Vehicular multi-camera surround view system with video display

Information

  • Patent Grant
  • 11548444
  • Patent Number
    11,548,444
  • Date Filed
    Thursday, October 21, 2021
    3 years ago
  • Date Issued
    Tuesday, January 10, 2023
    2 years ago
Abstract
A vehicular multi-camera surround view system includes a front camera, a driver-side camera, a passenger-side camera and a rear backup camera. Image data captured by the cameras is conveyed to an electronic control unit. The electronic control unit is operable to combine image data conveyed from the front camera, the driver-side camera, the passenger-side camera and the rear backup camera to form composite video images, which are output for display at a display device. Rear backup video images are displayed no later than two seconds after the driver of the vehicle first changes propulsion of the vehicle during a new ignition cycle to reverse mode. Upon changing propulsion of the vehicle during the new ignition cycle to reverse mode to commence a backup event subsequent to the first backup event, the video display screen displays video images derived, at least in part, from image data captured by the rear backup camera.
Description
FIELD OF THE INVENTION

The present invention relates to vision display systems for vehicles and, more particularly, to a vision display system that selectively displays rearward images captured during a reversing maneuver and display a surround view or bird's-eye view or representation of the vehicle for viewing by the driver of the vehicle when the driver is operating the vehicle.


BACKGROUND OF THE INVENTION

Rear backup cameras and surround vision/panoramic vision systems used in conjunction with interior rearview video mirrors and instrument panel/center console information screens (such as navigation screens) are known for use in vehicles. Examples of such systems are described in U.S. Pat. Nos. 7,859,565; 6,611,202; 6,222,447; 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties. It is known to display images captured by a rearward viewing imaging sensor or camera on a video display screen that is associated with or incorporated in an interior rearview video mirror assembly of the vehicle. Such interior rearview video mirror display screens typically have about a 3.5 inch or thereabouts diagonal dimension and a 4:3 or 16:9 aspect ratio, while instrument panel/center console screens (commonly used for navigational screens but also used and usable for displaying infotainment information or other information useful to the driver of the vehicle) typically have a larger diagonal dimension, often greater than about 6 inches diagonal dimension (such as 7.8 inches or thereabouts) and are used for likes of displaying map information and/or driving instructions and/or other information relating to vehicle features or functions. The smaller video mirror display screens are located in the interior rearview mirror assembly of the vehicle and thus are typically disposed in the vehicle at a location that is closer to the driver's eyes than other known or typical or conventional in-cabin and driver-viewable display screens, which are often disposed at the instrument panel or a central console or the like of the vehicle. Such instrument panel or a central console displays can be as large as 8.5 inch diagonal dimension (or even larger in some vehicles) whereas, because of the fit and function in the vehicle of the interior rearview mirror assembly, the video screen in an interior video mirror assembly is restricted in size to, in practical terms, a diagonal dimension of up to 4 inches or thereabouts.


It is also known to provide a surround view or “bird's-eye” view display (showing a representation of the vehicle from a top or bird's-eye view above the vehicle to enhance the driver's understanding of the areas surrounding the vehicle for use such as in parking maneuvers and the like) via a surround system vision such as a camera or vision system of the type shown in FIG. 1 (showing a vehicle 10 with a forward viewing camera 12, side-viewing cameras 14, 16 disposed at or in the exterior sideview mirror assemblies and a rearward viewing camera 18). Such a bird's-eye view or image or representation may be displayed on a 3.5 inch diagonal video mirror display and are typically displayed on larger (such as greater than about 5 inches diagonal dimension) display screens, such as larger display screens disposed at a center console or instrument panel of the vehicle, such as for displaying navigation information or infotainment information (such as radio or audio system information) and/or the like. In such conventional bird's-eye view displays, it is common and desirable, when executing a reversing maneuver, to display to the driver both the actual video images captured in real time by the rear backup camera of the equipped vehicle, and also to display to the driver a bird's-eye composite or synthetic view (sometimes called a top-down view) where the video images captured by the rear camera are combined with video images captured by a forward viewing camera, typically at the grille at the front of the vehicle, and by two exterior mirror-located cameras mounted respectively in the exterior sideview mirrors and having a field of view to the respective side of the vehicle. Examples of bird's eye view systems and associated techniques are described in U.S. Pat. Nos. 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466 and/or 7,592,928, and/or International Publication No. WO 2010/099416, published Sep. 2, 2010, and/or PCT Application No. PCT/US10/47256, filed Aug. 31, 2010, which are hereby incorporated herein by reference in their entireties. Conventionally, the bird's-eye view and view of the rearward images being captured by the rear-mounted camera as part of a rear backup aid are displayed on a single display screen, typically a center console display screen.


Recently, the Department of Transportation, National Highway Traffic Safety Administration (NHTSA) has issued a Notice of Proposed new Rule Making (NPRM). The caption of the NPRM is shown in FIG. 2 and aspects of the proposed Final Rule are summarized/captured in FIGS. 3-5. The NPRM was printed in the Federal Register: Dec. 7, 2010 (Vol. 75, No. 234), pages 76185-76250; Part IV, Department of Transportation, National Highway Traffic Safety Administration, 49 CFR Parts 571 and 585, RIN 2127-AK43, and titled Federal Motor Vehicle Safety Standard, Rearview Mirrors; Federal Motor Vehicle Safety Standard, Low-Speed Vehicles Phase-In Reporting Requirements; Proposed Rule, the entirety of which is hereby incorporated herein by reference. The NPRM at S6.2.1.1 requires and specifies a rearview image performance such that, when tested in accordance with the procedures in S14.1 through S14.2.3 of the NPRM, the rearview image shall display, in a location visible to a driver properly restrained by seat belts, a minimum of a 150 mm wide portion of each test object located at positions F and Gin FIG. 5. Also, and in accordance with S6.2.1.2 of the NPRM, when the rearview image is measured in accordance with the procedures in S14.1 through S14.2.3 of the NPRM, (a) the calculated visual angle subtended by the horizontal width of the three test objects located at positions A, B, and C in FIG. 5 shall average not less than 5 minutes of arc; and (b) the angular size of each individual test object (A, B, and C) shall not be less than 3 minutes of arc.


As can be seen with reference to FIG. 7, in order to have a displayed object subtend a minimum of 5 minutes of arc angle, the display size of the target object (dependent on the distance of the displayed object from the driver's eyes) shown on the screen should be around 0.5 mm to 2 mm or thereabouts where the distance from the eyes of the viewer to the screen is between about 15 inches and about 50 inches.


SUMMARY OF THE INVENTION

The present invention provides a vision display system for a vehicle that utilizes a video mirror display screen to display rearward images captured by a rearward viewing camera of the vehicle at an interior rearview video mirror assembly during a reversing maneuver of the vehicle and that utilizes a separate larger center console or instrument panel display screen of the vehicle (such as a reconfigurable liquid crystal display (LCD) or organic light emitting diode (OLED) screen that may typically or commonly be used for displaying navigation information or infotainment information or other information) to display a surround view or bird's-eye view or representation of the vehicle at the navigation screen during the reversing maneuver of the vehicle.


According to an aspect of the present invention, a vision display system for a vehicle includes a plurality of cameras disposed at the vehicle and having exterior fields of view, with the plurality of cameras at least comprising a rearward viewing camera disposed at the rear of the vehicle, a forward viewing camera disposed at the front of the vehicle, a driver-side viewing camera and a passenger-side viewing camera (with the driver-side viewing camera and the passenger-side viewing camera preferably incorporated into the driver-side exterior sideview mirror assembly and the passenger-side exterior sideview mirror assembly, respectively). The vision display system includes a first display screen disposed, preferably, in an interior rearview video mirror assembly of the vehicle (such as behind the mirror reflective element so that information displayed by the first display screen is viewable through the reflective element of the interior rearview video mirror assembly, and preferably is viewable through the mirror reflector of the reflective element of the interior rearview mirror assembly). The first display screen has a first diagonal dimension and a first aspect ratio. The vision display system includes a second display screen disposed in the vehicle cabin other than in the interior rearview mirror assembly of the vehicle and at a location viewable by the driver when normally operating the equipped vehicle, such as at or in a console or instrument panel of the vehicle, with the second display screen having a second diagonal dimension and a second aspect ratio, and with the second diagonal dimension being greater than the first diagonal dimension. The first display screen is operable to display video images captured by the rearward viewing camera during a reversing maneuver of the vehicle and the second display screen (during that reversing maneuver) displays a surround view, panoramic, bird's-eye view or top view image formed as a composite image derived from and synthesized from image data captured by the rearward, forward, driver side and passenger side viewing cameras during that reversing maneuver of the vehicle.


The first display screen preferably comprises a video display screen in the interior rearview mirror assembly disposed behind the mirror reflective element (and most preferably disposed behind, and rendered covert thereby when not backlit, a transflective mirror reflector of the mirror reflective element), such as a backlit liquid crystal display screen or backlit thin film transistor (TFT) liquid crystal display screen (backlit by a plurality of light emitting diodes or the like), such as a display screen of the types described in U.S. Pat. Nos. 6,690,268; 7,184,190; 7,274,501; 7,370,983; 7,446,650 and/or 7,855,755, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The first display screen may be operable to display rearward images responsive to the driver of the vehicle shifting to a reverse gear of the vehicle during reversing of the vehicle, such as is disclosed in U.S. patent application Ser. No. 13/285,128, filed Oct. 31, 2011, now U.S. Pat. No. 8,743,203, which is hereby incorporated herein by reference in its entirety.


The second display screen may comprise a larger display screen (such as a display screen having a diagonal dimension of at least about 5 inches or at least about 7 inches or thereabouts). The second display screen may also function to display navigation information and/or infotainment information and/or other information for viewing and use by the driver of the vehicle when the driver is operating the vehicle other than when executing a reversing maneuver.


Should the driver dwell in reverse gear for a prolonged period of time, the display luminance of at least the first display screen may reduce to mitigate/reduce heat build-up due to prolonged backlighting but is controlled such that, at high ambient lighting conditions such as encountered on a sunny day, a display luminance at least of the first display screen of greater or equal than 500 candelas/square meter is preserved.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a vehicle with a surround vision display system and multiple cameras with exterior fields of view;



FIG. 2 identifies the NPRM that is summarized in FIGS. 3-5 and that requires minimum display size of targets in images captured by a vehicular camera;



FIG. 6 is a view of the rear of a vehicle with target objects rearward of the vehicle in accordance with the test standards of FIGS. 2-5;



FIG. 7 is an image as captured by the rearward viewing camera of the vehicle of FIG. 6;



FIG. 8 is a table that lists the minimum width of a test object as displayed on a display screen for display screens at different distances from the driver's eyes, in order to provide a displayed size that subtends a minimum of 5 minutes of arc angle, in order to meet the test standards summarized in FIGS. 3-5;



FIG. 9 is a rearward video image as captured by a rearward viewing camera of a vehicle as displayed on a video screen for viewing by the driver of the vehicle during a reversing maneuver;



FIG. 10 is a surround view or bird's-eye view image as displayed adjacent to the rearward video image of FIG. 9;



FIG. 11 is a comparison of the size of the rearward video image of FIG. 9 and the reduced size rearward video image of FIG. 10, which is reduced to accommodate the bird's-eye view image at the display screen;



FIG. 12 is a schematic of a vision display system in accordance with the present invention, showing a smaller display screen in an interior rearview mirror assembly for displaying rear backup assist images during a reversing maneuver and a larger display screen at an instrument panel or center console for displaying the surround view or bird's-eye view image;



FIG. 13 is a schematic of the vision display system of FIG. 12, showing an exemplary displayed image captured by a rearward viewing camera at the video mirror display and a displayed bird's-eye view representation of the vehicle at a larger display screen at the instrument panel or console of the vehicle;



FIG. 14 is a sectional view of a double ball mounting arrangement suitable for mounting an interior rearview video mirror assembly of the present invention at an in-cabin surface of a windshield of the equipped vehicle;



FIG. 15 is a graph of the times for starting components of a video display system following a trigger event, in accordance with the present invention;



FIG. 16 is a table showing aspects of a video display system and backup assist system of the present invention; and



FIG. 17 is a schematic of another vision display system in accordance with the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides a surround vision display system that is operable to display, such as during a reversing maneuver of the vehicle, rearward video images at a video display screen disposed at or in an interior rearview mirror assembly of the vehicle, and is operable to display surround view or bird's-eye view or panoramic-view images or representations at a display screen disposed at or in an instrument panel or center console or the like of the vehicle. The rearward video images are captured by a rearward viewing camera of the vehicle, while the surround view display information is based on image data captured by multiple cameras disposed at the vehicle with exterior fields of view, these multiple cameras typically including the rearward viewing camera of the vehicle (that functions as a rear backup camera when reversing the equipped vehicle). The present invention thus may provide, for example, a 3.5 inch or thereabouts diagonal interior rearview video mirror display (or other size video display at or in the mirror assembly) and a 7.8 inch or thereabouts diagonal display screen (or other size display screen that may typically be used with a navigational and/or infotainment system of the vehicle to display likes map images and driving instructions as part of a vehicle-based navigation system or infotainment systems or the like).


As can be seen with reference to FIG. 9, captured video images 22 (as captured by a rearward viewing camera of the vehicle during a reversing maneuver) may be displayed on a video display screen 20 during a reversing maneuver. Because the full dimensions of the video-active region of the video screen used in the video mirror assembly is substantially or fully filled by the rearview image captured by the rear backup camera, and given that such video mirror screens typically have about a 3.5 inches or thereabouts diagonal dimension and have a width to height (as mounted in the interior rearview mirror assembly) aspect ratio typically of likes of about 4:3 or about 16:9, or thereabouts, the image of the likes of targets A, B and C as located and shown in FIG. 5 may be sized large enough on the video display screen to satisfy the regulation standards for a typical distance of the mirror reflective element and video display screen from a typical driver's eyes when the video mirror assembly is normally mounted in the vehicle and when a typical driver is normally operating the vehicle (this distance is about 24 to 28 inches or thereabouts in many vehicles).


However, and as shown in FIG. 10, when some or a substantial amount of the video-active area of video display screen 20 is used for the bird's-eye or panoramic or top-down view or effect 24 to be displayed along with the rearview image captured by the rear backup camera of the equipped vehicle on the same video screen, the video-active display area available for and used for the rearward image display 22′ captured by the rear backup camera of the equipped vehicle is correspondingly reduced, and hence the size of the rearward images (as captured by the rear camera) displayed are correspondingly reduced in size. In such a scenario, and of course depending on the size dimensions of the actual video screen used and coupled with its distance in the vehicle cabin from the driver's eyes), the size dimensions of the likes of targets A, B and C of FIG. 5 may fail to meet the NPRM's S6.2.1.2 size requirement that, when the rearview image is measured in accordance with the procedures in S14.1 through S14.2.3 of the NPRM, (a) the calculated visual angle subtended by the horizontal width of the three test objects located at positions A, B and C in FIG. 5 shall average not less than 5 minutes of arc, and (b) the angular size of each individual test object (A, B and C) shall not be less than 3 minutes of arc.


This can readily be seen with reference to FIG. 11, which shows the two display schemes as displayed on an exemplary display. As can be seen in FIG. 11, the displayed rearward image 22 is displayed as a larger image when it is the only image displayed on the display screen, but the displayed rearward image 22′ is displayed as a smaller or reduced size image when it is displayed in tandem with the bird's-eye view representation or schematic 24. Thus, the bird's-eye view effectively reduces the effective screen size for displaying rearward images captured by the rear backup camera during a reversing maneuver of the vehicle. Depending on the distance of the mirror assembly and video display screen from the driver's eyes, the reduced size of the rearward image display may result in the displayed rearward images not meeting the size requirements set forth in the proposed Federal Safety Regulations of FIGS. 2-5.


Thus, in such circumstances (where a bird's-eye view is displayed for viewing by the driver of the vehicle on the one screen along with displaying of rearward images captured by the rear backup camera during a reversing maneuver of the vehicle), the bird's-eye view may cause the overall rear backup aid system to run afoul of the minimum size requirements of the displayed images required in the NPRM, such that a larger screen may be required to display the images. Such larger video display screens may be overly costly and may adversely affect the vehicle styling and manufacturer's preferences (since the oversized/larger video display screens may require a larger console space or instrumentation panel space or radio-head space that might be readily/normally available in the equipped vehicle). The present invention resolves such a problem by providing a dual display system that utilizes two separate display screens. One display (typically the larger display) is dedicated, during a reversing maneuver, solely to the composite or synthetic bird's eye or panoramic or top down surround view computer-generated display derived from the multiple video images captured by the multiple set of cameras that constitute the multi-camera surround view system on the equipped vehicle (this display preferably is located at the front console region or at the instrument panel region or in the radio-head region at the front of the interior cabin of the equipped vehicle and is viewable by the driver of the vehicle when reversing, though of course other in-cabin locations can be contemplated). The other separate display (typically the smaller display) solely displays the rearward images captured by the rear backup camera (or rear backup cameras if used) of the equipped vehicle, and preferably, so displays the images full-screen so that the full display area available is filled with the rearward images captured by the rear backup camera(s), and more preferably, with this other display comprising a video screen of an interior rearview video mirror of the equipped vehicle mounted such as at the upper windshield area of the equipped vehicle. The one and the other display are preferably separately located and are distant one from another in the cabin of the equipped vehicle in order to enhance the driver's usage and cognitive appreciation/benefit from the overall system.


For example, and as shown in FIGS. 12 and 13, the video mirror 26 may use or house a first display screen 20 (such as a display screen having at least a 2.8 inch diagonal dimension, such as about a 3.5 inch diagonal dimension or larger or smaller depending on the mirror assembly and vehicle application) to display video images captured by the rear backup camera during a reversing maneuver, and a second, larger display screen 28 (such as a 7.8 inch diagonal screen or 8.5 inch diagonal screen or the like) may be located at the instrument panel or center console 30 of the vehicle (and located there to provide a display for likes of a navigation system or infotainment system of the vehicle or to display other information for viewing by the driver of the vehicle) to show the bird's-eye or top-down or panoramic view or effect or representation. Optionally, and alternatively, the larger (particularly further from the driver's eyes, such as in the range of about 30 to 40 inches from the driver's eyes or more or less) console or instrument panel display 28 may be used to show the rear image 22 for a backup assist function, while the bird's eye view 24 may be provided in the video mirror display 20. However, this configuration is less preferred because it is desirable to have the rearward image (captured by the rearward-viewing camera) displayed at the interior rearview mirror assembly during a reversing maneuver, since the driver of a reversing vehicle may typically view the interior rearview mirror assembly (and thus the video mirror display that is displaying the backup assist images) during the reversing maneuver of the vehicle. Advantageously and preferably, and in conjunction with an image processing-based system (such as via use of an EYEQ™ image processor available from MobilEye of Jerusalem, Israel), a machine-vision generated alert may be generated and displayed at the interior rearview mirror assembly (and preferably superimposed upon the displayed rearview image captured by the backup camera) to alert the driver to pay closer attention to what may be rearward of the equipped vehicle during the reversing maneuver, and such as by utilizing aspects of the systems described in International Publication No. WO 2010/099416, published Sep. 2, 2010, which is hereby incorporated herein by reference in its entirety. Optionally, the bird's eye view vision system and display may utilize aspects of the vision systems described in U.S. Pat. Nos. 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466 and/or 7,592,928, and/or International Publication No. WO 2010/099416, published Sep. 2, 2010, and/or PCT Application No. PCT/US10/47256, filed Aug. 31, 2010, and/or PCT Application No. PCT/US10/25545, filed Feb. 26, 2010 and published Sep. 2, 2010 as International Publication No. WO 2010/099416, and/or U.S. provisional applications, Ser. No. 61/570,017, filed Dec. 13, 2011; Ser. No. 61/568,791, filed Dec. 9, 2011; Ser. No. 61/559,970, filed Nov. 15, 2011; and/or Ser. No. 61/540,256, filed Sep. 28, 2011, which are hereby incorporated herein by reference in their entireties.


The two-display vision display system of the present invention thus provides enhanced viewing and viewability of rearward captured images from a rear backup camera displayed on the other display (preferably a video mirror display) during a reversing maneuver when a bird's-eye view or representation is also provided and displayed on the separate, distinct, different and distant one display (preferably a console display or an instrument panel display or a radio head display) via a multi-camera surround system (and preferably with the rear backup camera being one of the cameras used in the multi-camera system in the computer-generation of the composite or synthetic views shown on the dedicated one display when the other display is showing, full-screen, the video output of the rear backup camera of the equipped vehicle). The vision display system may operate to display the rearward images at the video mirror display and the bird's-eye or top down or panoramic images/view at the navigation or infotainment screen, and may do so responsive to the driver of the vehicle shifting the vehicle into a reverse gear (such as by utilizing aspects of the vision systems described in U.S. Pat. Nos. 5,550,677; 5,670,935; 6,498,620; 6,222,447 and/or 5,949,331, and/or PCT Application No. PCT/US2011/056295, filed Oct. 14, 2011 and published Apr. 19, 2012 as International Publication No. WO 2012/051500, which are hereby incorporated herein by reference in their entireties).


By solely during a reversing maneuver providing the rear backup camera images at the video mirror display (without the bird's-eye or top down or panoramic view or effect), the displayed rearward images may encompass the entire video mirror display screen and thus image size of an object as displayed may not be reduced by the inclusion of a bird's-eye or top down or panoramic view feature. The bird's-eye or top down or panoramic view or feature may be solely displayed at the larger navigational screen or infotainment screen or other display screen that is included in the vehicle such as part of a navigational or informational system of the vehicle. The rear backup images captured by the rear backup camera during a reversing maneuver preferably are displayed, full-screen, by the video screen of an interior rearview mirror assembly of the equipped vehicle. The present invention thus may meet the NPRM regulation proposed requirements while providing freedom of design to the vehicle manufacturer.


Optionally, the display system of the present invention may combine three dimensional (3D) image data or images and auxiliary graphical data, preferably such as by utilizing aspects of the systems described in U.S. patent application Ser. No. 13/201,736, filed Feb. 9, 2010 by Newton et al., and published Dec. 15, 2011 as U.S. Publication No. 20110304691, which is hereby incorporated herein by reference in its entirety. The 3D and auxiliary graphical data are combined for rendering on a 3D display, such as by detecting depth values occurring in the 3D image data, and setting auxiliary depth values for the auxiliary graphical data adaptively independent of the detected depth values. Image data captured by individual cameras of a multi-camera system in accordance with the present invention may convey image data to a central electronic control unit of the vehicle via the likes of an Ethernet connection/bus or an LVDS connection/bus.


Note that when a reversing maneuver is not being executed, then the bird's-eye or top down or panoramic view or feature may be displayed at the larger navigational screen or infotainment screen or other display screen in tandem with for example, the forward video view captured by the forward-viewing front camera of the multi-camera surround system. In such a circumstance and when a reverse maneuver is not occurring, the likes of a backlit TFT LCD reconfigurable video mirror screen may not be backlit (and so does not display information) or may display the likes of a compass heading. Of course, during any reversing maneuver, the system of the present invention complies with S6.2.1.3 (Response Time) of the NPRM in that the rearview image from the rear backup camera meeting the requirements of S6.2.1 through 6.2.1.6 as displayed full-screen on the likes of the video screen of an interior rearview video mirror assembly of the equipped vehicle (and with the surround view feature displaying on a separate display such as a larger navigational screen or infotainment screen or other screen) displays the rear backup camera-captured within 2.0 seconds of the time at which the vehicle transmission is shifted into reverse gear. Also, in accordance with S6.2.1.4 (Linger Time) of the NPRM, the rearview image is not displayed by the likes of the video screen of the interior rearview video mirror for more than 10.0 seconds after the vehicle transmission has been shifted out of reverse gear (and such as in accordance with the vision systems described in U.S. patent application Ser. No. 13/285,128, filed Oct. 31, 2011, now U.S. Pat. No. 8,743,203, which is hereby incorporated herein by reference in its entirety). Also, and in accordance with S6.2.1.5 (Deactivation) of the NPRM, the rearview image as captured by the rearview backup camera used in the visual display system of the present invention is not extinguishable by any driver-controlled means, and in accordance with S6.2.1.6 (Display Luminance) of the NPRM, and when tested in accordance with S14.2 of the NPRM, the luminance of the interior visual display used to present the rearview image shall not be less than 500 candelas/square meter.


As described in U.S. patent application Ser. No. 13/285,128, filed Oct. 31, 2011, now U.S. Pat. No. 8,743,203, incorporated above, a rear vision system for a vehicle includes a rear backup video camera and a display device. A control activates display of captured video images by the display device when a transmission of the vehicle is shifted into reverse gear and deactivates display of the video images upon shifting of the vehicle transmission out of reverse gear once a threshold deactivation condition is met. The threshold deactivation condition is at least one of (a) forward travel of the vehicle exceeding a threshold speed of forward movement after the vehicle transmission has been shifted out of reverse gear, (b) forward travel of the vehicle exceeding a threshold distance of forward movement after the vehicle transmission has been shifted out of reverse gear and (c) a threshold period of time elapsing after the vehicle transmission has been shifted out of reverse gear, the threshold period of time constituting a linger time. When the reverse gear is engaged, the driver may view on the video screen the reversing image fed from a rear-mounted reversing or trailer-hitch camera or other rear vision system or back up aid or the like until the likes of a time has elapsed (such as about 5 seconds or about 10 seconds or thereabouts) since the reverse gear was first engaged and/or until the vehicle has driven forward a certain distance (such as about 10 feet or about 20 feet or about 30 feet or thereabouts) and/or until the vehicle's forward speed exceeds a threshold forward speed (such as about 3 miles per hour (mph) or about 5 mph or about 7 mph or about 10 mph or thereabouts). The screen may also be pivoted (such as about a generally vertical pivot axis) so as to be angled or canted toward the driver of the vehicle to enhance viewing of the reversing image at the video screen by the driver of the vehicle until a threshold forward speed or forward traveled distance is reached by the vehicle or a threshold time has elapsed after shifting the vehicle out of reverse, such as described above. Optionally, the video display screen may be fixedly attached so as to be readily viewable by the driver of the vehicle, and may be utilized for various applications, such as a backup aid (whereby the video screen may be automatically activated when the vehicle is shifted into reverse) or a navigation screen or cabin monitor or the like.


Thus, to comply with section S6.2.1.5 (Deactivation) of the NPRM that requires that the rearview image shall not be extinguishable by any driver-controlled means, and to comply with section S6.2.1.6 (Display Luminance) of the NPRM requires that, when tested in accordance with S14.2 of the NPRM, the luminance of an interior visual display used to present the rearview image shall not be less than 500 candelas per square meter (in high ambient lighting conditions), the video mirror displays of the present invention, when viewed through the transflective mirror reflector of the preferred video mirror reflective element during the daytime operation in an equipped vehicle, are operable and operate far in excess of a display luminance of 500 candelas per square meter, with display luminance of at least about 1,000 candelas per square meter, more preferably at least about 1,500 candelas per square meter, and more preferably at least about 2,000 candelas per square meter in preferred video mirror assemblies.


However, in the event that the driver engages the reverse gear (with the ignition running) and dwells in reverse for a prolonged period of time (such as for example, greater than at least about two minutes or greater than at least about fifteen minutes or greater than at least about forty minutes or longer), a control of the vehicle (preferably a control associated with and most preferably part of the interior rearview video mirror assembly), sensing that reverse has been engaged for a period longer than a predetermined or threshold prolonged period, progressively and/or in one step reduces via photo sensor control the maximum display luminance from its normal maximum display luminance level to a display luminance level close to but never less than 500 candelas per square meter. Thus, to take an example for illustration, on a sunny day, when ambient lighting at or about the interior rearview video mirror is high (such as, for example, greater than about 100,000 lux or greater than about 250,000 lux), the display luminance of the video mirror display of the present invention may be at around 1,500 candelas per square meter or greater, but if reverse gear is engaged for longer than, for example, three minutes, then the intensity of the backlighting of the video display screen is progressively reduced by a control of the interior rearview video mirror to, for example, around 600 candelas per square meter, but controls to ensure that, at ambient light conditions such as are called out S6.2.1.6 (Display Luminance) of the NPRM, the display luminance is controlled to be at least 500 candelas per square meter and no lower. By so doing, overheating of the interior rearview video mirror is mitigated or reduced or avoided, while preserving and complying with the proposed S6.2.1.6 Display Luminance requirement.


Of course, when ambient light falls or changes or is at a light level below that experienced on a sunny summer day, and preferably when the control is responsive to a photosensor or photosensors located at the interior rearview video mirror assembly itself, the displayed intensity or display luminance can be correspondingly reduced down to a nighttime driving or low ambient lighting condition display luminance of, for example, about 150 candelas per square meter or lower to, for example, a display luminance of around 100 candelas per square meter or even lower. Such reduction in display luminance as the ambient light (such as detected by one or more photo sensors disposed at the mirror assembly) at the interior rearview video mirror assembly decreases can be continuous or, such as via microprocessor control, can be stepped (for example, we find it useful to vary from the highest display luminance to the lowest display luminance in around 100 steps).


Studies have shown that rear backup accidents/incidents can occur at home driveways and/or public parking areas, where the driver enters the vehicle, turns on the ignition of the vehicle, and immediately or fairly immediately (such as within about one to two seconds or thereabouts of starting the engine) commences a reversing maneuver by shifting to a reverse gear of the vehicle and pressing the accelerator. Thus, with a camera-based backup vision system, the desire and need that a driver-appreciable and driver-usable video image be made available for viewing by the driver preferably within about three seconds of initial ignition on/engine startup (i.e., when the driver turns a key or pushes a button to start the vehicle engine), more preferably within about two seconds of initial ignition on/engine startup and most preferably within about one second of initial ignition on/engine startup. Note that while many drivers turn the ignition on simultaneously with starting the engine, initial ignition on can be achieved without turning on the engine, such as by turning the key in a different direction (or turning the key in the same direction but not all the way to the engine start position) without starting the engine and with electrical power provided to components and/or circuitry and/or accessories of the still parked vehicle without starting the engine. Thus, the term “initial ignition on” as used herein encompasses the initial turning on of electricity to otherwise unpowered circuitry and/or components and/or accessories in a parked vehicle when a person, typically the driver of the vehicle, first enters or approaches the vehicle (and can encompass the likes of remote starters or such devices). Because, having initially turned on the engine via the vehicle ignition, the driver may shift the vehicle transmission to reverse (such as by moving the gear actuator to the “R” position) and initiate rearward movement within about three seconds (or within about two seconds or within about one second), it is preferable and desirable that the video images (captured by the rearward facing or rearward viewing backup camera at the rear of the vehicle) be made available for driver viewing within the prescribed time of around 0-3 seconds or thereabouts maximum. Also, although the likes of children are unlikely to be playing in a driveway and the like at very cold temperatures, such as temperatures as low as about −20 or −40 degrees C., it is desirable that the video images be made available within the prescribed time even in such cold weather conditions.


Rear backup systems involve a rear mounted camera (such as a rearward facing or rearward viewing CMOS camera or imager or CCD camera or imager or the like), typically a NTSC camera or other standard protocol camera or a digital camera, and a video display device or unit or module (that typically comprises a video display screen, most commonly a backlit reconfigurable liquid crystal display screen, and associated circuitry including video decoders and other associated video display circuitry and/or the like). Upon initial ignition on of the vehicle and initial electrical powering of the components of the display system, there can be a time delay for components/circuitry during which the component/circuitry is activated and warms up before it is functioning in its normal manner. Also, time may be needed to upload algorithms/logic from the likes of ROM/memory during this initial initiation period. For example, and with reference to FIG. 15, almost immediately (within about 150 milliseconds) upon ignition on (i.e., typically when the driver turns on the engine), electricity is at least provided to the rear camera and the video display device, and such rear cameras can typically take from around about 500 milliseconds to around 1.5 seconds (shown in FIG. 15 as about 800 milliseconds following ignition on) to be ready to provide a valid video signal as an output on a video cable or other link to the video display screen (typically at the interior rearview mirror of the vehicle or at the instrument panel or an overhead console of the vehicle). Thus, initiation or boot-up of the video display device can be and preferably is initiated and electricity is supplied thereto immediately upon initial ignition on, and preferably initiation or boot-up of the rearward viewing camera can be and preferably is initiated and electricity is supplied thereto immediately upon initial ignition on. Thus, preferably, initiation/boot-up of the video display device can occur simultaneously with and in parallel with the initiation/boot-up of the rearward viewing camera and such initiation/boot-up does not occur serially or partially serially.


Video display screens of such video display devices are typically liquid crystal video displays that, particularly at low temperatures, such as below about −20 degrees C. or thereabouts, may be sluggish to operate, so that the video display device is not initially responsive enough or fast enough to keep up with the image frame rate provided by the camera device. In other words, the driver may not see a proper or quality or usable video image of the rear blind zone being viewed by the rearward viewing camera during its initial/initiating period. Also, the video display device or module typically includes the likes of video encoders/decoders and other ancillary circuitry, microprocessors, backlighting (such as an array of light emitting diodes or the like) and/or the like, which may require and may consume some time to activate and boot-up before they operate in their normal or full operating state/mode. As shown in FIG. 15, the vision or display system of the present invention may delay turning on the backlight of a backlit liquid crystal video display screen of a video display device for a period of time (such as, for example, about 1.2 seconds or thereabouts) following the ignition on/engine startup event so that the video display will be assuredly ready to display the video images captured by the rearward viewing camera (but this delay may be longer and may be as long as about 1.5 seconds or thereabouts, depending on when a camera ready or “valid” signal state is achieved by the display system). Thus, an OEM can choose from a variety of rear cameras, some of which may be faster to initiate than others, with confidence that as long as initiation/boot-up by the selected camera is no longer than the prescribed time period (for example around 1.2 seconds or thereabouts), the driver will not view poor quality/inadequate video images during the initiation period.


The vehicle and its controls, including any controls or circuitry at the camera or video display unit or device or module, are capable of distinguishing a first ignition condition (when the driver of the vehicle first turns the key or pushes a button or the like to start the vehicle's engine) and thus the camera and/or the video module can be controlled to operate different in such a first ignition condition than in subsequent conditions or times during the driving period following the first ignition of the vehicle.


Thus, at the exact instant or thereabouts that a “first ignition” is detected, the display system preferably simultaneously and in parallel activates/initiates and boots-up the rearward viewing backup camera and the video mirror display device. The display system of the present invention preferably processes signals to determine the earliest valid video signal from the rearward viewing camera and the microsecond (or at least substantially quickly or substantially simultaneously) that the valid video signal is determined, the system activates the video display device to turn on the likes of backlighting of the video screen to display images at the video display screen. It may be undesirable to activate the video display unit until such valid video images are determined and available, because if the video screen is on while no video images are received from the camera, the display may appear to the driver of the vehicle as not functioning properly. Thus, the present invention operates to turn on the video display device quickly and almost immediately following the first ignition, but delays operating the video display device to backlight the video screen preferably until valid video images are available for display, such that the video display device is operated to display images only when (and substantially simultaneously to when) valid video images are received from the rearward viewing camera. For example, and as shown in FIG. 15, the system may delay activating the backlighting of the video display device or unit or module for about 1.2 seconds following the initial ignition on or triggering event, and may delay this further if no valid video signal is received by that time from the rearward viewing video camera.


Optionally, when commencing a reversing maneuver, the vehicle display may provide an alert or warning at the display screen (such as “Check Behind the Vehicle Before Backing Up” or the like). Such warnings are typically provided when the vehicle transmission is initially shifted into reverse gear. It is envisioned that such warnings or alerts should only be provided during the brief initiation period and quickly removed or canceled as soon as the rearward images are available for viewing at the display device.


Also, video display devices or units or modules may have and typically do have at least one and often two thermal sensors or thermistors on board. Thus, the video display devices or units or modules are capable of sensing the ambient environment in which they are disposed. Thus, if very cold temperatures are sensed (such as, for example, about −40 degrees C.), the display system may optionally operate or function to enhance or speed up the operation of the video display device (such as via a higher energy boost at startup or via heating of the video display prior to activation or the like).


Optionally, and with reference to FIG. 16, an interior rearview mirror system may comprise a video mirror with a video display device operable to display video images during a reversing maneuver in accordance with the present invention. The mirror assembly may include a rearward facing or rearward viewing sensor for sensing light through the mirror reflective element for video display dimming functions and electrochromic mirror dimming functions. The mirror system includes circuitry and thermal algorithms for providing enhanced or fail safe liquid crystal display module operation. Optionally, the mirror system may include electrochromic exterior mirror assemblies and an electrochromic interior mirror assembly.


The rearward viewing camera may be powered via any suitable power supply at the vehicle. For example, the camera power may be provided from the video mirror itself (such as at about 6.6 volts nominal and at about 200 mA maximum).


Optionally, the mirror assembly may include a user input or switch that enables and/or disables the EC dimming function and the video display function. The mirror button or user input function may, when the ignition is on, control the EC dimming function (on/off) when the vehicle is not in reverse and control the video display function (on/off) when the vehicle is in reverse and during a reversing maneuver.


Optionally, the mirror assembly may include an EC/video indicator (such as a light emitting diode or the like), which functions to indicate to the driver of the vehicle the status of the EC dimming function and/or the video display function. Optionally, the indicator may operate at full intensity only during daytime lighting conditions and may operate at a reduced intensity in lower lighting conditions, such as nighttime lighting conditions or the like. The indicator may be activated when the EC dimming function is on and deactivated when the EC dimming function is off, and optionally the indicator may flash to indicate that the video display is activated or deactivated (such as when the video display is deactivated during a reversing maneuver of the vehicle).


During operation of the display system, and responsive to the driver of the vehicle shifting the vehicle into reverse, the display system of the present invention may activate or power the rearward viewing camera within about 100 milliseconds to about 200 milliseconds following the shifting into reverse. The rearward viewing camera may be powered throughout the reversing maneuver and optionally may be un-powered about 60 seconds after the driver of the vehicle shifts the vehicle out of reverse (after completion of the reversing maneuver), so that the camera power stays on for a period of time after shifting out of reverse so as to provide for a quicker response time if the vehicle is again shifted into reverse (such as when the driver of the vehicle may shift in and out of reverse multiple times, such as for the likes of parallel parking). Optionally, the video display unit or module may be enabled at each new ignition cycle, and the state of the video display may be remembered after completion of a reversing maneuver or cycle (for example, if the video display unit is turned on or off, it will remain in its selected state (on or off) until the user input or button is actuated again in a reversing cycle or ignition cycle).


Stop and go operation of vehicles is currently gaining favor for reasons of fuel economy and the like. In a “stop and go” vehicle, the engine turns off whenever the vehicle stops, such as at a traffic light or in traffic or the like, and when, for example, in a manual transmission vehicle, the driver shifts into neutral and the vehicle is stationary, the engine turns off and then restarts again when the driver presses the clutch. However, electrical power is maintained to the components and accessories of the vehicle during these stop and go periods and, thus, the stopping and then restarting of the vehicle will not result in the above prescribed delay in displaying video images due to the activation and boot-up time period of the video display device and rear backup camera. For such vehicles, it is envisioned that the display system of the present invention may recognize when the engine stop occurs due to traffic stops or the like (where the key is not turned to an “off” position) and the camera may be powered during such stopped periods to provide for a quicker response time when the vehicle engine is restarted and if the vehicle is shifted into reverse at the time of or immediately following engine restart.


Optionally, and desirably, the video display may function to display a stable and valid video image (if the signal from the rearward viewing camera is stable and valid at that time) within between about 500 milliseconds and about 1.5 seconds after the driver shifts the vehicle into the reverse gear. Optionally, but less preferably, the video display may function to display a stable and valid video image (if the signal from the rearward viewing camera is stable and valid at that time) within between about 900 milliseconds and about 2 seconds after the driver shifts the vehicle into the reverse gear, and less preferably within between about 1.5 seconds and about 3 seconds after the driver shifts the vehicle into the reverse gear. The video display device or unit or module may detect (and turn off the display with no flicker) when the video signal is broken, such as when the video plus and/or video minus wire is disconnected. The video display device or unit or module may shut off or deactivate immediately after the reverse signal is removed, or optionally, a delay feature may be provided or selected.


The indicator (such as a light emitting diode or the like) may be operable to indicate to the driver the status of the EC dimming function and/or the video display function. For example, the indicator may be activated when the EC dimming function is activated to indicate to the driver that the EC dimming function is working, and the indicator may flash or otherwise alert the driver that the video display is deactivated during a reversing maneuver (or may provide other alerts to the driver regarding the status of the video display). Optionally, for example, when the vehicle is in reverse and there are no video images provided by, for example, about 1.5 seconds, the display system may operate to deactivate the video display backlight and may flash or blink the indicator (such as at 1 Hz or any suitable rate of flash) or vary the intensity or color of the indicator to indicate to the driver that no video images are available. Optionally, and desirable, the system may enable the video display and display video images immediately when a good camera video signal becomes available or present while the indicator is flashing and while the vehicle is in reverse. The video mirror display illumination may provide illumination at any suitable intensity, such as about 1,500 cd/m2 or more, as viewed through a transflective mirror reflector of a transflective mirror reflective element, such as by utilizing aspects of the display devices and mirror assemblies described in U.S. Pat. No. 7,855,755, which is hereby incorporated herein by reference in its entirety.


Optionally, the display system of the present invention may delay or lockout user selectable display options or features during an initial reversing maneuver or the like. For example, some vehicles may provide a video zoom feature for use when reversing a vehicle towards a trailer so that the driver can more readily align the trailer hitch of the vehicle with the tongue of the trailer. When video zoom is selected, the rearward viewing camera and/or the video display device zooms and/or focuses and/or crops the field of view or displayed images to show the region immediately behind the vehicle where the ball of the trailer hitch of the vehicle is located, so that the driver can view the ball in the displayed images and thus see the tongue of the trailer in the displayed video images as the vehicle approaches the trailer. Thus, with a tow check function, the rear backup camera changes its view from its normally broad blind zone view to a narrow or focused or zoomed view immediately rearward of the vehicle. Such a tow check function may be selectively actuated by the driver, such as via actuation of a user input, such as a button or switch or the like, immediately prior to or during a reversing maneuver.


Such a “tow check” event is a relatively infrequent event and when occurring, the driver is aware that a tow check should be made and/or is being made and can selectively activate that feature, such as via a user input or button or the like that causes display of the zoomed in view at the video display screen. Optionally, the display system of the present invention may delay activation of such a tow check feature or view until after a period of time following the driver shifting into a reverse gear. For example, the system may prevent shifting into reverse gear and switching to a tow check or zoomed view at the same time, but may allow for first shifting into reverse gear and then delaying switching to the tow check or zoomed view for a threshold or minimum period of time. Thus, for example, a driver may shift the vehicle transmission into reverse gear and may actuate or select the tow check view option (such as via actuating a user input or button or the like) while in reverse gear, but the system will operate to display the normal backup assist view for a minimum time period, such as at least about 3-5 seconds, may be about 5-10 seconds or more or less, and will not switch to the tow check view or display during that time period, and only after the delay time period has elapsed will the system switch to the selected tow check or zoomed view. When the driver shifts the vehicle out of reverse gear, the tow check view may remain available, with no delay applied if the vehicle is again shifted back into reverse gear (to allow for a driver to make multiple attempts to align the trailer hitch of the vehicle with the tongue of the trailer via shifting the vehicle transmission in and out of reverse gear multiple times). After the vehicle is shifted out of reverse and into a forward gear and the vehicle is driven forwardly (such as for a threshold distance or to or at a threshold speed) or after the vehicle ignition is turned off, the system may be reset so that the delay period is applied for subsequent shifting into reverse gear.


Thus, when a driver initially starts the vehicle and shifts into reverse gear, even if the driver selects or actuates the zoom function at or around the same time as shifting into the reverse gear, the display device will maintain display of the full view or uncropped view of the camera's rearward field of view (typically at least about 130 degrees or at least about 145 degrees or more and up to or greater than around 180 degrees at the rear of the vehicle) for a predetermined period of time during which the displayed field of view cannot be manually or mechanically changed by the driver of the vehicle. Such a delay period (during which the driver cannot override the “normal” or uncropped display of the rearward field of view of the camera) may be a period of time of up to several seconds, such as up to about 5 seconds or more and preferably not more than 10 seconds, depending on the particular application of the display system. Thus, during the delay period, the driver cannot override display of a reasonable field of view rearward of the vehicle during onset of a reversing maneuver. Even if the driver selects the zoom function during the delay period, no change will occur with the displayed images, but upon completion of the delay period, the display device will display the selected zoomed images or cropped images or the like to assist the driver in aligning the vehicle with a trailer.


Optionally, the display system of the present invention may control or delay operation of a navigation display device or feature immediately after initial engine on and at least initially during a reversing maneuver of the vehicle. Vehicle manufacturers and safety advocates advocate that a navigation system or display should only be programmed by the user when the vehicle is not moving. Such a navigation system and navigation display screen may take up to about 6-10 seconds to initialize. The display system of the present invention may, upon detection of a shifting of the vehicle to reverse gear, give priority to displaying the reversing scene (and delay initialization of the navigation screen for a period of time during which the backup camera images are displayed). Thus, the system overrides the initialization of the navigation display screen and gives priority to display of the backup camera images and thus displays the backup camera video images as quickly as possible at the video display device. After the backup images are being displayed, the initiation of the navigation display device may commence.


An interior rearview mirror assembly, such as an interior rearview video mirror assembly that incorporates a video display screen as discussed above, may be mounted at an in-cabin surface of a windshield of the vehicle via any suitable mounting arrangement, such as, for example, a single ball mounting arrangement or a double ball mounting arrangement or the like. Optionally, the mounting arrangement may comprise a double ball configuration of the type shown in FIG. 14. The mounting arrangement 50 comprises a “medium ball” bracket having about an eighteen mm ball diameter, and includes an anti-camout integrated cup design. The nubs 52 on the inside of the cups 54 function to bottom-out on the balls or ball members 56 (such as at the inner walls of passageways through the ball members) at maximum travel or maximum pivoting of the balls at the mounting arm. Optionally, the mounting arrangement may have wireways or passageways for routing wires (such as for powering and/or controlling the video screen and/or electrochromic circuitry and/or the like) through the cups, spring and tube 58.


The interior rearview mirror assembly of the present invention may be mounted at the vehicle via any suitable mounting assembly attached to an interior portion of the vehicle, such as to an in-cabin surface of a vehicle windshield (such as to a mounting button or attachment element adhered to the interior surface of the vehicle windshield). The mirror assembly may be mounted at or attached to an interior portion of the vehicle (such as to a mounting button or the like at an interior surface of the vehicle windshield or the like) via any mounting means, such as a single ball or single pivot mounting arrangement, or a double ball or double pivot mirror mounting arrangement. Examples of double pivot or double ball mounting arrangements are described in U.S. Pat. Nos. 4,646,210 and 6,331,066, which are hereby incorporated herein by reference in their entireties. The mounting assembly may be mounted to a mounting button or attachment element at the vehicle windshield via a breakaway mounting construction, such as by utilizing aspects of the mounting constructions described in U.S. Pat. Nos. 6,774,810; 6,642,851; 6,483,438; 6,366,213; 6,326,900; 6,222,460; 6,172,613; 6,087,953; 5,820,097; 5,377,949; 5,330,149 and/or 5,100,095, which are hereby incorporated herein by reference in their entireties. The mounting assembly may utilize aspects of the mounting assemblies described in U.S. Pat. Nos. 6,318,870; 6,593,565; 6,690,268; 6,540,193; 4,936,533; 5,820,097; 5,100,095; 7,249,860; 6,877,709; 6,329,925; 7,289,037; 7,249,860 and/or 6,483,438, and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008; and/or Ser. No. 12/912,253, filed Oct. 26, 2010, now U.S. Pat. No. 8,851,690, and/or International Publication No. WO 2010/111173, published Sep. 30, 2010, which are hereby incorporated herein by reference in their entireties). Optionally, the mirror assembly may incorporate a mounting arrangement of the types described in U.S. Pat. Nos. 7,289,037; 7,249,860 and/or 7,448,589, and/or U.S. patent application Ser. No. 10/522,446, filed Jan. 19, 2005 and published Nov. 10, 2005 as U.S. Patent Publication No. 2005-0248168, which are hereby incorporated herein by reference in their entireties.


The video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in PCT Application No. PCT/US2011/056295, filed Oct. 14, 2011 and published Apr. 19, 2012 as International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety). The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties.


Optionally, the video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 7,855,755; 5,530,240; 6,329,925; 7,626,749; 7,581,859; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008; and/or Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.


Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and 6,124,886, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.


The display or displays may comprise a video display and may utilize aspects of the video display devices or modules described in U.S. Pat. Nos. 7,855,755; 6,690,268; 7,184,190; 7,274,501; 7,370,983 and/or 7,446,650, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The video display may be operable to display images captured by one or more imaging sensors or cameras at the vehicle. The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and 6,824,281, and/or International Publication No. WO 2010/099416, published Sep. 2, 2010, and/or PCT Application No. PCT/US10/47256, filed Aug. 31, 2010, and/or U.S. patent application Ser. No. 12/508,840, filed Jul. 24, 2009, and published Jan. 28, 2010 as U.S. Pat. Publication No. US-2010-0020170, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. patent application Ser. No. 12/091,359, filed Apr. 24, 2008 and published Oct. 1, 2009 as U.S. Publication No. US-2009-0244361, and/or U.S. Pat. Nos. 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580 and/or 7,965,336), and/or PCT Application No. PCT/US2008/076022, filed Sep. 11, 2008 and published Mar. 19, 2009 as International Publication No. WO 2009/036176, and/or PCT Application No. PCT/US2008/078700, filed Oct. 3, 2008 and published Apr. 9, 2009 as International Publication No. WO 2009/046268, which are all hereby incorporated herein by reference in their entireties.


For rear backup assist systems, various types of cameras and/or video displays may be utilized. Typically, rear backup cameras comprise color video cameras and the video display device displays color video images for viewing by the driver of the vehicle. Such color cameras comprise RGB filters (or other color filtering means), and may use a separate near infrared filter, to cause the camera to capture color images, while reducing blooming/pixel saturation due to near infrared radiation from ambient lighting and/or from the rear backup lighting of the vehicle and/or other lights present and operated when the reverse gear of the vehicle is selected. Also, the color filter and especially any near infrared filtering provided for a color rear video camera substantially impacts and reduces the camera's low level light sensitivity. This is especially so for CMOS cameras, such as described in U.S. Pat. Nos. 5,550,677; 5,877,897 and/or 5,796,094, which are hereby incorporated herein by reference in their entireties.


By dispensing with the color and near infrared filters at the camera, the full near infrared sensitivity of the CMOS imager or photosensor array may be harnessed/utilized. Thus, the camera may view or see in the near infrared range (typically light or energy that has a wavelength between about 750 nm and about 2,500 nm or thereabouts). For example, an imager comprising an array of photosensors formed by complementary-metal-oxide-semiconductor (CMOS) technology on a semiconductor substrate can have sensitivity to near infrared radiation out to around about 1,200 nm or thereabouts. This is especially beneficial because when the reversing light comes on, such lights are rich in visible light and also in near infrared light or energy, so by not including the color and near infrared filters at the camera, the performance of the camera is substantially enhanced in such low ambient lighting conditions. Such a camera not only provides enhanced performance in lower ambient lighting conditions, but does so with a reduced cost camera.


Also, in the likes of commercially available video mirrors supplied for vehicles today, the LCD video screen of the video display device used has RGB filters or color mosaic pattern filters associated with the likes of individually addressable pixels of the multi-pixel/reconfigurable liquid crystal display screen, and with the screen backlit by a plurality of light emitting light sources (such as white light emitting light emitting diodes or the like) operable, when powered, to generate a backlighting intensity to the rear of the video screen employed of at least about 30,000 candelas/m2 (such as by utilizing aspects of the display systems described in U.S. Pat. No. 7,855,755, which is hereby incorporated herein by reference in its entirety) so as to provide a display intensity of video images and other information displayed to and viewed by the driver of the vehicle through the transflective mirror reflector of the likes of an electrochromic interior rearview mirror reflective element utilized of at least about 400 cd/m2 as viewed by the driver normally operating the vehicle equipped with the display system. Thus, the provision of color video display for viewing by the driver of the vehicle comes at the price of lower light transmission for backlighting through the color mask or filter of the display screen and, thus, requires a high level of backlighting intensity to provide the desired display intensity for all viewing conditions, including higher ambient lighting conditions, such as a sunny day, and such a high level of backlighting intensity is especially required or desired when the video screen is viewed through a transflective reflector of a video mirror assembly, such as described in U.S. Pat. Nos. 6,690,268; 7,184,190; 7,274,501; 7,370,983; 7,446,650 and/or 7,855,755, which are hereby incorporated herein by reference in their entireties. Thus, the provision of color video display adds cost and complexity to the vision system, and requires powerful backlighting and color filtering (and optionally near infrared filtering and the like).


For a color video display screen, the color filter or mask at the display screen attenuates or reduces light transmission through the display screen by a factor of between about two and three or thereabouts (and could reduce transmission by more or less depending on the particular application), and thus the color filters or masks reduce the backlighting that passes through the display screen for viewing by the driver of the vehicle. Thus, with the color filter or mask removed, the display device may provide comparable display intensity with only about one-half as many to about two-thirds as many backlighting light emitting diodes, and/or the backlighting light emitting diodes may individually operate at a lower intensity and/or electrical current. Thus, the un-filtered display screen may operate with a reduced number of backlighting light emitting diodes or at a reduced intensity, which results in reduced power consumption by the powered backlighting light emitting diodes and reduced heat generated by the powered backlighting light emitting diodes, which achieves a reduction in the cost to manufacture and operate the display screen.


Optionally, a video display system of the present invention may utilize a monochromatic camera and video display to provide a reduced cost video display system for a vehicle. For example, and with reference to FIG. 17, a video display video display system 120 may comprise a monochromatic video camera 122 and a monochromatic video display 124 (such as a video mirror display screen incorporated in an interior rearview mirror assembly 126 or the like). As shown in FIG. 17, the camera 122 comprises a rearward facing or rearward viewing camera disposed at a rear exterior portion of the vehicle 128, and the camera captures images of the rearward scene and communicates an output signal to the video display 124 (such as via a wired link or a wireless link or a network bus of the vehicle or the like). The video camera may comprise a CMOS camera (and associated circuitry) with no color filtering (for example, with no RGB filtering or mosaic color filtering or Bayer pattern filtering or the like) at the photosensing pixels of the camera. Optionally, the video camera may comprise photosensing pixels that are sensitive to infrared or near infrared light (such as by utilizing aspects of the video cameras described in U.S. Pat. Nos. 5,550,677; 5,877,897 and/or 5,796,094, which are hereby incorporated herein by reference in their entireties), and the video camera may not include any near infrared filter or the like. Thus, the rearward viewing camera may provide enhanced sensitivity at lower lighting conditions, without the concern of an adverse effect on the color or tint of the captured images.


The video display unit or module 124 includes a video display screen, such as a backlit liquid crystal display screen, and a plurality of backlighting light emitting diodes. Because the video display screen does not include the color filtering of known color video display screens, the backlighting may provide a reduced backlighting intensity, such as a backlighting intensity of no more than about 25,000 cd/m2 or thereabouts, and preferably greater than about 10,000 cd/m2 or thereabouts. With a monochromatic CMOS camera combined with a monochromatic video display, and with a video mirror construction of either prismatic type or electrochromic type (such as described in U.S. Pat. Nos. 6,690,268; 7,184,190; 7,274,501 and/or 7,855,755, which are hereby incorporated herein by reference in their entireties), where a transflective interior mirror reflective element is utilized, it is found that a backlighting intensity of no more than about 25,000 cd/m2 or thereabouts, and preferably greater than about 10,000 cd/m2 or thereabouts, provides a driver-viewed display intensity of at least about 400 cd/m2 as displayed through the transflective mirror reflector in a display on demand display configuration and as viewed by the driver normally operating the vehicle. It is found that dispensing with color filters at both the display screen and the rear backup camera, allied with the dispensing/non-utilization of near infrared filtering at the rear backup camera, results in video display of monochrome images in an economical and affordable manner, and with the monochrome images readily usable and appreciable by a driver executing a reversing maneuver, and with the monochrome video images in compliance with the Notice of Proposed new Rule Making (NPRM) issued by the Department of Transportation, National Highway Traffic Safety Administration (NHTSA) and discussed and incorporated by reference above and with the caption of the NPRM shown in FIG. 2 and aspects of the proposed Final Rule summarized/captured in FIGS. 3-5.


Although preferable to use a plurality of white light emitting LEDs to backlight a thin film transistor reconfigurable video display screen in the likes of an interior video mirror assembly, a plurality of similarly colored LEDs may optionally be used. For example, a plurality of red or amber LEDs may be utilized for backlighting a monochromatic video screen, whereupon the monochrome images displayed and seen are respectively tinted. Such tinted monochrome video displays may be more affordable given that individual red light emitting or amber light emitting LEDs can cost less than corresponding white light emitting LEDs.


Thus, the combination of a monochromatic video mirror screen and a monochromatic rearward viewing camera provides enhanced image capture and image display properties, such as at lower lighting conditions, and can do so at reduced cost and complexity of the display system. The CMOS photosensor array or camera with no color filter (unfiltered) operates to capture unattenuated light (with no color filter and no near IR filter or the like), and the sensitivity of such cameras provide enhanced sensitivity in the infrared range and near infrared range of the electromagnetic spectrum. The monochromatic CMOS camera is in communication with a video screen that also has no color filters. Thus, the camera is more sensitive at lower lighting levels and the display screen can operate at lower backlighting intensities, while still providing the desired or appropriate display intensity for viewing by the driver of the vehicle. Thus, the driver can readily view and appreciate the displayed image and the displayed image may provide enhanced contrast to ease the viewability and discernibility of the displayed images.


The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, and/or U.S. provisional applications, Ser. No. 61/570,017, filed Dec. 13, 2011; Ser. No. 61/568,791, filed Dec. 9, 2011; Ser. No. 61/567,446, filed Dec. 6, 2011; Ser. No. 61/567,150, filed Dec. 6, 2011; Ser. No. 61/565,713, filed Dec. 1, 2011; Ser. No. 61/563,965, filed Nov. 28, 2011; Ser. No. 61/559,970, filed Nov. 15, 2011; Ser. No. 61/556,556, filed Nov. 7, 2011; Ser. No. 61/554,663, filed Nov. 2, 2011; Ser. No. 61/550,664, filed Oct. 24, 2011; Ser. No. 61/552,167, filed Oct. 27, 2011; Ser. No. 61/548,902, filed Oct. 19, 2011; Ser. No. 61/540,256, filed Sep. 28, 2011; Ser. No. 61/539,049, filed Sep. 26, 2011; Ser. No. 61/537,279, filed Sep. 21, 2011; Ser. No. 61/513,745, filed Aug. 1, 2011; Ser. No. 61/511,738, filed Jul. 26, 2011; Ser. No. 61/503,098, filed Jun. 30, 2011, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974 and/or U.S. provisional applications, Ser. No. 61/496,090, filed Jun. 13, 2011, and/or Ser. No. 61/436,397, filed Jan. 26, 2011, which are hereby incorporated herein by reference in their entireties, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.


Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451 and/or 7,480,149, and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, and/or Ser. No. 12/578,732, filed Oct. 14, 2009 and published Apr. 22, 2010 as U.S. Publication No. US-2010-0097469, which are hereby incorporated herein by reference in their entireties.


Optionally, the mirror assembly may include user inputs that may comprise buttons or switches for controlling or activating/deactivating one or more electrical accessories or devices of or associated with the mirror assembly. The mirror assembly may comprise any type of switches or buttons, such as touch or proximity sensing switches, such as touch or proximity switches of the types described above, or the inputs may comprise other types of buttons or switches, such as those described in U.S. Pat. Nos. 6,001,486; 6,310,611; 6,320,282; 6,627,918; 6,690,268; 7,224,324; 7,249,860; 7,253,723; 7,255,451; 7,360,932 and/or 7,446,924, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, and/or Ser. No. 12/576,550, filed Oct. 12, 2009, now U.S. Pat. No. 8,465,161, which are all hereby incorporated herein by reference in their entireties, or such as fabric-made position detectors, such as those described in U.S. Pat. Nos. 6,504,531; 6,501,465; 6,492,980; 6,452,479; 6,437,258 and 6,369,804, which are hereby incorporated herein by reference in their entireties.


Optionally, the user inputs or buttons may comprise user inputs for a garage door opening system, such as a vehicle based garage door opening system of the types described in U.S. Pat. Nos. 6,396,408; 6,362,771; 7,023,322 and 5,798,688, which are hereby incorporated herein by reference in their entireties. The user inputs may also or otherwise function to activate and deactivate a display or function or accessory, and/or may activate/deactivate and/or commence a calibration of a compass system of the mirror assembly and/or vehicle. The compass system may include compass sensors and circuitry within the mirror assembly or within a compass pod or module at or near or associated with the mirror assembly. Optionally, the user inputs may also or otherwise comprise user inputs for a telematics system of the vehicle, such as, for example, an ONSTAR® system as found in General Motors vehicles and/or such as described in U.S. Pat. Nos. 4,862,594; 4,937,945; 5,131,154; 5,255,442; 5,632,092; 5,798,688; 5,971,552; 5,924,212; 6,243,003; 6,278,377; 6,420,975; 6,477,464; 6,946,978; 7,308,341; 7,167,796; 7,657,052; 7,004,593 and/or 6,678,614, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties.


Optionally, the mirror assembly may include one or more other accessories at or within the mirror casing or otherwise associated with or near the mirror assembly, such as one or more electrical or electronic devices or accessories, such as antennas, including global positioning system (GPS) or cellular phone antennas, such as disclosed in U.S. Pat. No. 5,971,552, a communication module, such as disclosed in U.S. Pat. No. 5,798,688, a blind spot detection system, such as disclosed in U.S. Pat. Nos. 5,929,786 and/or 5,786,772, transmitters and/or receivers, such as a garage door opener or the like, a digital network, such as described in U.S. Pat. No. 5,798,575, a high/low headlamp controller, such as disclosed in U.S. Pat. Nos. 5,796,094 and/or 5,715,093 and/or U.S. provisional application Ser. No. 61/785,565, filed May 15, 2009, a memory mirror system, such as disclosed in U.S. Pat. No. 5,796,176, a hands-free phone attachment, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962 and/or 5,877,897, a remote keyless entry receiver, lights, such as map reading lights or one or more other lights or illumination sources, such as disclosed in U.S. Pat. Nos. 7,657,052; 6,690,268; 5,938,321; 5,813,745; 5,820,245; 5,673,994; 5,649,756; 5,178,448; 5,671,996; 4,646,210; 4,733,336; 4,807,096; 6,042,253; 5,669,698; 7,195,381; 6,971,775 and/or 7,249,860, microphones, such as disclosed in U.S. Pat. Nos. 6,243,003; 6,278,377 and/or 6,420,975, speakers, antennas, including global positioning system (GPS) or cellular phone antennas, such as disclosed in U.S. Pat. No. 5,971,552, a communication module, such as disclosed in U.S. Pat. No. 5,798,688, a voice recorder, a blind spot or object detection system, such as disclosed in U.S. Pat. Nos. 8,058,977; 7,720,580; 5,929,786; 5,786,772; 7,492,281; 7,038,577 and 6,882,287, transmitters and/or receivers, such as for a garage door opener or a vehicle door unlocking system or the like (such as a remote keyless entry system), a digital network, such as described in U.S. Pat. No. 5,798,575, a high/low headlamp controller, such as a camera-based headlamp control, such as disclosed in U.S. Pat. Nos. 5,796,094 and/or 5,715,093, and/or U.S. provisional application Ser. No. 61/785,565, filed May 15, 2009, a memory mirror system, such as disclosed in U.S. Pat. No. 5,796,176, a hands-free phone attachment, an imaging system or components or circuitry or display thereof, such as an imaging and/or display system of the types described in U.S. Pat. Nos. 7,881,496; 7,526,103; 7,400,435; 6,690,268 and 6,847,487, and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009 and published Apr. 22, 2010 as U.S. Publication No. US-2010-0097469; and/or Ser. No. 12/508,840, filed Jul. 24, 2009 and published Jan. 28, 2010 as U.S. Publication No. US-2010-0020170, an alert system, such as an alert system of the types described in PCT Application No. PCT/US2010/25545, filed Feb. 26, 2010, a video device for internal cabin surveillance (such as for sleep detection or driver drowsiness detection or the like) and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962 and/or 5,877,897, a remote keyless entry receiver, a seat occupancy detector, a remote starter control, a yaw sensor, a clock, a carbon monoxide detector, status displays, such as displays that display a status of a door of the vehicle, a transmission selection (4 wd/2 wd or traction control (TCS) or the like), an antilock braking system, a road condition (that may warn the driver of icy road conditions) and/or the like, a trip computer, a tire pressure monitoring system (TPMS) receiver (such as described in U.S. Pat. Nos. 6,124,647; 6,294,989; 6,445,287; 6,472,979; 6,731,205 and/or 7,423,522, and/or an ONSTAR® system, a compass, such as disclosed in U.S. Pat. Nos. 5,924,212; 4,862,594; 4,937,945; 5,131,154; 5,255,442 and/or 5,632,092, a control system, such as a control system of the types described in PCT Application No. PCT/US10/38477, filed Jun. 14, 2010 and published Dec. 16, 2010 as International Publication No. WO 2010/144900, and/or any other accessory or circuitry or the like (with the disclosures of the above-referenced patents and patent applications and provisional applications and PCT applications being hereby incorporated herein by reference in their entireties).


The accessory or accessories may be positioned at or within the mirror casing and may be included on or integrated in the printed circuit board positioned within the mirror casing, such as along a rear surface of the reflective element or elsewhere within a cavity defined by the casing, without affecting the scope of the present invention. The user actuatable inputs described above may be actuatable to control and/or adjust the accessories of the mirror assembly/system and/or an overhead console and/or an accessory module/windshield electronics module and/or the vehicle. The connection or link between the controls and the systems or accessories may be provided via vehicle electronic or communication systems and the like, and may be connected via various protocols or nodes, such as BLUETOOTH®, SCP, UBP, J1850, CAN J2284, Fire Wire 1394, MOST, LIN, FLEXRAY™, Byte Flight and/or the like, or other vehicle-based or in-vehicle communication links or systems (such as WIFI and/or IRDA) and/or the like, depending on the particular application of the mirror/accessory system and the vehicle. Optionally, the connections or links may be provided via wireless connectivity or links, such as via a wireless communication network or system, such as described in U.S. Pat. No. 7,004,593, which is hereby incorporated herein by reference in its entirety, without affecting the scope of the present invention.


Optionally, a reflective element assembly of the present invention (such as for an interior or exterior rearview mirror assembly) may include a photo sensor or light sensor (such as the types described in U.S. Pat. Nos. 6,831,268; 6,742,904; 6,737,629; 5,406,414; 5,253,109; 4,799,768; 4,793,690 and/or 7,004,593, which are hereby incorporated herein by reference in their entireties) at the rear or fourth surface of the reflective element assembly, such that the photo sensor detects light passing through the reflective element assembly. Examples of such configurations are described in U.S. Pat. Nos. 4,793,690; 5,550,677; 5,193,029 and/or 7,004,593, which are all hereby incorporated herein by reference in their entireties. The reflective element assembly thus may have a window or transmissive port or portion at the photo sensor. The reflective element assembly may have a fixed attenuation such that only a relatively small amount of light passes therethrough, such as about 12 to 25 percent of the light incident on the reflective element assembly, such that the signal to dark current ratio generated at the sensor may be substantially reduced. Because the photo sensor may have a relatively small sensing area, the sensor may not receive or sense a substantial amount of light passing through the reflective element assembly. Therefore, it is envisioned that a light concentrator (such as a lens and/or light channel and/or light pipe and/or other light concentrating device) may be positioned at the photo sensor to focus or direct the light passing through a larger area of the reflective element assembly onto the smaller sensing area of the photo sensor.


Note that mirror cells or reflective element assemblies such as described herein can be included in complete mirror assemblies that include a variety of added-features, such as lighting, telematics functionality and electronics, such as are disclosed in U.S. Pat. Nos. 7,657,052; 7,308,341; 7,195,381; 7,167,796; 7,004,593; 6,690,268; 6,477,464; 6,472,979; 6,445,287; 6,420,975; 6,294,989; 6,278,377; 6,243,003; 6,042,253; 5,938,321; 5,924,212; 5,813,745; 5,820,245; 5,669,698; 5,673,994; 5,671,996; 5,649,756; 5,632,092; 5,255,442; 5,178,448; 5,131,154; 4,937,945; 4,862,594; 4,807,096; 4,733,336 and/or 4,646,210, which are all hereby incorporated herein by reference in their entireties.


Changes and modifications to the specifically described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law.

Claims
  • 1. A vehicular multi-camera surround view system, said vehicular multi-camera surround view system comprising: a front camera disposed at a front portion of a vehicle equipped with said vehicular multi-camera surround view system, said front camera having a field of view exterior and at least forward of the equipped vehicle;said front camera operable to capture image data;a driver-side camera disposed at a driver side exterior sideview mirror assembly of the equipped vehicle, said driver-side camera having a field of view exterior and at least sideward of the equipped vehicle;said driver-side camera operable to capture image data;a passenger-side camera disposed at a passenger side exterior sideview mirror assembly of the equipped vehicle, said passenger-side camera having a field of view exterior and at least sideward of the equipped vehicle;said passenger-side camera operable to capture image data;a rear backup camera disposed at a rear portion of the equipped vehicle, said rear backup camera having a field of view exterior and at least rearward of the equipped vehicle;said rear backup camera viewing a rear blind zone at the rear of the equipped vehicle that is not viewable by a driver of the equipped vehicle when reversing the equipped vehicle;said rear backup camera operable to capture image data;wherein said rear backup camera comprises a CMOS imaging array sensor;wherein the field of view of said rear backup camera is at least 180 degrees;an electronic control unit disposed in the equipped vehicle;wherein image data captured by said front camera is conveyed to said electronic control unit;wherein image data captured by said driver-side camera is conveyed to said electronic control unit;wherein image data captured by said passenger-side camera is conveyed to said electronic control unit;wherein image data captured by said rear backup camera is conveyed to said electronic control unit;wherein said electronic control unit is operable to combine image data conveyed from said front camera, said driver-side camera, said passenger-side camera and said rear backup camera to form composite video images (i) derived from image data captured by said rear backup camera, (ii) derived from image data captured by said driver-side camera, (iii) derived from image data captured by said passenger-side camera and (iv) derived from image data captured by said front camera;wherein said electronic control unit is operable to output said composite video images for display at a display device, said display device comprising a video display screen disposed in an interior cabin of the equipped vehicle and viewable by the driver of the equipped vehicle, wherein said composite video images as displayed on said video display screen provide a bird's eye view that enhances the driver's understanding of areas surrounding the equipped vehicle;wherein said video display screen has a diagonal dimension of at least 7 inches;wherein said electronic control unit is operable to process image data conveyed from said rear backup camera to form rear backup video images derived from image data captured by said rear backup camera;wherein said electronic control unit is operable to output said rear backup video images for display on said video display screen to allow the driver viewing said rear backup video images displayed on said video display screen to see into the rear blind zone at the rear of the equipped vehicle when reversing the equipped vehicle;wherein initial ignition on of the equipped vehicle commences a new ignition cycle of the equipped vehicle;wherein said electronic control unit processes image data conveyed from said rear backup camera to form rear backup video images derived from image data captured by said rear backup camera and outputs said rear backup video images to said display device for display on said video display screen to allow the driver, when viewing said rear backup video images displayed on said video display screen, to see into the rear blind zone at the rear of the equipped vehicle when reversing the equipped vehicle;wherein said rear backup video images that are derived from image data captured by said rear backup camera are displayed on said video display screen for viewing by the driver of the equipped vehicle no later than 2 seconds after the driver of the equipped vehicle first changes propulsion of the equipped vehicle during the new ignition cycle to reverse mode to commence a first backup event;wherein, upon changing propulsion of the equipped vehicle by the driver of the equipped vehicle during the new ignition cycle to reverse mode to commence a backup event subsequent to the first backup event and until the subsequent backup event is completed, said video display screen displays video images derived, at least in part, from image data captured by said rear backup camera;wherein said video display screen is operable to display navigation information for viewing by the driver of the equipped vehicle other than when a backup event is being executed by the driver of the equipped vehicle;wherein said video display screen is operable to display infotainment information for viewing by the driver of the equipped vehicle other than when a backup event is being executed by the driver of the equipped vehicle; andwherein a valid and stable video signal is available from said rear backup camera no later than 500 milliseconds after electricity is provided to said rear backup camera.
  • 2. The vehicular multi-camera surround view system of claim 1, wherein electricity is provided to said rear backup camera within 150 milliseconds of ignition on.
  • 3. The vehicular multi-camera surround view system of claim 2, wherein said video display screen has an aspect ratio of 16:9.
  • 4. The vehicular multi-camera surround view system of claim 2, wherein said video display screen is disposed at a rearview mirror assembly of the equipped vehicle.
  • 5. The vehicular multi-camera surround view system of claim 2, wherein said video display screen is disposed at an instrument panel of the equipped vehicle.
  • 6. The vehicular multi-camera surround view system of claim 2, wherein said video display screen is disposed at a center console of the equipped vehicle.
  • 7. The vehicular multi-camera surround view system of claim 2, wherein said video display screen comprises an organic light emitting diode (OLED) display screen.
  • 8. The vehicular multi-camera surround view system of claim 2, wherein said video display screen comprises a thin film transistor (TFT) liquid crystal display screen.
  • 9. The vehicular multi-camera surround view system of claim 1, wherein said vehicular multi-camera surround view system operates in an initial condition that applies to the first backup event, and wherein said vehicular multi-camera surround view system operates different than how said vehicular multi-camera surround view system operates in the initial condition during subsequent backup events of the equipped vehicle that occur during the new ignition cycle after the first backup event is completed.
  • 10. The vehicular multi-camera surround view system of claim 1, wherein said vehicular multi-camera surround view system displays, on said video display screen, rear backup video images derived from image data captured by said rear backup camera no later than 500 milliseconds after the driver of the equipped vehicle changes propulsion of the equipped vehicle to reverse mode to commence the first backup event.
  • 11. The vehicular multi-camera surround view system of claim 1, wherein said vehicular multi-camera surround view system displays, on said video display screen, rear backup video images derived from image data captured by said rear backup camera no later than 900 milliseconds after the driver of the equipped vehicle changes propulsion of the equipped vehicle to reverse mode to commence the first backup event.
  • 12. The vehicular multi-camera surround view system of claim 1, wherein said vehicular multi-camera surround view system displays, on said video display screen, rear backup video images derive from image data captured by said rear backup camera no later than 1,500 milliseconds after the driver of the equipped vehicle changes propulsion of the equipped vehicle to reverse mode to commence the first backup event.
  • 13. The vehicular multi-camera surround view system of claim 1, wherein a user input is provided that, when operated by the driver of the equipped vehicle, changes display on said video display screen, during a backup event, to zoomed video images derived from image data captured by said rear backup camera.
  • 14. The vehicular multi-camera surround view system of claim 13, wherein the equipped vehicle comprises a trailer hitch, and wherein the field of view of said rear backup camera includes the trailer hitch, and wherein the zoomed video images comprise video images of the trailer hitch that are displayed on said video display screen so that the driver of the equipped vehicle can view the trailer hitch when maneuvering the equipped vehicle to connect a ball of the trailer hitch to a tongue of a trailer.
  • 15. The vehicular multi-camera surround view system of claim 1, wherein image data conveyed from said front camera, said driver-side camera, said passenger-side camera and said rear backup camera is combined at said electronic control unit to form said composite video images, and wherein said electronic control unit outputs said composite video images for display on said video display screen of said display device, and wherein said video display screen displays said composite video images during a backup event of the equipped vehicle, said composite video images as displayed on said video display screen providing the bird's eye view that enhances the driver's understanding of areas surrounding the equipped vehicle.
  • 16. The vehicular multi-camera surround view system of claim 15, wherein said vehicular multi-camera surround view system comprises a user input operable by the driver of the equipped vehicle, and wherein display of said composite video images on said video display screen is responsive to operation of said user input by the driver of the equipped vehicle.
  • 17. The vehicular multi-camera surround view system of claim 1, wherein image data conveyed from said front camera, said driver-side camera, said passenger-side camera and said rear backup camera is combined at said electronic control unit to form said composite video images.
  • 18. The vehicular multi-camera surround view system of claim 17, wherein said video display screen displays rear backup video images that are derived from image data captured by said rear backup camera in tandem with display of said composite video images, said rear backup video images displayed on said video display screen allowing the driver to see into the rear blind zone at the rear of the equipped vehicle when reversing the equipped vehicle and said composite video images providing a bird's eye view that enhances the driver's understanding of areas surrounding the equipped vehicle.
  • 19. The vehicular multi-camera surround view system of claim 1, wherein a valid and stable video signal is available from said rear backup camera within between 500 milliseconds and 1,500 milliseconds after electricity is provided to said rear backup camera.
  • 20. The vehicular multi-camera surround view system of claim 1, wherein the equipped vehicle comprises a trailer hitch, and wherein the trailer hitch is within the field of view of said rear backup camera, and wherein image data captured by said rear backup camera is cropped to form zoomed video images of the trailer hitch that are displayed on said video display screen.
  • 21. The vehicular multi-camera surround view system of claim 1, wherein, during a backup event of the equipped vehicle, image data captured by said rear backup camera is provided to and is processed by an image processor to generate an alert that alerts the driver of the equipped vehicle to presence of an object rearward of the equipped vehicle.
  • 22. The vehicular multi-camera surround view system of claim 1, wherein, with reverse mode of propulsion of the equipped vehicle having been selected by the driver of the equipped vehicle to commence a backup event, video images derived, at least in part, from image data captured by said rear backup camera are displayed on said video display screen while propulsion of the equipped vehicle remains in reverse mode and cease to be displayed upon changing by the driver of propulsion of the equipped vehicle out of reverse mode.
  • 23. The vehicular multi-camera surround view system of claim 1, wherein, with reverse mode of propulsion of the equipped vehicle having been selected by the driver of the equipped vehicle to commence a backup event, video images derived, at least in part, from image data captured by said rear backup camera are displayed on said video display screen while propulsion of the equipped vehicle remains in reverse mode and continue to be displayed after changing by the driver of propulsion of the equipped vehicle out of reverse mode until a threshold condition is met, display on said video display screen of said rear backup video images derived from image data captured by said rear backup camera and formed at said electronic control unit ceasing when the threshold condition is met.
  • 24. The vehicular multi-camera surround view system of claim 23, wherein the threshold condition is met when propulsion of the equipped vehicle is changed by the driver out of reverse mode and the equipped vehicle travels forward at least a threshold distance.
  • 25. The vehicular multi-camera surround view system of claim 24, wherein the threshold distance is no longer than 30 feet.
  • 26. The vehicular multi-camera surround view system of claim 23, wherein the threshold condition is met when propulsion of the equipped vehicle is changed by the driver out of reverse mode and the equipped vehicle drives forward and the equipped vehicle's forward motion reaches a threshold speed.
  • 27. The vehicular multi-camera surround view system of claim 26, wherein the threshold speed is not more than 10 miles per hour.
  • 28. The vehicular multi-camera surround view system of claim 23, wherein the threshold condition is met when a time period elapses after propulsion of the equipped vehicle is changed by the driver out of reverse mode.
  • 29. The vehicular multi-camera surround view system of claim 28, wherein the time period is not longer than 10 seconds.
  • 30. The vehicular multi-camera surround view system of claim 1, wherein within 200 milliseconds of initial ignition on of the equipped vehicle that commences the new ignition cycle of the equipped vehicle, said rear backup camera is electrically powered.
  • 31. The vehicular multi-camera surround view system of claim 1, wherein within 150 milliseconds of initial ignition on of the equipped vehicle that commences the new ignition cycle of the equipped vehicle, said rear backup camera is electrically powered.
  • 32. The vehicular multi-camera surround view system of claim 1, wherein within 100 milliseconds of initial ignition on of the equipped vehicle that commences the new ignition cycle of the equipped vehicle, said rear backup camera is electrically powered.
  • 33. The vehicular multi-camera surround view system of claim 1, wherein, at initial ignition on that commences the new ignition cycle of the equipped vehicle, initiation of said display device and initiation of said rear backup camera occur in parallel.
  • 34. The vehicular multi-camera surround view system of claim 1, wherein said front portion of the equipped vehicle comprises a grille at the front of the equipped vehicle.
  • 35. The vehicular multi-camera surround view system of claim 1, wherein image data captured by said front camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said driver-side camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said passenger-side camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said rear backup camera is conveyed to said electronic control unit via Ethernet.
  • 36. The vehicular multi-camera surround view system of claim 1, wherein said front camera comprises an analog front camera, and wherein image data captured by said analog front camera is conveyed using an NTSC standard to said electronic control unit, and wherein said driver-side camera comprises an analog driver-side camera, and wherein image data captured by said analog driver-side camera is conveyed using the NTSC standard to said electronic control unit, and wherein said passenger-side camera comprises an analog passenger-side camera, and wherein image data captured by said analog passenger-side camera is conveyed using the NTSC standard to said electronic control unit, and wherein said rear backup camera comprises an analog rear backup camera, and wherein image data captured by said analog rear backup camera is conveyed using the NTSC standard to said electronic control unit.
  • 37. The vehicular multi-camera surround view system of claim 1, wherein said front camera comprises a digital front camera, and wherein image data captured by said digital front camera is conveyed digitally to said electronic control unit, and wherein said driver-side camera comprises a digital driver-side camera, and wherein image data captured by said digital driver-side camera is conveyed digitally to said electronic control unit, and wherein said passenger-side camera comprises a digital passenger-side camera, and wherein image data captured by said digital passenger-side camera is conveyed digitally to said electronic control unit, and wherein said rear backup camera comprises a digital rear backup camera, and wherein image data captured by said digital rear backup camera is conveyed digitally to said electronic control unit.
  • 38. The vehicular multi-camera surround view system of claim 1, wherein image data captured by said front camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said driver-side camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said passenger-side camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said rear backup camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS).
  • 39. A vehicular multi-camera surround view system, said vehicular multi-camera surround view system comprising: a front digital camera disposed at a front portion of a vehicle equipped with said vehicular multi-camera surround view system, said front digital camera having a field of view exterior and at least forward of the equipped vehicle;said front digital camera operable to capture image data;a driver-side digital camera disposed at a driver side exterior sideview mirror assembly of the equipped vehicle, said driver-side digital camera having a field of view exterior and at least sideward of the equipped vehicle;said driver-side digital camera operable to capture image data;a passenger-side digital camera disposed at a passenger side exterior sideview mirror assembly of the equipped vehicle, said passenger-side digital camera having a field of view exterior and at least sideward of the equipped vehicle;said passenger-side digital camera operable to capture image data;a rear backup digital camera disposed at a rear portion of the equipped vehicle, said rear backup digital camera having a field of view exterior and at least rearward of the equipped vehicle;said rear backup digital camera viewing a rear blind zone at the rear of the equipped vehicle that is not viewable by a driver of the equipped vehicle when reversing the equipped vehicle;said rear backup digital camera operable to capture image data;wherein said rear backup digital camera comprises a CMOS imaging array sensor;an electronic control unit disposed in the equipped vehicle;wherein image data captured by said front digital camera is conveyed digitally to said electronic control unit;wherein image data captured by said driver-side digital camera is conveyed digitally to said electronic control unit;wherein image data captured by said passenger-side digital camera is conveyed digitally to said electronic control unit;wherein image data captured by said rear backup digital camera is conveyed digitally to said electronic control unit;wherein said electronic control unit is operable to combine image data conveyed digitally from said front digital camera, said driver-side digital camera, said passenger-side digital camera and said rear backup digital camera to form composite video images (i) derived from image data captured by said rear backup digital camera, (ii) derived from image data captured by said driver-side digital camera, (iii) derived from image data captured by said passenger-side digital camera and (iv) derived from image data captured by said front digital camera;wherein said electronic control unit is operable to output said composite video images for display at a display device, said display device comprising a video display screen disposed in an interior cabin of the equipped vehicle and viewable by the driver of the equipped vehicle, wherein said composite video images as displayed on said video display screen provide a bird's eye view that enhances the driver's understanding of areas surrounding the equipped vehicle;wherein said video display screen has a diagonal dimension of at least 5 inches;wherein said electronic control unit is operable to process image data conveyed from said rear backup digital camera to form rear backup video images derived from image data captured by said rear backup digital camera;wherein said electronic control unit is operable to output said rear backup video images for display on said video display screen to allow the driver viewing said rear backup video images displayed on said video display screen to see into the rear blind zone at the rear of the equipped vehicle when reversing the equipped vehicle;wherein initial ignition on of the equipped vehicle commences a new ignition cycle of the equipped vehicle;wherein said electronic control unit processes image data conveyed from said rear backup digital camera to form rear backup video images derived from image data captured by said rear backup digital camera and outputs said rear backup video images to said display device for display on said video display screen to allow the driver, when viewing said rear backup video images displayed on said video display screen, to see into the rear blind zone at the rear of the equipped vehicle when reversing the equipped vehicle;wherein said rear backup video images that are derived from image data captured by said rear backup digital camera are displayed on said video display screen for viewing by the driver of the equipped vehicle no later than 2 seconds after the driver of the equipped vehicle first changes propulsion of the equipped vehicle during the new ignition cycle to reverse mode to commence a first backup event;wherein, upon changing propulsion of the equipped vehicle by the driver of the equipped vehicle during the new ignition cycle to reverse mode to commence a backup event subsequent to the first backup event and until the subsequent backup event is completed, said video display screen displays video images derived, at least in part, from image data captured by said rear backup digital camera; andwherein electricity is provided to said rear backup digital camera within 150 milliseconds of ignition on.
  • 40. The vehicular multi-camera surround view system of claim 39, wherein image data captured by said front digital camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said driver-side digital camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said passenger-side digital camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said rear backup digital camera is conveyed to said electronic control unit via Ethernet.
  • 41. The vehicular multi-camera surround view system of claim 40, wherein image data captured by said front digital camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said driver-side digital camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said passenger-side digital camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said rear backup digital camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS).
  • 42. The vehicular multi-camera surround view system of claim 39, wherein, at initial ignition on that commences the new ignition cycle of the equipped vehicle, initiation of said display device and initiation of said rear backup digital camera occur in parallel.
  • 43. The vehicular multi-camera surround view system of claim 42, wherein the field of view of said rear backup digital camera is at least 180 degrees, and wherein said video display screen has a diagonal dimension of at least 7 inches.
  • 44. The vehicular multi-camera surround view system of claim 43, wherein a valid and stable video signal is available from said rear backup digital camera no later than 500 milliseconds after electricity is provided to said rear backup digital camera.
  • 45. The vehicular multi-camera surround view system of claim 44, wherein said front portion of the equipped vehicle comprises a grille at the front of the equipped vehicle.
  • 46. The vehicular multi-camera surround view system of claim 42, wherein a user input is provided that, when operated by the driver of the equipped vehicle, changes display on said video display screen, during a backup event, to zoomed video images derived from image data captured by said rear backup digital camera, and wherein the equipped vehicle comprises a trailer hitch, and wherein the field of view of said rear backup digital camera includes the trailer hitch, and wherein the zoomed video images comprise video images of the trailer hitch that are displayed on said video display screen so that the driver of the equipped vehicle can view the trailer hitch when maneuvering the equipped vehicle to connect a ball of the trailer hitch to a tongue of a trailer.
  • 47. The vehicular multi-camera surround view system of claim 42, wherein image data conveyed from said front digital camera, said driver-side digital camera, said passenger-side digital camera and said rear backup digital camera is combined at said electronic control unit to form said composite video images, and wherein said video display screen displays rear backup video images that are derived from image data captured by said rear backup digital camera in tandem with display of said composite video images, said rear backup video images displayed on said video display screen allowing the driver to see into the rear blind zone at the rear of the equipped vehicle when reversing the equipped vehicle and said composite video images providing a bird's eye view that enhances the driver's understanding of areas surrounding the equipped vehicle.
  • 48. The vehicular multi-camera surround view system of claim 42, wherein a valid and stable video signal is available from said rear backup digital camera within between 500 milliseconds and 1,500 milliseconds after electricity is provided to said rear backup digital camera.
  • 49. The vehicular multi-camera surround view system of claim 42, wherein, with reverse mode of propulsion of the equipped vehicle having been selected by the driver of the equipped vehicle to commence a backup event, video images derived, at least in part, from image data captured by said rear backup digital camera are displayed on said video display screen while propulsion of the equipped vehicle remains in reverse mode and continue to be displayed after changing by the driver of propulsion of the equipped vehicle out of reverse mode until a threshold condition is met, display on said video display screen of said rear backup video images derived from image data captured by said rear backup digital camera and formed at said electronic control unit ceasing when the threshold condition is met.
  • 50. The vehicular multi-camera surround view system of claim 49, wherein the threshold condition is met when propulsion of the equipped vehicle is changed by the driver out of reverse mode and the equipped vehicle travels forward at least a threshold distance, and wherein the threshold distance is not longer than 30 feet.
  • 51. The vehicular multi-camera surround view system of claim 49, wherein the threshold condition is met when propulsion of the equipped vehicle is changed by the driver out of reverse mode and the equipped vehicle drives forward and the equipped vehicle's forward motion reaches a threshold speed, and wherein the threshold speed is not more than 10 miles per hour.
  • 52. The vehicular multi-camera surround view system of claim 49, wherein the threshold condition is met when a time period elapses after propulsion of the equipped vehicle is changed by the driver out of reverse mode, and wherein the time period is not longer than 10 seconds.
  • 53. The vehicular multi-camera surround view system of claim 42, wherein said video display screen is operable to display infotainment information for viewing by the driver of the equipped vehicle other than when a backup event is being executed by the driver of the equipped vehicle.
  • 54. A vehicular multi-camera surround view system, said vehicular multi-camera surround view system comprising: a front camera disposed at a front portion of a vehicle equipped with said vehicular multi-camera surround view system, said front camera having a field of view exterior and at least forward of the equipped vehicle;said front camera operable to capture image data;a driver-side camera disposed at a driver side exterior sideview mirror assembly of the equipped vehicle, said driver-side camera having a field of view exterior and at least sideward of the equipped vehicle;said driver-side camera operable to capture image data;a passenger-side camera disposed at a passenger side exterior sideview mirror assembly of the equipped vehicle, said passenger-side camera having a field of view exterior and at least sideward of the equipped vehicle;said passenger-side camera operable to capture image data;a rear backup camera disposed at a rear portion of the equipped vehicle, said rear backup camera having a field of view exterior and at least rearward of the equipped vehicle;said rear backup camera viewing a rear blind zone at the rear of the equipped vehicle that is not viewable by a driver of the equipped vehicle when reversing the equipped vehicle;said rear backup camera operable to capture image data;wherein said rear backup camera comprises a CMOS imaging array sensor;an electronic control unit disposed in the equipped vehicle;wherein image data captured by said front camera is conveyed to said electronic control unit;wherein image data captured by said driver-side camera is conveyed to said electronic control unit;wherein image data captured by said passenger-side camera is conveyed to said electronic control unit;wherein image data captured by said rear backup camera is conveyed to said electronic control unit;wherein said electronic control unit is operable to combine image data conveyed from said front camera, said driver-side camera, said passenger-side camera and said rear backup camera to form composite video images (i) derived from image data captured by said rear backup camera, (ii) derived from image data captured by said driver-side camera, (iii) derived from image data captured by said passenger-side camera and (iv) derived from image data captured by said front camera;wherein said electronic control unit is operable to output said composite video images for display at a display device, said display device comprising a video display screen disposed in an interior cabin of the equipped vehicle and viewable by the driver of the equipped vehicle, wherein said composite video images as displayed on said video display screen provide a bird's eye view that enhances the driver's understanding of areas surrounding the equipped vehicle;wherein said video display screen has a diagonal dimension of at least 7 inches;wherein said electronic control unit is operable to process image data conveyed from said rear backup camera to form rear backup video images derived from image data captured by said rear backup camera;wherein said electronic control unit is operable to output said rear backup video images for display on said video display screen to allow the driver viewing said rear backup video images displayed on said video display screen to see into the rear blind zone at the rear of the equipped vehicle when reversing the equipped vehicle;wherein initial ignition on of the equipped vehicle commences a new ignition cycle of the equipped vehicle;wherein said electronic control unit processes image data conveyed from said rear backup camera to form rear backup video images derived from image data captured by said rear backup camera and outputs said rear backup video images to said display device for display on said video display screen to allow the driver, when viewing said rear backup video images displayed on said video display screen, to see into the rear blind zone at the rear of the equipped vehicle when reversing the equipped vehicle;wherein said rear backup video images that are derived from image data captured by said rear backup camera are displayed on said video display screen for viewing by the driver of the equipped vehicle no later than 2 seconds after the driver of the equipped vehicle first changes propulsion of the equipped vehicle during the new ignition cycle to reverse mode to commence a first backup event;wherein, upon changing propulsion of the equipped vehicle by the driver of the equipped vehicle during the new ignition cycle to reverse mode to commence a backup event subsequent to the first backup event and until the subsequent backup event is completed, said video display screen displays video images derived, at least in part, from image data captured by said rear backup camera;wherein image data conveyed from said front camera, said driver-side camera, said passenger-side camera and said rear backup camera is combined at said electronic control unit to form said composite video images; andwherein said video display screen displays rear backup video images that are derived from image data captured by said rear backup camera in tandem with display of said composite video images, said rear backup video images displayed on said video display screen allowing the driver to see into the rear blind zone at the rear of the equipped vehicle when reversing the equipped vehicle and said composite video images providing a bird's eye view that enhances the driver's understanding of areas surrounding the equipped vehicle.
  • 55. The vehicular multi-camera surround view system of claim 54, wherein said vehicular multi-camera surround view system comprises a user input operable by the driver of the equipped vehicle, and wherein display of said composite video images on said video display screen is responsive to operation of said user input by the driver of the equipped vehicle.
  • 56. The vehicular multi-camera surround view system of claim 55, wherein electricity is provided to said rear backup camera within 150 milliseconds of ignition on.
  • 57. The vehicular multi-camera surround view system of claim 55, wherein a user input is provided that, when operated by the driver of the equipped vehicle, changes display on said video display screen, during a backup event, to zoomed video images derived from image data captured by said rear backup camera, and wherein the equipped vehicle comprises a trailer hitch, and wherein the field of view of said rear backup camera includes the trailer hitch, and wherein the zoomed video images comprise video images of the trailer hitch that are displayed on said video display screen so that the driver of the equipped vehicle can view the trailer hitch when maneuvering the equipped vehicle to connect a ball of the trailer hitch to a tongue of a trailer.
  • 58. The vehicular multi-camera surround view system of claim 57, wherein the field of view of said rear backup camera is at least 180 degrees.
  • 59. The vehicular multi-camera surround view system of claim 55, wherein, at initial ignition on that commences the new ignition cycle of the equipped vehicle, initiation of said display device and initiation of said rear backup camera occur in parallel.
  • 60. The vehicular multi-camera surround view system of claim 59, wherein, during a backup event of the equipped vehicle, image data captured by said rear backup camera is provided to and is processed by an image processor to generate an alert that alerts the driver of the equipped vehicle to presence of an object rearward of the equipped vehicle.
  • 61. The vehicular multi-camera surround view system of claim 59, wherein said vehicular multi-camera surround view system operates in an initial condition that applies to the first backup event, and wherein said vehicular multi-camera surround view system operates different than how said vehicular multi-camera surround view system operates in the initial condition during subsequent backup events of the equipped vehicle that occur during the new ignition cycle after the first backup event is completed.
  • 62. The vehicular multi-camera surround view system of claim 59, wherein image data captured by said front camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said driver-side camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said passenger-side camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said rear backup camera is conveyed to said electronic control unit via Ethernet.
  • 63. The vehicular multi-camera surround view system of claim 59, wherein said front camera comprises an analog front camera, and wherein image data captured by said analog front camera is conveyed using an NTSC standard to said electronic control unit, and wherein said driver-side camera comprises an analog driver-side camera, and wherein image data captured by said analog driver-side camera is conveyed using the NTSC standard to said electronic control unit, and wherein said passenger-side camera comprises an analog passenger-side camera, and wherein image data captured by said analog passenger-side camera is conveyed using the NTSC standard to said electronic control unit, and wherein said rear backup camera comprises an analog rear backup camera, and wherein image data captured by said analog rear backup camera is conveyed using the NTSC standard to said electronic control unit.
  • 64. The vehicular multi-camera surround view system of claim 59, wherein said front camera comprises a digital front camera, and wherein image data captured by said digital front camera is conveyed digitally to said electronic control unit, and wherein said driver-side camera comprises a digital driver-side camera, and wherein image data captured by said digital driver-side camera is conveyed digitally to said electronic control unit, and wherein said passenger-side camera comprises a digital passenger-side camera, and wherein image data captured by said digital passenger-side camera is conveyed digitally to said electronic control unit, and wherein said rear backup camera comprises a digital rear backup camera, and wherein image data captured by said digital rear backup camera is conveyed digitally to said electronic control unit.
  • 65. The vehicular multi-camera surround view system of claim 59, wherein image data captured by said front camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said driver-side camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said passenger-side camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said rear backup camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS).
  • 66. The vehicular multi-camera surround view system of claim 55, wherein a valid and stable video signal is available from said rear backup camera within between 500 milliseconds and 1,500 milliseconds after electricity is provided to said rear backup camera.
  • 67. The vehicular multi-camera surround view system of claim 55, wherein, with reverse mode of propulsion of the equipped vehicle having been selected by the driver of the equipped vehicle to commence a backup event, video images derived, at least in part, from image data captured by said rear backup camera are displayed on said video display screen while propulsion of the equipped vehicle remains in reverse mode and continue to be displayed after changing by the driver of propulsion of the equipped vehicle out of reverse mode until a threshold condition is met, display on said video display screen of said rear backup video images derived from image data captured by said rear backup camera and formed at said electronic control unit ceasing when the threshold condition is met.
  • 68. The vehicular multi-camera surround view system of claim 67, wherein the threshold condition is met when propulsion of the equipped vehicle is changed by the driver out of reverse mode and the equipped vehicle travels forward at least a threshold distance, and wherein the threshold distance is not longer than 30 feet.
  • 69. The vehicular multi-camera surround view system of claim 67, wherein the threshold condition is met when propulsion of the equipped vehicle is changed by the driver out of reverse mode and the equipped vehicle drives forward and the equipped vehicle's forward motion reaches a threshold speed, and wherein the threshold speed is not more than 10 miles per hour.
  • 70. The vehicular multi-camera surround view system of claim 67, wherein the threshold condition is met when a time period elapses after propulsion of the equipped vehicle is changed by the driver out of reverse mode, and wherein the time period is not longer than 10 seconds.
  • 71. The vehicular multi-camera surround view system of claim 55, wherein said video display screen is operable to display infotainment information for viewing by the driver of the equipped vehicle other than when a backup event is being executed by the driver of the equipped vehicle.
  • 72. The vehicular multi-camera surround view system of claim 55, wherein a valid and stable video signal is available from said rear backup camera no later than 500 milliseconds after electricity is provided to said rear backup camera.
  • 73. The vehicular multi-camera surround view system of claim 54, wherein image data captured by said front camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said driver-side camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said passenger-side camera is conveyed to said electronic control unit via Ethernet, and wherein image data captured by said rear backup camera is conveyed to said electronic control unit via Ethernet.
  • 74. The vehicular multi-camera surround view system of claim 54, wherein said front camera comprises an analog front camera, and wherein image data captured by said analog front camera is conveyed using an NTSC standard to said electronic control unit, and wherein said driver-side camera comprises an analog driver-side camera, and wherein image data captured by said analog driver-side camera is conveyed using the NTSC standard to said electronic control unit, and wherein said passenger-side camera comprises an analog passenger-side camera, and wherein image data captured by said analog passenger-side camera is conveyed using the NTSC standard to said electronic control unit, and wherein said rear backup camera comprises an analog rear backup camera, and wherein image data captured by said analog rear backup camera is conveyed using the NTSC standard to said electronic control unit.
  • 75. The vehicular multi-camera surround view system of claim 54, wherein said front camera comprises a digital front camera, and wherein image data captured by said digital front camera is conveyed digitally to said electronic control unit, and wherein said driver-side camera comprises a digital driver-side camera, and wherein image data captured by said digital driver-side camera is conveyed digitally to said electronic control unit, and wherein said passenger-side camera comprises a digital passenger-side camera, and wherein image data captured by said digital passenger-side camera is conveyed digitally to said electronic control unit, and wherein said rear backup camera comprises a digital rear backup camera, and wherein image data captured by said digital rear backup camera is conveyed digitally to said electronic control unit.
  • 76. The vehicular multi-camera surround view system of claim 54, wherein image data captured by said front camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said driver-side camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said passenger-side camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS), and wherein image data captured by said rear backup camera is conveyed to said electronic control unit via low-voltage differential signaling (LVDS).
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/949,314, filed Oct. 26, 2020, now U.S. Pat. No. 11,155,211, which is a continuation of U.S. patent application Ser. No. 16/819,718, filed Mar. 16, 2020, now U.S. Pat. No. 10,814,785, which is a continuation of U.S. patent application Ser. No. 16/693,504, filed Nov. 25, 2019, now U.S. Pat. No. 10,589,678, which is a continuation of U.S. patent application Ser. No. 16/458,392, filed Jul. 1, 2019, now U.S. Pat. No. 10,486,597, which is a continuation of U.S. patent application Ser. No. 16/203,965, filed Nov. 29, 2018, now U.S. Pat. No. 10,336,255, which is a continuation of U.S. patent application Ser. No. 15/675,920, filed Aug. 14, 2017, now U.S. Pat. No. 10,144,352, which is a continuation of U.S. patent application Ser. No. 15/460,666, filed Mar. 16, 2017, now U.S. Pat. No. 9,731,653, which is a continuation of U.S. patent application Ser. No. 15/295,057, filed Oct. 17, 2016, now U.S. Pat. No. 9,598,014, which is a continuation of U.S. patent application Ser. No. 15/042,664, filed Feb. 12, 2016, now U.S. Pat. No. 9,469,250, which is a continuation of U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which claims the filing benefits of U.S. provisional applications, Ser. No. 61/466,138, filed Mar. 22, 2011, Ser. No. 61/452,816, filed Mar. 15, 2011, and Ser. No. 61/426,328, filed Dec. 22, 2010, which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (594)
Number Name Date Kind
4200361 Malvano et al. Apr 1980 A
4214266 Myers Jul 1980 A
4218698 Bart et al. Aug 1980 A
4236099 Rosenblum Nov 1980 A
4247870 Gabel et al. Jan 1981 A
4249160 Chilvers Feb 1981 A
4254931 Aikens et al. Mar 1981 A
4266856 Wainwright May 1981 A
4277804 Robison Jul 1981 A
4281898 Ochiai et al. Aug 1981 A
4288814 Talley et al. Sep 1981 A
4355271 Noack Oct 1982 A
4357558 Massoni et al. Nov 1982 A
4381888 Momiyama May 1983 A
4398172 Carroll et al. Aug 1983 A
4420238 Felix Dec 1983 A
4431896 Lodetti Feb 1984 A
4443057 Bauer et al. Apr 1984 A
4460831 Oettinger et al. Jul 1984 A
4481450 Watanabe et al. Nov 1984 A
4491390 Tong-Shen Jan 1985 A
4512637 Ballmer Apr 1985 A
4521804 Bendell Jun 1985 A
4529275 Ballmer Jul 1985 A
4529873 Ballmer et al. Jul 1985 A
4532550 Bendell et al. Jul 1985 A
4546551 Franks Oct 1985 A
4549208 Kamejima et al. Oct 1985 A
4571082 Downs Feb 1986 A
4572619 Reininger et al. Feb 1986 A
4580875 Bechtel et al. Apr 1986 A
4584606 Nagasaki Apr 1986 A
4600913 Caine Jul 1986 A
4603946 Kato et al. Aug 1986 A
4614415 Hyatt Sep 1986 A
4620141 McCumber et al. Oct 1986 A
4623222 Itoh et al. Nov 1986 A
4626850 Chey Dec 1986 A
4630109 Barton Dec 1986 A
4632509 Ohmi et al. Dec 1986 A
4638287 Umebayashi et al. Jan 1987 A
4645975 Meitzler et al. Feb 1987 A
4647161 Muller Mar 1987 A
4653316 Fukuhara Mar 1987 A
4669825 Itoh et al. Jun 1987 A
4669826 Itoh et al. Jun 1987 A
4671615 Fukada et al. Jun 1987 A
4672457 Hyatt Jun 1987 A
4676601 Itoh et al. Jun 1987 A
4690508 Jacob Sep 1987 A
4692798 Seko et al. Sep 1987 A
4697883 Suzuki et al. Oct 1987 A
4701022 Jacob Oct 1987 A
4713685 Nishimura et al. Dec 1987 A
4717830 Botts Jan 1988 A
4727290 Smith et al. Feb 1988 A
4731669 Hayashi et al. Mar 1988 A
4741603 Miyagi et al. May 1988 A
4758883 Kawahara et al. Jul 1988 A
4772942 Tuck Sep 1988 A
4789904 Peterson Dec 1988 A
4793690 Gahan et al. Dec 1988 A
4817948 Simonelli Apr 1989 A
4825232 Howdle Apr 1989 A
4838650 Stewart et al. Jun 1989 A
4847772 Michalopoulos et al. Jul 1989 A
4855822 Narendra et al. Aug 1989 A
4862037 Farber et al. Aug 1989 A
4867561 Fujii et al. Sep 1989 A
4871917 O'Farrell et al. Oct 1989 A
4872051 Dye Oct 1989 A
4881019 Shiraishi et al. Nov 1989 A
4882565 Gallmeyer Nov 1989 A
4886960 Molyneux et al. Dec 1989 A
4891559 Matsumoto et al. Jan 1990 A
4892345 Rachael, III Jan 1990 A
4895790 Swanson et al. Jan 1990 A
4896030 Miyaji Jan 1990 A
4907870 Brucker Mar 1990 A
4910591 Petrossian et al. Mar 1990 A
4917477 Bechtel et al. Apr 1990 A
4937796 Tendler Jun 1990 A
4953305 Van Lente et al. Sep 1990 A
4956591 Schierbeek et al. Sep 1990 A
4961625 Wood et al. Oct 1990 A
4967319 Seko Oct 1990 A
4970653 Kenue Nov 1990 A
4971430 Lynas Nov 1990 A
4974078 Tsai Nov 1990 A
4987357 Masaki Jan 1991 A
4991054 Walters Feb 1991 A
5001558 Burley et al. Mar 1991 A
5003288 Wilhelm Mar 1991 A
5012082 Watanabe Apr 1991 A
5016977 Baude et al. May 1991 A
5027001 Torbert Jun 1991 A
5027200 Petrossian et al. Jun 1991 A
5044706 Chen Sep 1991 A
5055668 French Oct 1991 A
5059877 Teder Oct 1991 A
5064274 Alten Nov 1991 A
5070348 Hayakawa et al. Dec 1991 A
5072154 Chen Dec 1991 A
5075768 Wirtz et al. Dec 1991 A
5086253 Lawler Feb 1992 A
5096287 Kakinami et al. Mar 1992 A
5097362 Lynas Mar 1992 A
5121200 Choi Jun 1992 A
5124549 Michaels et al. Jun 1992 A
5130709 Toyama et al. Jul 1992 A
5143433 Farrell Sep 1992 A
5148014 Lynam et al. Sep 1992 A
5166681 Bottesch et al. Nov 1992 A
5168378 Black Dec 1992 A
5170374 Shimohigashi et al. Dec 1992 A
5172235 Wilm et al. Dec 1992 A
5177606 Koshizawa Jan 1993 A
5177685 Davis et al. Jan 1993 A
5182502 Slotkowski et al. Jan 1993 A
5184956 Langlais et al. Feb 1993 A
5189561 Hong Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5193029 Schofield et al. Mar 1993 A
5204778 Bechtel Apr 1993 A
5208701 Maeda May 1993 A
5245422 Borcherts et al. Sep 1993 A
5253109 O'Farrell et al. Oct 1993 A
5276389 Levers Jan 1994 A
5285060 Larson et al. Feb 1994 A
5289182 Brillard et al. Feb 1994 A
5289321 Secor Feb 1994 A
5305012 Faris Apr 1994 A
5307136 Saneyoshi Apr 1994 A
5309137 Kajiwara May 1994 A
5313072 Vachss May 1994 A
5325096 Pakett Jun 1994 A
5325386 Jewell et al. Jun 1994 A
5329206 Slotkowski et al. Jul 1994 A
5331312 Kudoh Jul 1994 A
5336980 Levers Aug 1994 A
5341437 Nakayama Aug 1994 A
5351044 Mathur et al. Sep 1994 A
5355118 Fukuhara Oct 1994 A
5374852 Parkes Dec 1994 A
5386285 Asayama Jan 1995 A
5394333 Kao Feb 1995 A
5406395 Wilson et al. Apr 1995 A
5410346 Saneyoshi et al. Apr 1995 A
5414257 Stanton May 1995 A
5414461 Kishi et al. May 1995 A
5416313 Larson et al. May 1995 A
5416318 Hegyi May 1995 A
5416478 Morinaga May 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5430431 Nelson Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5436492 Yamanaka Jul 1995 A
5440428 Hegg et al. Aug 1995 A
5444478 Lelong et al. Aug 1995 A
5451822 Bechtel et al. Sep 1995 A
5457493 Leddy et al. Oct 1995 A
5461357 Yoshioka et al. Oct 1995 A
5461361 Moore Oct 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475494 Nishida et al. Dec 1995 A
5487116 Nakano et al. Jan 1996 A
5498866 Bendicks et al. Mar 1996 A
5500766 Stonecypher Mar 1996 A
5510983 Lino Apr 1996 A
5515448 Nishitani May 1996 A
5521633 Nakajima et al. May 1996 A
5528698 Kamei et al. Jun 1996 A
5529138 Shaw et al. Jun 1996 A
5530240 Larson et al. Jun 1996 A
5530420 Tsuchiya et al. Jun 1996 A
5535314 Alves et al. Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5539397 Asanuma et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5555312 Shima et al. Sep 1996 A
5555555 Sato et al. Sep 1996 A
5568027 Teder Oct 1996 A
5574443 Hsieh Nov 1996 A
5576687 Blank et al. Nov 1996 A
5581464 Woll et al. Dec 1996 A
5594222 Caldwell Jan 1997 A
5614788 Mullins Mar 1997 A
5619370 Guinosso Apr 1997 A
5632092 Blank et al. May 1997 A
5634709 Iwama Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5646614 Abersfelder et al. Jul 1997 A
5648835 Uzawa Jul 1997 A
5650944 Kise Jul 1997 A
5660454 Mori et al. Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5668663 Varaprasad et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5675489 Pomerleau Oct 1997 A
5677851 Kingdon et al. Oct 1997 A
5699044 Van Lente et al. Dec 1997 A
5708410 Blank et al. Jan 1998 A
5712640 Andou et al. Jan 1998 A
5724187 Varaprasad et al. Mar 1998 A
5724316 Brunts Mar 1998 A
5737226 Olson et al. Apr 1998 A
5757949 Kinoshita et al. May 1998 A
5760826 Nayar Jun 1998 A
5760828 Cortes Jun 1998 A
5760931 Saburi et al. Jun 1998 A
5760962 Schofield et al. Jun 1998 A
5761094 Olson et al. Jun 1998 A
5765116 Wilson-Jones et al. Jun 1998 A
5781437 Wiemer et al. Jul 1998 A
5786772 Schofield et al. Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker et al. Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5798575 O'Farrell et al. Aug 1998 A
5802727 Blank et al. Sep 1998 A
5825527 Forgette et al. Oct 1998 A
5835255 Miles Nov 1998 A
5837994 Stam et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5844682 Kiyomoto et al. Dec 1998 A
5845000 Breed et al. Dec 1998 A
5848802 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5850254 Takano et al. Dec 1998 A
5867591 Onda Feb 1999 A
5877707 Kowalick Mar 1999 A
5877897 Schofield et al. Mar 1999 A
5878370 Olson Mar 1999 A
5883605 Knapp Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5884212 Lion Mar 1999 A
5890021 Onoda Mar 1999 A
5896085 Mori et al. Apr 1999 A
5899956 Chan May 1999 A
5914815 Bos Jun 1999 A
5923027 Stam et al. Jul 1999 A
5926117 Gunji et al. Jul 1999 A
5929786 Schofield et al. Jul 1999 A
5929901 Adair et al. Jul 1999 A
5940120 Frankhouse et al. Aug 1999 A
5949331 Schofield et al. Sep 1999 A
5956181 Lin Sep 1999 A
5959367 O'Farrell et al. Sep 1999 A
5959555 Furuta Sep 1999 A
5962833 Hayashi Oct 1999 A
5963247 Banitt Oct 1999 A
5964822 Alland et al. Oct 1999 A
5971552 O'Farrell et al. Oct 1999 A
5986796 Miles Nov 1999 A
5990469 Bechtel et al. Nov 1999 A
5990649 Nagao et al. Nov 1999 A
6001486 Varaprasad et al. Dec 1999 A
6002983 Alland et al. Dec 1999 A
6009336 Harris et al. Dec 1999 A
6049171 Stam et al. Apr 2000 A
6052645 Harada Apr 2000 A
6066933 Ponziana May 2000 A
6084519 Coulling et al. Jul 2000 A
6087953 DeLine et al. Jul 2000 A
6097023 Schofield et al. Aug 2000 A
6097024 Stam et al. Aug 2000 A
6114951 Kinoshita et al. Sep 2000 A
6116743 Hoek Sep 2000 A
6124647 Marcus et al. Sep 2000 A
6124886 DeLine et al. Sep 2000 A
6130448 Bauer et al. Oct 2000 A
6139172 Bos et al. Oct 2000 A
6144022 Tenenbaum et al. Nov 2000 A
6151065 Steed et al. Nov 2000 A
6170956 Rumsey et al. Jan 2001 B1
6172613 DeLine et al. Jan 2001 B1
6173508 Strohmeyer, Jr. Jan 2001 B1
6175164 O'Farrell et al. Jan 2001 B1
6175300 Kendrick Jan 2001 B1
6198409 Schofield et al. Mar 2001 B1
6201642 Bos Mar 2001 B1
6222447 Schofield et al. Apr 2001 B1
6222460 DeLine et al. Apr 2001 B1
6243003 DeLine et al. Jun 2001 B1
6246955 Nishikawa et al. Jun 2001 B1
6250148 Lynam Jun 2001 B1
6259412 Duroux Jul 2001 B1
6266082 Yonezawa et al. Jul 2001 B1
6266442 Laumeyer et al. Jul 2001 B1
6285393 Shimoura et al. Sep 2001 B1
6291906 Marcus et al. Sep 2001 B1
6294989 Schofield et al. Sep 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6302545 Schofield et al. Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6315419 Platzer, Jr. Nov 2001 B1
6317057 Lee Nov 2001 B1
6320176 Schofield et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6329925 Skiver et al. Dec 2001 B1
6333759 Mazzilli Dec 2001 B1
6341523 Lynam Jan 2002 B2
6346698 Turnbull Feb 2002 B1
6353392 Schofield et al. Mar 2002 B1
6360170 Ishikawa et al. Mar 2002 B1
6366213 DeLine et al. Apr 2002 B2
6370329 Teuchert Apr 2002 B1
6396397 Bos et al. May 2002 B1
6407468 LeVesque et al. Jun 2002 B1
6411204 Bloomfield et al. Jun 2002 B1
6411328 Franke et al. Jun 2002 B1
6420800 LeVesque et al. Jul 2002 B1
6420975 DeLine et al. Jul 2002 B1
6424273 Gutta et al. Jul 2002 B1
6424369 Adair et al. Jul 2002 B1
6428172 Hutzel et al. Aug 2002 B1
6430303 Naoi et al. Aug 2002 B1
6433676 DeLine et al. Aug 2002 B2
6433817 Guerra Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6462781 Arnold Oct 2002 B1
6477464 McCarthy et al. Nov 2002 B2
6485155 Duroux et al. Nov 2002 B1
6497503 Dassanayake et al. Dec 2002 B1
6498620 Schofield et al. Dec 2002 B2
6513252 Schierbeek Feb 2003 B1
6516664 Lynam Feb 2003 B2
6523964 Schofield et al. Feb 2003 B2
6534884 Marcus et al. Mar 2003 B2
6539306 Turnbull Mar 2003 B2
6547133 Devries, Jr. et al. Apr 2003 B1
6550949 Bauer et al. Apr 2003 B1
6552326 Turnbull Apr 2003 B2
6553130 Lemelson et al. Apr 2003 B1
6559435 Schofield et al. May 2003 B2
6572233 Northman et al. Jun 2003 B1
6574033 Chui et al. Jun 2003 B1
6578017 Ebersole et al. Jun 2003 B1
6580992 Whitten et al. Jun 2003 B2
6587573 Stam et al. Jul 2003 B1
6589625 Kothari et al. Jul 2003 B1
6593565 Heslin et al. Jul 2003 B2
6593960 Sugimoto et al. Jul 2003 B1
6594583 Ogura et al. Jul 2003 B2
6602089 Abe et al. Aug 2003 B2
6611610 Stam et al. Aug 2003 B1
6616480 Kameyama Sep 2003 B2
6621616 Bauer et al. Sep 2003 B1
6627918 Getz et al. Sep 2003 B2
6631316 Stam et al. Oct 2003 B2
6631994 Suzuki et al. Oct 2003 B2
6636258 Strumolo Oct 2003 B2
6642851 Deline et al. Nov 2003 B2
6648477 Hutzel et al. Nov 2003 B2
6650233 DeLine et al. Nov 2003 B2
6650455 Miles Nov 2003 B2
6672731 Schnell et al. Jan 2004 B2
6674562 Miles Jan 2004 B1
6678056 Downs Jan 2004 B2
6678614 McCarthy et al. Jan 2004 B2
6680498 Guidash Jan 2004 B2
6680792 Miles Jan 2004 B2
6690268 Schofield et al. Feb 2004 B2
6700605 Toyoda et al. Mar 2004 B1
6703925 Steffel Mar 2004 B2
6704434 Sakoh et al. Mar 2004 B1
6704621 Stein et al. Mar 2004 B1
6710908 Miles et al. Mar 2004 B2
6711474 Treyz et al. Mar 2004 B1
6714183 Yamazaki et al. Mar 2004 B2
6714331 Lewis et al. Mar 2004 B2
6717610 Bos et al. Apr 2004 B1
6731341 Uchiyama May 2004 B1
6735506 Breed et al. May 2004 B2
6737630 Turnbull May 2004 B2
6741377 Miles May 2004 B2
6744353 Sjonell Jun 2004 B2
6757055 Kluft Jun 2004 B1
6757109 Bos Jun 2004 B2
6760989 Peterson et al. Jul 2004 B2
6762867 Lippert et al. Jul 2004 B2
6771423 Geist Aug 2004 B2
6772057 Breed et al. Aug 2004 B2
6794119 Miles Sep 2004 B2
6795221 Urey Sep 2004 B1
6802617 Schofield et al. Oct 2004 B2
6806452 Bos et al. Oct 2004 B2
6822563 Bos et al. Nov 2004 B2
6823241 Shirato et al. Nov 2004 B2
6824281 Schofield et al. Nov 2004 B2
6825828 Burke et al. Nov 2004 B2
6831261 Schofield et al. Dec 2004 B2
6847487 Burgner Jan 2005 B2
6870655 Northman et al. Mar 2005 B1
6874806 Blake Apr 2005 B1
6882287 Schofield Apr 2005 B2
6889161 Winner et al. May 2005 B2
6891563 Schofield et al. May 2005 B2
6909753 Meehan et al. Jun 2005 B2
6912001 Okamoto et al. Jun 2005 B2
6946978 Schofield Sep 2005 B2
6947071 Eichmann Sep 2005 B2
6947576 Stam et al. Sep 2005 B2
6953253 Schofield et al. Oct 2005 B2
6953363 Kameyama et al. Oct 2005 B2
6968736 Lynam Nov 2005 B2
6970184 Hirama et al. Nov 2005 B2
6975775 Rykowski et al. Dec 2005 B2
7004593 Weller et al. Feb 2006 B2
7004606 Schofield Feb 2006 B2
7005974 McMahon et al. Feb 2006 B2
7038577 Pawlicki et al. May 2006 B2
7046448 Burgner May 2006 B2
7050908 Schwartz et al. May 2006 B1
7053881 Itoh May 2006 B2
7062300 Kim Jun 2006 B1
7065432 Moisei et al. Jun 2006 B2
7073933 Gotoh et al. Jul 2006 B2
7085637 Breed et al. Aug 2006 B2
7092548 Laumeyer et al. Aug 2006 B2
7095567 Troxell et al. Aug 2006 B2
7111968 Bauer et al. Sep 2006 B2
7116246 Winter et al. Oct 2006 B2
7126567 Nishikawa Oct 2006 B2
7145519 Takahashi et al. Dec 2006 B2
7149613 Stam et al. Dec 2006 B2
7161616 Okamoto et al. Jan 2007 B1
7167796 Taylor et al. Jan 2007 B2
7168830 Pastrick et al. Jan 2007 B2
7175291 Li Feb 2007 B1
7176790 Yamazaki Feb 2007 B2
7184190 McCabe et al. Feb 2007 B2
7195381 Lynam et al. Mar 2007 B2
7202776 Breed Apr 2007 B2
7206697 Olney et al. Apr 2007 B2
7224324 Quist et al. May 2007 B2
7227459 Bos et al. Jun 2007 B2
7227472 Roe Jun 2007 B1
7227611 Hull et al. Jun 2007 B2
7230640 Regensburger et al. Jun 2007 B2
7245231 Kiefer et al. Jul 2007 B2
7248283 Takagi et al. Jul 2007 B2
7248718 Comaniciu et al. Jul 2007 B2
7249860 Kulas et al. Jul 2007 B2
7253723 Lindahl et al. Aug 2007 B2
7255451 McCabe et al. Aug 2007 B2
7265656 McMahon et al. Sep 2007 B2
7274501 McCabe et al. Sep 2007 B2
7289037 Uken et al. Oct 2007 B2
7295229 Kumata et al. Nov 2007 B2
7301466 Asai Nov 2007 B2
7302344 Olney et al. Nov 2007 B2
7311406 Schofield et al. Dec 2007 B2
7317386 Lengning et al. Jan 2008 B2
7324043 Purden et al. Jan 2008 B2
7325934 Schofield et al. Feb 2008 B2
7327226 Turnbull et al. Feb 2008 B2
7329013 Blank et al. Feb 2008 B2
7331415 Hawes et al. Feb 2008 B2
7338177 Lynam Mar 2008 B2
7339149 Schofield et al. Mar 2008 B1
7344261 Schofield et al. Mar 2008 B2
7349582 Takeda et al. Mar 2008 B2
7355524 Schofield Apr 2008 B2
7360932 Uken et al. Apr 2008 B2
7368714 Remillard et al. May 2008 B2
7370983 DeWind et al. May 2008 B2
7375803 Bamji May 2008 B1
7379817 Tyson et al. May 2008 B1
7380633 Shen et al. Jun 2008 B2
7380948 Schofield et al. Jun 2008 B2
7388182 Schofield et al. Jun 2008 B2
7391563 McCabe et al. Jun 2008 B2
7402786 Schofield et al. Jul 2008 B2
7423248 Schofield et al. Sep 2008 B2
7423821 Bechtel et al. Sep 2008 B2
7425076 Schofield et al. Sep 2008 B2
7446650 Scholfield et al. Nov 2008 B2
7459664 Schofield et al. Dec 2008 B2
7488099 Fogg et al. Feb 2009 B2
7526103 Schofield et al. Apr 2009 B2
7541743 Salmeen et al. Jun 2009 B2
7561181 Schofield et al. Jul 2009 B2
7565006 Stam et al. Jul 2009 B2
7581859 Lynam Sep 2009 B2
7592928 Chinomi et al. Sep 2009 B2
7616781 Schofield et al. Nov 2009 B2
7619508 Lynam et al. Nov 2009 B2
7626749 Baur et al. Dec 2009 B2
7633383 Dunsmoir et al. Dec 2009 B2
7639149 Katoh Dec 2009 B2
7655894 Schofield et al. Feb 2010 B2
7676087 Dhua et al. Mar 2010 B2
7720580 Higgins-Luthman May 2010 B2
7792329 Schofield et al. Sep 2010 B2
7843451 Lafon Nov 2010 B2
7855755 Weller et al. Dec 2010 B2
7855778 Yung et al. Dec 2010 B2
7859565 Schofield et al. Dec 2010 B2
7877175 Higgins-Luthman Jan 2011 B2
7881496 Camilleri et al. Feb 2011 B2
7914187 Higgins-Luthman et al. Mar 2011 B2
7930160 Hosagrahara et al. Apr 2011 B1
7991522 Higgins-Luthman Aug 2011 B2
7994462 Schofield et al. Aug 2011 B2
8017898 Lu et al. Sep 2011 B2
8095310 Taylor et al. Jan 2012 B2
8098142 Schofield et al. Jan 2012 B2
8194133 DeWind et al. Jun 2012 B2
8203440 Schofield et al. Jun 2012 B2
8222588 Schofield et al. Jul 2012 B2
8224031 Saito Jul 2012 B2
8314689 Schofield et al. Nov 2012 B2
8324552 Schofield et al. Dec 2012 B2
8386114 Higgins-Luthman Feb 2013 B2
8427288 Schofield et al. Apr 2013 B2
9225883 Kossin Dec 2015 B2
9264672 Lynam Feb 2016 B2
9469250 Lynam Oct 2016 B2
9598014 Lynam Mar 2017 B2
9731653 Lynam Aug 2017 B2
10053012 Baur et al. Aug 2018 B2
10144352 Lynam Dec 2018 B2
10336255 Lynam Jul 2019 B2
10486597 Lynam Nov 2019 B1
10589678 Lynam Mar 2020 B1
10814785 Lynam Oct 2020 B2
11155211 Lynam Oct 2021 B2
20020003571 Schofield et al. Jan 2002 A1
20020005778 Breed et al. Jan 2002 A1
20020101041 Kameyama Aug 2002 A1
20020113873 Williams Aug 2002 A1
20020121809 Kameyama Sep 2002 A1
20020126457 Kameyama Sep 2002 A1
20020140687 Takeda Oct 2002 A1
20020145663 Mizusawa et al. Oct 2002 A1
20020167589 Schofield et al. Nov 2002 A1
20020175999 Mutobe et al. Nov 2002 A1
20030002165 Mathias et al. Jan 2003 A1
20030080877 Takagi et al. May 2003 A1
20030086041 Watanabe et al. May 2003 A1
20030095374 Richardson May 2003 A1
20030108222 Sato et al. Jun 2003 A1
20030123706 Stam et al. Jul 2003 A1
20030137586 Lewellen Jul 2003 A1
20030164904 Grohn et al. Sep 2003 A1
20030222982 Hamdan et al. Dec 2003 A1
20040032321 McMahon et al. Feb 2004 A1
20040114396 Kobayashi et al. Jun 2004 A1
20040164228 Fogg et al. Aug 2004 A1
20040202001 Roberts et al. Oct 2004 A1
20050040939 Jobes et al. Feb 2005 A1
20050219852 Stam et al. Oct 2005 A1
20050222753 Ishikawa Oct 2005 A1
20050237385 Kosaka et al. Oct 2005 A1
20050270403 Machi et al. Dec 2005 A1
20060018511 Stam et al. Jan 2006 A1
20060018512 Stam et al. Jan 2006 A1
20060050018 Hutzel et al. Mar 2006 A1
20060091813 Stam et al. May 2006 A1
20060103727 Tseng May 2006 A1
20060250501 Wildmann et al. Nov 2006 A1
20060287825 Shimizu et al. Dec 2006 A1
20070104476 Yasutomi et al. May 2007 A1
20070109406 Schofield et al. May 2007 A1
20070120657 Schofield et al. May 2007 A1
20070188347 Schofield Aug 2007 A1
20070242339 Bradley Oct 2007 A1
20080068520 Minikey et al. Mar 2008 A1
20080147321 Howard et al. Jun 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080266389 DeWind et al. Oct 2008 A1
20090113509 Tseng et al. Apr 2009 A1
20090160987 Bechtel et al. Jun 2009 A1
20090256938 Bechtel et al. Oct 2009 A1
20100066833 Ohshima et al. Mar 2010 A1
20100082281 Nakamura et al. Apr 2010 A1
20100097469 Blank et al. Apr 2010 A1
20100201816 Lee et al. Aug 2010 A1
20110304691 Newton et al. Dec 2011 A1
20120045112 Lundblad et al. Feb 2012 A1
20120062743 Lynam et al. Mar 2012 A1
20120062744 Schofield et al. Mar 2012 A1
20120069591 Pastrick et al. Mar 2012 A1
20120078469 Karner Mar 2012 A1
20120154591 Baur et al. Jun 2012 A1
20120265416 Lu et al. Oct 2012 A1
20140022390 Blank et al. Jan 2014 A1
20140267732 Karner et al. Sep 2014 A1
Foreign Referenced Citations (67)
Number Date Country
102007044535 Mar 2009 DE
0212426 Mar 1987 EP
0353200 Jan 1990 EP
0426503 May 1991 EP
0492591 Jul 1992 EP
0640903 Mar 1995 EP
0788947 Aug 1997 EP
1074430 Feb 2001 EP
1350671 Oct 2003 EP
1400410 Mar 2004 EP
59114139 Jul 1984 JP
6080953 May 1985 JP
6079889 Oct 1986 JP
6272245 May 1987 JP
S62131837 Jun 1987 JP
6414700 Jan 1989 JP
64(H1)-23880 Feb 1989 JP
03099952 Apr 1991 JP
4114587 Apr 1992 JP
H04127280 Apr 1992 JP
0577657 Mar 1993 JP
05050883 Mar 1993 JP
5213113 Aug 1993 JP
6227318 Aug 1994 JP
06267304 Sep 1994 JP
06276524 Sep 1994 JP
06295601 Oct 1994 JP
07004170 Jan 1995 JP
0732936 Feb 1995 JP
0747878 Feb 1995 JP
07052706 Feb 1995 JP
0769125 Mar 1995 JP
07105496 Apr 1995 JP
H0884277 Mar 1996 JP
2630604 Jul 1997 JP
H09197527 Jul 1997 JP
1997301069 Nov 1997 JP
1999237684 Aug 1999 JP
1999239288 Aug 1999 JP
2000229065 Aug 2000 JP
2001086402 Mar 2001 JP
2001106004 Apr 2001 JP
2001108434 Apr 2001 JP
2001322492 Nov 2001 JP
2002036978 Feb 2002 JP
2002044497 Feb 2002 JP
2002044837 Feb 2002 JP
2002057921 Feb 2002 JP
200274339 Mar 2002 JP
2002109697 Apr 2002 JP
2002207149 Jul 2002 JP
2002221748 Aug 2002 JP
2002231375 Aug 2002 JP
200383742 Mar 2003 JP
2003219411 Jul 2003 JP
20041658 Jan 2004 JP
2005199837 Jul 2005 JP
2006193070 Jul 2006 JP
2007288586 Nov 2007 JP
1994019212 Sep 1994 WO
1995034988 Dec 1995 WO
1996038319 Dec 1996 WO
2004058540 Jul 2004 WO
2005023593 Mar 2005 WO
2012145818 Nov 2012 WO
2013074604 May 2013 WO
2013086249 Jun 2013 WO
Non-Patent Literature Citations (21)
Entry
Achler et al., “Vehicle Wheel Detector using 2D Filter Banks,” IEEE Intelligent Vehicles Symposium of Jun. 2004.
Bow, Sing T., “Pattern Recognition and Image Preprocessing (Signal Processing and Communications)”, CRC Press, Jan. 15, 2002, pp. 557-559.
Broggi et al., “Automatic Vehicle Guidance: The Experience of the ARGO Vehicle”, World Scientific Publishing Co., 1999.
Broggi et al., “Multi-Resolution Vehicle Detection using Artificial Vision,” IEEE Intelligent Vehicles Symposium of Jun. 2004.
Borenstein et al., “Where am I? Sensors and Method for Mobile Robot Positioning”, University of Michigan, Apr. 1996, pp. 2, 125-128.
Kastrinaki et al., “A survey of video processing techniques for traffic applications”.
Mei Chen et al., Aurora: A Vision-Based Roadway Departure Warning System, The Robotics Institute, Carnegie Mellon University, published Aug. 9, 1995.
Parker (ed.), McGraw-Hill Dictionary of Scientific and Technical Terms Fifth Edition (1993).
Philomin et al., “Pedestrain Tracking from a Moving Vehicle”.
Pratt, “Digital Image Processing, Passage—ED.3”, John Wiley & Sons, US, Jan. 1, 2001, pp. 657-659, XP002529771.
Sun et al., “On-road vehicle detection using optical sensors: a review”.
Tokimaru et al., “CMOS Rear-View TV System with CCD Camera”, National Technical Report vol. 34, No. 3, pp. 329-336, Jun. 1988 (Japan).
Van Leeuwen et al., “Motion Estimation with a Mobile Camera for Traffic Applications”, IEEE, US, vol. 1, Oct. 3, 2000, pp. 58-63.
Van Leeuwen et al., “Motion Interpretation for In-Car Vision Systems”, IEEE, US, vol. 1, Sep. 30, 2002, p. 135-140.
Van Leeuwen et al., “Requirements for Motion Estimation in Image Sequences for Traffic Applications”, IEEE, US, vol. 1, May 24, 1999, pp. 145-150, XP010340272.
Van Leeuwen et al., “Real-Time Vehicle Tracking in Image Sequences”, IEEE, US, vol. 3, May 21, 2001, pp. 2049-2054, XP010547308.
Vellacott, Oliver, “CMOS in Camera,” IEE Review, pp. 111-114 (May 1994).
Vlacic et al. (Eds), “Intelligent Vehicle Tecnologies, Theory and Applications”, Society of Automotive Engineers Inc., edited by SAE International, 2001.
Wang et al., CMOS Video Cameras, article, 1991, 4 pages, University of Edinburgh, UK.
Zheng et al., “An Adaptive System for Traffic Sign Recognition,” IEEE Proceedings of the Intelligent Vehicles '94 Symposium, pp. 165-170 (Oct. 1994).
Stic, “Vehicle Camera Image Quality Improvement in Poor Visibility Conditions by Contrast Amplification” Scientific and Technical Information Center, Aug. 21, 2014.
Related Publications (1)
Number Date Country
20220032843 A1 Feb 2022 US
Provisional Applications (3)
Number Date Country
61466138 Mar 2011 US
61452816 Mar 2011 US
61426328 Dec 2010 US
Continuations (10)
Number Date Country
Parent 16949314 Oct 2020 US
Child 17451697 US
Parent 16819718 Mar 2020 US
Child 16949314 US
Parent 16693504 Nov 2019 US
Child 16819718 US
Parent 16458392 Jul 2019 US
Child 16693504 US
Parent 16203965 Nov 2018 US
Child 16458392 US
Parent 15675920 Aug 2017 US
Child 16203965 US
Parent 15460666 Mar 2017 US
Child 15675920 US
Parent 15295057 Oct 2016 US
Child 15460666 US
Parent 15042664 Feb 2016 US
Child 15295057 US
Parent 13333337 Dec 2011 US
Child 15042664 US