These teachings relate generally to terrestrial vehicles.
Terrestrial vehicles of various kinds are known in the art. Many such vehicles, including trucks of various kinds, generally ply public roads. Such roads are often parsed into one or more lanes and many times accommodate two-way traffic.
In a typical application setting not all vehicles on such a road proceeding in a same direction are traveling at an identical speed. As a result, faster-moving vehicles from time to time will pass slower-moving vehicles. In some instances passing a slower-moving vehicle will require the faster-moving vehicle to temporarily occupy a traffic lane primarily intended for vehicles moving in the opposite direction. Accordingly, passing in this way is best done when the driver of the passing vehicle is well informed of the presence or absence of oncoming traffic.
Many trucks, due in considerable part to their relative size and weight, tend to comprise a slower-moving part of traffic. In some jurisdictions trucks are in fact required to observe a lower speed limit than other vehicles such as automobiles. As a result, it is not uncommon that the slower-moving vehicle that a faster-moving vehicle wishes to pass will comprise a truck. Unfortunately, as already noted, trucks are often relatively large. As a result the truck itself can at least partially if not fully occlude a good view of the road ahead. Those overall circumstances, in further combination with the length of the truck that must be passed, often lead to passing situations where the driver of the passing vehicle lacks good information about oncoming traffic or other circumstances relevant to their passing decisions.
The above needs are at least partially met through provision of the vehicle-mounted external display system described in the following detailed description, particularly when studied in conjunction with the drawings, wherein:
Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present teachings. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present teachings. Certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. The terms and expressions used herein have the ordinary technical meaning as is accorded to such terms and expressions by persons skilled in the technical field as set forth above except where different specific meanings have otherwise been set forth herein.
Generally speaking, pursuant to these various embodiments a terrestrial vehicle such as a truck has one or more video cameras mounted to capture a field of view that includes looking forward and ahead of the vehicle. The vehicle also includes one or more rear-mounted, rear-facing displays that are operably coupled to such a camera. So configured, forward-looking images from the front side of the vehicle are presented on the aforementioned displays to thereby provide a viewer positioned behind the vehicle with that forward-looking image of the road ahead. To some substantial degree, that viewer is now effectively looking through the truck. So configured, drivers looking to pass such a vehicle are provided with real-time information regarding circumstances that can greatly affect the safety of such an action and can use that information to better inform their decisions and actions.
These and other benefits may become clearer upon making a thorough review and study of the following detailed description. Referring now to the drawings, and in particular to
Generally speaking, the present teachings become increasingly more beneficial as the size of the truck (or at least as the size of the cargo-containing area) increases (especially in terms of the cross-sectional dimensions of the truck).
In this illustrative example the terrestrial vehicle 100 includes a control circuit 101 that may optionally operably coupled to a corresponding memory 102. Being a “circuit,” the control circuit 101 therefore comprises structure that includes at least one (and typically many) electrically-conductive paths (such as paths comprised of a conductive metal such as copper or silver) that convey electricity in an ordered manner, which path(s) will also typically include corresponding electrical components (both passive (such as resistors and capacitors) and active (such as any of a variety of semiconductor-based devices) as appropriate) to permit the circuit to effect the control aspect of these teachings.
Such a control circuit 101 can comprise a fixed-purpose hard-wired hardware platform (including but not limited to an application-specific integrated circuit (ASIC) (which is an integrated circuit that is customized by design for a particular use, rather than intended for general-purpose use), a field-programmable gate array (FPGA), and the like) or can comprise a partially or wholly-programmable hardware platform (including but not limited to microcontrollers, microprocessors, and the like). These architectural options for such structures are well known and understood in the art and require no further description here. This control circuit 101 is configured (for example, by using corresponding programming as will be well understood by those skilled in the art) to carry out one or more of the steps, actions, and/or functions described herein.
The memory 102 may be integral to the control circuit 101 or can be physically discrete (in whole or in part) from the control circuit 101 as desired. This memory 102 can serve, for example, to non-transitorily store the computer instructions that, when executed by the control circuit 101, cause the control circuit 111 to behave as described herein. (As used herein, this reference to “non-transitorily” will be understood to refer to a non-ephemeral state for the stored contents (and hence excludes when the stored contents merely constitute signals or waves) rather than volatility of the storage media itself and hence includes both non-volatile memory (such as read-only memory (ROM) as well as volatile memory (such as an erasable programmable read-only memory (EPROM).)
The control circuit 101 also operably couples to one or more video cameras 103. By one approach the control circuit 101 comprises an integral part of such a video camera if desired. This one or more video camera 103 is mounted in order to capture a field of view that includes at least in part a forward-looking view from the front of the terrestrial vehicle 100. Accordingly, such a video camera 103 may be mounted on a front surface of the terrestrial vehicle 100 and/or within the driver's cabin with a view out the front windshield. Other mounting locations and configurations are possible.
This video camera 103 may be full-color, monochromatic, or otherwise as desired and can be wireless or non-wireless as desired. For most application settings it will likely be beneficial that the video camera 103 constitute a digital device that provides its image output as a digital representation of the captured field of view. These teachings will also accommodate using a video camera 103 that captures images using other than visible light. For example, the video camera 103 may comprise an infrared camera. Such a camera can be useful, for example, when capturing images in a darkened setting.
The video imagery from the video camera 103 is provided by the control circuit 101 to a rear-mounted, rear-facing display 104. That datalink 105 can be partially or wholly wireless or non-wireless as desired. Numerous approaches to communicating video data are known in the art. As the present teachings are not particularly sensitive to any specific choices in these regards, further elaboration regarding this datalink 105 is not provided here for the sake of brevity.
Referring momentarily to
By another approach, and referring momentarily to
There may be other reasons for forming the rear-mounted, rear-facing display 104 from a plurality of individual displays that together form a single image corresponding to the forward-looking view being provided by the video camera 103. This approach, for example, may free the designer from limitations driven by the aspect ratio that is otherwise inherent to any individual display.
Referring still to
These teachings will also accommodate optionally including a location determination unit 107 that operably couples to the control circuit 101. For example, a Global Positioning System (GPS) receiver can serve as a location determination unit and provide to the control circuit 101 information regarding a present location of the terrestrial vehicle 100. That location information, in turn, may be leveraged by the control circuit 101 to glean additional information regarding the path ahead of the terrestrial vehicle 100. For example, using the location of the terrestrial vehicle 100 the control circuit 101 can access one or more map databases to obtain information regarding upcoming turns, hills, or other pathway features that the control circuit 101 may then add to the imagery being provided via the rear-mounted, rear-facing display 104.
So configured, neither the driver of the terrestrial vehicle 100 nor any on-board components or systems need actively monitor the pathway ahead nor analyze the pathway ahead for passing concerns. Instead, the view ahead as provided to a trailing driver is inherently sufficient in many cases to permit even a driver unfamiliar with this paradigm to determine for themselves when it may be sufficiently safe to pass the terrestrial vehicle 100.
If desired, these teachings will accommodate embellishing the image provided on the rear-facing display 104 with additional information to thereby provide an augmented reality view. For example, the image may be augmented to artificially highlight the presence and location of an oncoming vehicle.
By another approach the highlighting feature (in this case, the brackets 701) can be animated in some fashion to further help attract the eye of the viewer. For example, the brackets 701 could blink on and off at some regular interval such as every half second or could move/grown outwardly for a short period of time and then move/shrink inwardly to again more tightly encompass the oncoming vehicle. It would also be possible to change the featured color (for example, from yellow to red to white in a repeated cycle) if desired. The person of ordinary skill in the art will understand that these teachings will readily accommodate other approaches to attract the attention of the viewer as desired.
Information from the aforementioned object sensor 106 can serve to detect that oncoming vehicle 702 and to help properly position those brackets 701. Using another approach the control circuit 101 could be configured to recognize, in real time or near real time, an oncoming vehicle in such an image using, for example, pattern matching methodologies.
In the example just provided the oncoming vehicle 702 is visible in the captured image but is relatively small and may therefore be difficult for a following driver to quickly and/or easily discern. The described brackets 701 can help that following driver to be aware of that oncoming vehicle 702 notwithstanding the present difficulty in seeing the vehicle itself.
With reference to
With reference again to
By one approach the aforementioned control circuit 101 can be configured to take the oncoming vehicle's speed and distance (and any other factors that might be appropriate in a given application setting) into account and automatically determine whether it may be presently unsafe for the following driver to attempt to pass the vehicle 100. Upon determining that conditions are unsafe to pass, and referring to
In a typical application setting the aforementioned displays 104 will be powered by electricity supplied by the vehicle 100 itself. As one illustrative example in these regards, and referring now to
So configured, even very large trucks (including multi-trailer so-called road trains) can be more safely passed by providing the passing driver with important information that may be impossible to have without increased risk to the passing driver and that can help inform their decisions regarding at least one driving maneuver (such as passing the truck).
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.