Vehicle event recorder systems

Information

  • Patent Grant
  • 10878646
  • Patent Number
    10,878,646
  • Date Filed
    Thursday, December 8, 2005
    19 years ago
  • Date Issued
    Tuesday, December 29, 2020
    3 years ago
Abstract
Vehicle recorder systems are arranged in configured with a video camera, light-weight memory systems, and radio communications facility suitable for use in conjunction with an automobile. An automobile equipped with these video recorder systems used normally throughout the service today, provides a video record of unusual events which may occur from time-to-time. Events such as accidents, near-miss incidents, driving of use, among others, trigger a system to preserve video images collected before and after the moment of the event. Replay of these images yield information regarding cause and true nature of the event. These systems are particularly arranged about, and in support of fleet use of vehicles. That is, groups of vehicles are arranged and coupled together whereby a plurality of such vehicles may communicate with a common system providing a fleet manager advanced fleet management tools.
Description
BACKGROUND OF THE INVENTIONS
1. Field

The following inventions disclosure is generally concerned with vehicle event recorders and specifically concerned with distributed vehicle event recorder systems including networked portions coupled via the Internet.


2. Prior Art

Video surveillance systems are used to provide video records of events, incidents, happenings, et cetera in locations of special interest. For example, retail banking offices are generally protected with video surveillance systems which provide video evidence in case of robbery. While video surveillance systems are generally used in fixed location scenarios, mobile video surveillance systems are also commonly used today.


In particular, video systems have been configured for use in conjunction with an automobile and especially for use with police cruiser type automobiles. As a police cruiser is frequently quite near the scene of an active crime, important image information may be captured by video cameras installed on the police cruiser. Specific activity of interest which may occur about an automobile is not always associated with crime and criminals. Sometimes events which occur in the environments immediately about an automobile are of interest for reasons having nothing to do with crime. In example, a simple traffic accident where two cars come together in a collision may be the subject of video evidence of value. Events and circumstances leading up to the collision accident may be preserved such that an accurate reconstruction can be created. This information is useful when trying come to a determination as to cause, fault and liability. As such, general use of video systems in conjunction with automobiles is quickly becoming an important tool useful for the protection of all. Some examples of the systems are illustrated below with reference to pertinent documents.


Inventor Schmidt presents in U.S. Pat. No. 5,570,127, a video recording system for a passenger vehicle, namely a school bus, which has two video cameras one for an inside bus view and one for a traffic view, a single recorder, and a system whereby the two cameras are multiplexed at appropriate times, to the recording device. A switching signal determines which of the two video cameras is in communication with the video recorder so as to view passengers on the passenger vehicle at certain times and passing traffic at other times.


Thomas Doyle of San Diego, Calif. and QUALCOMM Inc. also of San Diego, present an invention for a method and apparatus for detecting fault conditions in a vehicle data recording device to detect tampering or unauthorized access, in U.S. Pat. No. 5,586,130. The system includes vehicle sensors for monitoring one or more operational parameters of the vehicle. The fault detection technique contemplates storing a current time value at regular intervals during periods in which the recording device is provided with a source of main power. Inventor Doyle also teaches in the U.S. Pat. No. 5,815,071, a method and apparatus for monitoring parameters of vehicle electronic control units.


A “computerized vehicle log” is presented by Dan Kikinis of Saratoga Calif. in U.S. Pat. No. 5,815,093. The vehicle accident recording system employs a digital camera connected to a controller in nonvolatile memory, and an accident sensing interrupter. The oldest memory is overwritten by the newest images, until an accident is detected at which time the memory is blocked from further overwrites to protect the more vital images, which may include important information about the accident. Mr. Kikinis instructs that in preferred embodiments, the system has a communications port whereby stored images are downloaded after an accident to a digital device capable of displaying images. This feature is described in greater detail in the specification which indicates a wired download to a server having specialized image handling and processing software thereon.


Inventor Mr. Turner of Compton, Calif., no less, teaches an antitheft device for an automotive vehicle having both an audible alarm and visual monitor system. Video monitor operators are responsible for monitoring and handling an emergency situation and informing a 911 emergency station. This system is presented in U.S. Pat. No. 6,002,326.


A vehicle accident video recorder, in particular, a railroad vehicle accident video recorder, is taught by inventors Cox et al. In this system, a method and monitoring unit for recording the status of the railroad vehicle prior to a potential accident is presented. The monitoring unit continuously monitors the status of an emergency brake of the railroad vehicle and the status of a horn of the railroad vehicle. Video images are recorded and captured for a predetermined period of time after detecting that the emergency brake or horn blast has been applied as an event trigger. This invention is the subject of U.S. Pat. No. 6,088,635.


A vehicle crash data recorder is presented by inventor Ferguson of Bellaire, Ohio in U.S. Pat. No. 6,185,490. The apparatus is arranged with a three stage memory to record and retain information. And further it is equipped with a series and parallel connectors to provide instant on-scene access to accident data. It is important to note that Ferguson finds it important to include the possibility of on-site access to the data. Further, that Ferguson teaches use of a wired connection in the form of a serial or parallel hardwire connector. This teaching of Ferguson is common in many advanced systems configured as vehicle event recorders.


A traffic accident data recorder and traffic accident reproduction system and method is presented as U.S. Pat. No. 6,246,933. A plurality of sensors for registering vehicle operation parameters including at least one vehicle mounted digital video, audio camera is included for sensing storing and updating operational parameters. A rewritable, nonvolatile memory is provided for storing those processed operational parameters and video images and audio signals, which are provided by the microprocessor controller. Data is converted to a computer readable form and read by a computer such that an accident can be reconstructed via data collected.


U.S. Pat. No. 6,298,290 presented by Abe et al, teaches a memory apparatus for vehicle information data. A plurality of sensors including a CCD camera collision center of vehicle speed sensors, steering angle sensor, brake pressure sensor, acceleration sensor, are all coupled to a control unit. Further, the control unit passes information to a flash memory and a RAM memory subject to an encoder. The information collected is passed through a video output terminal. This illustrates another hardwire system and the importance placed by experts in the art on a computer hardware interface. This is partly due to the fact that video systems are typically data intensive and wired systems are necessary as they have bandwidth sufficient for transfers of large amounts of data.


Mazzilli of Bayside, N.Y. teaches in U.S. Pat. No. 6,333,759 a 360° automobile video camera system. A complex mechanical mount provides for a single camera to adjust its viewing angle giving a 360° range for video recording inside and outside of an automotive vehicle.


U.S. Pat. No. 6,389,339 granted to Inventor Just, of Alpharetta, Ga. teaches a vehicle operation monitoring system and method. Operation of a vehicle is monitored with an onboard video camera linked with a radio transceiver. A monitoring service includes a cellular telecommunication s network to view a video data received from the transceiver to a home-base computer. These systems are aimed at parental monitoring of adolescent driving. The mobile modem is designed for transmitting live video information into the network as the vehicle travels.


Morgan, Hausman, Chilek, Hubenak, Kappler, Witz, and Wright with their heads together invented an advanced law enforcement and response technology in U.S. Pat. No. 6,411,874 granted Jun. 25, 2002. A central control system affords intuitive and easy control of numerous subsystems associated with a police car or other emergency vehicle. This highly integrated system provides advanced control apparatus which drives a plurality of detector systems including video and audio systems distributed about the vehicle. A primary feature included in this device includes an advanced user interface and display system, which permits high level driver interaction with the system.


Inventor Lambert teaches in U.S. Pat. No. 6,421,080 a “digital surveillance system with pre-event recording”. Pre-event recording is important in accident recording systems, because detection of the accident generally happens after the accident has occurred. A first memory is used for temporary storage. Images are stored in the temporary storage continuously until a trigger is activated which indicates an accident has occurred at which time images are transferred to a more permanent memory.


Systems taught by Gary Rayner in U.S. Pat. Nos. 6,389,340; 6,405,112; 6,449,540; and 6,718,239, each directed to cameras for automobiles which capture video images, both of forward-looking and driver views, and store recorded images locally on a mass storage system. An operator, at the end of the vehicle service day, puts a wired connector into a device port and downloads information into a desktop computer system having specialized application software whereby the images and other information can be played-back and analyzed at a highly integrated user display interface.


It is not possible in the systems Rayner teaches for an administrative operator to manipulate or otherwise handle the data captured in the vehicle at an off-site location without human intervention. It is necessary for a download operator to transfer data captured from the recorder unit device to a disconnected computer system. While proprietary ‘DriveCam’ files can be e-mailed or otherwise transferred through the Internet, those files are in a format with a can only be digested by desktop software running at a remote computer. It is necessary to have the DriveCam desktop application on the remote computer. In order that the files be properly read. In this way, data captured by the vehicles is totally unavailable to some parties having an interest in the data. Namely those parties who do not have access to a computer appropriately arranged with the specific DriveCam application software. A second and major disadvantage is systems presented by Rayner includes necessity that a human operator service the equipment each day in a manual download action.


Presently vehicle event recording systems are configured in a manner which greatly restricts the ability of the components to be remotely located from one another. Indeed, in best circumstances of the prior art, a manager workstation computer is located at a vehicle parking facility office. This demands that the administrator/manager, and all users of services provided by the server, consume those services at a parking facility. This demands that specialists who require access to information go to the server facility to receive that information. The only alternative available today, includes transmitting data by e-mail in proprietary digital formats to users able to read those formats and consume them at remote computers. The applications and services can not be arranged as distributed systems. This demand specialized computer desktop application software on the receiving system. It is apparent that such arrangements have great disadvantages, and as a result thereof, deployment is greatly limited.


While systems and inventions of the art are designed to achieve particular goals and objectives, some of those being no less than remarkable, these inventions have limitations which prevent their use in new ways now possible. Inventions of the art are not used and cannot be used to realize the advantages and objectives of these inventions taught herefollowing.


SUMMARY OF THE INVENTIONS

Comes now, James Plante of Del Mar, Calif. with inventions of distributed vehicle event recording systems including devices and methods deployed in networks which may include the Internet.


These vehicle event recorder systems include fleets of vehicles, video recording systems, communications networks, centralized server computers, and specialized application specific computer code to enable highly unique system functionality. Fleet vehicles are put into communication with the server whereby data exchange is automatically triggered in response to normal and common use of the vehicle without driver/manager intervention. Vehicles returning to an appropriately arranged parking facility automatically connect with a server and start a communications transaction which includes download of video data to the server where it may be processed and further accessed by various interested parties. Video data includes primarily scenes ahead of a vehicle captured when the vehicle is involved in an event such as a traffic accident for example.


Vehicle fleet management networks are characterized as including: at least one vehicle event recorder; a communications space formed from the combination of a vehicle parking facility and a wireless communications system; a network sometimes including the Internet; and an applications specific server computer. The vehicle event recorder which includes a radio transmitter is further coupled to the communications space by way of a proximity trigger whereby presence of the vehicle in the communications space enables data transfer actions where video data is conveyed from the vehicle to remote servers for further use.


A vehicle event recorder includes a camera, microprocessor, memory, mobile wireless transceiver, a connection manager, and a proximity trigger. Video images captured by the camera are stored in a specially arranged memory buffer until the vehicle returns to a parking facility when those images are automatically transferred to a remote server.


A communications space includes a parking facility, a fixed wireless transceiver, network address server; broadband connection to a communications network for example the Internet; authentication systems. Upon arrival of an authorized fleet vehicle into the communications space, a prescribed handshaking between the vehicle event recorder and the fixed wireless transceiver includes an authorization process. A vehicle suitably identified is then in position to call a remote server via proprietary data exchange methods. Accordingly, servers include applications specific software; connections to computer networks; web applications and web services arranged to cooperate with vehicle event recorders.


OBJECTIVES OF THESE INVENTIONS

It is a primary object of these inventions to provide fleet management tools based upon vehicle event recording systems.


It is an object of these inventions to provide vehicle event recorder systems including a distributed network component.


It is a further object to provide vehicle event recorder systems including the Internet.


It is optionally an object of these inventions to provide fleet management tools whereby automated reporting is enabled such that a fleet manager can take specific actions in response to reports automatically generated by these systems.


It is optionally an object of these inventions to provide fleet management tools whereby a data analyst may be far removed from fleet vehicles.


It is optionally an object of these inventions to provide distributed fleet management services and applications whereby an insurance underwriter can process data captured by the system to manage risk.


It is optionally an object of these inventions to provide fleet management tools whereby an automobile maintenance team can respond to conditions detected and reported by these systems.


It is optionally an object of these inventions to provide fleet management tools whereby a roadways/highways engineer can receive reports and alerts which relate to roadway conditions.


It is optionally an object of these inventions to provide fleet management tools whereby government authorities act upon data captured.


Better understandings are realized with reference to detailed descriptions of preferred embodiments and with reference drawings appended hereto. Embodiments presented are particular ways to realize and bring forth these inventions; they are not inclusive of all ways possible. There may exist embodiments that do not deviate from the spirit and scope of this disclosure as set forth by appended claims, but do not appear here as specific examples. It will be appreciated that a great plurality of alternative versions are not only possible, but probable.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

These and other features, aspects, and advantages of the present inventions will become better understood with regard to the following description, appended claims and drawings where:



FIG. 1 illustrates schematically various types of fleet vehicles in respective groups, each in communication with a central server via the Internet;



FIG. 2 presents in greater detail various facility in which fleet vehicles are in communication through the Internet;



FIG. 3 suggests an important alternative including a ‘store and forward’ preprocessing station;



FIG. 4 presents in detail, a general block diagram of a vehicle event recorder unit suitable for use with an automobile;



FIG. 5 is a block diagram to illustrate in further detail important elements of these vehicle event recorder units;



FIG. 6 is a schematic presentation of cooperative systems forming a network relationship with recorder elements;



FIG. 7 presents examples of a system server and illustrates functionality associated therewith;



FIG. 8 is a diagram which suggests some discrete special relationships between entities that interface with a server via these networks;



FIG. 9 shows further relationship paths between network entities, vehicle event recorders and related servers;



FIG. 10 presents a system having a plurality of particular download spaces in cooperation with a single server;



FIG. 11 describes fields associated with a scheme to enlarge a download space; and



FIG. 12 illustrates an important proximity trigger which sets into motion a primary function of these systems.





GLOSSARY OF SPECIAL TERMS

Throughout this disclosure, reference is made to some terms which may or may not be exactly defined in popular dictionaries as they are defined here. To provide a more precise disclosure, the following terms are presented with a view to clarity so that the true breadth and scope may be more readily appreciated. Although every attempt is made to be precise and thorough, it is a necessary condition that not all meanings associated with each term can be completely set forth. Accordingly, each term is intended to also include its common meaning which may be derived from general usage within the pertinent arts or by dictionary meaning. Where the presented definition is in conflict with a dictionary or arts definition, one must consider the context of use and liberal discretion to arrive at an intended meaning. One will be well advised to error on the side of attaching broader meanings to terms used in order to fully appreciate the depth of the teaching and to understand all intended variations.


Vehicle Event Recorder


A vehicle event recorder is fashioned as electronic apparatus which may include video recording equipment, audio recording equipment, vehicles system sensors, environmental sensors, a microprocessor, application-specific programming, and a communications port among others. A vehicle event recording unit is sometimes preferably built into a small housing suitable for mounting to a common vehicle such as a truck, car, motorcycle, airplane, or ship. Where some vehicle system sensors are not within the housing of the vehicle event recording unit, the vehicle event recorder unit includes communication therewith by electronic connector and wireline, or other wireless communications means—for example ‘bluetooth’ links.


Wireless Communications Space


A wireless communications space is defined by the region in which a electromagnetic communication signal may be reliably received and transmitted by at least two communicating transceivers. The wireless communications space has a ‘soft’ boundary which tends to breathe in size and thus is not mechanically fix at some particular size at all times. However, this should not take away from the notion that wireless communications space is a discrete entity.


Fleet


Herein this disclosure, we often refer to a ‘fleet’ of vehicles. A ‘fleet’ is comprised of a group of related vehicles. The relationship between vehicles in any one fleet is most generally by ownership or management; however, other factors may connect the vehicles of a single fleet. For example, the maintenance interests may cause several vehicles owned by independent parties to become part of a ‘single fleet’ for purposes of these systems. It is also necessary to point out that a special case ‘fleet’ may be comprised of a single vehicle. While outside the traditional sense of the word fleet, a single vehicle fleet is fully anticipated and included for purposes of the systems discussed here.


Proximity Trigger


A ‘proximity trigger’ is a system devised to detect a prescribed proximity condition and provide an electronic signal in response thereto; the electronic signal being coupled to another system which may be set into action as a result of having received the proximity trigger signal.


Event Trigger


An ‘event trigger’ is a system devised to detect a prescribed physical condition and provide an electronic signal in response thereto; the electronic signal being coupled to another system which may be set into action as a result of having received the event trigger signal.


Parking Facility


A bit of latitude shall be used to interpret what is meant by ‘parking facility’ or ‘parking lot’. These terms are meant to include any place which can accommodate temporary storage of a vehicle for at least a short period of time. It is not essential that the vehicle actually stop nor fully engage a ‘parked’ status. A slow moving vehicle in a prescribed space such as a specially configured ‘download’ lane can serve for purposes of these inventions as a ‘parking facility’. A parking facility is merely a place in which a vehicle might occupy while within range of a radio transceiver.


PREFERRED EMBODIMENTS OF THESE INVENTIONS

In accordance with each of preferred embodiments of these inventions, vehicle event recorder systems are provided. It should be understood that each of these embodiments described include an apparatus the apparatus of one preferred embodiment may be different than the apparatus of an alternative embodiment.


Vehicle event recorder systems of these inventions are primarily characterized as including: at least one fleet of vehicles, each vehicle of the fleet having a recorder unit affixed thereto, a download space; a fixed wireless radio having a broadband network connection; a server computer system arranged to provide application specific functionality. The download space is further defined as the region over which wireless communications link can be maintained between the radio transceiver of a vehicle event recorder and a fixed wireless transceiver. This download space also includes facility in which a vehicle can be temporarily accommodated (parked) while a communication link is maintained. Application specific functionality is further specified as web services and web applications which can be provided from a remote server via TCP/IP transactions over a public communications network. In this case, a proprietary protocols are adopted whereby microprocessors in vehicle recorder units make calls to and receive responses from remote servers.


Due to the highly mobile nature of vehicles, they do not cooperate well with being permanently connected to information networks. While there may be limited connection support, for example via USB or firewire hardwire connections, or by mobile telephone networks, these connections have burdensome limitations which render such arrangements not desirable. Temporary hardwire connections require an human operator and significant daily overhead associated with a download strategy. Mobile telephone networks have bandwidth limitations and reliability issues which prevent use of those connections in a manner demanded by some high performance applications.


In systems first presented here, a vehicle enters a communications space having wireless coverage such that the vehicle is connected to the server and communicates therewith. The relationship between the vehicle event recorder and the communications space is such that mere entry of the vehicle establishes the communications link and initiates at least a download transaction. In this way, the need for an operator to carry a laptop to each vehicle and initiate a physical connection is completely removed.


With reference to FIG. 1, a clear understanding of important and primary features of these inventions may be realized. In particular, one will fully appreciate how independent fleets of vehicles may be in communication with a centralized server by way of a highly distributed network such as the public Internet. A fundamental element of these systems includes communications space 1 the region of space covered by wireless communications radio service. For example, when a communications link is comprised of a ‘WiFi’ type radio transceiver 2, the transceiver has limited extent over which reliable communication is sustained. For a WiFi system, this extent is approximated by a sphere having a radius of a few hundred feet. As such, a common parking facility such as a small parking garage may be served by a WiFi radio system which is ample for fleets of a few tens of vehicles all parked in a common parking location. Accordingly, these systems include special cooperation between a storage location for vehicles and a wireless data communications link; that is, the range of transceivers is configured to envelope and surround the appropriate vehicle storage location.


Thus, the extent of wireless communications space 1 is defined by and served by wireless radio transmitter 2, which broadcasts radio signals into the space. When a specially configured mobile computer installed within a prescribed fleet vehicle 3 enters the communications space, the computer detects this condition. Upon detection that a signal is present (vehicle has arrived in the communications space), the computer makes a communications connection and performs a ‘handshaking’ which includes a network address assignment; for example from a radio/router service arranged as a network address server. Once the mobile computer has a network address, it is prepared to communicate directly over the Internet 4 and with network nodes similarly connected. The radio is preferably connected to the Internet by a broadband connection 5, for example a digital subscriber line DSL or cable or fiber type connection or a mix of these high-speed systems. Finally, as a network endpoint on the other end, an application specific system server 6 is comprised of programming suitable for communication with a plurality of vehicle event recorder units, a plurality of communications spaces, which may be widely and remotely distributed.


Various vehicles 3, including trucks, motorcycles buses et cetera, together form an example of a fleet. A fleet is generally a group of cars which are somehow interrelated. A fleet may be comprised of a plurality of vehicles such as the school buses of a single school district. 50 buses may form a fleet of vehicles with a common owner, administrative staff, physical management facility and parking lot. As such, a school bus vehicle fleet is ideally suited for some preferred versions of these inventions.


Any particular fleet may have associated therewith a specific parking lot or other storage area to which fleet members are returned each night after a service day. In preferred embodiments, such parking space is equipped with a radio transceiver or radio transceiver network such that all vehicles make a communications connection with the Internet upon their arrival at the parking facility. Thus, the combination is defined here that a vehicle storage location in combination with a suitably arranged transceiver which envelopes the vehicle storage location is a communications space 7. Radio transceivers form a communications envelope which surrounds a parking facility whereby returning vehicles pierce the envelope boundary as they enter the parking facility and a reliable communications connection to the Internet is automatically instantiated thereafter the vehicle enters the communications space. By way of application specific computer programming code running on the vehicle event recorder, the vehicle event recorder contacts a remote server and exchanges transactions therewith. Thus, it is not necessary for the driver to manually set, trigger, connect or enable any action. Indeed, the driver need not even be aware of the existence of the system and its workings. A driver merely has to return the car to the parking lot to cause a communications connection to become enabled automatically.


While systems described in detail here are those which include fleet members of the type characterized as ‘motor vehicles’, i.e. cars, motorcycles, trucks and buses operated on streets and highways, these inventions are not limited to those kinds of vehicles. Indeed it is anticipated fully that these inventions will also serve quite well vehicle systems which are not automobile type vehicles. Indeed, a certain special download space 8 can be arranged whereby yachts enter that space to cause an automated communications connection. A harbor can support a fixed WiFi transmitter and high-speed Internet connection whereby all boats entering the harbor are enabled with communication to a server. Under this arrangement, a harbor is a ‘parking facility’. Similarly, airplanes which approach an appropriately equipped gate come into contact automatically with the system server which operates to download information recorded during the service use of that fleet vehicle being an aircraft. To properly interpret the meaning of the term ‘vehicle’, one is advised to not impose more restrictive common meanings to conclude that only cars are considered here. Additionally, one must carefully construe the term ‘parking facility’ to mean the place where a vehicle may be temporarily accommodated.


In review, a fleet of vehicles equipped with event recording units enter prescribed communications spaces to automatically establish a wireless communications link with a remote application server configured to communicate with the vehicle event recorders. There is no longer a need for a human operator to engage a vehicle to establish a physical connection by way of a mechanical plug-in device and system; it is no longer necessary to remove and exchange tapes from tape recording type systems; there is no longer need to manually perform a download step; there is no longer need for an on-site fleet IT manager to be involved in any way.


Independent fleets of vehicles, which are maintained, owned and operated by an independent parties, may similarly be in communication with the same server. A separate communications space 7 which may be remotely located with respect to another communications space 8, serves an entirely different and unrelated fleet. For example, when public authorities operate and maintain a fleet of emergency vehicles 9, these vehicles may enter communications space 7 to activate a communications link whereby data recorded by recording unit can be downloaded to the centralized server. This communications space may be a parking lot associated with the city vehicles. Indeed it may be the very same parking lot appropriate for storage of vehicles overnight. In this way, the vehicle operator returns the car to the lot at night for storage and without taking any further act causes data to be downloaded to the remotely located server. Thus, the lot only need be equipped with a WiFi transmitter appropriately connected to the Internet and is no longer necessary to maintain a computer on-site. Such architecture frees fleet information technology IT managers from actually being in the same location as the fleet vehicles. It is no longer necessary to maintain a strong IT capacity at the same location where the vehicles are stored. A ‘smart’ parking lot only needs to be equipped with very inexpensive WiFi radio transmitters and a broadband connection to the nearest Internet service provider ISP.


A further understanding may be realized in view of FIG. 2 which shows in greater detail an architecture including additional system elements in communication with a vehicle event recorder network. In particular, server 21 having a well defined and fixed network address associated therewith, is in communication with mass storage database 22, and is further coupled by way of the Internet to a wireless radio transceiver 23. The transceiver has a useful range which defines the extent of the communications or download space 24.


One will fully appreciate advantages of having the Internet between the architecture endpoints; i.e. the server/database network node and the vehicle recorder unit network node. As fleet vehicle storage and information technology professionals and offices are sometimes necessarily not in the same locations, it is highly useful to provide efficient communications between there over large distances. Further, as the data collected is these systems is highly useful to many independent and distributed parties, is similarly useful to make access to the data over highly distributed networks including the Internet.


While the Internet is a public system, it also can be used for highly secure and private transmissions of information. For example, a special link 26, dedicated to the application at hand, may permit the server to communicate privately with known system members. In some instances, this can be achieved by way of a virtual private network or VPN 27. It is also possible to simply arrange communications over the public network, in a coded fashion only understood by the server and the vehicle event recording units aboard vehicles 28, 29 and 210. Each of these vehicles, being qualified members of the system, exchange digital transactions with a prescribed server. An unauthorized computer attempting to communicate with the server, could not properly form requests without prior knowledge of the services and communications protocols available on the server. Thus, the server's private services would not be easily accessible to those who were not members.


On the other hand, the server connected via the Internet, is at the same time widely available to all systems similarly coupled to the Internet, without regard to location. Thus, web applications may be served to authorized users by the same server along communication path 211. As the server is connected to the Internet in this way, any number of users may communicate 212 simultaneously with the server. Individual managers operating remote workstations 213 can view web applications served by the server and interact therewith from any location in the world. Thus it is no longer a requirement that an administrator of recorded vehicle video information be present at the vehicle or at the vehicle's parking facility which has heretofore been quite near in distance or co-located with the location where a vehicle fleet is stored nightly. A parking facility was generally made to include an IT office with a download workstation running desktop applications. Indeed, the entire remote intranet 214 of a company of many employees may be similarly connected and in communication with a server and database holding data captured by a vehicle event recorder. This will prove in the following sections to be a major advantage of these systems. The reason for this is the data which is gathered by a vehicle event recorder is useful for many entities which are not precisely a top level fleet administrator/manager, but other interested parties relating to vehicle use and management. It is great relief that these entities no longer have to receive raw data by unmanaged e-mail transmission, nor do they have to go visit a physical site where a vehicle is parked, nor do that to rely on human operators to download data from subject vehicles each day when the vehicle arrives at its storage facility. When vehicle event recorders are coupled with automatic downloads to high power servers well connected in shared network relationships, information is processed more efficiently and results in a system of greater functionality and processing power.


Another important strategy permits system members, for example computer programming in recorder units, to consume ‘web services’ basically—computer services or programming functionality. The programming functionality is not available to outside systems, nor are there any visible components or human interface to web services. Web services are provided for computers to interact with computers. Thus, a vehicle event recorder unit in a vehicle, which is presently in a prescribed communications space may call a computer function which resides and is executed on the remote server. Thus, very large processing power and database capacity is available at relatively small computing facility associated with vehicle event recorder unit—while at the same time, obviating the need for a computer workstation at the parking site.


Another great advantage to having the Internet as part of the system architecture, includes a possibility of customer interaction from wherever they may be located. Indeed, it is quite preferred that interested parties are not located in a commonplace with the download and server facility. This is partly due to the fact that many unrelated parties, may have interest in the same data. For example, insurance underwriters may be interested in reviewing driving history's. Of course it would be overly burdensome to ask insurance underwriters to review driving records at a fleet facility.


Because of the particular nature of vehicle fleets and the activity associated therewith, it is sometimes necessary to provide special system architecture to accommodate. In particular, special circumstance arises in the case where a large number of fleet Vehicles returns to a lot at approximately the same time. If a server computer is separated from the vehicle fleet by a bandwidth limited link, then excessive data traffic will prevent completely organized downloads from all vehicles. As it is physically impossible to provide bandwidth unlimited links, it is preferred that a local buffer be deployed. A local buffer arranged to receive and hold a massive amount of video data from all returning cars and to later transfer that information over time to a server is an improved arrangement.


The problem is exacerbated when fleet ‘turn-around time’ is short; for example, in a taxi or police fleet where the vehicles are used on multiple shifts with various drivers. In this case, it is impossible for the server to download data from one vehicle at a time in a serial operation as the vehicle in the download queue will tend to be ready for return to service before their download operation may be completed.


An alternative system architecture configuration is herein presented in conjunction with FIG. 3. This configuration includes a dedicated workstation computer co-located at or near the facility where vehicles are stored. The dedicated workstation computer includes specialized data management services and provides: fast download, store and forward functions, scheduling, authorization administration, among others. In some cases it is preferable to include a very high speed downloading service on site at the parking facility. This is particularly the case when many vehicles arrive simultaneously at a shift change for instance. Since not all broadband connections to the Internet are sufficient for quick transfer of very large quantities of data, in some cases it will require a workstation computer configured: for authorization and authentication processes; further to receive at very high speeds, information including video data from arriving vehicles; for buffer storage of that data; for data queue management and for further transfer to a centralized server at a later time.


Accordingly, FIG. 3 shows a server 31 well coupled with a mass storage database 32. By well coupled, it is meant that provision is made for fast and frequent, and efficient exchange of data. That's is, not only is the bandwidth very high, but the programming between code running on the server and code running in the database are well tuned with respect to the application at hand and formed in conjunction with one another. The server is connected via the Internet to workstation ‘store and forward’ buffer computer 33, which is co-located with the parking facility where fleets vehicles are stored. The workstation computer is in communication with the WiFi wireless transmitter via very high speed communications link 34 which provides communications space 35 into which arriving vehicles 36 may be received. It is possible to complete such a download in a very short period of time. Data is passed wirelessly from a vehicle event recording unit to the WiFi transmitter, and thereafter to the workstation computer. Data is temporarily stored at the workstation computer. The data is later transmitted into the Internet 37, then over modest bandwidth private link 38, and finally arrives at the server 31 and database 32. This server exposes web services and web applications to a wide audience 39 which may consume these from anywhere where Internet access is available. In this way, data collected by fleet vehicles is made available to widely distributed interested parties.


The premise of these inventions lies in fleet vehicle management strategy. As such, one system endpoint is a vehicle event recorder which is suitably affixed and mounted within a common vehicle especially an automobile. These devices may be a permanently affixed within vehicles and will soon be provided as manufacture standard equipment. Electrical couplings such as power supply and data connections with the vehicles electronic systems may be made through standard connectors and interfaces. These devices are thus coupled to the vehicle and its systems. They are further coupled to the vehicle whereby an optic axis of a camera is aligned to provide images of events occurring about the vehicle. In some versions a second camera has a field-of-view includes the space which contains the vehicle operator. A single vehicle event recorder may be provided with a plurality of cameras and corresponding number of image spaces. Thus some vehicle recorder units contain two cameras, one pointing forward and one pointing toward the operator spaces.


These devices are sometimes arranged to be completely self-contained and require as little mechanical connection with vehicle systems as possible. For example, it is necessary to have a good mount which provides that the optical axis be aligned with desired fields of view, however, it is not a requirement that the device be integrated with a vehicle computer, or other vehicle hardware.


It is useful at this point to present a head portion of a vehicle event recorder system in further detail with specific reference to FIG. 4. FIG. 4 illustrates a vehicle event recorder head 41 in block diagram. The primary elements from which it is comprised includes: a microprocessor 42 including application specific computer code; an electronic video camera 43; event triggers 44; a memory buffer system 45; a connection manager 46; radio communications system 47. In some versions, an on-board databus, OBD, diagnostics system 48 is included. Such OBD systems are coupled to sensors at vehicle subsystems 49 such as lights, engine, brakes, steering, among others, to provide feedback as to the state of those systems which may yield further information in conjunction with video data relating to causes of events being recorded.


Vehicle event recorder systems are built about a microprocessor suitable for use in computing platforms for self-contained electronic apparatus. In most cases, these microprocessors are not arranged as general computing platforms, but rather with application specific firmware directed to particular functions at hand. These processors support the ability to perform application-specific functions and drive complementary subsystems such as memory, input/output ports, network connections, and video input, event triggers, among others.


Particularly worthy of mention among these functions includes ‘event handling’ where an event trigger causes execution of a computer routine whereby an image or image series collected by a camera is transferred from a temporary short-term buffer memory to a durable and lasting memory where it may be stored for a considerable period of time. Thus the microprocessor is responsive to an event trigger such as an accelerometer and prescribed threshold which detects abrupt movements and sets the microprocessor into action to transfer stored data from one memory to another.


Further, the microprocessors of vehicle event recorders are arranged to support wireless connections and data exchange with authorized networks. In particular, the microprocessor is coupled to a proximity trigger which is toggled whenever the vehicle event recorder enters a prescribed communications space. Upon detection of such proximity condition, the microprocessor attempts an authorization step whereby the identity of the network and vehicle event recorder are checked and verified.


If the vehicle event recorder is identified as one properly located within an authorized download space, the microprocessor continues with a data transfer or download step.


In a download step, information stored in the memory of the vehicle event recorder is transferred wirelessly to either a server or to a ‘store-and-forward’ workstation for later transmission into the broader systems network.


After a completed download, error checking and confirmation steps permit the microprocessor to complete the connection to proceed with a graceful disconnect operation.


The functions including: connection detection (sometimes herein: ‘proximity detection’), network address client, authorization, download, graceful disconnect among others, are sometimes arranged as part of a connection manager module.


An electronic video camera may be arranged such that it has a field-of-view which includes an environment about a vehicle. For example, the forward space ahead of a car is an area generally of great importance in consideration of accidents which occur from time-to-time. The camera is further coupled to the microprocessor and image buffer such that images captured by the camera may be discarded where it is determined that those images are no longer of any importance, or in the opposing case, saved to a durable memory where it is determined the images are associated with an important event.


These video cameras are arranged to continuously capture video images both before and after an accident, should one occur. Thus the cameras are durable and fixed mechanically in a vehicle such that they can survive the impact associated with a very stiff collision. While in most cases it is anticipated the camera will be affixed within the driving compartment, it is noted here that an alternative possibility includes mounting cameras on the exterior the vehicle for examples, at a rooftop or coupled with a bumper. The camera is in electronic communication with the microprocessor whereby the microprocessor operates to drive camera functions.


Event triggers include means of sensing an important event and in response thereto activating the microprocessor to perform save operations preserving images associated with the detected important event. Event triggers may be arranged about various systems including for example an on-board databus, accelerometers, a panic button, or a time interval trigger. An onboard data bus may be arranged as an event trigger when some measured parameter exceeds a prescribed threshold to indicate the occurrence of some condition. When the threshold is exceeded, an electronic signal can be provided to the microprocessor queuing it to handle images accordingly. Alternatively, accelerometers can detect very strong movements such as a car swerving or breaking excessively hard or indeed, a direct collision. In these cases, the events may be declared important and the accelerometer provides the signal upon which the microprocessor acts to preserve images recently captured and those captured soon thereafter the event.


A ‘panic button’ type event trigger may be arranged as a tactile switch which a user can engage when a user makes a judgment that an event has occurred. When a driver sees some important activity, she can engage the panic button to cause an image save operation. An event trigger may be as simple as a mere timed interval. After a certain period of time has elapsed, an image save operation can be executed. In this case, the mere passage of time causes a signal, which sets the microprocessor into action to save images.


Vehicle event recorders of these inventions include important memory systems. Preferred memory systems include those having a managed loop buffer where images are temporarily stored for brief periods of time. In the case of an event trigger toggle image are transferred to a second more durable memory, from the managed loop buffer thus preserving images associated with the event. In some versions, the managed loop buffer is embodied as a semiconductor memory such as a DRAM memory, which is quite fast and may be written to many millions of times without exhausting its functionality. In the same system, the durable memory may be fashioned from a flash memory system suitable for holding large amounts of data including video type data. Said flash memories are very inexpensive and have suitable capacity for holding video information associated with a large plurality of separate events, which may occur throughout the service day of a vehicle event recorder.


Wireless communications radios in wide use today including those known as WiFi transceivers. A WiFi transceiver is very inexpensive radio, which generally includes network functions such as network address handling services, router services, firewall services, and network switching among others. Thus it is a great advantage in these systems to deploy WiFi type transceivers such that a vehicle entering a parking facility can be automatically connected to a cooperating network.


New, soon to be introduced, systems boast far greater range than those WiFi systems; thus it is expected that so-called “WiMax” systems will have range of a few—to perhaps tens of miles. It is quite useful in some embodiments to arrange WiMax transceivers in conjunction with a parking facility in a vehicle event recorder system. In either case, a wireless communications transceiver has finite and limited range, which give rise to a coverage region or communications space and some implicit peripheral boundary. While we use herein these examples WiFi and WiMax systems, it will be recognized by the reader that many useful alternative wireless systems exist. Some which might be used in place of a WiFi or WiMax system. We choose WiFi and WiMax because it is expected that they will have quite sufficient performance characteristics and very low-cost.


In addition to these important subsystems, the vehicle on-board databus system or OBD is also coupled to the vehicle event recorder microprocessor. An on-board databus, is an electronic system coupled to a plurality of transducers and sensors throughout the vehicle which each collect data relating to vehicle characteristics and performance. The on-board databus may include information about drive train and transmission, engine operational status, brakes, lights, et cetera. The on-board databus is useful in vehicle event recorders for providing additional data and information which relates to the status of a vehicle, subsystems and its engine conditions at a particular time of interest, for example in association with a traffic accident.


Further details relating to minority subsystems of vehicle data recorders include additional elements which may be optional. Some of the most important of these are illustrated in the block diagram of FIG. 5 alongside with the major elements. A data recorder unit 51, comprises a computer microprocessor 52 with appropriate vehicle event recording management programming installed. Two cameras 53 including a forward-looking camera and microphone 54 and a driver compartment camera and microphone. An advanced high performance memory system 55 including a two-stage buffer of managed loop memory 56 and flash memory 57 is provided in agreement with particular attributes and the nature of these systems and applications. A radio 58 provides a wireless communications link in conjunction with a connection manager 59 which couples the microprocessor to systems external with regard to the vehicle event recorder head. An internal web server module 510 runs within the device to provide an hypertext transfer protocol interface whereby internal adjustments to subsystems may be effected via remote web browsers. Some versions include a position determining means 511 such as a global position system GPS locator. Other sensors and transducers 512 may be deployed about a vehicle to measure parameters relating to vehicle performance independent of those transducers already a part of the on-board databus system. In addition, data collected from an on-board databus directly coupled to the microprocessor provides similar functionality. A graphical user interface 514 provides a visual means of conveying messages and information to a human operator. A user tactile input means 515 such as a keypad may also drive activity within the vehicle data recorder head. Event triggers including accelerometers 516 and panic button 517 are arranged to indicate to the microprocessor the occurrence of an important instant and need to preserve images associated therewith. Finally, an internal illumination system 519 is provided for nighttime use.


In some versions, a forward-looking camera and exterior microphone are arranged to record video and audio information outside the vehicle compartment. Conversely, a vehicle event recorder system may additionally deploy a second camera as a vehicle driver compartment video camera and second microphone as an interior microphone arranged to record video and audio inside the driver compartment. Thus it is said here that vehicle event recorders include at least one camera; but may include any number of auxiliary cameras and microphones.


In some special versions, a vehicle event recorder may be provided with a very large capacity memory system such as a disk drive unit. A so-called ‘microdrive’ can be arranged as a very small memory system capable of recording video data over extended periods. All driving activity throughout a service today, including service days with no accidents, may be of interest in some system versions. Thus in the present systems, a recorder is started in the morning at the beginning of the service day, and operates continuously delivering data to the memory until the end of the service day when the vehicles are returned to the storage facility. All recorded data including non-accident or non-event related data is put into memory and downloaded at the end of the day. In this way, the vehicle event recorders of these inventions omit completely accident triggers which manipulate data storage systems to prevent overwrite of memory.


In other special versions of vehicle event recorders, a computer module known as a ‘web server’ may be included. So equipped, a vehicle event recorder having established a communications connection may be addressed and manipulated by way of a common computer Internet browser. Thus a vehicle event recorder present in a communications space may be ‘browsed’ by remotely located systems operators. It is possible in this way to reset or to otherwise manipulate various adjustable settings which may be within the vehicle event recorder. It is not necessary to physically access the vehicle event recorder with a screwdriver for example, in order to change the brightness or contrast of the video system. Instead, an operator located in India may adjust the brightness of a particular vehicle after noticing problems in a video analysis operation being taken up far from the vehicle location. While updated firmware downloads can provide the same function, a web browser provides a highly functional user interface front end which is easily operated by anyone who can operate a computer.


A recorder unit may be equipped with the GPS receiving system 510. At all times, a GPS receiving system can provide a position signal to the microprocessor for recording. Position determination results can be recorded by these versions of vehicle event recorders to associate measured location with accident video. Further, the system sometimes includes an electronic compass device. An electronic compass can measure the direction of a reference axis associated with the vehicle. Thus one can tell precisely in which direction the vehicle is pointing at various recording intervals and this information can be similarly recorded.


It is also possible to incorporate other transducers, which are coupled to the vehicle in some way to measure physical parameters of the vehicle or its environment. These transducers might be coupled to the processor directly and connected to one or another vehicle subsystem. For example, a drive shaft pickup might include a magnet which the detects every turn of the drive shaft. This information could yield indications as to vehicle speed which are important in the accident review circumstances.


Some versions of these vehicle event recorders include a graphical user interface in the form of a display unit. The display unit is suitable for converting electronic signals provided by the microprocessor to graphical messages which are easy to read and understand by human users. After properly logging in, a driver may receive a message reminder to “drive safely” on such displays


A tactilely operated keypad is provided in some versions in order to allow users to provide inputs to the microprocessors. Where fleet vehicles are shared by several drivers, it is useful to provide means for a driver to identify herself to a system by way of a touchpad code or PIN number. As such, some preferred vehicle event recorders are sometimes provided with such keypad input devices suitable for these functions.


For nighttime use, or in other no or low light level conditions such as when the vehicle enters a tunnel, these vehicle event recorder units may include an integrated IR illumination system 519. The illumination system provides illumination in the driver compartment which does not distract the driver. Infrared light is detected by the video camera but cannot be seen by the driver. Accordingly, the infrared light does not distract the driver.


In some circumstances, wireless mobile phone networks may also be used for the communication link in special versions of these systems. In this regard, the wireless communications space boundaries are defined by the extent of the cellular network coverage. Since mobile phone network systems are presently quite mature, the coverage area attainable is considerable. Accordingly, vehicle event recording systems arranged in this fashion have a wireless communications space of considerable extent—perhaps covering many tens or even hundreds of square miles.


While such schemes could not include high-resolution, live video. It would account for transmission of video frames selected from a series. For example, while recording locally at a rate which far exceeds one frame per second, one could transmit at that limited rate over the limited bandwidth wireless telephone network. Thus, the system could convey image information albeit in limited quantity, resolution or rate.


In systems deploying a mobile telephone network as a communication link, the ‘proximity trigger’ described above becomes somewhat ambiguous. This is due to the fact that the vehicle rarely leaves and reenters communications space and may remain continuously therein during the entire service day. Recall that in systems presented above, a vehicle's entry of the download space is the trigger which causes a download action. Accordingly, such triggers are ineffective, when mobile telephone networks are used as the communications link


It is also useful to consider the opposing node of these networked vehicle event recorder systems in greater detail. The portion of these network systems which includes the server and data consumer clients. In particular, we consider a server computer 61, which communicates by way of the Internet with a plurality of prescribed and authorized member entities. While data is received from vehicle event recorders along paths 62, from remote recorder units as explained in great detail of sections prior, equal attention in now directed to how such collected data is distributed, analyzed and consumed.


Recorded information which bares indication and history as to the use and abuse of vehicles is important to a great number of interested parties. For example, a fleet administrator/manager keeps track of vehicles and drivers to which he manages with regard to not only maintenance and safety, but also with respect to scheduling, loss prevention, among others.


A fleet administrator/manager working from a workstation 64 located in any part of the world, can interact with web applications served by the server to manipulate and examine data recorded by any of the vehicles in her fleet. Web servers can be arranged to provide a fleet manager access to vehicles under her specific management only and to restrict access to the information collected by vehicles under the management by an independent entity. Thus a single server can be used by completely independent entities, who manage fleet vehicles. No other system heretofore known in the arts, has a single server which can receive information from various vehicles belonging to various fleet's, sort that information accordingly, and restrict its access to the appropriate authorized parties. Thus, a municipality, vehicle maintenance department can subscribe to the service by way of the Internet in parallel with the fleet manager of a private fleet operation. While the two users know nothing of the other, they share a common server, database and service provider thereby reducing costs for all.


The server/service provider might include high security level administrative workstation 65, which has a direct private connection and special credentials to the server. A service administrator, requiring high-level administrative privileges to the server may be connected on the inside of a strong firewall. Such administrative node is not appropriately exposed over the Internet for security reasons.


Applications consumers 66-69, include network nodes which communicate with the server by way of its applications and services. Special applications may be configured for various particular users or data consumers. Several of these special purpose applications are illustrated herefollowing.


Insurance adjustors and underwriters use advanced data analysis to better position themselves with regard to risk management. Presently, reports and statistical analysis available to insurance adjustors and underwriters are largely compiled in manual processes. When insurance adjusters and underwriters deploy and use the systems proposed here, they have immediate access from their remote offices to detailed current data from vehicles insured by their companies. This data can be accessed directly from the server having an application host running a special insurance application configured to serve the precise information that insurance underwriters and adjustors need. Some information relating to vehicle use remains private with respect to the vehicle's owner and driver, however, by agreement with insurance companies, a vehicle owner may decide to make available and submit particular information in consideration for preferred insurance rates. In this case, the server of these systems provides an application, addressable by insurance underwriters, to serve information so insurance companies can more perfectly manage risk.


In addition, insurance underwriters will find a profound undeclared advantage to use of these systems. The mere presence of a vehicle event recorder system has a very strong effect on drivers wishing to keep their jobs. Mere knowledge that a detailed video record will be available to fleet managers in case of incident, keeps drivers on their very best behavior. Thus even placebo systems arranged to appear functional but are in fact totally inoperable will provide insurance underwriters with great advantage. However, where a fully operable system is deployed, insurance underwriters will be in far better position to more precisely manage risk.


An insurance company workstation computer 66 connected to the Internet can communicate with the server computer and consume the web services and applications that are provided specifically to insurance companies. Thus the server is arranged with particular web applications that insurance companies can use to monitor the vehicles which are insured by them. In this way, insurance companies can mitigate their exposure to high risks vehicles and situations. An insurance company can maintain constant monitoring for changes which might affect their position and they can stay highly responsive thereto. Such very high access to current information will be a powerful tool for insurance underwriters to deploy in advanced risk management strategies. Previous to systems taught in these inventions, insurance companies have only access to vehicle history records by way of a states authority and clients reporting and history.


While it is anticipated that the considerable expense associated with fleet vehicle operation relating to insurance may be greatly reduced in view of the above applications, there remain many very important applications which will serve other entities or interested parties. These applications served at common server having access to very detailed and current data which is otherwise unavailable in nonnetwork systems.


These systems further enable yet another important management application yielding advantages not to fleet vehicles themselves, but rather the roadways upon which they operate. Data collected by these systems particularly includes information about traffic accidents. Therefore, computing systems can be set up whereby a threshold can be triggered such that it indicates a dangerous condition. For example if several accidents happen within a short period of time at the same place, this condition may be indicative of faulty roadway equipment such as a malfunctioning traffic light. In such cases, when the threshold is passed, these computing systems can be arranged to send a special e-mail notice to roadway engineers notifying them of the dangerous condition. Workstations 67 used by road safety engineers have access to e-mail and the Internet and may be further in connected to systems presented here. Thus, road safety engineers might look to web applications served by these inventions to provide that information sorted in accordance with some particular road safety issue. For example, if there are fifteen automobile crashes at Fifth and Elm street in the month of July, the server can trigger a message and send it to a road safety engineer. It may be the case that some condition has changed at the intersection unbeknownst to the authorities. The message could put the road engineer on alert that something has happened and the intersection has become dangerous. For example, a huge pothole maybe causing cars to swerve just at the moment when drivers need to pay attention to properly negotiate oncoming traffic in the intersection.


Another example of how road service engineers might use the system includes the following. To determine the safe speed of a road some municipalities set a threshold indicator. For example, it can be said that 85% of drivers drive at or below the “safe speed”. In this regard the system which keeps track of vehicle locations and the speed at which they drive to compile information for any particular road stretch and determine what is the safe speed per that section of road. Road safety engineers can use this information to provide proper signage and road construction elements such as guard rails, indicators, warnings, et cetera. Some versions can be completely automated and left unattended by any human operators. The computer can monitor roadway conditions without input from anyone, and provide appropriate notice when a certain condition is met. Such highly automated systems can prove extremely valuable for general public safety.


Another important application enabled by these systems relates to state authorities ‘Departments of Motor Vehicles’. Motor vehicle departments managed by the state sometimes include record keeping relating to traffic accidents. Further, these departments tend to track and keep records relating to driver's performance.


Since the systems disclosed herein provide highly effective data capture function, and further provide ready and easy access to such data, is now quite possible to couple a Department of Motor Vehicles data systems directly to these data capture and management systems. This is done via a server applications host running a special program configured and designed with a view to serving department of motor vehicles with particular types of data required by them. With vehicle event recorder systems arranged as described here, it is now possible for a driver to be involved in a collision at 10 o'clock in the morning, and a video record be made available at the Department of Motor Vehicles by 10:02 (or before). The efficiency and advantages of such systems should not be underestimated. When a vehicle event recorder is coupled to remote servers as described, and where-such remote servers provide need-specific web applications to interested parties, very valuable data handling processes are enabled.


Other workstations 68, similarly having access to the Internet can be used by other particular users requesting information sorted and arranged for their specific application. These may include such entities like leasing companies who tend to own vehicles and lease them to another company. It may be a condition of the lease that the vehicles are used in a safe and proper manner. However, monitoring such condition is otherwise nearly impossible. A leasing company with access to information provided by these servers through their web applications can easily check up on the vehicles it owns.


Among the most important applications are those which relate to vehicle fleet management and administration. Scheduling functions, tracking systems, maintenance operations, et cetera, can be organized and provided via well-prepared computer programs whereby a human fleet administrator/manager can read and manipulate data in support of this functionality. Thus, a large fleet of vehicles being operated in southern California may be maintained and organized by a fleet manager in New York City. With systems of these inventions, it is no longer the case that the fleet manager has to be effectively in the same location as vehicles. This is made possible because the systems include highly efficient information capture and sorting provided automatically and directly from fleet vehicles to a remote server which may be addressed by fleet administrator/managers from anywhere.


Maintenance workers might use a particular web application which compiles information relating to wear and tear on the vehicle. Oil changes, tire rotation, wheel alignment, and other general maintenance actions should be performed in view of conditions which can be managed and detected by the server. It is within very common practice that oil should be changed every 3000 miles. However, this rule of thumb does not reflect very accurately the conditions upon which oil should really be changed. Oil suffers degradation from many factors, and particularly from excessive heat and high ‘rpm’. So the system could set some oil change guidance based on detailed use of the vehicle rather than a simple mileage scheme. If the car runs with high revolutions on many hot days, the oil may need a change before 3000 miles. Conversely, if the car is gently driven with low engine stress on mildly cool days, it may not be necessary to change the oil until 4500 miles. Of course, oil changes is a very simplistic example, but is provided here to show that web applications can be used for more accurate guidance in the maintenance of vehicles. Data collected throughout the vehicle service day, recorded and stored, later transmitted to the server, and properly sorted and analyzed by a web application, can be read by a maintenance engineer in used more properly keep the vehicle in good condition. While fleet management is a primary important application, it will be clear from the following sections that other interested parties have a similarly important stake in fleet vehicle data management systems first presented here.


Another very important application relates to teenage use of vehicles. Systems are provided for use by families including new drivers, generally teenagers learning to drive. Teenagers account for disproportionately large percentage of vehicle accidents—including those vehicle accidents which result in death. However, when young new drivers know that they're being watched and other actions will be recorded, and they will be held accountable, they tend to make better decisions while driving. Thus parents might be premium subscribers to the service which will benefit them by protecting their children from themselves. Special applications can be prepared and served by an applications host whereby parents can inquire as to the activity associated with the use of vehicles by their teenagers. In this way, families can benefit from review of detailed vehicle use information including video data easily accessible from the privacy of one's own home by way of an Internet server arranged in accordance with these inventions.


While previous figures and description present in great detail the essence of these inventions, another view lend an even greater understanding. FIG. 7 presents a block diagram which corresponds to the very important concepts of independent web applications and services provided at a server. In review, the reader is reminded that a connection space 71 is associated with a parking facility 72, such as a common parking lot whereby the parking lot is enveloped by the space in which a reliable communications connection can be made via wireless radio 73. Further, a broadband connection 74, to the Internet couples the communications space to the system server whereby video data collected at various vehicle event recorders may be transferred to the server.


A server computer is arranged to provide computer services including, but not limited to, general computational service, database service, e-mail service, web applications service, among others. For purposes of these inventions, a primary function of the server lies within an applications host. An applications host may be arranged as a web server under which a great plurality of independent applications 75, or interdependent applications are executed and served to clients 76 via TCP/IP or other suitable protocols 77. By way of example, the applications host of the server can be deployed as a Microsoft Internet Information Services IIS system. In conjunction with IIS, the Microsoft Net technologies including the .NET framework and ASP.NET are suitable for providing the web applications and web services described here.


In a first example, a special application 78 is provided to perform download operations. When a vehicle enters a communications space to toggle a proximity trigger, a service module within the vehicle event recorder makes appropriate calls to the server, and more specifically the applications host, and still further the special download application. The download application responds to these calls by executing operations which permit the vehicle event recorder to transfer data to the server for further processing. Thus, one application of an applications host includes a module to communicate and executed transfers with various vehicle event recorders. Other applications, which belong to the same applications host may operate independently of the download module. Further these other applications may be designed to be addressed by applications clients which are not vehicle event recorders, but rather other entities or interested parties.


Thus, the system server includes computer code programming modules in the form of various web applications; these web applications each having access to data downloaded from vehicle event recorders. Web applications consumers or web “applications clients” connect to and communicate with these web applications by way of Internet protocol or TCP/IP by way of example. These web applications, each perhaps independent of any other, provide information exchange function with these applications clients.


These systems include application-specific software suitable for fashioning network communications as ‘web request’ actions and transmitting those web requests to the server whose network address is known a priori to vehicle event recorder systems. Web requests directed to a specific URL (uniform resource locater—or ‘internet address’) may be transmitted from the microprocessor of a vehicle event recording unit. These web requests include web requests directed to specific services which may be provided at a system server. Services available may include, software upgrades, registry updates, scheduling information, as well as data download operations. Thus, a vehicle event recorder having collected data all through its service day, is in a condition to download its data once it enters a suitable download or communications space and receives its network address assignment to enable communications with the prescribed servers. Servers are ‘known’ to vehicle event recorder units because it's computer is programmed with a predetermined server network address or means of obtaining same dynamically. Further, a vehicle recorder unit computer is programmed to form appropriately designed web requests such that the recorder unit can properly interact with the web applications and services provided by the server via the applications host.


In preferred versions, the vehicle event recorder unit includes special programming, which anticipates available web services. Such programming is suitable for making action requests of the server and is operable for digesting returned responses also formed in a particular format. Thus the vehicle event recorder unit is specifically programmed with prior knowledge of services available at the server. In this way, vehicle event recorders cooperate together with established proprietary servers.


Some web services provided by servers are not generic and these services could not be consumed by other computer clients not having prior knowledge of the available services and the proprietary interfaces or formats which responses are returned. Thus the server is a specially configured to communicate with the vehicle event recorders.


The server is also configured whereby it can run self contained local applications 79 which may be directed to data analysis and statistical services to operate on collected data without interaction of outside parties.


Another module of the server includes an e-mail server 710 system which can be arranged to respond to special conditions and events occurring in related applications 711 whereby it can send e-mail messages into the Internet.



FIG. 8 presents further description relating to server 81 applications and applications host in accordance with vehicle event recorder systems of these inventions. A communications space 82, which supports wireless downloads from vehicles having captured video data is coupled to a remotely located server by way of communication path 83 which may include the Internet. The communications space is directly coupled to a particular web application 84 arranged specifically for communication with vehicle event recorders whereby it is operable for downloading data collected thereby. The application may be called by vehicle event recorders by way of a particular and specific network address or URL. Other applications clients such as those described above, may be fashioned as ‘read-only’ clients 85 whereby the server provides data for analysis and consumption by interested parties, but those clients do not provide data to the server. These clients each communicate with the applications host, by way of various paths 86, which may include unique URLs to appropriately direct communications traffic to the various particular applications 87. An entirely different type of application/service, herein known as a ‘push’ type service 88 conversely is arranged to provide information to the server. Information from a push service is transmitted by way of the Internet, via explicit URLs or other routing protocol to particular applications 89 arranged to receive information.


Push services may provide information to applications which process this information and respond thereto by amending are augmenting certain records maintained by the entire system. For example, information from weather reporting agencies may be transmitted to these applications. The applications then sort and process the weather information, taking important pertinent parts, i.e., weather conditions in certain areas at a certain time may be associated with a particular accident recorded by a vehicle event recorder.


Other push services may include those which contain information from vehicle manufacturers which can include updates relating to particular model vehicles which may be part of vehicle fleet. In response to receiving such information, managers can alter the way they use and deploy these vehicles. Vehicle recall information may be transmitted which permits a fleet manager to respond by applying an appropriate fix as part of an automated maintenance program.



FIG. 9 includes push services of two different types arranged with various network connections. A system server 91, including specially designed applications 92 in communication with various interested party applications clients 93 also includes specially arranged application 94 which receives information from push service 95. In addition to this arrangement, other applications 96 are configured to communicate with push services whereby they may receive information over the Internet while at the same time these push services can provide information directly to vehicle event recorders over communications path 98. That is to say, these systems anticipate not only push services which are in communication directly with the server applications host, but also at the same time push services being in communication directly with vehicle event recorders head units without first passing through any application at the server.


A very important principle of these vehicle event recorder systems includes the arrangement where a single server provides management and service to a plurality of independent fleets.


It is anticipated that totally independent fleets of vehicles managed by separate entities will share a single server having a common applications host. While fleet members logon with separate identities, the separate fleets may logon to the same applications host which is provided with powerful membership management facility to maintain separation between various fleets and associated data received therefrom members of the fleet.


A first fleet has a particular associated communications space 100 served by wireless radio 101 to communicate with fleet members 102 and 103. A vehicle event recorder 104 deployed within the fleet member includes connection manager 105. Connection manager includes computer programming code to properly identify and authenticate the vehicle as a member of a particular fleet when in communication with the centralized server 106. A separate fleet may include as a member truck vehicle 107, in separate communications space 108 which is physically removed from communications space 100. Should the vehicle 109 from the first fleet enter the communications space associated with another fleet, the condition may be designated as a non-authorized condition. In this case, communications and downloads would be prevented. Thus vehicle event recorders of these inventions include connections managers appropriately suited to manage membership operations and distinguish between vehicles of particular fleets and communication spaces designated for authorized download operations.



FIG. 11 illustrates an important consideration with regard to communications spaces and their full extent and the networks which may exist within a single communications space. While it is anticipated that high-powered WiMax wireless communications transceivers will soon be widely available and provide for very large communications spaces, until that time other provision is suggested here.


Since the size of typical vehicle fleets commonly in use today may exceed hundreds of vehicles, it is sometimes necessary to arrange a special communications space which is quite significant in extent. In these cases, it is impossible to serve a communications space which could accommodate the entire fleet of hundreds of vehicles with a single radio transmitter of the WiFi type as these transmitters have limited range not compatible with such parking facilities which accommodate large fleets. Accordingly, it is herein taught that a single parking facility of large extent can be served by a plurality of WiFi transmitters networked together. FIG. 11 shows a remote server 111, including database 112, applications host 113, and at least one web application 114 coupled by the Internet and further to extended communications space 115. Communications space 115 is comprised of a plurality of individual communications spaces 116 spatially removed but overlapping one another to operate in conjunction with each other to service an extended and large parking facility 117.



FIG. 12 pictorially illustrates a very important concept herein presented as the proximity trigger. An important event happens whenever a vehicle enters a communications space. Merely by entering the communications space and piercing the envelope of the radio transceiver range boundary, the vehicle causes the proximity trigger to be toggled. A server 121 is in broadband communication 122 with radio transceiver 123 serving communications space 124. Moving vehicle 125 passes from outside of the communications space to the interior of same communications space to cause proximity trigger 126 to fire. Upon detection of proximity trigger being toggled vehicle event recorder 127 equipped with connection manager 128 responds by providing handshaking and authentication with radio transceiver and further performs a download function where data is passed to the remote server in direct response to the vehicle entering the download space.


Thus it is an important aspect of these inventions that the actions of vehicles themselves trigger and cause network responses without intervention of human operators. The arrangement of these systems provides an automated means of passing video data collected in vehicle event recorders to remotely located servers for further processing.


While some wireless communications systems such as WiFi and WiMax systems tend to have exceptional bandwidth, wireless telephone networks do not. Since vehicle event recording systems tend to capture data in extremely large amounts, wireless telephone networks are sometime not suitable for this application. However, special systems can be arranged whereby only a select or ‘abbreviated’ dataset is passed over the wireless telephone network.


It is easy to appreciate that some important types of data are well-suited for transmission over low bandwidth communications links but with a very large coverage areas. It is readily accepted that transmission of high-resolution, live video is presently prohibitively difficult. On the other hand, where a system is devised such that an abbreviated set of video images were occasionally transmitted, then the wireless telephone network may serve as a communications link sufficiently well in these systems.


In a first illustrative example, it is suggested that an event recorder duly writes data to a local storage in accordance with operation explained herein. This data, extremely large in quantity is suitable for local storage but not for transmission over bandwidth limited wireless telephone type networks. Data written to the local storage could be subject to a download action when the vehicle returns for high-bandwidth communications link. However, while connected via a wireless telephone communications network, the system can be arranged to transmit bandwidth limited subsets of data including select video frames.


Certain limited non-video data recorded by the system may be suitable for continuous transmission. Non-video data can be very small in size and easily transmitted over low bandwidth communications links. For example, a numeric, position-only measurement data may result in a dataset quite small and easily transmitted via a mobile phone network. Thus, a vehicle event recorder system which captures a position measurement can be arranged to transmit that information over the bandwidth limited communications link into the system network.


An abbreviated video sequence may include one which is most important as detected by some preset mechanism. For example, an ‘impact detector’ might trigger a transmission of a limited amount of video data, for example three seconds of video prior to the impact and up to three seconds after the impact. This limited dataset might not be transmitted in real-time, however, it can be transmitted in a reasonable time and passed to the server while a vehicle is still in the field.


Systems arranged to download data as described, i.e. in limited datasets, may be deployed with mobile telephone networks as a communications link. In such cases, an alternative trigger system is used in conjunction therewith these arrangements to effect an alternative version.


In a very special case where fleet vehicles never rest or ‘park’; we consider a download station as one in which a vehicle merely enters, performs a download and then leaves without a full parking; stopping or storage action.


The examples above are directed to specific embodiments which illustrate preferred versions of devices and alternative configuration is presented in FIG. 3 methods of these inventions. In the interests of completeness, a more general description of devices and the elements of which they are comprised as well as methods and the steps of which they are comprised is presented herefollowing.


One will now fully appreciate how vehicle event recorder systems may be deploy in highly efficient network arrangements having automatic download and updating facility. Although the present inventions have been described in considerable detail with clear and concise language and with reference to certain preferred versions thereof including best modes anticipated by the inventors, other versions are possible. Therefore, the spirit and scope of the invention should not be limited by the description of the preferred versions contained therein, but rather by the claims appended hereto.

Claims
  • 1. A vehicle fleet management system comprising: vehicle event recorder units coupled with vehicles, the vehicle event recording units being wirelessly coupled to a network and being configured to communicate via the network, the vehicle event recorder units including one or more vehicle sensors and video recording equipment, the one or more vehicle sensors being configured to detect vehicle events while the vehicles are operating, the vehicle events being related to the operation of the vehicles, wherein individual ones of the vehicle event recorder units are configured to: responsive to detection of the vehicle events, generate vehicle event information, the vehicle event information including video information and operation information, the video information being captured by the video recording equipment from an environment about the vehicles, the operation information being conveyed by output signals generated by the one or more vehicle sensors during the vehicle events; anda server, the server being coupled to the network, the server being configured to: receive and electronically store the vehicle event information;receive external information, the external information describing external conditions present during the vehicle event from one or more external computing systems;associate the external information with the vehicle event information;determine a frequency of the vehicle events that are detected for a particular section of a roadway, wherein the determination is based on the vehicle event information;generate a roadway-specific safety indicator based on the determined frequency of the vehicle events and the external information, the roadway-specific safety indicator conveying safety information of the roadway travelled during the vehicle events, and wherein the safety indicator represents an indication of safety of the particular section of the roadway; andfacilitate presentation of the vehicle event information, the external information, and the roadway-specific safety indicator to an end user for analysis by the end user via a remote computing system associated with the end user to facilitate analysis of the vehicle events by the end user.
  • 2. The vehicle fleet management system of claim 1, wherein the server is configured to receive the vehicle event information from an individual one of the one or more vehicle sensors associated with a vehicle on-board databus system.
  • 3. The vehicle fleet management system of claim 1, wherein the server is configured to receive the vehicle event information from environmental sensors of the vehicle event recorder units that include one or more of an audio microphone, an accelerometer, a location sensor, or a panic button.
  • 4. The vehicle fleet management system of claim 1, wherein the server is configured to facilitate presentation of one or more of the vehicle event information, the external information, or the roadway-specific safety indicator to the end user for analysis responsive to a request from the remote computing system associated with the end user.
  • 5. The vehicle fleet management system of claim 1, wherein the server is configured to determine ambient weather conditions during the vehicle events, the ambient weather condition determination based on the vehicle event information and the external information.
  • 6. A vehicle fleet management system comprising: a first vehicle event recorder unit coupled with a first vehicle, the first vehicle event recorder unit including one or more vehicle sensors, the first vehicle event recorder unit being wirelessly coupled to a network and configured to communicate via network, the one or more vehicle sensors of the first vehicle event recorder unit being configured to detect a first vehicle event related to operation of the first vehicle, the first vehicle event being detected at a first point in time while the first vehicle is operating, wherein the first vehicle event recorder unit is further configured to: responsive to detection of the first vehicle event, generate first vehicle event information, the first vehicle event information including information generated by the one or more vehicle sensors of the first vehicle event recorder unit during the first vehicle event, wherein the first vehicle event information further includes information related to a particular section of roadway travelled by the first vehicle during the first vehicle event;a second vehicle event recorder unit coupled with a second vehicle, the second vehicle event recorder unit including one or more vehicle sensors, the second vehicle event recorder unit being wirelessly coupled to the network and configured to communicate via the network, the one or more vehicle sensors of the second vehicle event recorder unit being configured to detect a second vehicle event related to operation of the second vehicle, the second vehicle event being detected at a second point in time while the second vehicle is operating, wherein the second vehicle event recorder unit is further configured to: responsive to detection of the second vehicle event, generate second vehicle event information, the second vehicle event information including information generated by the one or more vehicle sensors of the second vehicle event recorder unit during the second vehicle event, wherein the second vehicle event information further includes information related to the same particular section of the roadway travelled by the second vehicle during the second vehicle event; anda server, the server being coupled to the network, wherein the server is configured to: receive and electronically store the first vehicle event information;receive and electronically store the second vehicle event information;receive external information describing external conditions present during the first vehicle event and the second vehicle event from one or more external computing systems;associate the external information with the first vehicle event information and the second vehicle event information;generate a roadway-specific safety indicator based on the first vehicle event information, the second vehicle event information, and the external information, wherein the roadway-specific safety indicator is further based on a time period in which both the first vehicle event and the second vehicle event were detected, wherein the roadway-specific safety indicator conveys safety information of the particular section of the roadway travelled by the first vehicle during the first vehicle event and by the second vehicle during the second vehicle event, and wherein the roadway-specific safety indicator represents an indication of safety of the particular section of the roadway; andfacilitate presentation of the first vehicle event information, the second vehicle event information, the external information, and the roadway-specific safety indicator to an end user for analysis by the end user via a remote computing system associated with the end user to facilitate analysis of the first vehicle event and the second vehicle event by the end user.
  • 7. A vehicle fleet management system comprising: a first vehicle event recorder unit coupled with a first vehicle, the first vehicle event recorder unit including one or more vehicle sensors, the first vehicle event recorder unit being configured to communicate via a network, the one or more vehicle sensors of the first vehicle event recorder unit being configured to detect a first vehicle event related to operation of the first vehicle while the first vehicle is operating at or near a particular section of a roadway, wherein the first vehicle event recorder unit is further configured to: responsive to detection of the first vehicle event, generate first vehicle event information, the first vehicle event information including information related to the particular section of the roadway travelled by the first vehicle during the first vehicle event;a second vehicle event recorder unit coupled with a second vehicle, the second vehicle event recorder unit including one or more vehicle sensors, the second vehicle event recorder unit being configured to communicate via the network, the one or more vehicle sensors of the second vehicle event recorder unit being configured to detect a second vehicle event related to operation of the second vehicle while the second vehicle is operating at or near the same particular section of the roadway as the first vehicle during the first vehicle event, wherein the second vehicle event recorder unit is further configured to: responsive to detection of the second vehicle event, generate second vehicle event information, the second vehicle event information including information related to the same particular section of the roadway travelled by the second vehicle during the second vehicle event; anda server, the server being coupled to the network, wherein the server is configured to: receive the first vehicle event information;receive the second vehicle event information;receive external information describing external conditions present during the first vehicle event and the second vehicle event from one or more external computing systems;associate the external information with the first vehicle event information, the second vehicle event information, and the particular section of the roadway;generate a roadway-specific safety indicator for the particular section of the roadway, wherein the roadway-specific safety indicator is based on the first vehicle event information, the second vehicle event information, and on a duration of a period of time in which the first vehicle event and the second vehicle event were detected, wherein the roadway-specific safety indicator conveys safety information of the particular section of the roadway travelled (i) by the first vehicle during the first vehicle event, and(ii) by the second vehicle during the second vehicle event, and wherein the roadway-specific safety indicator represents a road safety issue regarding the particular section of the roadway; andfacilitate presentation of the first vehicle event information, the second vehicle event information, and the roadway-specific safety indicator to an end user for analysis by the end user via a remote computing system associated with the end user to facilitate analysis of the first vehicle event and the second vehicle event by the end user.
US Referenced Citations (976)
Number Name Date Kind
673203 Freund Apr 1901 A
673795 Hammer May 1901 A
673907 Johnson May 1901 A
676075 McDougall Jun 1901 A
679511 Richards Jul 1901 A
681036 Burg Aug 1901 A
681283 Waynick Aug 1901 A
681998 Swift Sep 1901 A
683155 Thompson Sep 1901 A
683214 Mansfield Sep 1901 A
684276 Lonergan Oct 1901 A
685082 Wood Oct 1901 A
685969 Campbell Nov 1901 A
686545 Selph Nov 1901 A
689849 Brown Dec 1901 A
691982 Sturgis Jan 1902 A
692834 Davis Feb 1902 A
694781 Prinz Mar 1902 A
2943141 Knight Jun 1960 A
3634866 Meyer Jan 1972 A
3781824 Caiati Dec 1973 A
3812287 Lemelson May 1974 A
3885090 Rosenbaum May 1975 A
3992656 Joy Nov 1976 A
4054752 Dennis Oct 1977 A
4072850 McGlynn Feb 1978 A
4258421 Juhasz Mar 1981 A
4271358 Schwarz Jun 1981 A
4276609 Patel Jun 1981 A
4280151 Tsunekawa Jul 1981 A
4281354 Conte Jul 1981 A
4401976 Stadelmayr Aug 1983 A
4409670 Herndon Oct 1983 A
4420773 Toyoda Dec 1983 A
4425097 Owens Jan 1984 A
4456931 Toyoda Jun 1984 A
4489351 d'Alayer de Costemore d'Arc Dec 1984 A
4496995 Colles Jan 1985 A
4500868 Tokitsu Feb 1985 A
4528547 Rodney Jul 1985 A
4533962 Decker Aug 1985 A
4558379 Huetter Dec 1985 A
4588267 Pastore May 1986 A
4593313 Nagasaki Jun 1986 A
4621335 Bluish Nov 1986 A
4625210 Sagl Nov 1986 A
4630110 Cotton Dec 1986 A
4632348 Keesling Dec 1986 A
4638289 Zottnik Jan 1987 A
4646241 Ratchford Feb 1987 A
4651143 Yamanaka Mar 1987 A
4671111 Lemelson Jun 1987 A
4718685 Kawabe Jan 1988 A
4754255 Sanders Jun 1988 A
4758888 Lapidot Jul 1988 A
4763745 Eto Aug 1988 A
4785474 Bernstein Nov 1988 A
4789904 Peterson Dec 1988 A
4794566 Richards Dec 1988 A
4804937 Barbiaux Feb 1989 A
4806931 Nelson Feb 1989 A
4807096 Skogler Feb 1989 A
4814896 Heitzman Mar 1989 A
4837628 Sasaki Jun 1989 A
4839631 Tsuji Jun 1989 A
4843463 Michetti Jun 1989 A
4843578 Wade Jun 1989 A
4853856 Hanway Aug 1989 A
4853859 Morita Aug 1989 A
4866616 Takeuchi Sep 1989 A
4876597 Roy Oct 1989 A
4883349 Mittelhaeuser Nov 1989 A
4896855 Furnish Jan 1990 A
4926331 Windle May 1990 A
4930742 Schofield Jun 1990 A
4936533 Adams Jun 1990 A
4939652 Steiner Jul 1990 A
4942464 Milatz Jul 1990 A
4945244 Castleman Jul 1990 A
4949186 Peterson Aug 1990 A
4980913 Skret Dec 1990 A
4987541 Levente Jan 1991 A
4992943 McCracken Feb 1991 A
4993068 Piosenka Feb 1991 A
4995086 Lilley Feb 1991 A
5012335 Cohodar Apr 1991 A
5027104 Reid Jun 1991 A
5046007 McCrery Sep 1991 A
5050166 Cantoni Sep 1991 A
5056056 Gustin Oct 1991 A
5057820 Markson Oct 1991 A
5096287 Kakinami Mar 1992 A
5100095 Haan Mar 1992 A
5111289 Lucas May 1992 A
5140434 Van Aug 1992 A
5140436 Blessinger Aug 1992 A
5140438 Blessinger Aug 1992 A
5144661 Shamosh Sep 1992 A
5178448 Adams Jan 1993 A
5185700 Bezos Feb 1993 A
5196938 Blessinger Mar 1993 A
5223844 Mansell Jun 1993 A
5224211 Roe Jun 1993 A
5262813 Scharton Nov 1993 A
5283433 Tsien Feb 1994 A
5294978 Katayama Mar 1994 A
5305214 Komatsu Apr 1994 A
5305216 Okura Apr 1994 A
5308247 Dyrdek May 1994 A
5309485 Chao May 1994 A
5311197 Sorden May 1994 A
5321753 Gritton Jun 1994 A
5327288 Wellington Jul 1994 A
5330149 Haan Jul 1994 A
5333759 Deering Aug 1994 A
5343527 Moore Aug 1994 A
5353023 Mitsugi Oct 1994 A
5361326 Aparicio Nov 1994 A
5387926 Bellan Feb 1995 A
5388045 Kamiya Feb 1995 A
5388208 Weingartner Feb 1995 A
5404330 Lee Apr 1995 A
5408330 Squicciarini Apr 1995 A
5422543 Weinberg Jun 1995 A
5430431 Nelson Jul 1995 A
5430432 Camhi Jul 1995 A
5435184 Pineroli Jul 1995 A
5445024 Riley Aug 1995 A
5445027 Zoerner Aug 1995 A
5446659 Yamawaki Aug 1995 A
5455625 Englander Oct 1995 A
5455716 Suman Oct 1995 A
5465079 Bouchard Nov 1995 A
5473729 Bryant Dec 1995 A
5477141 Naether Dec 1995 A
5495242 Kick Feb 1996 A
5495243 McKenna Feb 1996 A
5497419 Hill Mar 1996 A
5499182 Ousborne Mar 1996 A
5504482 Schreder Apr 1996 A
5505076 Parkman Apr 1996 A
5513011 Matsumoto Apr 1996 A
5515285 Garrett May 1996 A
5519260 Washington May 1996 A
5521633 Nakajima May 1996 A
5523811 Wada Jun 1996 A
5526269 Ishibashi Jun 1996 A
5530420 Tsuchiya Jun 1996 A
5532678 Kin Jul 1996 A
5537156 Katayama Jul 1996 A
5539454 Williams Jul 1996 A
5541590 Nishio Jul 1996 A
5544060 Fujii Aug 1996 A
5546191 Hibi Aug 1996 A
5546305 Kondo Aug 1996 A
5548273 Nicol Aug 1996 A
5552990 Ihara Sep 1996 A
5559496 Dubats Sep 1996 A
5568211 Bamford Oct 1996 A
5570087 Lemelson Oct 1996 A
5570127 Schmidt Oct 1996 A
5574424 Nguyen Nov 1996 A
5574443 Hsieh Nov 1996 A
D376571 Kokat Dec 1996 S
5581464 Woll Dec 1996 A
5586130 Doyle Dec 1996 A
5590948 Moreno Jan 1997 A
5596382 Bamford Jan 1997 A
5596647 Wakai Jan 1997 A
5600775 King Feb 1997 A
5608272 Tanguay Mar 1997 A
5610580 Lai Mar 1997 A
5612686 Takano Mar 1997 A
5631638 Kaspar May 1997 A
5638273 Coiner Jun 1997 A
5642106 Hancock Jun 1997 A
5646856 Kaesser Jul 1997 A
5652706 Morimoto Jul 1997 A
RE35590 Bezos Aug 1997 E
5654892 Fujii Aug 1997 A
5659355 Barron Aug 1997 A
5666120 Kline Sep 1997 A
5667176 Zamarripa Sep 1997 A
5669698 Veldman Sep 1997 A
5671451 Takahashi Sep 1997 A
5677979 Squicciarini Oct 1997 A
5680117 Arai Oct 1997 A
5680123 Lee Oct 1997 A
5686765 Washington Nov 1997 A
5686889 Hillis Nov 1997 A
5689442 Swanson Nov 1997 A
5696705 Zykan Dec 1997 A
5706362 Yabe Jan 1998 A
5706909 Bevins Jan 1998 A
5712679 Coles Jan 1998 A
5717456 Rudt Feb 1998 A
5719554 Gagnon Feb 1998 A
5758299 Sandborg May 1998 A
5781101 Stephen Jul 1998 A
5781145 Williams Jul 1998 A
5784007 Pepper Jul 1998 A
5784021 Oliva Jul 1998 A
5784521 Nakatani Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker Aug 1998 A
5793308 Rosinski Aug 1998 A
5793420 Schmidt Aug 1998 A
5793739 Tanaka Aug 1998 A
5793985 Natarajan Aug 1998 A
5794165 Minowa Aug 1998 A
5797134 McMillan Aug 1998 A
5798458 Monroe Aug 1998 A
5800040 Santo Sep 1998 A
5802545 Coverdill Sep 1998 A
5802727 Blank Sep 1998 A
5805079 Lemelson Sep 1998 A
5813745 Fant Sep 1998 A
5815071 Doyle Sep 1998 A
5815093 Kikinis Sep 1998 A
5819198 Peretz Oct 1998 A
5825284 Dunwoody Oct 1998 A
5825412 Hobson Oct 1998 A
5844505 Van Dec 1998 A
5845733 Wolfsen Dec 1998 A
5867802 Borza Feb 1999 A
5877897 Schofield Mar 1999 A
5896167 Omae Apr 1999 A
5897602 Mizuta Apr 1999 A
5897606 Miura Apr 1999 A
5899956 Chan May 1999 A
5901806 Takahashi May 1999 A
5914748 Parulski Jun 1999 A
5919239 Fraker Jul 1999 A
5926210 Hackett Jul 1999 A
5928291 Jenkins et al. Jul 1999 A
5938321 Bos Aug 1999 A
5946404 Bakshi Aug 1999 A
5948038 Daly Sep 1999 A
5959367 Ofarrell Sep 1999 A
5978017 Tino Nov 1999 A
6002326 Turner Dec 1999 A
6006148 Strong Dec 1999 A
6008723 Yassan Dec 1999 A
6008841 Charlson Dec 1999 A
6009370 Minowa Dec 1999 A
6011492 Garesche Jan 2000 A
RE36590 Yanagi Feb 2000 E
6028528 Lorenzetti Feb 2000 A
6037860 Zander Mar 2000 A
6037977 Peterson Mar 2000 A
6041410 Hsu Mar 2000 A
6049079 Noordam Apr 2000 A
6057754 Kinoshita May 2000 A
6060989 Gehlot May 2000 A
6064792 Fox May 2000 A
6067488 Tano May 2000 A
6076026 Jambhekar Jun 2000 A
6084870 Wooten et al. Jul 2000 A
6088635 Cox et al. Jul 2000 A
6092008 Bateman Jul 2000 A
6092021 Ehlbeck Jul 2000 A
6092193 Loomis Jul 2000 A
6100811 Hsu Aug 2000 A
6111254 Eden Aug 2000 A
6118768 Bhatia Sep 2000 A
6122738 Millard Sep 2000 A
6141611 Mackey Oct 2000 A
6144296 Ishida Nov 2000 A
6147598 Murphy Nov 2000 A
6151065 Steed Nov 2000 A
6163338 Johnson Dec 2000 A
6163749 McDonough Dec 2000 A
6167186 Kawasaki Dec 2000 A
6170742 Yacoob Jan 2001 B1
6181373 Coles Jan 2001 B1
6182010 Berstis Jan 2001 B1
6185490 Ferguson Feb 2001 B1
6195605 Tabler Feb 2001 B1
6200139 Clapper Mar 2001 B1
6208919 Barkesseh Mar 2001 B1
6211907 Scaman Apr 2001 B1
6218960 Ishikawa Apr 2001 B1
6246933 Bague Jun 2001 B1
6246934 Otake Jun 2001 B1
6252544 Hoffberg Jun 2001 B1
6253129 Jenkins Jun 2001 B1
6259475 Ramachandran Jul 2001 B1
6263265 Fera Jul 2001 B1
6266588 McClellan Jul 2001 B1
6298290 Abe et al. Oct 2001 B1
6300875 Schafer Oct 2001 B1
6317682 Ogura Nov 2001 B1
6324450 Iwama Nov 2001 B1
6333759 Mazzilli Dec 2001 B1
6337622 Sugano Jan 2002 B1
6349250 Hart Feb 2002 B1
6353734 Wright Mar 2002 B1
6356823 Iannotti Mar 2002 B1
6360147 Lee Mar 2002 B1
6366207 Murphy Apr 2002 B1
6389339 Just May 2002 B1
6389340 Rayner May 2002 B1
6400835 Lemelson Jun 2002 B1
6405112 Rayner Jun 2002 B1
6405132 Breed Jun 2002 B1
6408232 Cannon Jun 2002 B1
6411874 Morgan et al. Jun 2002 B2
6421080 Lambert Jul 2002 B1
6429773 Schuyler Aug 2002 B1
6434510 Callaghan Aug 2002 B1
6449540 Rayner Sep 2002 B1
6456321 Ito Sep 2002 B1
6459988 Fan Oct 2002 B1
6470241 Yoshikawa Oct 2002 B2
6472771 Frese et al. Oct 2002 B1
6490513 Fish Dec 2002 B1
6493650 Rodgers Dec 2002 B1
6505106 Lawrence Jan 2003 B1
6507838 Syeda-Mahmood Jan 2003 B1
6508400 Ishifuji Jan 2003 B1
6516256 Hartmann Feb 2003 B1
6518881 Monroe Feb 2003 B2
6525672 Chainer Feb 2003 B2
6526352 Breed Feb 2003 B1
6529159 Fan Mar 2003 B1
6535804 Chun Mar 2003 B1
6552682 Fan Apr 2003 B1
6553308 Uhlmann Apr 2003 B1
6556905 Mittelsteadt et al. Apr 2003 B1
6559769 Anthony May 2003 B2
6574538 Sasaki Jun 2003 B2
6575902 Burton Jun 2003 B1
6580373 Ohashi Jun 2003 B1
6580983 Laguer-Diaz Jun 2003 B2
6593848 Atkins, III Jul 2003 B1
6594576 Fan Jul 2003 B2
6611740 Lowrey et al. Aug 2003 B2
6611755 Coffee Aug 2003 B1
6624611 Kirmuss Sep 2003 B2
6629029 Giles Sep 2003 B1
6629030 Klausner Sep 2003 B2
6636791 Okada Oct 2003 B2
6664922 Fan Dec 2003 B1
6665613 Duvall Dec 2003 B2
6679702 Rau Jan 2004 B1
6684137 Takagi et al. Jan 2004 B2
6694483 Nagata Feb 2004 B1
6701234 Vogelsang Mar 2004 B1
6714894 Tobey Mar 2004 B1
6718239 Rayner Apr 2004 B2
6721640 Glenn Apr 2004 B2
6721652 Sanqunetti Apr 2004 B1
6728612 Carver et al. Apr 2004 B1
6732031 Lightner et al. May 2004 B1
6732032 Banet et al. May 2004 B1
6735503 Ames May 2004 B2
6737954 Chainer et al. May 2004 B2
6738697 Breed May 2004 B2
6739078 Morley et al. May 2004 B2
6741168 Webb May 2004 B2
6745153 White Jun 2004 B2
6747692 Patel Jun 2004 B2
6748305 Klausner Jun 2004 B1
6760757 Lundberg et al. Jul 2004 B1
6762513 Landgraf Jul 2004 B2
6779716 Grow Aug 2004 B1
6795017 Puranik Sep 2004 B1
6795111 Mazzilli Sep 2004 B1
6795759 Doyle Sep 2004 B2
6798743 Ma Sep 2004 B1
6804590 Sato Oct 2004 B2
6810362 Adachi et al. Oct 2004 B2
6812831 Ikeda Nov 2004 B2
6819989 Maeda et al. Nov 2004 B2
6831556 Boykin Dec 2004 B1
6832140 Fan Dec 2004 B2
6832141 Skeen et al. Dec 2004 B2
6836712 Nishina Dec 2004 B2
6842762 Raithel et al. Jan 2005 B2
6847873 Li Jan 2005 B1
6859695 Klausner Feb 2005 B2
6859705 Rao Feb 2005 B2
6862524 Nagda Mar 2005 B1
6865457 Mittelsteadt et al. Mar 2005 B1
6867733 Sandhu Mar 2005 B2
6873261 Anthony Mar 2005 B2
6882313 Fan Apr 2005 B1
6882912 DiLodovico Apr 2005 B2
6894606 Forbes May 2005 B2
6895248 Akyol May 2005 B1
6898492 de Leon et al. May 2005 B2
6898493 Ehrman May 2005 B2
6850823 Eun et al. Jul 2005 B2
6919823 Lock Jul 2005 B1
6922566 Puranik Jul 2005 B2
6928348 Lightner et al. Aug 2005 B1
6931309 Phelan Aug 2005 B2
6947817 Diem Sep 2005 B2
6950122 Mirabile Sep 2005 B1
6954223 Miyazawa Oct 2005 B2
6954689 Hanson Oct 2005 B2
6988034 Marlatt Jan 2006 B1
7003289 Kolls Feb 2006 B1
7012632 Freeman Mar 2006 B2
7020548 Saito Mar 2006 B2
7023333 Blanco Apr 2006 B2
7027621 Prokoski Apr 2006 B1
7039510 Gumpinger May 2006 B2
7076348 Bucher Jul 2006 B2
7079927 Tano Jul 2006 B1
7082359 Breed Jul 2006 B2
7082382 Rose et al. Jul 2006 B1
7088387 Freeman Aug 2006 B1
7095782 Cohen Aug 2006 B1
7098812 Hirota Aug 2006 B2
7100190 Johnson Aug 2006 B2
7113853 Hecklinger Sep 2006 B2
7117075 Larschan Oct 2006 B1
7119832 Blanco Oct 2006 B2
7138904 Dutu Nov 2006 B1
7155321 Bromley Dec 2006 B2
7177738 Diaz Feb 2007 B2
7209833 Isaji Apr 2007 B2
7239252 Kato Jul 2007 B2
7254482 Kawasaki Aug 2007 B2
7265663 Steele Sep 2007 B2
7266507 Simon Sep 2007 B2
7272179 Siemens Sep 2007 B2
7308341 Schofield Dec 2007 B2
7317974 Luskin Jan 2008 B2
7343306 Bates Mar 2008 B1
7348895 Lagassey Mar 2008 B2
7349027 Endo Mar 2008 B2
7370261 Winarski May 2008 B2
7382933 Dorai Jun 2008 B2
7386376 Basir Jun 2008 B2
7389178 Raz Jun 2008 B2
7457693 Olsen Nov 2008 B2
7471189 Vastad Dec 2008 B2
7471192 Hara Dec 2008 B2
7536457 Miller May 2009 B2
7548586 Mimar Jun 2009 B1
7561054 Raz Jul 2009 B2
7584033 Mittelsteadt Sep 2009 B2
7596439 Oesterling Sep 2009 B2
7623754 McKain Nov 2009 B1
7659827 Gunderson Feb 2010 B2
7659835 Jung Feb 2010 B2
7667731 Kreiner Feb 2010 B2
7689001 Kim Mar 2010 B2
7702442 Takenaka Apr 2010 B2
7725216 Kim May 2010 B2
7768548 Silvernail Aug 2010 B2
7769499 McQuade Aug 2010 B2
7783956 Ko Aug 2010 B2
7804426 Etcheson Sep 2010 B2
7821421 Tamir Oct 2010 B2
7845560 Emanuel Dec 2010 B2
7853376 Peng Dec 2010 B2
7868912 Venetianer Jan 2011 B2
7893958 DAgostino Feb 2011 B1
7904219 Lowrey Mar 2011 B1
7940250 Forstall May 2011 B2
7941258 Mittelsteadt May 2011 B1
7974748 Goerick Jul 2011 B2
7984146 Rozak Jul 2011 B2
8054168 McCormick Nov 2011 B2
8068979 Breed Nov 2011 B2
8090598 Bauer Jan 2012 B2
8113844 Huang Feb 2012 B2
8139820 Plante Mar 2012 B2
8140265 Grush Mar 2012 B2
8140358 Ling Mar 2012 B1
8152198 Breed Apr 2012 B2
8239092 Plante Aug 2012 B2
8269617 Cook Sep 2012 B2
8311858 Everett Nov 2012 B2
8314708 Gunderson Nov 2012 B2
8321066 Becker Nov 2012 B2
8373567 Denson Feb 2013 B2
8417562 Siemens Apr 2013 B1
8423009 Srinivasan Apr 2013 B2
8442690 Goldstein May 2013 B2
8471701 Yariv Jun 2013 B2
8508353 Cook Aug 2013 B2
8538696 Cassanova Sep 2013 B1
8538785 Coleman Sep 2013 B2
8564426 Cook Oct 2013 B2
8564446 Gunderson Oct 2013 B2
8571755 Plante Oct 2013 B2
8577703 McClellan Nov 2013 B2
8606492 Botnen Dec 2013 B1
8634958 Chiappetta Jan 2014 B1
8635557 Geise Jan 2014 B2
8676428 Richardson Mar 2014 B2
8744642 Nemat-Nasser Jun 2014 B2
8775067 Cho Jul 2014 B2
8781292 Ross Jul 2014 B1
8803695 Denson Aug 2014 B2
8805110 Rhoads Aug 2014 B2
8849501 Cook Sep 2014 B2
8855847 Uehara Oct 2014 B2
8862395 Richardson Oct 2014 B2
8868288 Plante Oct 2014 B2
8880279 Plante Nov 2014 B2
8892310 Palmer Nov 2014 B1
8989959 Plante Mar 2015 B2
8996234 Tamari Mar 2015 B1
8996240 Plante Mar 2015 B2
9047721 Botnen Jun 2015 B1
9085362 Kilian Jul 2015 B1
9183679 Plante Nov 2015 B2
9201842 Plante Dec 2015 B2
9208129 Plante Dec 2015 B2
9226004 Plante Dec 2015 B1
9240079 Lambert Jan 2016 B2
9373203 Fields Jun 2016 B1
9607526 Hsu-Hoffman Mar 2017 B1
9610955 Palmer Apr 2017 B2
9715711 Konrardy Jul 2017 B1
9754325 Konrardy Sep 2017 B1
9767516 Konrardy Sep 2017 B1
9786154 Potter Oct 2017 B1
9792656 Konrardy Oct 2017 B1
9805423 Konrardy Oct 2017 B1
9805601 Fields Oct 2017 B1
9858621 Konrardy Jan 2018 B1
9868394 Fields Jan 2018 B1
9870649 Fields Jan 2018 B1
9942526 Plante Apr 2018 B2
10222228 Chan Mar 2019 B1
10360739 Palmer Jul 2019 B2
10404951 Plante Sep 2019 B2
10497187 Palmer Dec 2019 B2
20010005217 Hamilton Jun 2001 A1
20010005804 Rayner Jun 2001 A1
20010018628 Jenkins Aug 2001 A1
20010020204 Runyon Sep 2001 A1
20010020902 Tamura Sep 2001 A1
20010052730 Baur Dec 2001 A1
20020019689 Harrison Feb 2002 A1
20020027502 Mayor Mar 2002 A1
20020029109 Wong Mar 2002 A1
20020035422 Sasaki Mar 2002 A1
20020044225 Rakib Apr 2002 A1
20020059453 Eriksson May 2002 A1
20020061758 Zarlengo May 2002 A1
20020067076 Talbot Jun 2002 A1
20020087240 Raithel Jul 2002 A1
20020091473 Gardner et al. Jul 2002 A1
20020105438 Forbes Aug 2002 A1
20020107619 Klausner Aug 2002 A1
20020111725 Burge Aug 2002 A1
20020111756 Modgil Aug 2002 A1
20020118206 Knittel Aug 2002 A1
20020120374 Douros Aug 2002 A1
20020135679 Scaman Sep 2002 A1
20020138587 Koehler Sep 2002 A1
20020156558 Hanson Oct 2002 A1
20020163532 Thomas Nov 2002 A1
20020169529 Kim Nov 2002 A1
20020169530 Laguer-Diaz et al. Nov 2002 A1
20020170064 Monroe Nov 2002 A1
20020183905 Maeda et al. Dec 2002 A1
20030016753 Kim Jan 2003 A1
20030028298 Macky et al. Feb 2003 A1
20030053433 Chun Mar 2003 A1
20030055557 Dutta Mar 2003 A1
20030055666 Roddy Mar 2003 A1
20030065805 Barnes Apr 2003 A1
20030067541 Joao Apr 2003 A1
20030079041 Parrella Apr 2003 A1
20030080713 Kirmuss May 2003 A1
20030080878 Kirmuss May 2003 A1
20030081121 Kirmuss May 2003 A1
20030081122 Kirmuss May 2003 A1
20030081123 Rupe May 2003 A1
20030081127 Kirmuss May 2003 A1
20030081128 Kirmuss May 2003 A1
20030081934 Kirmuss May 2003 A1
20030081935 Kirmuss May 2003 A1
20030095688 Kirmuss May 2003 A1
20030112133 Webb Jun 2003 A1
20030125854 Kawasaki Jul 2003 A1
20030137194 White Jul 2003 A1
20030144775 Klausner Jul 2003 A1
20030152145 Kawakita Aug 2003 A1
20030154009 Basir et al. Aug 2003 A1
20030158638 Yakes Aug 2003 A1
20030177187 Levine Sep 2003 A1
20030187704 Hashiguchi Oct 2003 A1
20030191568 Breed Oct 2003 A1
20030195678 Betters Oct 2003 A1
20030201875 Kuo Oct 2003 A1
20030214585 Bakewell Nov 2003 A1
20030220835 Barnes Nov 2003 A1
20030222880 Waterman Dec 2003 A1
20040008255 Lewellen Jan 2004 A1
20040032493 Franke Feb 2004 A1
20040033058 Reich Feb 2004 A1
20040039503 Doyle Feb 2004 A1
20040039504 Coffee Feb 2004 A1
20040044452 Bauer et al. Mar 2004 A1
20040044592 Ubik Mar 2004 A1
20040054444 Abeska Mar 2004 A1
20040054513 Laird Mar 2004 A1
20040054689 Salmonsen Mar 2004 A1
20040064245 Knockeart Apr 2004 A1
20040070926 Boykin Apr 2004 A1
20040083041 Skeen et al. Apr 2004 A1
20040088090 Wee May 2004 A1
20040103008 Wahlbin May 2004 A1
20040103010 Wahlbin May 2004 A1
20040104842 Drury Jun 2004 A1
20040111189 Miyazawa Jun 2004 A1
20040117638 Monroe Jun 2004 A1
20040135979 Hazelton Jul 2004 A1
20040138794 Saito et al. Jul 2004 A1
20040145457 Schofield et al. Jul 2004 A1
20040153244 Kellum Aug 2004 A1
20040153362 Bauer Aug 2004 A1
20040167689 Bromley Aug 2004 A1
20040179600 Wells Sep 2004 A1
20040181326 Adams Sep 2004 A1
20040184548 Kerbiriou Sep 2004 A1
20040203903 Wilson Oct 2004 A1
20040209594 Naboulsi Oct 2004 A1
20040210353 Rice Oct 2004 A1
20040230345 Tzamaloukas Nov 2004 A1
20040230370 Tzamaloukas Nov 2004 A1
20040230373 Tzamaloukas Nov 2004 A1
20040230374 Tzamaloukas Nov 2004 A1
20040233284 Lesesky Nov 2004 A1
20040236474 Chowdhary Nov 2004 A1
20040243285 Gounder Dec 2004 A1
20040243308 Irish Dec 2004 A1
20040243668 Harjanto Dec 2004 A1
20040254689 Blazic Dec 2004 A1
20040254698 Hubbard et al. Dec 2004 A1
20040257208 Huang Dec 2004 A1
20040267419 Jeng Dec 2004 A1
20050021199 Zimmerman Jan 2005 A1
20050038581 Kapolka Feb 2005 A1
20050043869 Funkhouser Feb 2005 A1
20050060070 Kapolka Mar 2005 A1
20050060071 Winner Mar 2005 A1
20050065682 Kapadia Mar 2005 A1
20050065716 Timko Mar 2005 A1
20050068417 Kreiner Mar 2005 A1
20050073585 Ettinger Apr 2005 A1
20050078423 Kim Apr 2005 A1
20050083404 Pierce Apr 2005 A1
20050088291 Blanco Apr 2005 A1
20050099498 Lao May 2005 A1
20050100329 Lao May 2005 A1
20050102074 Kolls May 2005 A1
20050125117 Breed Jun 2005 A1
20050131585 Luskin Jun 2005 A1
20050131595 Luskin Jun 2005 A1
20050131597 Raz Jun 2005 A1
20050136949 Barnes Jun 2005 A1
20050137757 Phelan Jun 2005 A1
20050137796 Gumpinger Jun 2005 A1
20050146458 Carmichael Jul 2005 A1
20050149238 Stefani Jul 2005 A1
20050149259 Cherveny Jul 2005 A1
20050152353 Couturier Jul 2005 A1
20050159964 Sonnenrein Jul 2005 A1
20050166258 Vasilevsky Jul 2005 A1
20050168258 Vasilevsky Jul 2005 A1
20050171663 Mittelsteadt Aug 2005 A1
20050171692 Hamblen Aug 2005 A1
20050174217 Basir Aug 2005 A1
20050182538 Phelan Aug 2005 A1
20050182824 Cotte Aug 2005 A1
20050185052 Raisinghani Aug 2005 A1
20050185936 Lao Aug 2005 A9
20050192749 Flann Sep 2005 A1
20050197748 Hoist Sep 2005 A1
20050200714 Marchese Sep 2005 A1
20050203683 Olsen et al. Sep 2005 A1
20050205719 Hendrickson Sep 2005 A1
20050206741 Raber Sep 2005 A1
20050209776 Ogino Sep 2005 A1
20050212920 Evans Sep 2005 A1
20050216144 Baldassa Sep 2005 A1
20050228560 Doherty Oct 2005 A1
20050233805 Okajima Oct 2005 A1
20050243171 Ross, Sr. Nov 2005 A1
20050251304 Cancellara Nov 2005 A1
20050256681 Brinton Nov 2005 A1
20050258942 Manasseh Nov 2005 A1
20050264691 Endo Dec 2005 A1
20050283284 Grenier Dec 2005 A1
20060001671 Kamijo Jan 2006 A1
20060007151 Ram Jan 2006 A1
20060011399 Brockway Jan 2006 A1
20060015233 Olsen Jan 2006 A1
20060022842 Zoladek Feb 2006 A1
20060025897 Shostak Feb 2006 A1
20060025907 Kapolka Feb 2006 A9
20060030986 Peng Feb 2006 A1
20060040239 Cummins Feb 2006 A1
20060047380 Welch Mar 2006 A1
20060053038 Warren Mar 2006 A1
20060055521 Blanco Mar 2006 A1
20060057543 Roald Mar 2006 A1
20060058950 Kato Mar 2006 A1
20060072792 Toda Apr 2006 A1
20060078853 Lanktree Apr 2006 A1
20060082438 Bazakos Apr 2006 A1
20060092043 Lagassey May 2006 A1
20060095175 Dewaal May 2006 A1
20060095199 Lagassey May 2006 A1
20060095349 Morgan May 2006 A1
20060103127 Lie May 2006 A1
20060106514 Liebl May 2006 A1
20060111817 Phelan May 2006 A1
20060122749 Phelan Jun 2006 A1
20060129578 Kim Jun 2006 A1
20060142913 Coffee Jun 2006 A1
20060143435 Kwon Jun 2006 A1
20060147187 Takemoto Jul 2006 A1
20060158349 Oesterling Jul 2006 A1
20060161960 Benoit Jul 2006 A1
20060168271 Pabari Jul 2006 A1
20060178793 Hecklinger Aug 2006 A1
20060180647 Hansen Aug 2006 A1
20060184295 Hawkins Aug 2006 A1
20060192658 Yamamura Aug 2006 A1
20060200008 Moore-Ede Sep 2006 A1
20060200305 Sheha Sep 2006 A1
20060204059 Ido Sep 2006 A1
20060209090 Kelly et al. Sep 2006 A1
20060209840 Paatela Sep 2006 A1
20060212195 Veith Sep 2006 A1
20060215884 Ota Sep 2006 A1
20060226344 Werth Oct 2006 A1
20060229780 Underdahl Oct 2006 A1
20060242680 Johnson Oct 2006 A1
20060247833 Malhotra Nov 2006 A1
20060253307 Warren Nov 2006 A1
20060259218 Wu Nov 2006 A1
20060259933 Fishel Nov 2006 A1
20060261931 Cheng Nov 2006 A1
20070001831 Raz Jan 2007 A1
20070005404 Raz Jan 2007 A1
20070027583 Tamir Feb 2007 A1
20070027726 Warren Feb 2007 A1
20070035632 Silvernail Feb 2007 A1
20070043487 Krzystofczyk Feb 2007 A1
20070088488 Reeves Apr 2007 A1
20070100509 Piekarz May 2007 A1
20070120948 Fujioka May 2007 A1
20070124332 Ballesty May 2007 A1
20070127833 Singh Jun 2007 A1
20070132773 Plante Jun 2007 A1
20070135979 Plante Jun 2007 A1
20070135980 Plante Jun 2007 A1
20070136078 Plante Jun 2007 A1
20070142986 Alaous Jun 2007 A1
20070143499 Chang Jun 2007 A1
20070150138 Plante Jun 2007 A1
20070150140 Seymour Jun 2007 A1
20070159309 Ito Jul 2007 A1
20070173994 Kubo Jul 2007 A1
20070179691 Grenn Aug 2007 A1
20070183635 Weidhaas Aug 2007 A1
20070208494 Chapman Sep 2007 A1
20070213920 Igarashi Sep 2007 A1
20070216521 Guensler Sep 2007 A1
20070219685 Plante Sep 2007 A1
20070219686 Plante Sep 2007 A1
20070236474 Ramstein Oct 2007 A1
20070241874 Okpysh Oct 2007 A1
20070244614 Nathanson Oct 2007 A1
20070253307 Mashimo Nov 2007 A1
20070257781 Denson Nov 2007 A1
20070257782 Etcheson Nov 2007 A1
20070257804 Gunderson Nov 2007 A1
20070257815 Gunderson Nov 2007 A1
20070260677 DeMarco Nov 2007 A1
20070262855 Zuta Nov 2007 A1
20070263984 Sterner Nov 2007 A1
20070268158 Gunderson Nov 2007 A1
20070271105 Gunderson Nov 2007 A1
20070273480 Burkman Nov 2007 A1
20070279214 Buehler Dec 2007 A1
20070280677 Drake et al. Dec 2007 A1
20070299612 Kimura Dec 2007 A1
20080035108 Ancimer Feb 2008 A1
20080059019 Delia Mar 2008 A1
20080071827 Hengel Mar 2008 A1
20080111666 Plante May 2008 A1
20080122603 Plante May 2008 A1
20080137912 Kim Jun 2008 A1
20080143834 Comeau Jun 2008 A1
20080147267 Plante et al. Jun 2008 A1
20080157510 Breed Jul 2008 A1
20080167775 Kuttenberger Jul 2008 A1
20080169914 Albertson Jul 2008 A1
20080177436 Fortson Jul 2008 A1
20080195261 Breed Aug 2008 A1
20080204556 deMiranda Aug 2008 A1
20080211779 Pryor Sep 2008 A1
20080234920 Nurminen Sep 2008 A1
20080243389 Inoue Oct 2008 A1
20080252412 Larsson Oct 2008 A1
20080252485 Lagassey Oct 2008 A1
20080252487 McClellan Oct 2008 A1
20080269978 Shirole Oct 2008 A1
20080281485 Plante Nov 2008 A1
20080309762 Howard et al. Dec 2008 A1
20080319604 Follmer Dec 2008 A1
20090009321 McClellan Jan 2009 A1
20090043500 Satoh Feb 2009 A1
20090043971 Kim Feb 2009 A1
20090051510 Follmer Feb 2009 A1
20090138191 Engelhard May 2009 A1
20090157255 Plante Jun 2009 A1
20090216775 Ratliff et al. Aug 2009 A1
20090224869 Baker Sep 2009 A1
20090290848 Brown Nov 2009 A1
20090299622 Denaro Dec 2009 A1
20090312998 Berckmans Dec 2009 A1
20090326796 Prokhorov Dec 2009 A1
20090327856 Mouilleseaux Dec 2009 A1
20100030423 Nathanson Feb 2010 A1
20100045451 Periwal Feb 2010 A1
20100047756 Schneider Feb 2010 A1
20100049516 Talwar Feb 2010 A1
20100054709 Misawa Mar 2010 A1
20100057342 Muramatsu Mar 2010 A1
20100063672 Anderson Mar 2010 A1
20100063680 Tolstedt Mar 2010 A1
20100063850 Daniel Mar 2010 A1
20100070175 Soulchin Mar 2010 A1
20100076621 Kubotani Mar 2010 A1
20100085193 Boss Apr 2010 A1
20100085430 Kreiner Apr 2010 A1
20100087984 Joseph Apr 2010 A1
20100100315 Davidson Apr 2010 A1
20100103165 Lee Apr 2010 A1
20100104199 Zhang Apr 2010 A1
20100149418 Freed Jun 2010 A1
20100153146 Angell Jun 2010 A1
20100157061 Katsman Jun 2010 A1
20100191411 Cook Jul 2010 A1
20100201875 Rood Aug 2010 A1
20100220892 Kawakubo Sep 2010 A1
20100250020 Lee Sep 2010 A1
20100250021 Cook Sep 2010 A1
20100250022 Hines Sep 2010 A1
20100250060 Maeda Sep 2010 A1
20100250116 Yamaguchi Sep 2010 A1
20100253918 Seder Oct 2010 A1
20100268415 Ishikawa Oct 2010 A1
20100283633 Becker Nov 2010 A1
20100312464 Fitzgerald Dec 2010 A1
20110035139 Konlditslotis Feb 2011 A1
20110043624 Haug Feb 2011 A1
20110060496 Nielsen Mar 2011 A1
20110077028 Wilkes Mar 2011 A1
20110091079 Yu-Song Apr 2011 A1
20110093159 Boling Apr 2011 A1
20110112995 Chang May 2011 A1
20110121960 Tsai May 2011 A1
20110125365 Larschan May 2011 A1
20110130916 Mayer Jun 2011 A1
20110140884 Santiago Jun 2011 A1
20110145042 Green Jun 2011 A1
20110153367 Amigo Jun 2011 A1
20110161116 Peak Jun 2011 A1
20110166773 Raz Jul 2011 A1
20110169625 James Jul 2011 A1
20110172864 Syed Jul 2011 A1
20110173015 Chapman Jul 2011 A1
20110208428 Matsubara Aug 2011 A1
20110212717 Rhoads Sep 2011 A1
20110213628 Peak Sep 2011 A1
20110224891 Iwuchukwu Sep 2011 A1
20110251752 DeLarocheliere Oct 2011 A1
20110251782 Perkins Oct 2011 A1
20110254676 Marumoto Oct 2011 A1
20110257882 McBurney Oct 2011 A1
20110273568 Lagassey Nov 2011 A1
20110282542 Nielsen Nov 2011 A9
20110283223 Vattinen et al. Nov 2011 A1
20110304446 Basson Dec 2011 A1
20120021386 Anderson Jan 2012 A1
20120035788 Trepagnier Feb 2012 A1
20120041675 Juliver Feb 2012 A1
20120046803 Inou Feb 2012 A1
20120065834 Senart Mar 2012 A1
20120071140 Oesterling Mar 2012 A1
20120078063 Moore-Ede Mar 2012 A1
20120081567 Cote Apr 2012 A1
20120100509 Gunderson Apr 2012 A1
20120109447 Yousefi May 2012 A1
20120123806 Schumann May 2012 A1
20120134547 Jung May 2012 A1
20120150436 Rossano Jun 2012 A1
20120176234 Taneyhill Jul 2012 A1
20120190001 Knight Jul 2012 A1
20120198317 Eppolito Aug 2012 A1
20120210252 Fedoseyeva Aug 2012 A1
20120277950 Plante Nov 2012 A1
20120280835 Raz Nov 2012 A1
20120283895 Noda Nov 2012 A1
20120330528 Schwindt Dec 2012 A1
20130004138 Kilar Jan 2013 A1
20130006469 Green Jan 2013 A1
20130021148 Cook Jan 2013 A1
20130028320 Gardner Jan 2013 A1
20130030660 Fujimoto Jan 2013 A1
20130046449 Yuecel Feb 2013 A1
20130052614 Mollicone Feb 2013 A1
20130073112 Phelan Mar 2013 A1
20130073114 Nemat-Nasser Mar 2013 A1
20130096731 Tamari Apr 2013 A1
20130127980 Haddick May 2013 A1
20130145269 Latulipe Jun 2013 A1
20130151980 Lee Jun 2013 A1
20130170762 Marti Jul 2013 A1
20130189649 Mannino Jul 2013 A1
20130197774 Denson Aug 2013 A1
20130209968 Miller Aug 2013 A1
20130274950 Richardson Oct 2013 A1
20130278631 Border Oct 2013 A1
20130317711 Plante Nov 2013 A1
20130332004 Gompert et al. Dec 2013 A1
20130345927 Cook Dec 2013 A1
20130345929 Bowden Dec 2013 A1
20140025225 Armitage Jan 2014 A1
20140025254 Plante Jan 2014 A1
20140032062 Baer Jan 2014 A1
20140046550 Palmer Feb 2014 A1
20140047371 Palmer Feb 2014 A1
20140058583 Kesavan Feb 2014 A1
20140089504 Scholz Mar 2014 A1
20140094992 Lambert Apr 2014 A1
20140098228 Plante Apr 2014 A1
20140152828 Plante Jun 2014 A1
20140226010 Molin Aug 2014 A1
20140232863 Paliga Aug 2014 A1
20140270684 Jayaram Sep 2014 A1
20140279707 Joshua Sep 2014 A1
20140280204 Avery Sep 2014 A1
20140300739 Mimar Oct 2014 A1
20140309849 Ricci Oct 2014 A1
20140335902 Guba Nov 2014 A1
20140336916 Yun Nov 2014 A1
20150015617 Yeo Jan 2015 A1
20150035665 Plante Feb 2015 A1
20150057512 Kapoor Feb 2015 A1
20150057836 Plante Feb 2015 A1
20150105934 Palmer Apr 2015 A1
20150112542 Fuglewicz Apr 2015 A1
20150112545 Binion Apr 2015 A1
20150134226 Palmer May 2015 A1
20150135240 Shibuya May 2015 A1
20150156174 Fahey Jun 2015 A1
20150170428 Harter Jun 2015 A1
20150189042 Sun Jul 2015 A1
20150022449 Salinger Aug 2015 A1
20150317846 Plante Nov 2015 A1
20160054733 Hollida Feb 2016 A1
20160182170 Daoura Jun 2016 A1
20170301220 Jarrell Oct 2017 A1
20180025636 Boykin Jan 2018 A1
20180033300 Hansen Feb 2018 A1
20190176837 Williams Jun 2019 A1
20190176847 Palmer Jun 2019 A1
20190180524 Palmer Jun 2019 A1
20190279441 Palmer Sep 2019 A1
20190389307 Plante Dec 2019 A1
Foreign Referenced Citations (72)
Number Date Country
2469728 Dec 2005 CA
2469728 Dec 2005 CA
2692415 Aug 2011 CA
2692415 Aug 2011 CA
4416991 Nov 1995 DE
20311262 Sep 2003 DE
202005008238 Sep 2005 DE
102004004669 Dec 2005 DE
102004004669 Dec 2005 DE
0708427 Apr 1996 EP
0840270 May 1998 EP
0848270 May 1998 EP
1170697 Jan 2002 EP
1324274 Jul 2003 EP
1355278 Oct 2003 EP
1427165 Jun 2004 EP
1818873 Aug 2007 EP
2104075 Sep 2009 EP
2320387 May 2011 EP
2407943 Jan 2012 EP
2268608 Jan 1994 GB
2402530 Dec 2004 GB
2402530 Dec 2004 GB
2451485 Feb 2009 GB
2447184 Jun 2011 GB
2446994 Aug 2011 GB
58085110 May 1983 JP
S5885110 May 1983 JP
62091092 Apr 1987 JP
S6291092 Apr 1987 JP
S62166135 Jul 1987 JP
02056197 Feb 1990 JP
H0256197 Feb 1990 JP
H04257189 Sep 1992 JP
H05137144 Jun 1993 JP
5294188 Nov 1993 JP
H08124069 May 1996 JP
H09163357 Jun 1997 JP
H09272399 Oct 1997 JP
10076880 Mar 1998 JP
H1076880 Mar 1998 JP
2002191017 Jul 2002 JP
2002191017 Jul 2002 JP
1000588169 Dec 2000 KR
20000074416 Dec 2000 KR
8809023 Nov 1988 WO
9005076 May 1990 WO
9427844 Dec 1994 WO
9600957 Jan 1996 WO
9701246 Jan 1997 WO
9726750 Jul 1997 WO
9937503 Jul 1999 WO
9940545 Aug 1999 WO
9962741 Dec 1999 WO
0007150 Feb 2000 WO
0028410 May 2000 WO
0048033 Aug 2000 WO
0077620 Dec 2000 WO
0123214 Apr 2001 WO
0125054 Apr 2001 WO
2001023214 Apr 2001 WO
0146710 Jun 2001 WO
03045514 Jun 2003 WO
2004066275 Aug 2004 WO
2006022824 Mar 2006 WO
2006022824 Mar 2006 WO
2007067767 Jun 2007 WO
2007133990 Nov 2007 WO
2009081234 Jul 2009 WO
2011055743 May 2011 WO
2013072939 May 2013 WO
2013159853 Oct 2013 WO
Non-Patent Literature Citations (198)
Entry
Adaptec published and sold its VideoOh! DVD software USB 2.0 Edition in at least Jan. 24, 2003.
Ambulance Companies Use Video Technology to Improve Driving Behavior, Ambulance Industry Journal, Spring 2003.
Amended Complaint for Patent Infringement, Trade Secret Misappropriation, Unfair Competition and Conversion in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California, Document 34, filed Oct. 20, 2011, pp. 1-15.
Amendment filed Dec. 23, 2009 during prosecution of U.S. Appl. No. 11/566,424.
Answer to Amended Complaint; Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 47, filed Dec. 13, 2011, pp. 1-15.
U.S. Appl. No. 11/296,906, filed Dec. 8, 2005, File History.
U.S. Appl. No. 11/297,669, filed Dec. 8, 2005, File History.
U.S. Appl. No. 11/297,889, filed Dec. 8, 2005, File History.
U.S. Appl. No. 11/298,069, filed Dec. 9, 2005, File History.
U.S. Appl. No. 11/299,028, filed Dec. 9, 2005, File History.
U.S. Appl. No. 11/593,659, filed Nov. 7, 2006, File History.
U.S. Appl. No. 11/593,682, filed Nov. 7, 2006, File History.
U.S. Appl. No. 11/593,882, filed Nov. 7, 2006, File History.
U.S. Appl. No. 11/595,015, filed Nov. 9, 2006, File History.
U.S. Appl. No. 11/637,754, filed Dec. 13, 2006, File History.
U.S. Appl. No. 11/637,755, filed Dec. 13, 2006, File History.
Bill, ‘DriveCam—FAQ’, Dec. 12, 2003.
Bill Siuru, ‘DriveCam Could Save You Big Bucks’, Land Line Magazine, May-Jun. 2000.
Chris Woodyard, ‘Shuttles save with DriveCam’, Dec. 9, 2003.
Dan Carr, Flash Video Template: Video Presentation with Navigation, Jan. 16, 2006, http://www.adobe.com/devnet/fiash/articles/vidtemplate_mediapreso_flash8.html.
David Cullen, ‘Getting a real eyeful’, Fleet Owner Magazine, Feb. 2002.
David Maher, ‘DriveCam Brochure Folder’, Jun. 6, 2005.
David Maher, “DriveCam Brochure Folder”, Jun. 8, 2005.
David Vogeleer et al., Macromedia Flash Professional 8UNLEASHED (Sams Oct. 12, 2005).
Del Lisk, ‘DriveCam Training Handout Ver4’, Feb. 3, 2005.
Drivecam, Inc., User's Manual for Drivecam Video Systems' Hindsight 20/20 Software Version 4.0 (2003).
DriveCam, Inc.'s Infringement Contentions Exhibit A, U.S. Pat. No. 6,389,340, Document 34.1, Oct. 20, 2011.
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,659,827. Aug. 19, 2011.
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,804,426, Document 34.2, Oct. 20, 2011.
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,659,827, Document 34.3, Oct. 20, 2011.
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,804,426. Aug. 19, 2011.
DriveCam, Inc.'s Infringement Contentions Exhibit D, Document 34.4, Oct. 20, 2011.
DriveCam—Illuminator Data Sheet, Oct. 2, 2004.
Drivecam.com as retrieved by the Internet Wayback Machine as of Mar. 5, 2005.
DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Aug. 19, 2011.
DriveCam Driving Feedback System, Mar. 15, 2004.
DriveCam Extrinsic Evidence with Patent LR 4.1 .a Disclosures, Nov. 3, 2011.
DriveCam Extrinsic Evidence with Patent LR 4.1 .a Disclosures, Nov. 8, 2011.
Driver Feedback System, Jun. 12, 2001.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 53, filed Dec. 20, 2011, pp. 1-48.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 55, filed Jan. 1, 2012, pp. 86-103.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 55, filed Jan. 3, 2012, pp. 86-103.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Exhibit A, Document 55, filed Jan. 3, 2012, pp. 49-103.
Franke, U., et al., Autonomous Driving Goes Downtown, IEEE Intelligent Systems, 13(6):40-48 (1988); Digital Object Identifier 10.1109/5254.736001.
Gallagher, B., et al., Wireless Communications for Vehicle Safety: Radio Link Performance and Wireless Connectivity Methods, Vehicular Technology Magazine, IEEE, 1(4):4-24 (2006); Digital Object Identifier 10.1109/MVT.2006.343641.
Gandhi, T., et al., Pedestrian Protection Systems: Issues, Survey, and Challenges, IEEE Transactions on Intelligent Transportation Systems, 8(3):413-430 (2007); Digital Object Identifier 10.1109/TITS.2007.903444.
Gary and Sophia Rayner, Final Report for Innovations Deserving Exploratory Analysis (IDEA) Intelligent Transportation Systems (ITS) Programs' Project 84, I-Witness Black Box Recorder, San Diego, CA. Nov. 2001.
GE published its VCR User's Guide for Model VG4255 in 1995.
Glenn Oster, ‘Hindsight 20/20 v4.0 Software Installation’, 1 of 2, Jun. 20, 2003.
Glenn Oster, ‘HindSight 20/20 v4.0 Software Installation’, 2 of 2, Jun. 20, 2003.
Glenn Oster, ‘Illuminator Installation’, Oct. 3, 2004.
Hans Fantel, Video; Search Methods Make a Difference in Picking VCR's, NY Times, Aug. 13, 1989.
I/O Port Racing Supplies' website discloses using Traqmate's Data Acquisition with Video Overlay system in conjunction with professional driver coaching sessions (available at http://www.ioportracing.com/Merchant2/merchant.mvc?Screen=CTGY&Categorys-ub.--Code=coaching)., printed from site on Jan. 11, 2012.
Interior Camera Data Sheet, Oct. 26, 2001.
International Search Report and Written Opinion issued in PCT/US07/68325 dated Feb. 27, 2008.
International Search Report and Written Opinion issued in PCT/US07/68328 dated Oct. 15, 2007.
International Search Report and Written Opinion issued in PCT/US07/68329 dated Mar. 3, 2008.
International Search Report and Written Opinion issued in PCT/US07/68332 dated Mar. 3, 2008.
International Search Report and Written Opinion issued in PCT/US07/68334 dated Mar. 5, 2008.
International Search Report for PCT/US2006/47055, dated Mar. 20, 2008 (2 pages).
International Search Report issued in PCT/US2006/47042 dated Feb. 25, 2008.
J. Gallagher, ‘Lancer Recommends Tech Tool’, Insurance and Technology Magazine, Feb. 2002.
Jean (DriveCam vendor), ‘DC Data Sheet’, Nov. 6, 2002.
Jean (DriveCam vendor), ‘DriveCam brochure’, Nov. 6, 2002.
Jean (DriveCam vendor), ‘Feedback Data Sheet’, Nov. 6, 2002.
Jean (DriveCam vendor), ‘Hindsight 20-20 Data Sheet’, Nov. 4, 2002.
Jessyca Wallace, ‘Analyzing and Processing DriveCam Recorded Events’, Oct. 6, 2003.
Jessyca Wallace, ‘Overview of the DriveCam Program’, Dec. 15, 2005.
Jessyca Wallace, ‘The DriveCam Driver Feedback System’, Apr. 6, 2004.
Joint Claim Construction Chart, U.S. Pat. No. 6,389,340, ‘Vehicle Data Recorder’ for Case No. 3:11-CV-00997-H-RBB, Document 43-1, filed Dec. 1, 2011, pp. 1-33.
Joint Claim Construction Chart in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 11-CV-0997-H (RBB), for the Southern District of California, Document 43, filed Dec. 1, 2011, pp. 1-2.
Joint Claim Construction Worksheet, U.S. Pat. No. 6,389,340, ‘Vehicle Data Reporter’ for Case No. 3:11-CV-00997-H-RBB, Document 44-1, filed Dec. 1, 2011, pp. 1-10.
Joint Claim Construction Worksheet in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 44, filed Dec. 1, 2011, pp. 1-2.
Joint Motion for Leave to Supplement Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-cv-00997-H-RBB, Document 29, filed Oct. 12, 2011, pp. 1-7.
Julie Stevens, ‘DriveCam Services’, Nov. 15, 2004.
Julie Stevens, ‘Program Support Roll-Out & Monitoring’, Jul. 13, 2004.
Jung, Sang-Hack, et al., Egomotion Estimation in Monocular Infra-red Image Sequence for Night Vision Applications, IEEE Workshop on Applications of Computer Vision (WACV '07), Feb. 2007, pp. 8-8; Digital Object Identifier 10.1109/WACV.2007.20.
JVC Company of America, JVC Video Cassette Recorder HR-IP820U Instructions (1996).
Kamijo, S., et al., A Real-Time Traffic Monitoring System by Stochastic Model Combination, IEEE International Conference on Systems, Man and Cybernetics, 4:3275-3281 (2003).
Kamijo, S., et al., An Incident Detection System Based on Semantic Hierarchy, Proceedings of the 7th International IEEE Intelligent Transportation Systems Conference, Oct. 3-6, 2004, pp. 853-858; Digital Object Identifier 10.1109/ITSC.2004.1399015.
Karen, ‘Downloading Options to HindSight 20120’, Aug. 6, 2002.
Karen, ‘Managers Guide to the DriveCam Driving Feedback System’, Jul. 30, 2002.
Kathy Latus (Latus Design), ‘Case Study—Cloud 9 Shuttle’, Sep. 23, 2005.
Kathy Latus (Latus Design), ‘Case Study—Lloyd Pest Control’, Jul. 19, 2005.
Kathy Latus (Latus Design), ‘Case Study—Time Warner Cable’, Sep. 23, 2005.
Ki, Yong-Kul, et al., A Traffic Accident Detection Model using Metadata Registry, Proceedings of the Fourth International Conference on Software Engineering Research, Management and Applications; Aug. 9-11, 2006 pp. 255-259 Digital Object Identifier 10.1109/SERA.2006.8.
Kitchin, Charles. “Understanding accelerometer scale factor and offset adjustments.” Analog Devices (1995).
Lin, Chin-Teng et al., EEG-based drowsiness estimation for safety driving using independent component analysis; IEEE Transactions on Circuits and Systems-I: Regular Papers, 52(12):2726-2738 (2005); Digital Object Identifier 10.1109/TCSI.2005.857555.
Lisa McKenna, ‘A Fly on the Windshield?’, Pest Control Technology Magazine, Apr. 2003.
Miller, D.P., Evaluation of Vision Systems for Teleoperated Land Vehicles. Control Systems Magazine, IEEE, 8(3):37-41 (1988); Digital Identifier 10.1109/37.475.
Munder, S., et al., Pedestrian Detection and Tracking Using a Mixture of View-Based Shape-Texture Models, IEEE Transactions on Intelligent Transportation Systems, 9(2):333-343 (2008); Digital Identifier 10.1109/TITS.2008.922943.
Non-Final Office Action for U.S. Appl. No. 11/296,907, dated Mar. 22, 2007 ( 17 pages).
Non-final Office Action dated Aug. 27, 2009 during prosecution of U.S. Appl. No. 11/566,424.
Non-Final Office Action dated Nov. 27, 2013 in U.S. Appl. No. 13/957,810, filed Aug. 2, 2013.
Panasonic Corporation, Video Cassette Recorder (VCR) Operating Instructions for Models No. PV-V4020/PV-V4520.
Passenger Transportation Mode Brochure, May 2, 2005.
Patent Abstracts of Japan vol. 007, No. 180 (P-215), Aug. 9, 1983 (Aug. 9, 1983) & JP 58 085110 A (Mitsuhisa Ichikawa), May 21, 1983 (May 21, 1983).
Patent Abstracts of Japan vol. 011, No. 292 (E-543), Sep. 19, 1987 (Sep. 19, 1987) & JP 62 091092 A (OK ENG:KK), Apr. 25, 1987 (Apr. 25, 1987).
Patent Abstracts of Japan vol. 012, No. 001 (M-656), Jan. 6, 1988 (Jan. 6, 1988) & JP 62 166135 A (Fuji Electric Co Ltd), Jul. 22, 1987 (Jul. 22, 1987).
Patent Abstracts of Japan vol. 014, No. 222 (E-0926), May 10, 1990 (May 10, 1990) & JP 02 056197 A (Sanyo Electric Co Ltd), Feb. 26, 1990 (Feb. 26, 1990).
Patent Abstracts of Japan vol. 017, No. 039 (E-1311), Jan. 25, 1993 (Jan. 25, 1993) & JP 04 257189 A (Sony Corp), Sep. 11, 1992 (Sep. 11, 1992).
Patent Abstracts of Japan vol. 017, No. 521 (E-1435), Sep. 20, 1993 (Sep. 20, 1993) & JP 05 137144 A (Kyocera Corp), Jun. 1, 1993 (Jun. 1, 1993).
Patent Abstracts of Japan vol. 1996, No. 09, Sep. 30, 1996 (Sep. 30, 1996) & JP 08 124069 A (Toyota Motor Corp), May 17, 1996 (May 17, 1996).
Patent Abstracts of Japan vol. 1997, No. 10, Oct. 31, 1997 (Oct. 31, 1997) & JP 09 163357 A (Nippon Soken Inc), Jun. 20, 1997 (Jun. 20, 1997).
Patent Abstracts of Japan vol. 1998, No. 02, Jan. 30, 1998 (Jan. 30, 1998) & JP 09 272399 A (Nippon Soken Inc), Oct. 21, 1997 (Oct. 21, 1997).
Patent Abstracts of Japan vol. 1998, No. 8, Jun. 30, 1998 (Jun. 30, 1998) & JP 10 076880 A (Muakami Corp), Mar. 24, 1998 (Mar. 24, 1998).
PCT/US2010/022012, Invitation to Pay Additional Fees with Communication of Partial International Search, Jul. 21, 2010.
Peter G. Thurlow, Letter (including exhibits) Regarding Patent Owner's Response to Initial Office Action in Ex Parte Reexamination, Mar. 27, 2012.
Preliminary Claim Construction and Identification of Extrinsic Evidence of Defendant/Counterclaimant SmartDriveSystems, Inc. in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 8, 2011.
Quinn Maughan, ‘DriveCam Enterprise Services’, Jan. 5, 2006.
Quinn Maughan, ‘DriveCam Managed Services’, Jan. 5, 2006.
Quinn Maughan, ‘DriveCam Standard Edition’, Jan. 5, 2006.
Quinn Maughan, ‘DriveCam Unit Installation’, Jul. 21, 2005.
Quinn Maughan, ‘Enterprise Services’, Apr. 17, 2006.
Quinn Maughan, ‘Enterprise Services’, Apr. 7, 2006.
Quinn Maughan, ‘Hindsight Installation Guide’, Sep. 29, 2005.
Quinn Maughan, ‘Hindsight Users Guide’, Jun. 7, 2005.
Ronnie Rittenberry, ‘Eyes on the Road’, Jul. 2004.
SmartDrives Systems, Inc's Production, SO14246-S014255, Nov. 16, 2011.
Supplement to DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Oct. 14, 2011.
The DriveCam, Nov. 6, 2002.
The DriveCam, Nov. 8, 2002.
Traqmate GPS Data Acquisition's Traqmate Data Acquisition with Video Overlay system was used to create a video of a driving event on Oct. 2, 2005 (available at http://www.trackvision.net/phpBB2/viewtopic.php?t=51&sid=1184fbbcbe3be5c87ffa0f2ee6e2da76), printed from site on Jan. 11, 2012.
U.S. Appl. No. 12/691,639, entitled ‘Driver Risk Assessment System and Method Employing Selectively Automatic Event Scoring’, filed Jan. 21, 2010.
U.S. Appl. No. 11/377,167, Final Office Action dated Nov. 8, 2013.
U.S. Appl. No. 11/377,157, filed Mar. 16, 2006 entitled, “Vehicle Event Recorder Systems and Networks Having Parallel Communications Links”.
U.S. Appl. No. 11/377,167 filed Mar. 16, 2006 entitled, “Vehicle Event Recorder Systems and Networks Having Integrated Cellular Wireless Communications Systems”.
USPTO Final Office Action for U.S. Appl. No. 11/297,669, dated Nov. 7, 2011, 15 pages.
USPTO Final Office Action for U.S. Appl. No. 13/957,810, dated Jun. 27, 2014, 24 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, dated Apr. 2, 2009, 7 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, dated Nov. 6, 2009, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/297,669, dated Apr. 28, 2011, 11 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/299,028, dated Apr. 24, 2008, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Nov. 19, 2007, 7 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Nov. 25, 2011, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Sep. 11, 2008, 8 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,167, dated Jun. 5, 2008, 11 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/800,876, dated Dec. 1, 2010, 12 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/800,876, dated Dec. 20, 2011, 8 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, dated May 20, 2014, 19 pages.
Veeraraghavan, H., et al., Computer Vision Algorithms for Intersection Monitoring, IEEE Transactions on Intelligent Transportation Systems, 4(2):78-89 (2003); Digital Object Identifier 10.1109/TITS.2003.821212.
Wijesoma, W.S., et al., Road Curb Tracking in an Urban Environment, Proceedings of the Sixth International Conference of Information Fusion, 1:261-268 (2003).
World News Tonight, CBC Television New Program discussing teen drivers using the DriveCam Program and DriveCam Technology, Oct. 10, 2005, on PC formatted CD-R, World News Tonight.wmv, 7.02 MB, Created Jan. 12, 2011.
Written Opinion issued in PCT/US07/68328 dated Oct. 15, 2007.
Written Opinion of the International Searching Authority for PCT/US2006/47042, dated Feb. 25, 2008 (5 pages).
Written Opinion of the International Searching Authority for PCT/US2006/47055, dated Mar. 20, 2008 (5 pages).
“DriveCam, Inc's Disclosure of Proposed Constructions and Extrinsic Evidence Pursuant to Patent L.R. 4.1.a & 4.1.b” Disclosure and Extrinsic Evidence in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Nov. 8, 2011, 68 pages.
“DriveCam Driving Feedback System”, DriveCam brochure, Jun. 12, 2001, Document #6600128, 2 pages.
“DriveCam Driving Feedback System” DriveCam brochure, Mar. 15, 2004, 4 pages.
“DriveCam Passenger Transportation Module”, DriveCam brochure, Oct. 26, 2001, 2 pages.
“DriveCam Video Event Data Recorder”, DriveCam brochure, Nov. 6, 2002, Document #6600127, 2 pages.
“Responsive Claim Construction and Identification of Extrinsic Evidence of Defendani/Counterclaimant SmartDrive Systems, Inc.” Claim Construction and and Extrinsic Evidence in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 15, 2011, 20 pages.
“Sonic MyDVD 4.0: Tutorial: Trimming video segments”. Tutorial for software bundled with Adaptec VideoOh! DVD USB 2.0 Edition, 2003, 13 pages.
“User's Manual for DriveCam Video Systems' HindSight 20/20 Software Version 4.0” DriveCam Manual, San Diego, 2003, Document #6600141-1, 54 pages.
Canadian Office Action issued in Application No. 2,632,685 dated Jan. 30, 2015; 5 pages.
Dan Maher, “DriveCam Taking Risk Out of Driving”, DriveCam brochure folder, Jun. 6, 2005, 6 pages.
Del Lisk, “DriveCam Training Seminar” Handout, 2004, 16 pages.
European Examination Report issued in EP 07772812.9 dated Jan. 22, 2015; 5 pages.
Jean (DriveCam vendor) “DriveCam Driving Feedback System”, DriveCam brochure, Nov. 6, 2002, Document #6600128-1, 2 pages.
Notice of Allowance Allowance for U.S. Appl. No. 14/036,299, dated Mar. 20, 2015, 5 pages.
Notice of Allowance Application for U.S. Appl. No. 11/566,424, dated Feb. 26, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, dated Dec. 3, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, dated Feb. 13, 2015, 2 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, dated Feb. 25, 2014, 2 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, dated Nov. 18, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/377,167, dated Apr. 1, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/800,876, dated Apr. 19, 2012, 8 pages.
USPTO Final Office Action for U.S. Appl. No. 11/296,906, dated Aug. 8, 2012, 15 pages.
USPTO Final Office Action for U.S. Appl. No. 12/096,591, dated Dec. 5, 2014, 23 pages.
USPTO Final Office Action for U.S. Appl. No. 12/096,591, dated Jul. 18, 2012, 15 pages.
USPTO Final Office Action for U.S. Appl. No. 12/096,591, dated Nov. 7, 2013, 14 pages.
USPTO Final Office Action for U.S. Appl. No. 13/957,810, dated Jun. 27, 2014, 22 pages.
USPTO Final Office Action for U.S. Appl. No. 14/036,299, dated Feb. 24, 2015, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, dated Apr. 8, 2014, 19 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, dated Jun. 12, 2012, 13 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Apr. 7, 2014, 7 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Aug. 18, 2014, 5 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Sep. 10, 2012, 10 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,167, dated Jun. 27, 2013, 11 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, dated Jun. 14, 2011, 8 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, dated Mar. 27, 2013, 16 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 13/957,810, dated Apr. 17, 2015, 6 pages.
USPTO Non-final Office Action for U.S. Appl. No. 13/957,810, dated Nov. 27, 2013, 18 pages.
Inovate Motorsports, OT-1 16 Channel OBD-II Interface User Manual, Version 1.0, Nov. 28, 2007, pp. 3, 4, 21 & 27.
Trivinci Systems, LLC, Race-Keeper Systems User Guide, Jan. 2011, v1, 1.02, pp. 34 and 39.
USPTO Non-Final Office Action for U.S. Appl. No. 14/036,299, dated Aug. 12, 2014.
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,659,827. Aug. 19, 2011. (29 pgs.).
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,804,426. Aug. 19, 2011. (47 pgs.).
DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Aug. 19, 2011. (6 pgs.).
Preliminary Claim Construction and Identification of Extrinsic Evidence of Defendant/Counterclaimant SmartDriveSystems, Inc. in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 8, 2011. (13 pgs.).
USPTO Non-Final Office Action dated Jan. 4, 2016 in U.S. Appl. No. 14/529,134, filed Oct. 30, 2014 (65 pgs).
Notice of Allowance for U.S. Appl. No. 13/957,810, dated Jun. 8, 2015, 10 pages.
PCT International Search Report and Written Opinion for PCT/US15/60721 dated Feb. 26, 2016, 11 pages.
PCT International Search Report and Written Opinion for PCT/IB16/51863, dated Sep. 16, 2016.
Trivinci Systems, LLC, “Race-Keeper System User Guide”, V1 .1.02, Jan. 2011, p. 21.
Edwin Olson, A Passive Solution to the Sensor Synchronization Problem, the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 18-22, 2010, 6 pages.
History of the web browser, Wikipedia (Year: 2019).
Olson, E, A passive solution to the sensor synchronization problem, Intelligent Robots and Systems (IROS), Technical Fields 2010 IEEE/RSJ International Conference on, IEEE, Piscataway, NJ, USA, Searched (IPC) Oct. 18, 2010 (Oct. 18, 2010), pp. 1059-1064, XP031920438, DOI: 10.1109/IROS.2010.5650579 ISBN: 978-1-4244-6674-0.
Related Publications (1)
Number Date Country
20070136078 A1 Jun 2007 US