Numerous cargo containers pass through shipping terminals and other access points every day. Weapons, explosives and/or other contraband may be concealed within any one of the cargo containers. Because it is difficult to open every container and inspect its contents, inspection systems are conventionally used to detect contraband within cargo containers. Frequently, inspection systems employ penetrating radiation (e.g., x-rays) to form an image of items in a container under inspection. Specifically, by measuring the radiation after it has interacted with items in a container, an image of the items may be formed.
Cargo containers are large, and are inspected by vehicle-mounted or gantry based inspection systems. A vehicle-mounted inspection system may, for example, include an x-ray source and a boom with a detector array at the end. When a vehicle-mounted inspection system is positioned next to a cargo container, the boom extends over the cargo container to position the detector array so that radiation from the x-ray source is detected after passing through the cargo container. To generate an image for inspection, a vehicle-mounted inspection system may be moved relative to the cargo container during scanning. For example, an image may be formed of different pieces of the cargo container as the vehicle-mounted inspection system moves relative to the cargo container, and the image pieces may then be assembled into a composite image of the cargo container that may be analyzed to detect contraband stored in the container.
The inventors have appreciated that the overall weight of conventional vehicle- mounted inspection systems limits the type of vehicle chassis upon which the inspection system may be mounted. In this respect, conventional vehicle-mounted inspection systems typically weigh approximately thirty to thirty-five metric tons. As a result, conventional vehicle-mounted inspection systems are generally truck-mounted, since a truck chassis can support the total weight of conventional systems, but other conventional chassis types cannot. A truck chassis includes chassis rails, usually extending from near the front of the truck to near the back of the truck, which bear the weight of the truck's body and its contents. The chassis rails are usually situated above the height of the truck's front and rear axles to accommodate a drive shaft which extends from the engine in the front of the truck to the rear axle. The inventors have recognized that use of a truck chassis imposes unnecessary constraints, owing mainly to the chassis rails located between the front and rear axles to accommodate the drive shaft.
For example, in one type of conventional truck-mounted inspection system, the x-ray source, boom and detector array are located between the front and rear axles, all on one side of the truck-mounted system (e.g., on the passenger side). The x-ray source and detector array are placed on the same side of the truck so that a beam emitted by the x-ray source need not cross (i.e., pass through) a chassis rail on the way to the detector, since having a beam cross a chassis rail can detract from the system's ability to thoroughly and accurately scan a container's contents. However, placement of the x-ray source and detector on one side of the truck creates an uneven weight distribution from one side of the truck to the other. As a result, a counter weight is commonly extended from the side of the vehicle that is opposite the x-ray source and detector while scanning is performed. The total weight of the detection components and counter weight can put the system at risk of exceeding road weight limits, as the x-ray source and detector conventionally weigh about seven metric tons in total, and the counter weight typically weighs about three metric tons. In addition, the counter weight does not eliminate the uneven weight distribution from one side of the vehicle to the other, so this type of system is difficult to operate. For example, the truck may veer to one side while being driven between scanning locations, which not only can detract from operator safety but can also increase the cost of maintaining the system. Moreover, images produced by this type of system often have a perspective which make them difficult to inspect.
In another type of conventional truck-mounted inspection system, the chassis rails behind the rear axle of the truck are removed, and the x-ray source, boom and detector array are placed behind the rear axle, so that a beam emitted by the x-ray source need not pass through a chassis rail on the way to a cargo container and the detector array. However, even though the x-ray source and detector array may be located on opposite sides of the truck (e.g., the x-ray source may be located on the driver's side of the truck, and the detector array may be located outside the truck's body on the passenger side), the weight of this type of system may still be somewhat unevenly distributed from one side of the truck to the other, and is very unevenly distributed from the front of the truck to the back, making the vehicle difficult to operate. In some conventional systems, a ballast may be used near the front of the truck to counteract the weight of the detection components in the back. However, the additional weight of the ballast may sometimes cause the overall system to exceed certain road weight limits.
The inventors have recognized that these and other deficiencies of conventional systems may be overcome by reducing the overall weight of the system. Specifically, the inventors recognized that by reducing the overall weight of the system so that it could be mounted on a chassis type which does not include rails extending from near the front of the vehicle to near the back (e.g., to a total weight of less than twenty-three metric tons), the detection components could be placed between the front and rear axles without an x-ray beam having to pass through a chassis rail, thus more evenly distributing the weight of the system from the front of the vehicle to the back. In addition, the inventors recognized that reducing the overall system weight may mitigate to some extent any uneven weight distribution from one side of the vehicle to the other. As a result, a system which is much easier to operate, safer, and less costly to maintain than conventional systems may be produced.
In some embodiments of the invention, a mobile cargo inspection system is mounted to a coach or bus chassis, which may include a plurality of distinct chassis segments, each assembled from a plurality of struts and/or other structural members. A “mid-vehicle” segment may be situated between the front and the rear wheels, and may be configured to accommodate one or more detection components, such as the radiation source and/or other components.
In some embodiments, the absence of chassis rails extending from near the front of the vehicle to near the back of the vehicle above axle height may mean that an x-ray source may be placed on the opposite side of the vehicle from a detector array, without beams emitted by the x-ray source being obstructed by the chassis rails during operation. Thus, image quality need not be sacrificed to achieve the safety, ease of operation and reduced maintenance costs associated with an approximately even distribution of weight from the front of the vehicle to the back of the vehicle, and from one side of the vehicle to the other side of the vehicle.
The foregoing is a non-limiting summary of the invention, some embodiments of which are defined by the attached claims.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component as illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
The inventors have recognized that various deficiencies of conventional vehicle-mounted inspection systems may be overcome by reducing the overall weight of the system so that it may be mounted on a vehicle chassis type which does not include rails that extend from near the front of the vehicle to near the back. As such, detection components may be placed between the front and rear axles of the vehicle, without an x-ray beam having to pass through a chassis rail, and the weight of the system may be more evenly distributed from the front of the vehicle to the back of the vehicle, making the system easier to operate, safer, and less costly to maintain than conventional systems.
Embodiments of the invention may employ any of numerous techniques to reduce overall system weight to enable use of a chassis type that does not include chassis rails extending from roughly the front of the vehicle to the back of the vehicle. For example, in some embodiments, overall system weight may be reduced by eliminating or reducing of the use of heavier materials in system components. As one example, some embodiments of the invention may reduce overall system weight by removing excess lead from shielding components which shield operators from radiation emitted during system operation. Removing excess lead from shielding components may be performed in any of numerous ways. In some embodiments, an analysis may be undertaken to determine the amount of radiation expected in various locations within the vehicle and in the vehicle's vicinity while radiation is being emitted from a radiation source, determine how much lead is needed to limit expected radiation levels at various locations, and remove any lead which is not needed to limit radiation. As a result, embodiments of the invention may reduce overall system weight without compromising operator safety.
Some example lead thicknesses which may lead to a reduction in weight relative to conventional shielding components without compromising operator safety are shown in
Removing excess lead from shielding components represents only one possible approach to reducing overall system weight relative to conventional systems. In some embodiments of the invention, overall system weight may also, or alternatively, be reduced by using components made of more lightweight materials than those which are used in corresponding components in conventional systems. For example, in some embodiments of the invention, vehicle body panels may be made of fiberglass and/or other lightweight (e.g., composite) materials, rather than aluminum and/or steel as in conventional systems. As another example, portions of the vehicle chassis may be made from fiberglass and/or other lightweight (e.g., composite) materials, rather than the steel from which a chassis may be constructed in conventional systems.
An example mobile cargo inspection system which is lightweight enough to mount on a chassis that does not include chassis rails running from near the front of the vehicle to near the back of the vehicle is shown in
It should be appreciated that although an x-ray source is shown in
In the perspective views of
If system 100 allows x-ray source 120 to be moved away from the body of the vehicle (e.g., using a drawer-like mechanism, and/or some other assembly), its weight may counter-balance the weight of boom 125 and detector array 133, which in the example arrangement shown extends away from passenger side 135 of chassis 101. As a result, the detection components may be placed such that overall system weight is distributed approximately evenly from one side of the vehicle (e.g., driver's side 110) to the other side of the vehicle (e.g., passenger side 135). As a result, the vehicle may be less likely to veer to one side or the other when operated.
As can be seen from
In the example arrangement shown in
In the example shown in
It can be seen from
In the example arrangement of
In the example arrangement shown in
During operation, mobile inspection system 200 may be moved with respect to cargo container 220 to detect contraband within cargo container 220. For example, images may be formed of multiple segments of cargo container 220 as vehicle-mounted inspection system 200 moves relative to it, and the images may then be assembled into a composite image of the contents of cargo container 220. Given the relatively even distribution of the weight of vehicle-mounted inspection system 200 from one side to another, and from front to back, vehicle-mounted inspection system 200 may be easier to operate than conventional systems while an inspection is being performed. Further, the even distribution of weight may enable vehicle-mounted inspection system 200 to be driven more easily from one inspection site to another. For example, the relatively even weight distribution afforded by embodiments of the invention may enable the system to be driven from a site at which a first inspection occurs to one at which a second inspection occurs, without experiencing the veering to one side which commonly occurs in conventional systems. As a result, embodiments of the invention may provide a system which is not only safer and easier to operate, but also less costly to maintain over time.
Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art.
Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Further, though advantages of the present invention are indicated, it should be appreciated that not every embodiment of the invention will include every described advantage. Some embodiments may not implement any features described as advantageous herein and in some instances. Accordingly, the foregoing description and drawings are by way of example only.
Various aspects of the present invention may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
This application claims the benefit under 35 U.S.C. §119(e) of the filing date of U.S. Provisional Application Ser. No. 61/502,612, filed Jun. 29, 2011, bearing Attorney Docket No. L0632.70112US00, entitled “COACH/BUS X-RAY CARGO VEHICLE SCANNER,” the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61502612 | Jun 2011 | US |