The present invention relates to an assembly line framing system for clamping and thereafter welding a loosely assembled motor vehicle body, a framing system that accurately positions and locates predetermined areas of a loosely assembled motor vehicle body for accurately clamping and welding the vehicle body together with a high degree of repeatability between consecutive vehicle bodies on the assembly line, and more particularly a framing system especially adapted to weld a plurality of different predetermined vehicle body styles without interrupting the predetermined build cycle time interval of the assembly line.
The construction of a unitized vehicle body commences with the formation of individual major body panels by stamping the panels from sheet metal blanks. Typically, these major panels include a floor panel, right and left body side panels, a fire wall and either a roof panel or transversely extending inner members to which a roof panel is subsequently mounted. After the individual panels are stamped, some preliminary assembly operations can then be performed on the individual panels such as for example adding door hinge and latch hardware to body side panels at appropriate locations proximate the door opening, adding seat mounting brackets and reinforcements to the floor panels, etc.
Next a set of panels that together constitute a sub-assembly of the finished vehicle body is loosely assembled together. This initial loose assembly of panels frequently is accomplished by a “toy tab” arrangement in which one or more panels is formed with a tab which projects from an edge and which is received in a slot in an adjacent panel. This technique interlocks the panels and frame members to each other to form a preliminary loosely assembled vehicle body wherein the panels and frame members will not separate from each other but the panels and frame members can tilt or move relative to one another. This initial loosely assembled sub-assembly is then moved along the assembly line to a framing station where the various panels and frames are welded to each other to form a rigid permanently assembled vehicle body.
The welding operation step at the framing station is one of the most important steps in the assembly of the vehicle body because it establishes the final welded alignment of the various panels and headers relative to each other which is essential to subsequent assembly operations performed on the subassembly. During the welding operation it is critical that the various panels and headers be precisely and accurately located and aligned relative to one another and be held fixedly in the desired position. The positioning of the various panels and header members during the welding operation typically is accomplished by a pair of side framing gates which are positioned on opposite sides of the assembly line and which carry a plurality of individual clamps arranged thereon to clamp the various body components in desired positions.
It is desirable to perform as many welding operations as possible at the initial framing station since the relative positioning of the various panels and headers is critical to the ability to precisely relocate and reclamp the vehicle body at subsequent stations along the assembly line. Due to variations between assembly stations and variation in movement of the various panels and headers it is impossible to subsequently relocate and reclamp the vehicle body without inadvertently stacking up tolerances or creating variances between the relative positioning of various panels and headers. Therefore it is desirable to frame as much of the vehicle body as possible at the same framing station so that a maximum number of welding operations can be performed on the vehicle body without having to subsequently reclamp and relocate the vehicle body since reclamping and relocating can increase the tolerances between the relative positions of the various panels and headers of the vehicle body and decrease the repeatability between consecutive vehicle bodies in the production line.
It is common practice in the present automotive industry for one particular car model to be offered in several different body styles. Accommodating each body style requires clamping and welding different body locations as well as gaining access to different body areas so that the clamping and welding apparatus can be properly positioned while extending through the framing gates. To avoid having to provide separate assembly lines and framing stations for the different body styles of a particular car model, it is desirable to provide a single framing station that can be adapted to accommodate a plurality of different body styles in a quick and efficient manner while insuring the accuracy and repeatability that are required of the welding operation.
The present invention provides a framing system that accurately and efficiently clamps and welds a loosely assembled vehicle body with a high degree of repeatability between consecutive vehicle bodies in a production line while also being able to adapt to a plurality of different loosely assembled body components, corresponding to different vehicle body styles, in a quick and efficient manner. Specifically, the present invention provides a framing system wherein a plurality of vehicle body styles can be interchangeably accommodated at a single framing station without interrupting the predetermined build cycle time interval of the assembly line. More specifically, the present invention provides a framing station wherein four different body styles can be interchangeably accommodated at a single framing station without interrupting the predetermined build cycle time interval of the assembly line.
The body framing system of the invention is intended for use with a vehicle assembly line in which loosely preassembled vehicle bodies are moved incrementally along a single assembly line from station to station, successive loosely preassembled vehicle bodies arrive at a framing station along the production line at predetermined build cycle time intervals, and each loosely preassembled vehicle body arriving at the framing station is welded to form a rigid vehicle body.
According to the invention, the body framing system includes the framing station, a plurality of more than three pairs of opposed side framing gates for positioning at opposite sides of the framing station for use in welding a respective plurality of more than three vehicle body styles to allow the random production of the plurality of more than three vehicle body styles on the single assembly line, and a transfer apparatus assembly operative to randomly exchange any of the plurality of pairs of side framing gates positioned at the framing station with any other of the plurality of pairs of side framing gates within the predetermined build cycle time interval. This arrangement allows the random production interchange of the more than three vehicle body styles on the single assembly line while maintaining the predetermined build cycle time interval.
According to the present invention, the transfer apparatus assembly includes a rotary transfer apparatus coacting with a linear transfer apparatus. This coacting arrangement facilitates the random interchange of the more than three pairs of opposed side framing gates at the framing station. According to the present invention, the rotary transfer apparatus delivers framing gates to the linear transfer apparatus for delivery to the framing station. This specific rotary and linear coaction further facilitates the random interchange of the framing gates at the framing station. According to the present invention, the rotary transfer apparatus includes first and second carousels positioned on opposite sides of the assembly line upstream of the framing station and third and fourth carousels positioned on opposite sides of the assembly line downstream of the framing station. This arrangement allows the movement of framing gates into the framing station from positions both upstream and downstream of the framing station.
According to the present invention, the linear transfer apparatus includes a first linear track system extending from the first carousel to a first side of the framing station, a second linear track structure extending from the second carousel to a second opposite side of the framing station, a third linear track structure extending from the third carousel to the first side of a framing station, and a fourth linear track structure extending from the fourth carousel to the second opposite side of the framing station. This arrangement facilitates the movement of the framing gates to the framing station from positions upstream and downstream of the framing station.
According to the present invention, each carousel has a configuration including at least two sides, each side capable of receiving a framing gate. This arrangement allows the storage and random delivery of four pairs of framing gates representing four vehicle body styles to the framing station. In the illustrated embodiment of the invention, each carousel has three sides, wherein with the first pair of framing gates positionable on opposite sides of the framing station, the second pair of framing gates positionable on respective first sides of the first and second carousels, the third pair of framing gates positionable on respective second sides of the first and second carousels, and the fourth pair of framing gates positionable on respective first sides of the third and fourth carousels, all of the pairs of framing gates can be randomly interchanged by at least one of linear gate movements along the linear track structures, rotary movements of the carousels, and a combination of rotary movements of the carousels and linear gate movements along the linear track structures.
According to the present invention, the framing station can include a base structure, a first pair of spaced pillars mounted on the base structure on the first side of the framing station, and a second pair of spaced pillars mounted on the base structure on the second side of the framing station, the first and second pairs of pillars moveable on the base structure between outboard positions spaced outwardly from the assembly line and inboard positions proximate the assembly line, the first pair of pillars in its outboard position linearly aligned with the first and third linear track structures, and the second pair of pillars in its outboard position linearly aligned with the second and fourth linear track structures. This arrangement allows the framing gates to be delivered to the respective pillar pairs along the respective linear track structures with the pillar pairs in the outboard positions, thereafter the pillar pairs can be moved to the inboard positions to position the framing gates proximate the assembly line where the framing gates can clampingly engage the loosely preassembled bodies preparatory to the welding operation.
The present invention can also include a carousel for use in delivering framing gates to a framing station on a vehicle body assembly line. According to the present invention, the carousel can include a base structure positioned proximate the assembly line and having a support surface and a central pivot shaft upstanding from the support surface, a carousel body supported on the support surface, mounted on the pivot shaft for rotary movement about the axis of the pivot shaft, and defining a plurality of sides each adapted to receive a framing gate, means operative for generating an air cushion between the support surface and an underface of the carousel body to lift the carousel body off of the support surface, and means operative for applying a turning force to the lifted body. This arrangement allows the carousel body to be readily rotated about the pivot axis to bring successive sides of the carousel body into a position proximate the assembly line to facilitate delivery of the framing gates to the framing station.
According to the present invention, the operative air cushion generating means can include a plurality of air bags positioned on the underface of the carousel body, each air cushion including a plurality of apertures in confronting relation to the support surface. With this arrangement, pressurized air delivered to the airbags can inflate the bags to raise the carousel body off from the support surface and air escaping from the airbags through the apertures can generate an air cushion between the airbags and the support surface to facilitate selective rotation of the carousel.
According to the present invention, the carousel is intended for use with a linear track structure having one end positioned proximate the framing station and a free end, each side of the carousel body including a carousel track structure for supporting a respective framing gate and configured to be aligned with the free end of the linear track structure as the respective side of the carousel body is moved into a position proximate the assembly line. With this arrangement, the framing gate can be readily slid off from the carousel track structure and onto the linear track structure for deliver to the framing station.
The present invention can also include a transfer apparatus for use in delivering framing gates to a framing station on a vehicle body assembly line. According to the present invention, the transfer apparatus includes a linear track structure having one end positioned proximate the framing station and a free end, a carousel positioned proximate the assembly line, defining a plurality of sides each adapted to receive a framing gate, and mounted for rotation about a central axis to bring successive sides of the carousel into a position proximate the free end of the track structure and in linear alignment with the track structure, and a transfer device operative to move a gate positioned on a side of the carousel in alignment with the track structure from the carousel side, onto the track structure, and along the track structure to the framing station. This arrangement facilitates the transfer of a framing gate from the carousel to the framing station. According to the present invention, the transfer device includes a trolley operative to engage a gate and move the gate along the track structure to the framing station. This arrangement further facilitates the movement of the gate from the carousel to the framing station. According to the present invention, each side of the carousel includes a carousel track structure for supporting a framing gate positioned on the respective side of the carousel and configured to be aligned with the free end of a linear track structure as the respective side of the carousel is moved into a position proximate the free end of the linear track structure. This arrangement further facilitates the ready transfer of the framing gate from the carousel to the framing station.
According to the present invention, the transfer apparatus can include a first latch device for latching a framing gate to a respective side of the carousel, a base structure supporting the carousel, a second latch device for latching the carousel to the base structure, and a latch control device operative in response to arrival of a carousel side at a position proximate the free end of the linear track structure to actuate the second latch device to latch the carousel to the base structure and release the first latch device to release the framing gate from the carousel and allow the trolley to move the released framing gate along the linear track structure to the framing station. This arrangement further facilitates the ready transfer of the framing gate from the carousel to the framing station. According to the present invention, the transfer apparatus can include a third latch device to latch the trolley to a framing gate, the third latch device is actuated prior to release of the first latch device and following engagement of the second latch device, and the first latch device is released following engagement of the third latch device. This arrangement allows the trolley to move the released framing gate to the framing station. According to the present invention, the base structure defines a support surface, the transfer apparatus can include cushion means operative for generating an air cushion between the support surface and an underface of the carousel to lift the carousel off of the support surface, and turning means operative for applying a turning force to the lifted carousel to rotate the carousel about the central axis to bring successive sides of the carousel into position proximate the free end of the track structure and in linear alignment with the track structure, and the second latch device is released following actuation of the cushion means, thereafter the turning means is actuated to bring a respective side of the carousel carrying a respective framing gate into alignment with the linear track structure, thereafter the second linear latch device is actuated to latch the carousel to the base structure, thereafter the third latch device is actuated to latch the trolley to the respective framing gate, thereafter the first latch device is released to release the respective framing gate from the carousel, thereafter the trolley is actuated to move the respective framing gate to the framing station. This arrangement allows the smooth, rapid and precise delivery of framing gates from the carousel to the framing station.
The present invention further includes a method for moving pairs of framing gates to a framing station on a motor vehicle assembly line where loosely preassembled vehicle bodies are clamped by the framing gate pairs while the bodies are welded to form a rigid vehicle body. The method can include the steps of providing a pair of carousels, each carousel having a plurality of substantially flat sides, positioning the carousels along and on opposite sides of the assembly line in spaced relation to the framing station, mounting the carousels for rotation to bring successive sides of the carousels into a discharge position proximate and substantially parallel to the assembly line, positioning a pair of framing gates on one side of the respective pair of carousels, rotating the carousels to bring the one carousel sides into the discharge position, discharging the framing gates from the carousels, and sliding the framing gates along the assembly line to opposite sides of the framing station. This methodology facilitates the delivery of a plurality of pairs of framing gates, corresponding to a plurality of vehicle body styles, to the framing station. According to the present invention, the method can include the further steps of providing linear track structures extending from each carousel to the framing station, and the sliding step of the discharged framing gates along the assembly lines to the framing station can include the step of sliding the discharged framing gates along the linear track structures to the framing stations. This methodology further facilitates the delivery of the discharged framing gates to the framing station.
According to the present invention, the rotating step of the carousels can include the steps of generating an air cushion between an underface of the carousels and a support surface to lift the carousels off of the support surface, and thereafter applying a turning force to the lifted carousels. This arrangement allows the carousel rotation to be performed in a minimum amount of time, thereby minimizing the time required to perform the total framing gate interchange at the framing station.
According to the present invention, the pair of carousels can include a first pair of carousels positioned upstream on the assembly line from the framing station, the pair of framing gates can include a first pair of framing gates, the sliding step of the discharged framing gates along the assembly line to opposite sides of the framing station can include the steps of sliding the framing gates downstream to the framing station, providing a second pair of carousels each having a plurality of substantially flat sides, positioning the second pair of carousels along and on opposite sides on the assembly line downstream of the framing station, mounting the second pair of carousels for rotation to bring successive sides of the second pair of carousels into a discharge position proximate and substantially parallel to the assembly line, positioning a second pair of framing gates on one side of the respective second pair of carousels, rotating the second pair of carousels to bring the one sides of the second pair of carousels into the discharge position, discharging the second pair of framing gates from the second pair of carousels, and sliding the discharged second pair of framing gates upstream to the framing station. This methodology allows the precise and rapid delivery of framing gates to the framing station from locations both upstream and downstream of the framing station.
According to the present invention, the method can include the steps of providing a third pair of framing gates, positioning the third pair of framing gates on a second side of one of the first and second pairs of carousels, and discharging the third pair of framing gates from the second side of the respective carousels for delivery to the framing station. This methodology allows the random interchange of three pairs of framing gates at the framing station without interrupting the build cycle time interval of the assembly line.
According to the present invention, the method can include the steps of providing a fourth pair of framing gates, positioning the fourth pair of framing gates on opposite sides of the framing station, and randomly interchanging the pair of framing gates positioned at the framing station by selective rotation of the carousels and selective sliding movement of the framing gates between the framing station and the carousels. This methodology allows the random interchange of four pairs of framing gates at the framing station without interrupting the build cycle time interval of the assembly line.
Other objects, advantages and applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
FIGS. 8 is a schematic cross sectional view of the track structure;
As seen in
Framing station 14 includes a first framing station assembly 50 positioned on one side of the assembly line 10 and a second framing station assembly 52 positioned on the opposite side of the assembly line 10 and constituting a mirror image of framing station assembly 50. With reference to
Framing station assembly 50 further includes a track structure 64 positioned between the pillars 56 and 58 and defining a top rail 66, and a plurality of welding guns 68 (
The structure and operation of the framing system will now be described with specific reference to carousel assembly 18, linear track structure 26, and trolley assembly 34. In overview it will be understood that carousel assembly 18, linear track structure 26, and trolley assembly 34 coact to move framing gates upstream along assembly line 10 to framing station assembly 50 from a location on one side of the assembly line; carousel assembly 20, linear track structure 28 and trolley assembly 36 coact to move framing gates upstream to framing station assembly 52 from a location on the opposite side of assembly line 10; carousel assembly 22, linear track structure 30, and trolley assembly 38 coact to move framing gates downstream to framing station assembly 50 from a location on the one side of assembly line 10; and carousel assembly 24, linear track structure 32 and trolley assembly 40 coact to move framing gates downstream to framing station assembly 52 from a location on the opposite side of assembly line.
With reference to
Carousel assembly 18 further includes an annular turn table 82 underlying the carousel body, a servo motor 84 including a pinion gear or tire 86 driving the turntable, and a fixed annular support plate 88 positioned on base 80 in underlying relation to turntable 82 and defining an upper annular support surface 88a. Carousel assembly 18 further includes a plurality of circumferentially spaced air bag assemblies 90 (
Referring now to
Linear track structure 26 is arranged for coaction with carousel assembly 18 and specifically is arranged to deliver framing gates from carousel assembly 18 to framing station assembly 50. Track structure 26 (
Trolley assembly 34 (
Lift mechanism 100 is intended to pivotally move dump member 106 about the axis of pivot 118 between a raised position in which the notch 122 can engage the gate dog on a framing gate and a lowered position in which the gate dog is released and the gate is free to move relative to the trolley. Lift mechanism 100 (
Shuttle belt assembly 102 (
Framing gate 42 will now be described in detail. It will be understood that the remaining framing gates have a similar construction but will differ from each other with respect to tooling, clamps, etc. carried by the gate since the clamps and tooling will be peculiar to the particular motor vehicle body style for which the gate is designed. Framing gate 42 (
The invention framing system further includes a latching device for latching and unlatching a gate to the carousel and a latching device for latching and unlatching the carousel to the base structure. For reasons of compactness and servicing, these two latching functions are combined in a single combined latch assembly 160, seen in
In the overall operation of the framing system of the invention, the four carousel assemblies 18, 20, 22 and 24 and the four linear track structures 26, 28, 30 and 32 coact to bring selected pairs of framing gates to the framing station for use in clamping the opposite sides of a loosely preassembled vehicle body preparatory to the welding operation. With particular reference to carousel assembly 18 and linear track structure 26, the carousel body can be selectively rotated to bring each of the three sides of the carousel body into alignment with the assembly line to deliver a framing gate to the track structure 26 for delivery to the framing station 14 following each turning movement of the carousel. To facilitate the rotation of the carousel body, pressurized air is delivered to air bags 90 to inflate the air bags and lift the carousel body off of support surface 88a while pressurized air flows through the diaphragm apertures 90b to form a film of air between the diaphragms of the air bags and the support surface 88a, thereafter motor 84 can be actuated to rotate the carousel body through 120° to bring successive sides of the carousel body into alignment with the assembly line. Note that (
During the rotation of the carousel body between successive positions, latch assembly 160 has been actuated in a manner such that the carousel body is free to turn relative to the carousel base and each gate carried by the carousel body is fixed with respect to the respective side of the carousel body by engagement of rollers 170 with precision dog 196. As a respective side of the carousel body carrying a desired framing gate arrives at a position in alignment with the assembly line, cylinder 176 is fired to latch the carousel body to the carousel base structure, thereafter air cylinder 134 is actuated to raise slide plate 126 and pivot dump member 106 upwardly about the axis of pivot shaft 118 to move the dog 154 on the framing gate into groove 122 on the receiver 106b of the dump member, thereafter cylinder 184 is fired to disengage rollers 170 from precision dog 196 to unlatch the framing gate from the carousel body, thereafter the delivery of pressurized air to the air bags 96 is discontinued to allow the carousel to settle back down onto the support surface 88a, thereafter servo motor 146 is actuated to drive powered pulley 140 and power endless belts 144 and the endless belts in turn move trolley 98 along the track structure 26 to move the framing gate along the track structure to the framing station. Specifically, as the trolley and the captured framing gate move along the track structure toward the framing station, the caterpillar bearings 152 on the lower edge of the framing gate crawl along the round bar 70c, jump the gap between the round bar 70c and the round bar 96, and continue crawling along the round bar 96 until the framing gate arrives in the proximity of the framing station.
Meanwhile, the trolley pushes the framing gate along the track structure, and is guided on the vertical rail 92 by virtue of the rollers 110 and the rollers 112, guided on the round bar 72j of the carousel lower track structure by virtue of the sliding engagement of the arcuate groove 106a with the round bar 72j, followed by sliding engagement of the arcuate groove 106a on the round bar 96; and guided on the lower track structure of the carousel body by virtue of the rolling engagement of the rollers 116 on the track apron 72i proximate the round bar followed by rolling engagement of the rollers 116 on the horizontal guide plate 194 proximate the round bar 196. The sliding movement of the framing gate along the track structure is further facilitated by the rolling engagement of the rollers 150 in the overhead angle irons 72g of the carousel followed by rolling engagement of the rollers 150 in overhead angle iron tracks 200 forming a continuation of the angle irons 72g and extending to a location overlying the framing station 14. As the gate approaches the framing station the pillars 56 an 58 are in the retracted or outboard positions to allow passage of the gate in front of the pillars to position the gate on the pillars. As the leading edge of the gate reaches and traverses the first pillar 58, the front caterpillar bearing 152 loses contact with rail 96 but the gate continues to be firmly guided during this brief transition time by the continued engagement of the trailing caterpillar bearing 152 on the round bar 96, by the firm guidance of the overhead rollers 150 in the overhead tracks 200, and by the firm guidance of the lower edge of the trolley with the guide rail 92, the round bar 96, and the horizontal rail 94 proximate the round bar 96. Once the leading edge of the gate has traversed the pillar 58, the leading caterpillar bearing 152 engages the round bar 164 and the movement of the framing gate continues until the leading edge of the framing gate encounters the second pillar 56 and moves past the second pillar 56 to position the gate against both pillars 56 and 58, at which time the framing gate is secured to the pillars in the matter described in U.S. Pat. No. 6,173,881, thereafter the pillars carrying the captured framing gate are moved from the outboard positions to the inboard positions to coact with the pillars and the matching framing gate 43 on the opposite side of the assembly line to firmly clamp a loosely preassembled vehicle body therebetween preparatory to the welding operation. As the pillars move forwardly to the inboard positions, the framing gate is able to move with the pillars by virtue of the passage of the overhead guide rollers 150 through suitable gaps 200a provided in the overhead guide rails 200.
The framing gate 42 will remain mounted on the pillars 56, 58 for coaction with the framing gate 43 carried by the pillars at the framing station on the opposite side of the assembly line for as long as it is desired to continue to build the same body style vehicle. Specifically, the pillars will be moved to an inboard position each time a vehicle body arrives, thereafter the vehicle body will be clamped, thereafter the vehicle body will be welded, thereafter the pillars will be moved outwardly to the outboard positions until the arrival of the next successive loosely preassembled vehicle body at the framing station, thereafter the pillars will again be moved to the inboard positions and the clamping and welding cycle repeated. This pattern will continue for as long as it is desired to continue to build the same body style. However, and in accordance with an important feature of the invention, the pair of framing gates 42, 43 required to build the specific body styles can be randomly and readily interchanged for any of the other sets of framing gate pairs (44, 45; 46, 47; 48, 49) without interrupting the build cycle time of the assembly line.
That is, the combined rotary carousel and linear track arrangement of the invention allows the interchange of framing gates corresponding to four different body styles at the framing station without interrupting the build cycle time of the assembly line so that any mix of the four body styles can be provided at any time and during any time period without any penalty in the number of vehicles produced by the assembly line during that time period. For example, and with reference to
In the scenario where only linear movement of the involved gate pairs is required (as for example replacing gate pair 42, 43 with gate pair 44, 45 simply by moving gate pair 42, 43 linearly downstream from the framing station to the vacant side of carousels 26, 28 and moving gate pair 44, 45 downstream to the framing station) the exchange time consists of only approximately 3 seconds to perform the various latching and unlatching operations, and 5 seconds of linear sliding time for a total of approximately 8 seconds, well within the 45 second build cycle time target.
In the more complicated scenario where it is desired to exchange gate pairs 42 and 43 with gate pairs 46 and 47, carousels 30 and 32 are rotated counterclockwise through 120° to bring gates 46 and 47 into proximity with the assembly line while gate pair 42 and 43 is slid downstream to the vacant sides of carousels 26 and 28, thereafter gates 46 and 47 are slid downstream to opposite sides of the framing station. The total time for this operation being approximately 16 seconds to rotate the carousels, 5 seconds to perform the sliding operations, and approximately 3 seconds to perform the various latching operations for a total time of 26 seconds, again well within the 45 second build cycle time target.
To exchange gates 48 and 49 for gates 42 and 43, carousels 30/32 are rotated 120° clockwise to bring the vacant side of these carousels into alignment with the assembly line while carousels 26 and 28 are rotated 120° counterclockwise to bring gates 48 and 49 into proximity to the assembly line, thereafter gates 42/43 are slid upstream to occupy the vacant side of carousels 30/32 while gates 48/49 are slid upstream to move gates 48 and 49 to the opposite sides of the framing station. The total time for this exchange again being approximately 26 seconds, including 16 seconds to rotate the carousels, 5 seconds to perform the sliding operations, and approximately 3 seconds to perform the various latching operations, again well within the 45 second build cycle time target.
Similar analysis of the various frame interchange scenarios will establish that the combination of rotary and sliding movement allows the random interchange of four pairs of framing gates to allow the random production of any mix of four body styles on the assembly line without interrupting the build cycle time of the assembly line so that the assembly line can turn out the same number of vehicles irrespective of the mix amongst the four body styles. It will also be apparent that the arrangement allows the production of five body styles on the same assembly line, but, in this case, there are certain interchange scenarios where it would not be possible to interchange the pair of gates positioned at the framing station with another pair of gates positioned on one of the carousels within the build cycle time, even though certain interchanges would be possible within the build cycle time.
The invention apparatus and method will be seen to provide the random interchange of more than three pairs of side framing gates at a framing station while maintaining a predetermined build cycle time interval of the assembly line to allow any random mix of, for example, four body styles on a single assembly line without compromising the ability of the assembly line, to maintain operation at the predetermined build cycle time interval. Further, the apparatus and method according to the present invention, by virtue of its compact packaging, allows the random interchange to be performed in the context of the physical floor plan constraints of a typical motor vehicle assembly plant building and specifically allows the system to be installed within the typically 50′ wide bays dictated by the structural columns of the building.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application is a divisional application of U.S. application Ser. No. 10/401,471 filed Mar. 28, 2003 which claims the benefit of U.S. provisional application Ser. No. 60/370,891 filed on Apr. 8, 2002, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60370891 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10401471 | Mar 2003 | US |
Child | 11165475 | Jun 2005 | US |