The present invention relates to imaging systems or vision systems for vehicles.
Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935; and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.
The present invention provides a vision system or imaging system for a vehicle that utilizes one or more cameras to capture images exterior of the vehicle, and provides the communication/data signals, including camera data or image data that may be displayed or processed to provide the desired display images and/or processing and control, depending an the particular application of the camera and vision or imaging system. The present invention provides a camera module for use in a vehicle vision system, and the camera module includes an additional structure to guide an airflow over the camera front area to hold off rain, hail, snow and dust from the cameras front lens surface while the vehicle is in motion.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Figures Legend:
Vehicle vision system and driver assistant system sensors can only work properly when their field of view is not restricted by obstacles or debris, such as snow or the like, or such as when blurred such as by water drops or the like, when such are resting on the sensor's surface. Especially optical systems diminish in function when their vision is blurred by such debris or the like.
There are three ways to cope with such obstructions. For example, the camera may have a type of cleaning device that cleans the camera lens surface by spraying a washing substance over the dirty surface of the lens, such as in a similar manner as described in JP002011245989A, or by wiping a lens surface or cover, such as in a similar manner as described in U.S. Pat. No. 7,965,336, which is hereby incorporated herein by reference in its entirety, or by trying to hinder water drops and dirt from forming at the lens surface. When the car is not moving, this may be done by casing the camera in a housing or applying a lid or cover or the like.
The present invention applies an air stream curtain close to the camera's front end (the portion that is exposed at the exterior of the vehicle, which may be facing in the forward direction of travel of the vehicle for a forward or front camera or in a sideward and/or rearward direction of travel of the vehicle for a side or rear camera) in a way that it acts like a deflector to impacting water drops, hail, snow flakes and particles and/or the like.
This may be achieved by an additional structure comprising an air intake area for collecting an air stream which is substantially directed to a nozzle at the outside area of the camera at an angle suitable to deflect raindrops, hail and snow redirected away from the cameras lens surface, and such as toward the underside of the camera or underneath the camera. It is preferred that the airstream speed at the nozzle outlet of the system of the present invention is always substantially higher than the driving air speed caused by the vehicle's own velocity when the vehicle is being driven. The air steam may be generated in that manner by a passive member or device which comprises an air funnel substantially directed into the main driving direction of the vehicle or by an active member which comprises an electric motor driven air fan or the like.
Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes one or more imaging sensors or cameras (such as a rearward facing imaging sensor or camera 14a and/or a forwardly facing camera 14b at the front of the vehicle, and/or a sidewardly and/or rearwardly facing camera 14c, 14b at the sides of the vehicle), which capture images exterior of the vehicle, with the cameras having a lens for focusing Images at or onto an imaging array or imaging plane of the camera (
A1>>A3+A2
When comprising a preferred passive system (and with reference to
A1×v1=A2×v2
With a non-ideal system there is an additional nonlinear air friction ‘K’ on the surfaces of the funnel, hoses and nozzle which diminishes the effectively.
A1×v1=K×A2×v2
An additional option of the invention is to dry the air within a drying chamber after the air is collected or captured by the intake. The water becomes separated from the air and drained through a water outlet at the bottom. To make sure that the water can escape fast enough, a part of the ram pressure may be used to accelerate the water draining (speed v3; output area A3). This diminishes the air stream nozzle output by another part:
A1×v1−A3×v3=K×A2×v2
An additional option of the present invention is to use an air filter within the air stream to filter the incoming air from polluting particles that these can't pollute the nozzle outlet.
Optionally, the air becomes heated up by any means as like passing or driving by an electrical heater element 33 (
As can be seen with reference to
An optional implementation, the inventive system may comprise an active member (either alone or in combination with the system above). For example, and with reference to
When using a compressor, the compressor 40 may be installed centrally (such as shown in
Optionally, the system may, such as responsive to image processing of image data captured by the cameras, determine the level of dirt at each camera (as well as weather conditions and/or the like) and may dynamically control the air pressure to the individual cameras. For example, image data captured by the cameras 14a-d may be communicated to a control or ECU 18 via signal lines or links 43 (such as wired or wireless communication links between the cameras and the control) and processed by the control or ECU 18 to determine the level of dirt at the cameras. Optionally, images representative of the captured image data may be communicated by the control 18 to a display 16 for viewing by the driver or other occupant of the vehicle. Optionally, the driver may actuate a user input to actuate the compressor to remove dirt from the lenses of the cameras, such as responsive to the driver viewing the displayed images and seeing that contaminants are present on one or more of the camera lenses.
Optionally, the system may, such as by utilizing the same pipe lines or hoses, discharge a cleaning fluid or liquid at the start of the cleaning process, and then follow that with pressurized air flow to enhance the lens/camera cleaning process. Optionally, during rain or wet road conditions, the system may control the air pressure and distribute the pressurized air using a central ECU 18 to keep the cameras clean to improve or enhance camera vision. Optionally, an application specific control device 42 may be operable to control operation of the compressor (such as in response to a user input or to the control 18), or the control aspects of control device 42 may be incorporated into the control 18. Optionally, the system of the present invention may be compact and may run air lines to the cameras from a single central distributor and small air compressor, which may be controlled by a vehicle ECU or the like. Thus, the system of the present invention may, such as before the driver has started driving the vehicle, clean all of the cameras so that they are clean and ready for image data capture prior to or at the onset of vehicle movement. Also, the system of the present invention may have a single motor or compressor (and thus may save costs) and a distributor, whereby the system may control the pressure at different cameras and thus may provide different levels of cleaning at the different cameras.
The illustrated embodiments of
As can be seen in
Optionally, and as shown in
Therefore, the present invention provides an air flow system that receives air as the vehicle travels along and funnels the received air to a smaller diameter passageway or nozzle to provide a higher velocity discharge air stream that is directed generally at and forwardly of a camera and lens of the vehicle. The higher velocity air stream deflects or blows particles from in front of the camera and lens so that the particles (such as snow, rain, dirt and/or the like) do not impact the lens of the camera to block or attenuate the field of view of the camera. The air flow system may function responsive to input air flow that is generated by the movement of the vehicle (whereby the exit air flow or air stream is at a substantially greater velocity than the input air flow and the vehicle), or an air flow generating device or means (such as a fan or the like) may be used to generate a desired input air flow. The air flow system may include a filter to filter out particles from the air stream, and/or the air flow system may include a means for limiting water or moisture in the discharge air flow or stream (such as by heating the inlet air flow or by providing deflectors or the like to deflect rain and moisture away from the inlet and into a water discharge port or the like).
The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EyeQ2 or EyeQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580; and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, an array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (preferably a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or International Publication Nos. WO 2011/028686; WO 2010/099416; WO 2012/061567; WO 2012/068331; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145313; WO 2012/0145501; WO 2012/145818; WO 2012/145822; WO 2012/158167; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145501; WO 2012/0145343; WO 2012/154919; WO 2013/019707; WO 2013/016409; WO 2012/145822; WO 2013/067083; WO 2013/070539; WO 2013/043661; WO 2013/048994; WO 2013/063014, WO 2013/081984; WO 2013/081985; WO 2013/074604; WO 2013/086249; WO 2013/103548; WO 2013/109869; WO 2013/123161; WO 2013/126715; and/or WO 2013/043661, and/or PCT Application No. PCT/US2013/036701, filed Apr. 16, 2013; (PCT)) and/or U.S. patent applications Ser. No. 14/046,174, filed Oct. 4, 2013; Ser. No. 14/036,723, filed Sep. 25, 2013; Ser. No. 14/016,790, filed Sep. 3, 2013; Ser. No. 14/001,272, filed Aug. 23, 2013; Ser. No. 13/970,868, filed Aug. 20, 2013; Ser. No. 13/964,134, filed Aug. 12, 2013; Ser. No. 13/942,758, filed Jul. 16, 2013; Ser. No. 13/942,753, filed Jul. 16, 2013; Ser. No. 13/927,680, filed Jun. 26, 2013; Ser. No. 13/916,051, filed Jun. 12, 2013; Ser. No. 13/894,870, filed May 15, 2013; Ser. No. 13/887,724, filed May 6, 2013; Ser. No. 13/851,378, filed Mar. 27, 2013; Ser. No. 61/848,796, filed Mar. 22, 2012; Ser. No. 13/847,815, filed Mar. 20, 2013; Ser. No. 13/800,697, filed Mar. 13, 2013; Ser. No. 13/785,099, filed Mar. 5, 2013; Ser. No. 13/779,881, filed Feb. 28, 2013; Ser. No. 13/774,317, filed Feb. 22, 2013; Ser. No. 13/774,315, filed Feb. 22, 2013; Ser. No. 13/681,963, filed Nov. 20, 2012; Ser. No. 13/660,306, filed Oct. 25, 2012 ; Ser. No. 13/653,577, filed Oct. 17, 2012; and/or Ser. No. 13/534,657, filed Jun. 27, 2012, and/or U.S. provisional applications, Ser. No. 61/886,883, filed Oct. 4, 2013; Ser. No. 61/879,837, filed Sep. 19, 2013; Ser. No. 61/879,835, filed Sep. 19, 2013; Ser. No. 61/878,877, filed Sep. 17, 2013; Ser. No. 61/875,351, filed Sep. 9, 2013; Ser. No. 61/869,195, filed. Aug. 23, 2013; Ser. No. 61/864,835, filed Aug. 12, 2013; Ser. No. 61/864,836, filed Aug. 12, 2013; Ser. No. 61/864,834, filed Aug. 12, 2013; Ser. No. 61/864,838, filed Aug. 12, 2013; Ser. No. 61/856,843, filed Jul. 22, 2013, Ser. No. 61/845,061, filed Jul. 11, 2013; Ser. No. 61/844,630, filed Jul. 10, 2013; Ser. No. 61/844,173, filed Jul. 9, 2013; Ser. No. 61/844,171, filed Jul. 9, 2013; Ser. No. 61/840,542; Ser. No. 61/838,619, filed Jun. 24, 2013; Ser. No. 61/838,621, filed Jun. 24, 2013; Ser. No. 61/837,955, filed Jun. 21, 2013; Ser. No. 61/836,900, filed Jun. 19, 2013; Ser. No. 61/836,380, filed Jun. 18, 2013; Ser. No. 61/834,129, filed Jun. 12, 2013; Ser. No. 61/833,080, filed Jun. 10, 2013; Ser. No. 61/830,375, filed Jun. 3, 2013; Ser. No. 61/830,377, filed Jun. 3, 2013; Ser. No. 61/825,752, filed May 21, 2013; Ser. No. 61/825,753, filed May 21, 2013; Ser. No. 61/823,648, filed May 15, 2013; Ser. No. 61/823,644, filed May 15, 2013; Ser. No. 61/821,922, filed May 10, 2013; Ser. No. 61/819,835, filed May 6, 2013; Ser. No. 61/819,033, filed May 3, 2013; Ser. No. 61/16,956, filed Apr. 29, 2013; Ser. No. 61/815,044, filed Apr. 23, 2013; Ser. No. 61/814,533, filed Apr. 22, 2013; Ser. No. 61/813,361, filed Apr. 18, 2013; Ser. No. 61/840,407, filed Apr. 10, 2013; Ser. No. 61/808,930, filed Apr. 5, 2013; Ser. No. 61/807,050, filed Apr. 1, 2013; Ser. No. 61/806,674, filed Mar. 29, 2013; Ser. No. 61/806,673, filed Mar. 29, 2013; Ser. No. 61/793,592, filed Mar. 15, 2013; Ser. No. 61/793,614, filed Mar. 15, 2013; Ser. No. 61/772,015, filed Mar. 4, 2013; Ser. No. 61/772,014, filed Mar. 4, 2013; Ser. No. 61/770,051, filed Feb. 27, 2013; Ser. No. 61/770,048, filed Feb. 27, 2013; Ser. No. 61/766,883, filed Feb. 20, 2013; Ser. No. 61/760,366, filed Feb. 4, 2013; Ser. No. 61/760,364, filed Feb. 4, 2013; Ser. No. 61/756,832, filed Jan. 25, 2013; Ser. No. 61/754,804, filed Jan. 21, 2013; Ser. No. 61/745,925, filed Dec. 26, 2012; Ser. No. 61/745,864, filed Dec. 26, 2012; Ser. No. 61/736,104, filed Dec. 12, 2012; Ser. No. 61/736,103, filed Dec. 12, 2012; Ser. No. 61/735,314, filed Dec. 10, 2012; Ser. No. 61/734,457, filed Dec. 7, 2012; Ser. No. 61/733,598, filed Dec. 5, 2012; Ser. No. 61/733,093, filed Dec. 4, 2012; Ser. No. 61/727,912, filed Nov. 19, 2012; Ser. No. 61/727,911, filed Nov. 19, 2012; Ser. No. 61/727,910, filed Nov. 19, 2012; and/or Ser. No. 61/718,382, filed Oct. 25, 2012, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, which are hereby incorporated herein by reference in their entireties.
The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454; and 6,824,281, and/or International Publication Nos. WO 2010/099416; WO 2011/028686 and/or WO 2013/016409, and/or U.S. patent application Ser. No. 12/508,840, filed Jul. 24, 2009, and published Jan. 28, 2010 as U.S. Pat. Publication No. US 2010-0020170, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. patent applications Ser. No. 12/091,359, filed Apr. 24, 2008 and published Oct. 1, 2009 as U.S. Publication No. US-2009-0244361, and/or Ser. No. 13/260,400, filed Sep. 26, 2011 , and/or U.S. Pat. Nos. 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; and/or 7,720,580, and/or U.S. patent application Ser. No. 10/534,632, filed May 11, 2005, now U.S. Pat. No. 7,965,336; and/or International Publication Nos. WO/2009/036176 and/or WO/2009/046268, which are all hereby incorporated herein by reference in their entireties.
The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149; and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176; and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, and/or U.S. pat. applications Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268; and/or 7,370,983, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.
Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. No. 7,255,451 and/or U.S. Pat. No. 7,480,149; and/or U.S. patent applications Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, and/or Ser. No. 12/578,732, filed Oct. 14, 2009, which are hereby incorporated herein by reference in their entireties.
Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252; and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).
Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO2012/075250; WO 2013/019795; WO 2012-075250; WO 2012/145822; WO 2013/081985; WO 2013/086249; and/or WO 2013/109869, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, which are hereby incorporated herein by reference in their entireties.
Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. patent applications Ser. No. 12/091,525, filed Apr. 25, 2008, now U.S. Pat. No. 7,855,755; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008; and/or Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036; and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.
Changes and modifications to the specifically described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law.
The present application claims the filing benefits of U.S. provisional applications, Ser. No. 61/804,786, filed Mar. 25, 2013, and Ser. No. 61/713,772, filed Oct. 15, 2012, which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1481425 | Kirsch | Jan 1924 | A |
3697157 | Pizzimenti et al. | Oct 1972 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5589132 | Zippel | Dec 1996 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5949331 | Schofield et al. | Sep 1999 | A |
6037860 | Zander et al. | Mar 2000 | A |
6037975 | Aoyama | Mar 2000 | A |
6057754 | Kinoshita et al. | May 2000 | A |
6291906 | Marcus et al. | Sep 2001 | B1 |
6292752 | Franke et al. | Sep 2001 | B1 |
6297781 | Turnbull et al. | Oct 2001 | B1 |
6302545 | Schofield et al. | Oct 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6311119 | Sawamoto et al. | Oct 2001 | B2 |
6315421 | Apfelbeck et al. | Nov 2001 | B1 |
6317057 | Lee | Nov 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6324450 | Iwama | Nov 2001 | B1 |
6333759 | Mazzilli | Dec 2001 | B1 |
6341523 | Lynam | Jan 2002 | B2 |
6353392 | Schofield et al. | Mar 2002 | B1 |
6362729 | Hellmann et al. | Mar 2002 | B1 |
6366236 | Farmer et al. | Apr 2002 | B1 |
6370329 | Teuchert | Apr 2002 | B1 |
6388565 | Bernhard et al. | May 2002 | B1 |
6388580 | Graham | May 2002 | B1 |
6411204 | Bloomfield et al. | Jun 2002 | B1 |
6411328 | Franke et al. | Jun 2002 | B1 |
6424273 | Gutta et al. | Jul 2002 | B1 |
6429594 | Stam et al. | Aug 2002 | B1 |
6430303 | Naoi et al. | Aug 2002 | B1 |
6433817 | Guerra | Aug 2002 | B1 |
6441748 | Takagi et al. | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6469739 | Bechtel et al. | Oct 2002 | B1 |
6497503 | Dassanayake et al. | Dec 2002 | B1 |
6516272 | Lin | Feb 2003 | B2 |
6516664 | Lynam | Feb 2003 | B2 |
6523964 | Schofield et al. | Feb 2003 | B2 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6554210 | Holt et al. | Apr 2003 | B2 |
6570998 | Ohtsuka et al. | May 2003 | B1 |
6574033 | Chui et al. | Jun 2003 | B1 |
6578017 | Ebersole et al. | Jun 2003 | B1 |
6587573 | Stam et al. | Jul 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6590725 | Kho | Jul 2003 | B2 |
6593698 | Stam et al. | Jul 2003 | B2 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6672731 | Schnell et al. | Jan 2004 | B2 |
6674562 | Miles | Jan 2004 | B1 |
6678056 | Downs | Jan 2004 | B2 |
6680792 | Miles | Jan 2004 | B2 |
6681163 | Stam et al. | Jan 2004 | B2 |
6700605 | Toyoda et al. | Mar 2004 | B1 |
6703925 | Steffel | Mar 2004 | B2 |
6710908 | Miles et al. | Mar 2004 | B2 |
6711474 | Treyz et al. | Mar 2004 | B1 |
6714331 | Lewis et al. | Mar 2004 | B2 |
6728393 | Stam et al. | Apr 2004 | B2 |
6728623 | Takenaga et al. | Apr 2004 | B2 |
6735506 | Breed et al. | May 2004 | B2 |
6741377 | Miles | May 2004 | B2 |
6744353 | Sjönell | Jun 2004 | B2 |
6762867 | Lippert et al. | Jul 2004 | B2 |
6764210 | Akiyama | Jul 2004 | B2 |
6765480 | Tseng | Jul 2004 | B2 |
6784828 | Delcheccolo et al. | Aug 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6795221 | Urey | Sep 2004 | B1 |
6801127 | Mizusawa | Oct 2004 | B2 |
6801244 | Takeda et al. | Oct 2004 | B2 |
6802617 | Schofield et al. | Oct 2004 | B2 |
6807287 | Hermans | Oct 2004 | B1 |
6812463 | Okada | Nov 2004 | B2 |
6823241 | Shirato et al. | Nov 2004 | B2 |
6823261 | Sekiguchi | Nov 2004 | B2 |
6824281 | Schofield et al. | Nov 2004 | B2 |
6838980 | Gloger et al. | Jan 2005 | B2 |
6842189 | Park | Jan 2005 | B2 |
6853897 | Stam et al. | Feb 2005 | B2 |
6859148 | Miller et al. | Feb 2005 | B2 |
6861809 | Stam | Mar 2005 | B2 |
6873253 | Veziris | Mar 2005 | B2 |
6882287 | Schofield | Apr 2005 | B2 |
6888447 | Hori et al. | May 2005 | B2 |
6891563 | Schofield et al. | May 2005 | B2 |
6898518 | Padmanabhan | May 2005 | B2 |
6906620 | Nakai et al. | Jun 2005 | B2 |
6906639 | Lemelson et al. | Jun 2005 | B2 |
6909753 | Meehan et al. | Jun 2005 | B2 |
6914521 | Rothkop | Jul 2005 | B2 |
6932669 | Lee et al. | Aug 2005 | B2 |
6933837 | Gunderson et al. | Aug 2005 | B2 |
6940423 | Takagi et al. | Sep 2005 | B2 |
6944908 | Hoetzer et al. | Sep 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
6950035 | Tanaka et al. | Sep 2005 | B2 |
6953253 | Schofield et al. | Oct 2005 | B2 |
6959994 | Fujikawa et al. | Nov 2005 | B2 |
6961178 | Sugino et al. | Nov 2005 | B2 |
6967569 | Weber et al. | Nov 2005 | B2 |
6968736 | Lynam | Nov 2005 | B2 |
6975775 | Rykowski et al. | Dec 2005 | B2 |
6989736 | Berberich et al. | Jan 2006 | B2 |
7004606 | Schofield | Feb 2006 | B2 |
7023331 | Kodama | Apr 2006 | B2 |
7030738 | Ishii | Apr 2006 | B2 |
7030775 | Sekiguchi | Apr 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7057505 | Iwamoto | Jun 2006 | B2 |
7057681 | Hinata et al. | Jun 2006 | B2 |
7062300 | Kim | Jun 2006 | B1 |
7065432 | Moisel et al. | Jun 2006 | B2 |
7068289 | Satoh et al. | Jun 2006 | B2 |
7085633 | Nishira et al. | Aug 2006 | B2 |
7085637 | Breed et al. | Aug 2006 | B2 |
7092548 | Laumeyer et al. | Aug 2006 | B2 |
7095432 | Nakayama et al. | Aug 2006 | B2 |
7106213 | White | Sep 2006 | B2 |
7110021 | Nobori et al. | Sep 2006 | B2 |
7116246 | Winter et al. | Oct 2006 | B2 |
7121028 | Shoen et al. | Oct 2006 | B2 |
7123168 | Schofield | Oct 2006 | B2 |
7133661 | Hatae et al. | Nov 2006 | B2 |
7149613 | Stam et al. | Dec 2006 | B2 |
7151996 | Stein | Dec 2006 | B2 |
7187498 | Bengoechea et al. | Mar 2007 | B2 |
7195381 | Lynam et al. | Mar 2007 | B2 |
7196305 | Shaffer et al. | Mar 2007 | B2 |
7205904 | Schofield | Apr 2007 | B2 |
7227459 | Bos et al. | Jun 2007 | B2 |
7227611 | Hull et al. | Jun 2007 | B2 |
7235918 | McCullough et al. | Jun 2007 | B2 |
7248283 | Takagi et al. | Jul 2007 | B2 |
7271951 | Weber et al. | Sep 2007 | B2 |
7304661 | Ishikura | Dec 2007 | B2 |
7311405 | Irvin | Dec 2007 | B2 |
7311406 | Schofield et al. | Dec 2007 | B2 |
7325934 | Schofield et al. | Feb 2008 | B2 |
7325935 | Schofield et al. | Feb 2008 | B2 |
7337055 | Matsumoto et al. | Feb 2008 | B2 |
7338177 | Lynam | Mar 2008 | B2 |
7355524 | Schofield | Apr 2008 | B2 |
7375803 | Bamji | May 2008 | B1 |
7380948 | Schofield et al. | Jun 2008 | B2 |
7388182 | Schofield et al. | Jun 2008 | B2 |
7420756 | Lynam | Sep 2008 | B2 |
7423821 | Bechtel et al. | Sep 2008 | B2 |
7429998 | Kawauchi et al. | Sep 2008 | B2 |
7432967 | Bechtel et al. | Oct 2008 | B2 |
7446924 | Schofield et al. | Nov 2008 | B2 |
7460007 | Schofield et al. | Dec 2008 | B2 |
7474963 | Taylor et al. | Jan 2009 | B2 |
7489374 | Utsumi et al. | Feb 2009 | B2 |
7495719 | Adachi et al. | Feb 2009 | B2 |
7525604 | Xue | Apr 2009 | B2 |
7526103 | Schofield et al. | Apr 2009 | B2 |
7541743 | Salmeen et al. | Jun 2009 | B2 |
7543946 | Ockerse et al. | Jun 2009 | B2 |
7545429 | Travis | Jun 2009 | B2 |
7548291 | Lee et al. | Jun 2009 | B2 |
7551103 | Schofield | Jun 2009 | B2 |
7561181 | Schofield et al. | Jul 2009 | B2 |
7565006 | Stam et al. | Jul 2009 | B2 |
7567291 | Bechtel et al. | Jul 2009 | B2 |
7605856 | Imoto | Oct 2009 | B2 |
7609857 | Franz | Oct 2009 | B2 |
7613327 | Stam et al. | Nov 2009 | B2 |
7616781 | Schofield et al. | Nov 2009 | B2 |
7619508 | Lynam et al. | Nov 2009 | B2 |
7629996 | Rademacher et al. | Dec 2009 | B2 |
7639149 | Katoh | Dec 2009 | B2 |
7653215 | Stam | Jan 2010 | B2 |
7663798 | Tonar et al. | Feb 2010 | B2 |
7676087 | Dhua et al. | Mar 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7724434 | Cross et al. | May 2010 | B2 |
7731403 | Lynam et al. | Jun 2010 | B2 |
7742864 | Sekiguchi | Jun 2010 | B2 |
7791694 | Molsen et al. | Sep 2010 | B2 |
7792329 | Schofield et al. | Sep 2010 | B2 |
7842154 | Lynam | Nov 2010 | B2 |
7843451 | Lafon | Nov 2010 | B2 |
7854514 | Conner et al. | Dec 2010 | B2 |
7855778 | Yung et al. | Dec 2010 | B2 |
7881496 | Camilleri | Feb 2011 | B2 |
7903324 | Kobayashi et al. | Mar 2011 | B2 |
7903335 | Nieuwkerk et al. | Mar 2011 | B2 |
7914187 | Higgins-Luthman et al. | Mar 2011 | B2 |
7930160 | Hosagrahara et al. | Apr 2011 | B1 |
7949152 | Schofield et al. | May 2011 | B2 |
7965336 | Bingle et al. | Jun 2011 | B2 |
7965357 | Van De Witte et al. | Jun 2011 | B2 |
8017898 | Lu et al. | Sep 2011 | B2 |
8027691 | Bernas et al. | Sep 2011 | B2 |
8090153 | Schofield et al. | Jan 2012 | B2 |
8095310 | Taylor et al. | Jan 2012 | B2 |
8098142 | Schofield et al. | Jan 2012 | B2 |
8120652 | Bechtel et al. | Feb 2012 | B2 |
8184159 | Luo | May 2012 | B2 |
8224031 | Saito | Jul 2012 | B2 |
8233045 | Luo et al. | Jul 2012 | B2 |
8289430 | Bechtel et al. | Oct 2012 | B2 |
8305471 | Bechtel et al. | Nov 2012 | B2 |
8308325 | Takayanazi et al. | Nov 2012 | B2 |
8314689 | Schofield et al. | Nov 2012 | B2 |
8339526 | Minikey, Jr. et al. | Dec 2012 | B2 |
20070182528 | Breed et al. | Aug 2007 | A1 |
20090250533 | Akiyama et al. | Oct 2009 | A1 |
20090295181 | Lawlor | Dec 2009 | A1 |
20110073142 | Hattori et al. | Mar 2011 | A1 |
20110266375 | Ono et al. | Nov 2011 | A1 |
20120070142 | Tregnago | Mar 2012 | A1 |
20130092758 | Tanaka | Apr 2013 | A1 |
20130094086 | Bochenek | Apr 2013 | A1 |
20130219742 | Field et al. | Aug 2013 | A1 |
20130300869 | Lu et al. | Nov 2013 | A1 |
20140104426 | Boegel et al. | Apr 2014 | A1 |
20140232869 | May et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
2004182080 | Jul 2004 | JP |
Entry |
---|
English Machine Translation of JP 2004-182080. |
Number | Date | Country | |
---|---|---|---|
20140104426 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61804786 | Mar 2013 | US | |
61713772 | Oct 2012 | US |