM_015873
ATGAGTGGGTTGGGCAGATT
4269





VIP
NM_194435
CGTCACAGTATGACGGCCAT
4270





VMO1
NM_182566
CTCTGGGAGCCTCTGCCTCC
4271





VMP1
NM_030938
GGTACTGTAGGTAGGTTGGT
4272





VN1R4
NM_173857
AAGGGCAGAGCAATGGGAGG
4273





VN1R4
NM_173857
GGTGGAGAATGCTGGGTTGC
4274





VPS13D
NM_018156
CGAGCGCCGAGTTATCGAGG
4275





VPS29
NM_016226
GCCTTCCGAGCCTGCTTTTT
4276





VPS37D
NM_001077621
CCCGATCTCCCCGCCCCTCC
4277





VPS45
NM_007259
GAACAAAGGGAACGCCTTTT
4278





VPS4B
NM_004869
TGCGCTCTCCTAGGTCTGCC
4279





VPS50
NM_001257998
TGTAAGACCGGCGATCGCAG
4280





VPS8
NM_015303
AATGGGTGATTCACATCTTG
4281





VPS8
NM_015303
ATACGCCGTCTTCCCCCCTA
4282





VRTN
NM_018228
ACTTTTCTCTGGGCAGTTTG
4283





VSIG1
NM_001170553
TCTTACTAAAACGTTGTACT
4284





VSIG4
NM_001100431
TTGGAGCCAATGGGGCTTTC
4285





VTA1
NM_001286372
TTTGTTTGGTTTGTTGTTTG
4286





VTCN1
NM_001253849
CATACTTTGAACATCGAGTT
4287





VTI1A
NM_145206
AGAGGTGCTCGGCTTGTAGC
4288





VTI1B
NM_006370
ACGCAAACATACATCAAATC
4289





VWA1
NM_199121
ACCTCCCTGCTCGGCTCCCG
4290





VWA5A
NM_014622
CAATCAGAGAACAGGCAAAG
4291





VWC2L
NM_001080500
TTGCTTTGAATTCTGAAGAC
4292





WARS
NM_173701
CGGTTCTCCCGGAGGCAGAC
4293





WBP2
NM_012478
ATGCATCCTTCCTCCAGCAT
4294





WBSCR27
NM_152559
GCTCTACCAAGGCTGGAGGA
4295





WDFY2
NM_052950
GCCTAACCCTTGGGTGTGTA
4296





WDFY2
NM_052950
GGAAAGCGCATGCGTCCTAG
4297





WDFY4
NM_020945
CCCAGGGTTCCCTTCATAGC
4298





WDR1
NM_017491
CCTTTCTGTTGCTAGCTTGT
4299





WDR11
NM_018117
GCCCTAAATTCACTTATCAA
4300





WDR13
NM_017883
TTGCACTTTTTGTGTATACA
4301





WDR4
NM_001260475
ATGAACATTAGGCAAGTACT
4302





WDR4
NM_001260475
GTTTGGCAGTTCACTCACCA
4303





WDR59
NM_030581
CCTCGCTCACTTCCGTCACT
4304





WDR60
NM_018051
AGCGGTCGTTGGTCTCCCCA
4305





WDR62
NM_173636
TAATCAGGCATCCAGTACAC
4306





WDR73
NM_032856
GGCCCGGCATGGGTGGGTTA
4307





WDR83OS
NM_016145
GGCTGCAAGGAAGGAGTCCT
4308





WDSUB1
NM_152528
CCTCTGCTCTGGGTCTCCGC
4309





WDTC1
NM_015023
GGGAAAGCTGGGCTAAGCCC
4310





WEE1
NM_003390
AAGGACCAGCTACGCGATTT
4311





WEE1
NM_003390
GAACCCGCTGGCTCCACCCC
4312





WFDC11
NM_147197
TTTTCTGTTGTCTCTCTGCC
4313





WFDC9
NM_147198
TGCAGCATCTCCTGATGCTA
4314





WIPI1
NM_017983
CCCCTGCCTCCGGCCACCAT
4315





WIZ
NM_021241
GTGGGGTGGGGGGGGCGCCC
4316





WLS
NM_024911
CATCAACAGCAACCCCTAAA
4317





WNT10B
NM_003394
AGATCAGGTGAGAGGAACTC
4318





WNT2B
NM_024494
ACTGTAGGTTGGGGACAGGA
4319





WNT5B
NM_030775
CACGGCTAGAGGGACTCTAA
4320





WRAP53
NM_001143990
GGAAAAAGATGACGTAAGTA
4321





WRAP53
NM_001143990
TGTAAATGCCACCTCGATTT
4322





WWOX
NM_016373
ATGGGCGCCGCTTTTTAGTC
4323





WWOX
NM_016373
GGTGGCGCCTGACCAAAAAG
4324





WWP1
NM_007013
GACCCCACACCTCCCTTCCT
4325





WWP1
NM_007013
GCGCCGCGTGGCCGCGTCGC
4326





WWP2
NM_007014
ATCGTCTCTGTAGTTGAAAG
4327





WWTR1
NM_001168278
TTTGTTGGCAAAACCCTTTT
4328





XAGE1B
NM_001097604
ACTCACTCCATGACCGGGCG
4329





XAGE1B
NM_001097605
GGATTCCAAAGTCGTTAATG
4330





XIAP
NM_001204401
AGCTGGGGGCGGAGACTACG
4331





XK
NM_021083
CGGAGCGCGTGGGCGTGTCC
4332





XPNPEP1
NM_001167604
TCCCCGCTCGCTGCAGGGAG
4333





XPNPEP2
NM_003399
GCCCCAGCCATTCCTTAATT
4334





XPO4
NM_022459
CTAGTCCCCTCCCAGCCACC
4335





YAF2
NM_001190977
CTGGCCGCGTTTGAAGTCTC
4336





YAP1
NM_001195045
ACTTCTATGCTGAATCAAGT
4337





YBX3
NM_001145426
CGGGTCGCGTTGCAGAACCA
4338





YDJC
NM_001017964
CCTTTGTTCTCGCCACCTAG
4339





YEATS2
NM_018023
CGGCCCGCGAGGGCACTTCC
4340





YIPF1
NM_018982
GGTCGCTGAGTGTGACTACT
4341





YIPF6
NM_173834
AGAGGCAGGCTCTTTCCTAG
4342





YPEL3
NM_001145524
CGTCACACGGCGGCCGGCGC
4343





YY1AP1
NM_018253
TGGGACTCGGCCGGCCACCC
4344





YY2
NM_206923
TCACTGCAACCTCCGCCTCC
4345





ZAR1
NM_175619
GTAGGGAGAAGGACGAAGAG
4346





ZBED1
NM_001171136
GCTGGGGTCGGTTGTCCGCT
4347





ZBED1
NM_001171136
TGCGGGATCCCAGAGGGCCC
4348





ZBED2
NM_024508
TCTAGGGAAGCATTGTTTCC
4349





ZBTB1
NM_014950
AGCAGCCTCGCATCCTGCCC
4350





ZBTB21
NM_001098403
TCCATGAGGGGAGCCTGCGG
4351





ZBTB33
NM_001184742
CCCCTTGCGGAAAGAACCGA
4352





ZBTB38
NM_001080412
AGAAGCTAGTCTCCAAAGCT
4353





ZBTB43
NM_001135776
GGCGCCTGCGCAGTACACTC
4354





ZBTB45
NM_032792
CGCACGCTGAGAACGCGAGG
4355





ZBTB46
NM_025224
TGGGCAGCTCGCGGCAGCAG
4356





ZC2HC1C
NM_024643
GTCCGGCCAACTCTGCAGCT
4357





ZC3H10
NM_032786
AGTGACACGCAAAGCGTGCT
4358





ZC3H12B
NM_001010888
GGTATGTGTGTTTATTTGTA
4359





ZC3H12C
NM_033390
AGTTGTGCAACCCAGGGAGG
4360





ZC3H12D
NM_207360
GTGGTTGCTGAACTTTGATT
4361





ZC3H6
NM_198581
TCTCTGTGCAGCGGCGGAGG
4362





ZC3H8
NM_032494
AATTCTACTATCTGAGGTAA
4363





ZCCHC7
NM_032226
ACGAAGGAGATGCTATTTAC
4364





ZCCHC8
NM_017612
CACCTGTAATACCAACTACT
4365





ZCWPW2
NM_001040432
ATCTTCACAGAGTAAAAGTG
4366





ZDHHC12
NM_032799
GGCCGCAGATGCCATCCAAT
4367





ZDHHC12
NM_032799
TGTTGGCTTGAGGGTCCATT
4368





ZDHHC20
NM_001286638
ACAGGCTGGGCGGACGCGGG
4369





ZDHHC3
NM_016598
CGTCCAGGTAGCTACAGCAG
4370





ZDHHC8
NM_013373
TCGGAGGGGGCAGGACCCCG
4371





ZDHHC9
NM_001008222
TGGCTGCCGACGTGATTCCC
4372





ZEB1
NM_001174094
AAGGAATTACACGTACATTT
4373





ZEB1
NM_001174096
GCACTGCTGAATTTGAATTG
4374





ZFAND4
NM_001282906
CGAATGCCAAGAAGGCCCCA
4375





ZFAND5
NM_006007
GGCCTGGCAGTCGGCCCCTA
4376





ZFAND6
NM_001242919
GGCCACAGACTAGGTGAGTA
4377





ZFC3H1
NM_144982
AGTTGGGTGCATGCAGAAGT
4378





ZFHX2
NM_033400
ACTCCAGCCAGTGAATGAGG
4379





ZFP3
NM_153018
GGGTGCACTTTGCTGTTCCA
4380





ZFP30
NM_014898
CGGGTCTCGGCGGGGATAGT
4381





ZFP30
NM_014898
GGCAAGTCCCGCAGCTGCTC
4382





ZFR
NM_016107
GGGGAAGCCCGCGGGGGAAG
4383





ZFR2
NM_015174
TGCGTAGGAGGCGGGGCCTC
4384





ZFX
NM_001178085
AGGCCCCCTCCTCCGCCCGG
4385





ZFX
NM_001178086
CACTGGGCTCCCCGGTCGCG
4386





ZFX
NM_003410
GACAGGCCCCCTCCTCCGCC
4387





ZFYVE21
NM_024071
GCAGGGGCGGTGCCCTTACA
4388





ZKSCAN3
NM_024493
CAGCTATAACTAAGGGAGAA
4389





ZMIZ2
NM_031449
GGGGCTCTGCTGCTCTGGCC
4390





ZMYM2
NM_001190965
TCCTCACCAGCGCTAAAGCC
4391





ZMYM5
NM_001142684
TGGGCGTGCCCAAGGCGCCC
4392





ZMYND11
NM_001202465
AGCAGAGGACTCTGACTGAC
4393





ZMYND11
NM_001202468
AATGAGATGTGAAAGGTTGA
4394





ZNF132
NM_003433
CCATTGGCAGCCGAGGAGAC
4395





ZNF136
NM_003437
CACATCTGTCAAGATGCAGG
4396





ZNF136
NM_003437
TGAAGCATAGATGAGTGAAG
4397





ZNF140
NM_003440
AGACAAAGAACACGAGCTTC
4398





ZNF142
NM_001105537
GGGCTTCTCTGTGGGTGTGG
4399





ZNF160
NM_033288
GGGCTGAAGCAGGGGCCGCC
4400





ZNF169
NM_194320
ACAATTTCTCCTGGATGCTG
4401





ZNF177
NM_003451
CACAAGCCAATTAACTTGCT
4402





ZNF177
NM_003451
GCAGGTGCTCCTGCTCCCTT
4403





ZNF182
NM_006962
ATTGGCGGACGGGGTCTCAA
4404





ZNF189
NM_001278232
CTACATTTCCCAGCGTGCAA
4405





ZNF2
NM_021088
GAACGGCCCTGGCTGCAAGC
4406





ZNF205
NM_001278158
GCCTGGGTTGCACCTGCTCT
4407





ZNF213
NM_004220
TCTTCCTGTTCATTGGCCAT
4408





ZNF219
NM_001102454
CTGGAATGGAGAAAAGATCT
4409





ZNF226
NM_001146220
TGTTTCCCCTGCGGAATCCT
4410





ZNF226
NM_001032372
TAGGTAGTTGTAGGCACTTC
4411





ZNF234
NM_006630
GGATTACACTCAGAATGCTG
4412





ZNF236
NM_007345
TATAACCCACCGACTCCCAT
4413





ZNF254
NM_203282
AGAAGATGTGATCACACCCT
4414





ZNF260
NM_001166037
GATAGAGTAAACTAAGACTA
4415





ZNF268
NM_001165886
TAGTCCCTGCTTTACTGAAA
4416





ZNF284
NM_001037813
CGTTCTATAGTATCACCTTC
4417





ZNF296
NM_145288
ACGGCGGCCTAACTCAATCT
4418





ZNF3
NM_032924
CACTCGGGGATCTTTCGCTG
4419





ZNF30
NM_194325
GACCTGGTGTGTTAATGCCC
4420





ZNF316
NM_001278559
CGGGGCGAGGACGGGGCATG
4421





ZNF32
NM_006973
TCTCTGGCGCGCCCTGCGCT
4422





ZNF324B
NM_207395
AGCTGCGCTACTCCATTTCC
4423





ZNF329
NM_024620
AGCATCGGGTTAAAAATCAG
4424





ZNF330
NM_014487
AATGCCCCATTCCTAAGCAG
4425





ZNF333
NM_032433
AGAGCCTAACCTCATCCCCC
4426





ZNF345
NM_001242475
GTGTGTTGTGTTTAGGTTTG
4427





ZNF354C
NM_014594
CCAGGCTTGGCTAGGATTGC
4428





ZNF383
NM_152604
ATCAACATCCTCCACCAGAG
4429





ZNF395
NM_018660
CAGCGAGAGAAACTTTGGCT
4430





ZNF423
NM_001271620
CAAGGTGGCGCCACTCACCC
4431





ZNF428
NM_182498
ATCACTCCTTCCAGTGCGGG
4432





ZNF429
NM_001001415
AGCCTAGCTGCAGCCTTTTC
4433





ZNF444
NM_018337
ACGACGCTTTCGCGTATCTT
4434





ZNF473
NM_015428
GACTACAAACTGATGCCGCC
4435





ZNF474
NM_207317
TTAAATTTATCTGTCCCTGT
4436





ZNF479
NM_033273
ACTTTTGACCCTGCCCAAAG
4437





ZNF48
NM_152652
GGCGGTAGCTCTGTGGCCGG
4438





ZNF500
NM_021646
GGTAACGTAGTCCAGCACCT
4439





ZNF503
NM_032772
CCGAGGTGATTGGAGGGTCA
4440





ZNF510
NM_014930
AACAAAAAAACACTGACAGC
4441





ZNF513
NM_001201459
GGGGTCGGGCGGCCGCAGGC
4442





ZNF518A
NM_014803
TTCGTTGACGTGGGCTACAA
4443





ZNF526
NM_133444
GGTCGCGTGCCCTGCGCTGC
4444





ZNF534
NM_001291368
CTCACTTGTTGATTTTCCTG
4445





ZNF536
NM_014717
TTTCTGAGTCCTGCCTCTGA
4446





ZNF556
NM_024967
CTTCTCTGCTCATCTCTGAT
4447





ZNF564
NM_144976
AATATCCTCCCCGGCACAGA
4448





ZNF569
NM_152484
AGCTCCAGCCGACTGTAAGA
4449





ZNF583
NM_001159861
AGTAACTACCCGCAACTGAG
4450





ZNF597
NM_152457
CAATTGGTCAACACAAAAGA
4451





ZNF598
NM_178167
GCGGTCGGCTCATGGTAGAG
4452





ZNF611
NM_001161500
AAACAGAGACGCTGGGAGCG
4453





ZNF611
NM_001161500
GGCAGAGGGCAGGGCCGGGG
4454





ZNF613
NM_024840
ATCTTTGAATCCTGCACGTA
4455





ZNF614
NM_025040
GTGCCCAGCCAAGGCCAACA
4456





ZNF616
NM_178523
TCGGAAAGAGGGGCCTGACT
4457





ZNF630
NM_001037735
TAGACCCGCAGCACTCAGCC
4458





ZNF641
NM_001172682
AGGAATTCCAGACTGTTGTC
4459





ZNF646
NM_014699
ACGGCTGACTCCGCCCACGT
4460





ZNF654
NM_018293
TGCACTCTCAATATTTTTTC
4461





ZNF669
NM_024804
CGCACCGCCTACAAACCGCT
4462





ZNF682
NM_033196
ATCTGAGAATGTGTTGAATA
4463





ZNF682
NM_001077349
GCTAAGACTCCACGACATCC
4464





ZNF687
NM_020832
GGGCTGAGCGACGGGGGCAA
4465





ZNF689
NM_138447
AGCTCTTGGCTTCGTTCAAA
4466





ZNF691
NM_015911
CTGAGTCTACGCGCTTCCTT
4467





ZNF692
NM_001136036
GCTGCTGTAGCCCGGAACTG
4468





ZNF697
NM_001080470
GGACAACGGTCCACTTTACG
4469





ZNF699
NM_198535
ATTGATGGGCTGCAACATCC
4470





ZNF7
NM_003416
GGCGGGGTACAGTCAGAGGC
4471





ZNF70
NM_021916
GGTGGGACCACCGAGACGCC
4472





ZNF700
NM_144566
TCTTCTATCAATAGCAAGTT
4473





ZNF703
NM_025069
CGGGCTGAGGCCGGCTCCAT
4474





ZNF704
NM_001033723
GCGTTCAAAGAGTGTGAGAT
4475





ZNF705A
NM_001278713
AATTTTGACCACAGGAAAAG
4476





ZNF708
NM_021269
GCCTATGCTGCAGCCTTTTC
4477





ZNF718
NM_001289931
AAGCTTGAAGACTGCAATCC
4478





ZNF735
NM_001159524
GACGCCTCCGTAATTTTACC
4479





ZNF75D
NM_001185063
ATTAACTCTTTCTTGCATCC
4480





ZNF75D
NM_001185063
CTGGGATGGAAAGGACCCCC
4481





ZNF764
NM_001172679
ACCGCGGCCATTTTGGATGA
4482





ZNF764
NM_001172679
GCACGACTGCGTAGGGGCAA
4483





ZNF768
NM_024671
TGCAGCCCAGCCCGGGGCCG
4484





ZNF773
NM_198542
TCGGGTAGACCTCTTTTCAT
4485





ZNF780A
NM_001010880
ATCACAGCTCAAGGCTTCTG
4486





ZNF790
NM_001242800
GGAGCTGACCCTATCCGAAC
4487





ZNF791
NM_153358
TGTTGAAGCAGAAATTGTTC
4488





ZNF799
NM_001080821
CTTAAGTGCAAATATCCCTC
4489





ZNF808
NM_001039886
AAGACGCGCAAGTCCCGCCC
4490





ZNF81
NM_007137
CTGTTAGCCAGGAGTCAACA
4491





ZNF821
NM_001201552
GGGCCTGAGGAGAGGGGCTC
4492





ZNF83
NM_001277952
AACGATGCTGAGAGACTCAC
4493





ZNF837
NM_138466
TTCGGTTATCATAGAAACAG
4494





ZNF85
NM_001256172
AGAAGAGCGAGTGACAGCCT
4495





ZNF85
NM_001256172
TCACTCAGGGCCTGAAAAGA
4496





ZNF850
NM_001193552
CTCTGCGATCCTCGTTGGAG
4497





ZNF862
NM_001099220
CCCGGAACGCAGGTCCTGAT
4498





ZNRF3
NM_001206998
GACGCCTCACAGCCCCATCA
4499





ZP1
NM_207341
TTTCTGCCTCCCGCTGCCTT
4500





ZP3
NM_001110354
GTGTTACTGATGCTTCTGGA
4501





ZRANB1
NM_017580
AGAAACATGTTGAGAAGTAA
4502





ZRANB1
NM_017580
TTTGAGGCTACAGATTATCA
4503





ZRANB3
NM_032143
ATTCATAGGTTGTACGTCCC
4504





ZSCAN2
NM_017894
GGCTGGGCCCAAGGCATTGT
4505





ZSCAN5B
NM_001080456
ATATTACTGAGAAGAAACAG
4506





ZSWIM1
NM_080603
GAGGTAAAGATACTTGCATC
4507





ZSWIM3
NM_080752
AATCTAGGTTATGATTGGTC
4508





ZUFSP
NM_145062
CAGGAGAATGGCGTGAACCC
4509





ZWILCH
NM_017975
GATATTTTTTGTATCCGTGT
4510





ZYG11B
NM_024646
GGCCTGGGAGGGGGAGAAGC
4511





ZZZ3
NM_015534
ATTTAAAACACTGAGACAGT
4512








Claims
  • 1. A system for targeted genome engineering, the system comprising one or more vectors comprising: (i) nucleic acids for integration in genomic DNA with no significant homology to the target sequence in genomic DNA;(ii) a single guide RNA (sgRNA) that binds one or more vectors;(iii) a sgRNA that binds a double-stranded nucleic sequence in genomic DNA where the vectors can be integrated; and(iv) a nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules.
  • 2. The system of claim 1, wherein components (i), (ii), (iii), and (iv) are located on the same or different vectors of the system.
  • 3. The system of claim 1, wherein the sgRNAs of components (ii) and (iii) are the same sgRNA.
  • 4. The system of claim 1, wherein the sgRNAs of components (ii) and (iii) are different sgRNAs.
  • 5. The system of claim 1, wherein the sgRNA of component (ii) is a universal sgRNA.
  • 6. The system of claim 1, wherein the nuclease is expressed from an expression cassette.
  • 7. The system of claim 1, wherein the one or more vectors further comprises a polynucleotide encoding for a marker protein.
  • 8. The system of claim 7, wherein a sgRNA target site is cloned upstream of the marker protein.
  • 9. The system of claim 7, wherein the marker protein is an antibiotic resistance protein or a florescent protein.
  • 10. The system of claim 7, wherein the polynucleotide encoding for a marker protein is expressed on a vector separate from the one or more vectors comprising components (i)-(iv).
  • 11. The system of claim 1, wherein the sgRNA of component (iii) is complementary to a portion of the nucleic acid sequence of a target DNA.
  • 12. The system of claim 1, wherein the nucleic acids with no significant homology to the target nucleic acid molecule are about 0.1 kilobase to about 50 kilobases in size.
  • 13. The system of claim 1, wherein the nuclease is Zinc finger nuclease (ZFN), RNA guided nucleases (RGN), or transcription activator-like effector nucleases (TALEN).
  • 14. The system of claim 13, wherein the RGN is Caspase 9 (Cas9).
  • 15. The system of claim 1, wherein the one or more vectors are plasmids or viral vectors.
  • 16. The system of claim 15, wherein the viral vector is a lentivirus vector, an adenovirus vector, or an adeno-associated vector (AAV).
  • 17. The system of claim 1, further comprising one or more additional sgRNA molecules that causes a double-stranded nucleic acid break of one or more additional target nucleic acid molecules.
  • 18. The system of claim 1, wherein the system does not require the entire vector that can be integrated to have any homology with the target site.
  • 19. A method of altering the expression of at least one gene product, the method comprising: (i) introducing into a cell the system of claim 1; and(ii) selecting for successfully transfected cells by applying selective pressure;
  • 20. The method of claim 19, wherein the method occurs in vivo or in vitro.
  • 21. The method of claim 19, wherein the cell is a eukaryotic cell.
  • 22. A system for targeted genome engineering, the system comprising one or more vectors comprising: (i) at least one nucleic acid with no significant homology to the target genomic DNA site and that contains a promoter for controlling gene expression;(ii) a primary sgRNA that binds the target nucleic acid molecule at or near the transcription start site of a gene in the target nucleic acid molecule;(iii) a universal secondary sgRNA that binds one or more vectors; and(iv) a nuclease that causes a double-stranded nucleic acid break of the targeted nucleic acid molecules.
  • 23. The system of claim 22, wherein component (1) comprises: (1) a nucleic acid promoter followed by a universal secondary sgRNA;(2) two opposing, constitutive promoters separated by a universal secondary sgRNA; or(3) two inducible promoters in opposite orientations separated by an universal secondary sgRNA.
  • 24. The system of claim 22, wherein components (i), (ii), (iii), and (iv) are located on the same or different vectors of the system.
  • 25. The system of claim 23, wherein each inducible promotor of component (3) contains multiple TetO repeats and a transferase gene operatively linked to a reverse tetracycline transactivator (rtTA) via a T2A peptide.
  • 26. The system of claim 22, wherein the one or more vectors further comprise a polynucleotide encoding for a marker protein.
  • 27. The system of claim 25, wherein the marker protein is an antibiotic resistance protein or a florescent protein.
  • 28. The system of claim 22, wherein the nucleic acid promotor is heterologous to the promoter of the target nucleic acid molecule.
  • 29. The system of claim 22, wherein the nuclease is a Zinc finger nuclease (ZFN), RNA guided nucleases (RGN), or transcription activator-like effector nucleases (TALEN).
  • 30. The system of claim 29, wherein the RGN is Caspase 9 (Cas9).
  • 31. The system of claim 22, wherein the one or more vectors are plasmid or viral vectors.
  • 32. The system of claim 31, wherein the viral vector is a lentivirus vector, an adenovirus vector, or an adeno-associated vector (AAV).
  • 33. A method of altering the expression of at least one gene product, the method comprising: (i) introducing into a cell the system of claim 22;(ii) selecting for successfully transfected cells by applying selective pressure; and(iii) wherein the expression of at least one gene product is activated relative to a cell that is not transfected with the system of claim 22.
  • 34. The method of claim 33, wherein the method occurs in vivo or in vitro.
  • 35. The method of claim 33, wherein the cell is a eukaryotic cell.
  • 36. A method of identifying the genetic basis of one or more medical symptoms exhibited by a subject, the method comprising: (i) obtaining a biological sample from the subject and isolating a population of cells having a first phenotype from the biological sample;(ii) transfecting a library of sgRNA into the cells;(iii) introducing into the cells the system of claim 22;(iv) selecting for successfully transfected cells by applying the selective pressure;(v) selecting the cells that survive under the selective pressure,(vi) determining the genomic loci of the DNA molecule that interacts with the first phenotype and identifying the genetic basis of the one or more medical symptoms exhibited by the subject.
  • 37. The method of claim 36, wherein selective pressure is applied by contacting the cells with an antibiotic and selecting the cells that survive.
  • 38. The method of claim 37, wherein the antibiotic is puromycin or hygromycin.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/487,001, filed Apr. 19, 2017, the disclosure of which is hereby incorporated by cross-reference in its entirety.

Provisional Applications (1)
Number Date Country
62487001 Apr 2017 US