The present disclosure relates to a vehicle headlight.
Referring to
In a general aspect, the present invention relates to a vehicle including a headlight comprising a light source configured to emit light and a spatial light modulator (SLM) including a two-dimensional array of pixel cells each of which is configured to produce an image pixel in a display image in front of the vehicle.
In another general aspect, the present invention relates to a vehicle including a headlight comprising a light source configured to emit light and a spatial light modulator (SLM) including a two-dimensional array of pixel cells each of which is configured to produce an image pixel in a display image in front of the vehicle; a computer device configured to store first data about the vehicle and driving conditions; an antenna configured to receive wireless signals; a receiver coupled to the antenna and is configured to extract second data from the wireless signals; and a display driver configured to control the two-dimensional array of pixel cells in response to at least one of the first data and the second data.
Implementations of the system may include one or more of the following. One of the pixel cells in the SLM is configured to reflect the light emitted from the light source to form the image pixel in the display image. At least one of the pixel cells in the SLM can include a tiltable mirror supported by a substrate, wherein the tiltable mirror can be tilted to an “on” position to reflect the light emitted from the light source to form an image pixel in the display image and to be tilted to an “off” position to reflect the light emitted from the light source away from the display image. One of the pixel cells in the SLM can transmit the light emitted from the light source to form the image pixel in the display image. The SLM can include a transmissive liquid crystal device. The headlight can further include a mirror configured to reflect the light emitted from the light source toward the SLM. The headlight can further include a projection system configured to project light from the SLM to form image pixels in the display image in front of the vehicle. The display image can be formed on a road surface in front of the vehicle. The vehicle can further include a display driver configured to control the two-dimensional array of pixel cells to produce the display image in front of the vehicle. The vehicle can further include an antenna, a receiver and a display driver, wherein the antenna is configured to receive wireless signals, the receiver is coupled to the antenna and is configured to extract data from the wireless signals, and the display driver is configured to control the two-dimensional array of pixel cells in accordance with the data extracted from the wireless signal. The vehicle can further include a computer device configured to store data about the vehicle and driving conditions and a display driver configured to control the two-dimensional array of pixel cells in response to the data stored in the computer device. The light source can be a Xenon lamp, a halogen lamp, or a light emitting diode.
Embodiments may include one or more of the following advantages. A potential advantage of the disclosed headlights is that they can display information useful to the driver of the vehicle. Another potential advantage of the disclosed headlights is that the useful information is displayed in the front and outside of the vehicle, in a location where the driver is looking during driving. The driver can therefore see the information while watching the road conditions. If the information is safety related, driving safety may therefore be improved. A potential advantage of the disclosed vehicle which includes the headlights described herein is that information received from an external source can be timely displayed and seen by the driver to enable the driver to make better driving decisions.
Although the invention has been particularly shown and described with reference to multiple embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.
The following drawings, which are incorporated in and from a part of the specification, illustrate embodiments of the present invention and, together with the description, serve to explain the principles of the invention.
Referring to
An example of the transmissive SLM 320 is a transmissive liquid crystal device (LCD). A transmissive LCD includes a two-dimensional array of liquid crystal pixel cells. As shown in
While the vehicle is driven, the display driver 340 can control all the pixel cells in the SLM 320 to allow maximum light transmission. The light 331-333 can thus illuminate the display area 335 similar to a conventional headlight (such as the headlight 110) without forming an image pattern.
The display driver 340 can also receive information from a receiver 350. The receiver 350 can be coupled with an antenna 360 that can receive wireless signals carrying information such as the locations of the vehicle, map and directions, weather conditions, news, advertisement, etc. The wireless signals can be received from a global positioning system (GPS), or wireless systems based on WIFI, WI-Max, cellular, or other wireless standard. The data are extracted from the wireless signals and the associated information can be displayed as an image pattern 337 in the display area 335. The display driver 340 can also receive data from a computer device 345 on the vehicle. The data can carry information such as time, driving conditions, e.g., the mileage and the speed of the vehicle etc., and the direction the vehicle is moving. The driving and control information can be displayed in the image pattern 337. When the driver turns on the blinker to indicate her intention to turn, an arrow can be displayed in the image pattern 337 indicate the turning direction for the vehicle.
The power applied to the light source 120 is controlled by a power control 370 that can turn the light source 120 on or off. Typically, the driver or the electronics of the vehicle sent the on or off instructions to the power control 370. The power control 370 can also provide power to the display driver 340 to allow spatial light modulation of the light 131-133 after the light source 120 is turned on. The power control 370 can also be controlled by the level of light outside the vehicle and/or humidity conditions. For example, the power control 370 can automatically turn on the headlights when it's dark or raining, and turn off the headlight 310 when it is bright or the rain stops.
Referring to
Referring to
In some embodiments, an image, such as a symbol, pattern, logo or message, is projected in only one area 510, 520, 530L or 530R at a time. This can reduce any distraction caused by the image to the driver while driving. Alternatively, multiple images can be projected at one time and in the same or different areas 510, 520, 530L or 530R. In some embodiments, the projected image is in area 510. Because the driving surface in area 510 is not as brightly lit as an area closer to the vehicle, the image may be made brighter than the surrounding headlight illumination. Alternatively, the image may be a different color, such as red, blue, green or yellow, or even dimmer than the surrounding headlight. Different colors can be achieved with a colored light source within the headlight 310L, 310R, or a component for providing colored light from a white light source, such as beam splitters.
In some embodiments, the vehicle 500 includes a sensor that senses when an oncoming vehicle is approaching, such as by detecting light from the oncoming vehicle. When an oncoming vehicle is detected, the image being displayed by the headlight can be tilted down or turned down or off, so that the oncoming vehicle does not view the image from vehicle 500. In some embodiments, the component that forms the image adjusts the image downwardly by adjusting the portion of the device that forms the image. When an SLM forms the image, the mirrors that were previously forming the image may be repositioned to create the light for the driving and mirrors that were previously used to form light for driving can be repositioned to form the image.
If the image is in areas 530L or 530R, the image may instruct the driver to turn or to focus his or her attention to that side of the vehicle. For example, as shown in
In some embodiments, the headlights are directional and turn as the car is turning. Because the image is projected by the headlight 310R or 310L, the image may turn with the directional headlight.
In addition to the light sources described herein, the light source can be a laser light. Laser lights may be able to provide better contrast with the light provided for the driver to see at night during driving. Or, the laser light may provide enough light for the driver to see the image during the day. When laser lights are used to form an image, any light that may be directed toward an oncoming vehicle can be shut off when the vehicle is approaching.
As noted above, to enhance the driver's ability to see the image, the image is made to contrast with the rest of the light provided by the headlight. Contrast can be provided by forming the image from a different color, outlining the image with dark space or no light, or forming a brighter image than surrounding light. These techniques can be used to increase contrast in any of the image areas 510, 520, 530L or 530R.
Another technique for enhancing the driver's ability to see the image is to provide simple, large images, such as symbols, for example, arrows, numbers or logos. Simple, large images also reduce the negative effects of keystoning that can occur because of the uneven road surface onto which the image is projected. In some embodiments, a corporate name is projected by the headlight, such as FORD, SONY or other corporate name or logo. The vehicle can therefore be used for advertising.
A potential advantage of the disclosed headlights is that they can display information useful to the driver of the vehicle. Another potential advantage of the disclosed headlights is that the useful information is displayed in the front and outside of the vehicle, in a location where the driver is looking during driving. The driver can therefore see the information while watching the road conditions. If the information is safety related, driving safety may therefore be improved. A potential advantage of the disclosed vehicle which includes the headlights described herein is that information received from an external source can be timely displayed and seen by the driver to enable the driver to make better driving decisions.
It is understood that the disclosed systems and methods are not limited to the spatial light modulators described above. Other types of SLM devices and other configurations can be used to in the disclosed vehicle headlight. The light emitted by the disclosed headlight can include different colors such as white, red, green, blue, yellow, magenta, and cyan. The display produced by the disclosed headlight can include color images. The color image can for example be formed by a color filter array that can produce green, red, and blue color pixels side by side in a two dimensional array. The color image can also be produced by a color wheel that can produce single color images (red, green, and blue) in sequence that can superimpose over each other to form color images. The disclosed headlight can in general include a light source that can include a light bulb, light emitting diode, and other light emitting devices. The disclosed vehicle can also include primary headlights and secondary headlights. For example, the disclosed vehicle can include primary headlights including SLMs, and secondary headlights that are similar to conventional headlights without SLMs.