Vehicular threat detection based on audio signals

Information

  • Patent Grant
  • 9107012
  • Patent Number
    9,107,012
  • Date Filed
    Tuesday, January 31, 2012
    12 years ago
  • Date Issued
    Tuesday, August 11, 2015
    9 years ago
Abstract
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured perform vehicular threat detection based at least in part on analyzing audio signals. An example AEFS receives data that represents an audio signal emitted by a vehicle. The AEFS analyzes the audio signal to determine vehicular threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined vehicular threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.
Description
TECHNICAL FIELD

The present disclosure relates to methods, techniques, and systems for ability enhancement and, more particularly, to methods, techniques, and systems for vehicular threat detection based at least in part on analyzing audio signals emitted by vehicles present in a roadway or other context.


BACKGROUND

Human abilities such as hearing, vision, memory, foreign or native language comprehension, and the like may be limited for various reasons. For example, as people age, various abilities such as hearing, vision, or memory, may decline or otherwise become compromised. In some countries, as the population in general ages, such declines may become more common and widespread. In addition, young people are increasingly listening to music through headphones, which may also result in hearing loss at earlier ages.


In addition, limits on human abilities may be exposed by factors other than aging, injury, or overuse. As one example, the world population is faced with an ever increasing amount of information to review, remember, and/or integrate. Managing increasing amounts of information becomes increasingly difficult in the face of limited or declining abilities such as hearing, vision, and memory.


These problems may be further exacerbated and even result in serious health risks in a transportation-related context, as distracted and/or ability impaired drivers are more prone to be involved in accidents. For example, many drivers are increasingly distracted from the task of driving by an onslaught of information from cellular phones, smart phones, media players, navigation systems, and the like. In addition, an aging population in some regions may yield an increasing number or share of drivers who are vision and/or hearing impaired.


Current approaches to addressing limits on human abilities may suffer from various drawbacks. For example, there may be a social stigma connected with wearing hearing aids, corrective lenses, or similar devices. In addition, hearing aids typically perform only limited functions, such as amplifying or modulating sounds for a hearer. Furthermore, legal regimes that attempt to prohibit the use of telephones or media devices while driving may not be effective due to enforcement difficulties, declining law enforcement budgets, and the like. Nor do such regimes address a great number of other sources of distraction or impairment, such as other passengers, car radios, blinding sunlight, darkness, or the like.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are various views of an example ability enhancement scenario according to an example embodiment.



FIG. 1C is an example block diagram illustrating various devices in communication with an ability enhancement facilitator system according to example embodiments.



FIG. 2 is an example functional block diagram of an example ability enhancement facilitator system according to an example embodiment.


FIGS. 3.1-3.70 are example flow diagrams of ability enhancement processes performed by example embodiments.



FIG. 4 is an example block diagram of an example computing system for implementing an ability enhancement facilitator system according to an example embodiment.





DETAILED DESCRIPTION

Embodiments described herein provide enhanced computer- and network-based methods and systems for ability enhancement and, more particularly, for enhancing a user's ability to operate or function in a transportation-related context (e.g., as a pedestrian or vehicle operator) by performing vehicular threat detection based at least in part on analyzing audio signals emitted by other vehicles present in a roadway or other context. Example embodiments provide an Ability Enhancement Facilitator System (“AEFS”). Embodiments of the AEFS may augment, enhance, or improve the senses (e.g., hearing), faculties (e.g., memory, language comprehension), and/or other abilities (e.g., driving, riding a bike, walking/running) of a user.


In some embodiments, the AEFS is configured to identify threats posed by vehicles to a user of a roadway, and to provide information about such threats to the user so that he may take evasive action. Identifying threats may include analyzing audio data, such as sounds emitted by a vehicle in order to determine whether the user and the vehicle may be on a collision course. Other types and sources of data may also or instead be utilized, including video data, range information, conditions information (e.g., weather, temperature, time of day), or the like. The user may be a pedestrian (e.g., a walker, a jogger), an operator of a motorized (e.g., car, motorcycle, moped, scooter) or non-motorized vehicle (e.g., bicycle, pedicab, rickshaw), a vehicle passenger, or the like. In some embodiments, the user wears a wearable device (e.g., a helmet, goggles, eyeglasses, hat) that is configured to at least present determined vehicular threat information to the user.


In some embodiments, the AEFS is configured to receive data representing an audio signal emitted by a first vehicle. The audio signal is typically obtained in proximity to a user, who may be a pedestrian or traveling in a vehicle as an operator or a passenger. In some embodiments, the audio signal is obtained by one or more microphones coupled to the user's vehicle and/or a wearable device of the user, such as a helmet, goggles, a hat, a media player, or the like.


Then, the AEFS determines vehicular threat information based at least in part on the data representing the audio signal. In some embodiments, the AEFS may analyze the received data in order to determine whether the first vehicle represents a threat to the user, such as because the first vehicle and the user may be on a collision course. The audio data may be analyzed in various ways, including by performing audio analysis, frequency analysis (e.g., Doppler analysis), acoustic localization, or the like. Other sources of information may also or instead be used, including information received from the first vehicle, a vehicle of the user, other vehicles, in-situ sensors and devices (e.g., traffic cameras, range sensors, induction coils), traffic information systems, weather information systems, and the like.


Next, the AEFS informs the user of the determined vehicular threat information via a wearable device of the user. Typically, the user's wearable device (e.g., a helmet) will include one or more output devices, such as audio speakers, visual display devices (e.g., warning lights, screens, heads-up displays), haptic devices, and the like. The AEFS may present the vehicular threat information via one or more of these output devices. For example, the AEFS may visually display or speak the words “Car on left.” As another example, the AEFS may visually display a leftward pointing arrow on a heads-up screen displayed on a face screen of the user's helmet. Presenting the vehicular threat information may also or instead include presenting a recommended course of action (e.g., to slow down, to speed up, to turn) to mitigate the determined vehicular threat.


1. Ability Enhancement Facilitator System Overview



FIGS. 1A and 1B are various views of an example ability enhancement scenario according to an example embodiment. More particularly, FIG. 1A and 1B respectively are perspective and top views of a traffic scenario which may result in a collision between two vehicles.



FIG. 1A is a perspective view of an example traffic scenario according to an example embodiment. The illustrated scenario includes two vehicles 110a (a moped) and 110b (a motorcycle). The motorcycle 110b is being ridden by a user 104 who is wearing a wearable device 120a (a helmet). An Ability Enhancement Facilitator System (“AEFS”) 100 is enhancing the ability of the user 104 to operate his vehicle 110b via the wearable device 120a. The example scenario also includes a traffic signal 106 upon which is mounted a camera 108.


In this example, the moped 110a is driving towards the motorcycle 110b from a side street, at approximately a right angle with respect to the path of travel of the motorcycle 110b. The traffic signal 106 has just turned from red to green for the motorcycle 110b, and the user 104 is beginning to drive the motorcycle 110 into the intersection controlled by the traffic signal 106. The user 104 is assuming that the moped 110a will stop, because cross traffic will have a red light. However, in this example, the moped 110a may not stop in a timely manner, for one or more reasons, such as because the operator of the moped 110a has not seen the red light, because the moped 110a is moving at an excessive rate, because the operator of the moped 110a is impaired, because the surface conditions of the roadway are icy or slick, or the like. As will be discussed further below, the AEFS 100 will determine that the moped 110a and the motorcycle 110b are likely on a collision course, and inform the user 104 of this threat via the helmet 120a, so that the user may take evasive action to avoid a possible collision with the moped 110a.


The moped 110 emits an audio signal 101 (e.g., a sound wave emitted from its engine) which travels in advance of the moped 110a. The audio signal 101 is received by a microphone (not shown) on the helmet 120a and/or the motorcycle 110b. In some embodiments, a computing and communication device within the helmet 120a samples the audio signal 101 and transmits the samples to the AEFS 100. In other embodiments, other forms of data may be used to represent the audio signal 101, including frequency coefficients, compressed audio, or the like.


The AEFS 100 determines vehicular threat information by analyzing the received data that represents the audio signal 101. The AEFS 100 may use one or more audio analysis techniques to determine the vehicular threat information. In one embodiment, the AEFS 100 performs a Doppler analysis (e.g., by determining whether the frequency of the audio signal is increasing or decreasing) to determine that the object that is emitting the audio signal is approaching (and possibly at what rate) the user 104. In some embodiments, the AEFS 100 may determine the type of vehicle (e.g., a heavy truck, a passenger vehicle, a motorcycle, a moped) by analyzing the received data to identify an audio signature that is correlated with a particular engine type or size. For example, a lower frequency engine sound may be correlated with a larger vehicle size, and a higher frequency engine sound may be correlated with a smaller vehicle size.


In one embodiment, the AEFS 100 performs acoustic source localization to determine information about the trajectory of the moped 110a, including one or more of position, direction of travel, speed, acceleration, or the like. Acoustic source localization may include receiving data representing the audio signal 101 as measured by two or more microphones. For example, the helmet 120a may include four microphones (e.g., front, right, rear, and left) that each receive the audio signal 101. These microphones may be directional, such that they can be used to provide directional information (e.g., an angle between the helmet and the audio source). Such directional information may then be used by the AEFS 100 to triangulate the position of the moped 110a. As another example, the AEFS 100 may measure differences between the arrival time of the audio signal 101 at multiple distinct microphones on the helmet 120a or other location. The difference in arrival time, together with information about the distance between the microphones, can be used by the AEFS 100 to determine distances between each of the microphones and the audio source, such as the moped 110a. Distances between the microphones and the audio source can then be used to determine one or more locations at which the audio source may be located.


Determining vehicular threat information may also include obtaining information such as the position, trajectory, and speed of the user 104, such as by receiving data representing such information from sensors, devices, and/or systems on board the motorcycle 110b and/or the helmet 120a. Such sources of information may include a speedometer, a geo-location system (e.g., GPS system), an accelerometer, or the like. Once the AEFS 100 has determined and/or obtained information such as the position, trajectory, and speed of the moped 110a and the user 104, the AEFS 100 may determine whether the moped 110a and the user 104 are likely to collide with one another. For example, the AEFS 100 may model the expected trajectories of the moped 110a and user 104 to determine whether they intersect at or about the same point in time.


The AEFS 100 may then present the determined vehicular threat information (e.g., that the moped 110a represents a hazard) to the user 104 via the helmet 120a. Presenting the vehicular threat information may include transmitting the information to the helmet 120a, where it is received and presented to the user. In one embodiment, the helmet 120a includes audio speakers that may be used to output an audio signal (e.g., an alarm or voice message) warning the user 104. In other embodiments, the helmet 120a includes a visual display, such as a heads-up display presented upon a face screen of the helmet 120a, which can be used to present a text message (e.g., “Look left”) or an icon (e.g., a red arrow pointing left).


The AEFS 100 may also use information received from in-situ sensors and/or devices. For example, the AEFS 100 may use information received from a camera 108 that is mounted on the traffic signal 106 that controls the illustrated intersection. The AEFS 100 may receive image data that represents the moped 110a and/or the motorcycle 110b. The AEFS 100 may perform image recognition to determine the type and/or position of a vehicle that is approaching the intersection. The AEFS 100 may also or instead analyze multiple images (e.g., from a video signal) to determine the velocity of a vehicle. Other types of sensors or devices installed in or about a roadway may also or instead by used, including range sensors, speed sensors (e.g., radar guns), induction coils (e.g., mounted in the roadbed), temperature sensors, weather gauges, or the like.



FIG. 1B is a top view of the traffic scenario described with respect to FIG. 1A, above. FIG. 1B includes a legend 122 that indicates the compass directions. In this example, moped 110a is traveling southbound and is about to enter the intersection. Motorcycle 110b is traveling eastbound and is also about to enter the intersection. Also shown are the audio signal 101, the traffic signal 106, and the camera 108.


As noted above, the AEFS 100 may utilize data that represents an audio signal as detected by multiple different microphones. In the example of FIG. 1B, the motorcycle 110b includes two microphones 124a and 124b, respectively mounted at the front left and front right of the motorcycle 110b. As one example, the audio signal 101 may be perceived differently by the two microphones. For example, if the strength of the audio signal 101 is stronger as measured at microphone 124a than at microphone 124b, the AEFS 100 may infer that the signal is originating from the driver's left of the motorcycle 110b, and thus that a vehicle is approaching from that direction. As another example, as the strength of an audio signal is known to decay with distance, and assuming an initial level (e.g., based on an average signal level of a vehicle engine) the AEFS 100 may determine a distance (or distance interval) between one or more of the microphones and the signal source.


The AEFS 100 may model vehicles and other objects, such as by representing their positions, speeds, acceleration, and other information. Such a model may then be used to determine whether objects are likely to collide. Note that the model may be probabilistic. For example the AEFS 100 may represent an object's position in space as a region that includes multiple positions that each have a corresponding likelihood that that the object is at that position. As another example, the AEFS 100 may represent the velocity of an object as a range of likely values, a probability distribution, or the like.



FIG. 1C is an example block diagram illustrating various devices in communication with an ability enhancement facilitator system according to example embodiments. In particular, FIG. 1C illustrates an AEFS 100 in communication with a variety of wearable devices 120b-120e, a camera 108, and a vehicle 110c.


The AEFS 100 may interact with various types of wearable devices 120, including a motorcycle helmet 120a (FIG. 1A), eyeglasses 120b, goggles 120c, a bicycle helmet 120d, a personal media device 120e, or the like. Wearable devices 120 may include any device modified to have sufficient computing and communication capability to interact with the AEFS 100, such as by presenting vehicular threat information received from the AEFS 100, providing data (e.g., audio data) for analysis to the AEFS 100, or the like.


In some embodiments, a wearable device may perform some or all of the functions of the AEFS 100, even though the AEFS 100 is depicted as separate in these examples. Some devices may have minimal processing power and thus perform only some of the functions. For example, the eyeglasses 120b may receive vehicular threat information from a remote AEFS 100, and display it on a heads-up display displayed on the inside of the lenses of the eyeglasses 120b. Other wearable devices may have sufficient processing power to perform more of the functions of the AEFS 100. For example, the personal media device 120e may have considerable processing power and as such be configured to perform acoustic source localization, collision detection analysis, or other more computational expensive functions.


Note that the wearable devices 120 may act in concert with one another or with other entities to perform functions of the AEFS 100. For example, the eyeglasses 120b may include a display mechanism that receives and displays vehicular threat information determined by the personal media device 120e. As another example, the goggles 120c may include a display mechanism that receives and displays vehicular threat information determined by a computing device in the helmet 120a or 120d. In a further example, one of the wearable devices 120 may receive and process audio data received by microphones mounted on the vehicle 110c.


The AEFS 100 may also or instead interact with vehicles 110 and/or computing devices installed thereon. As noted, a vehicle 110 may have one or more sensors or devices that may operate as (direct or indirect) sources of information for the AEFS 100. The vehicle 110c, for example, may include a speedometer, an accelerometer, one or more microphones, one or more range sensors, or the like. Data obtained by, at, or from such devices of vehicle 110c may be forwarded to the AEFS 100, possibly by a wearable device 120 of an operator of the vehicle 110c.


In some embodiments, the vehicle 110c may itself have or use an AEFS, and be configured to transmit warnings or other vehicular threat information to others. For example, an AEFS of the vehicle 110c may have determined that the moped 110a was driving with excessive speed just prior to the scenario depicted in FIG. 1B. The AEFS of the vehicle 110c may then share this information, such as with the AEFS 100. The AEFS 100 may accordingly receive and exploit this information when determining that the moped 110a poses a threat to the motorcycle 110b.


The AEFS 100 may also or instead interact with sensors and other devices that are installed on, in, or about roads or in other transportation related contexts, such as parking garages, racetracks, or the like. In this example, the AEFS 100 interacts with the camera 108 to obtain images of vehicles, pedestrians, or other objects present in a roadway. Other types of sensors or devices may include range sensors, infrared sensors, induction coils, radar guns, temperature gauges, precipitation gauges, or the like.


The AEFS 100 may further interact with information systems that are not shown in FIG. 1C. For example, the AEFS 100 may receive information from traffic information systems that are used to report traffic accidents, road conditions, construction delays, and other information about road conditions. The AEFS 100 may receive information from weather systems that provide information about current weather conditions. The AEFS 100 may receive and exploit statistical information, such as that drivers in particular regions are more aggressive, that red light violations are more frequent at particular intersections, that drivers are more likely to be intoxicated at particular times of day or year, or the like.


Note that in some embodiments, at least some of the described techniques may be performed without the utilization of any wearable devices 120. For example, a vehicle 110 may itself include the necessary computation, input, and output devices to perform functions of the AEFS 100. For example, the AEFS 100 may present vehicular threat information on output devices of a vehicle 110, such as a radio speaker, dashboard warning light, heads-up display, or the like. As another example, a computing device on a vehicle 110 may itself determine the vehicular threat information.



FIG. 2 is an example functional block diagram of an example ability enhancement facilitator system according to an example embodiment. In the illustrated embodiment of FIG. 2, the AEFS 100 includes a threat analysis engine 210, agent logic 220, a presentation engine 230, and a data store 240. The AEFS 100 is shown interacting with a wearable device 120 and information sources 130. The information sources 130 include any sensors, devices, systems, or the like that provide information to the AEFS 100, including but not limited to vehicle-based devices (e.g., speedometers), in-situ devices (e.g., road-side cameras), and information systems (e.g., traffic systems).


The threat analysis engine 210 includes an audio processor 212, an image processor 214, other sensor data processors 216, and an object tracker 218. In the illustrated example, the audio processor 212 processes audio data received from the wearable device 120. As noted, such data may be received from other sources as well or instead, including directly from a vehicle-mounted microphone, or the like. The audio processor 212 may perform various types of signal processing, including audio level analysis, frequency analysis, acoustic source localization, or the like. Based on such signal processing, the audio processor 212 may determine strength, direction of audio signals, audio source distance, audio source type, or the like. Outputs of the audio processor 212 (e.g., that an object is approaching from a particular angle) may be provided to the object tracker 218 and/or stored in the data store 240.


The image processor 214 receives and processes image data that may be received from sources such as the wearable device 120 and/or information sources 130. For example, the image processor 214 may receive image data from a camera of the wearable device 120, and perform object recognition to determine the type and/or position of a vehicle that is approaching the user 104. As another example, the image processor 214 may receive a video signal (e.g., a sequence of images) and process them to determine the type, position, and/or velocity of a vehicle that is approaching the user 104. Outputs of the image processor 214 (e.g., position and velocity information, vehicle type information) may be provided to the object tracker 218 and/or stored in the data store 240.


The other sensor data processor 216 receives and processes data received from other sensors or sources. For example, the other sensor data processor 216 may receive and/or determine information about the position and/or movements of the user and/or one or more vehicles, such as based on GPS systems, speedometers, accelerometers, or other devices. As another example, the other sensor data processor 216 may receive and process conditions information (e.g., temperature, precipitation) from the information sources 130 and determine that road conditions are currently icy. Outputs of the other sensor data processor 216 (e.g., that the user is moving at 5 miles per hour) may be provided to the object tracker 218 and/or stored in the data store 240.


The object tracker 218 manages a geospatial object model that includes information about objects known to the AEFS 100. The object tracker 218 receives and merges information about object types, positions, velocity, acceleration, direction of travel, and the like, from one or more of the processors 212, 214, 216, and/or other sources. Based on such information, the object tracker 218 may identify the presence of objects as well as their likely positions, paths, and the like. The object tracker 218 may continually update this model as new information becomes available and/or as time passes (e.g., by plotting a likely current position of an object based on its last measured position and trajectory). The object tracker 218 may also maintain confidence levels corresponding to elements of the geo-spatial model, such as a likelihood that a vehicle is at a particular position or moving at a particular velocity, that a particular object is a vehicle and not a pedestrian, or the like.


The agent logic 220 implements the core intelligence of the AEFS 100. The agent logic 220 may include a reasoning engine (e.g., a rules engine, decision trees, Bayesian inference engine) that combines information from multiple sources to determine vehicular threat information. For example, the agent logic 220 may combine information from the object tracker 218, such as that there is a determined likelihood of a collision at an intersection, with information from one of the information sources 130, such as that the intersection is the scene of common red-light violations, and decide that the likelihood of a collision is high enough to transmit a warning to the user 104. As another example, the agent logic 220 may, in the face of multiple distinct threats to the user, determine which threat is the most significant and cause the user to avoid the more significant threat, such as by not directing the user 104 to slam on the brakes when a bicycle is approaching from the side but a truck is approaching from the rear, because being rear-ended by the truck would have more serious consequences than being hit from the side by the bicycle.


The presentation engine 230 includes a visible output processor 232 and an audible output processor 234. The visible output processer 232 may prepare, format, and/or cause information to be displayed on a display device, such as a display of the wearable device 120 or some other display (e.g., a heads-up display of a vehicle 110 being driven by the user 104). The agent logic 220 may use or invoke the visible output processor 232 to prepare and display information, such as by formatting or otherwise modifying vehicular threat information to fit on a particular type or size of display. The audible output processor 234 may include or use other components for generating audible output, such as tones, sounds, voices, or the like. In some embodiments, the agent logic 220 may use or invoke the audible output processor 234 in order to convert a textual message (e.g., a warning message, a threat identification) into audio output suitable for presentation via the wearable device 120, for example by employing a text-to-speech processor.


Note that one or more of the illustrated components/modules may not be present in some embodiments. For example, in embodiments that do not perform image or video processing, the AEFS 100 may not include an image processor 214. As another example, in embodiments that do not perform audio output, the AEFS 100 may not include an audible output processor 234.


Note also that the AEFS 100 may act in service of multiple users 104. In some embodiments, the AEFS 100 may determine vehicular threat information concurrently for multiple distinct users. Such embodiments may further facilitate the sharing of vehicular threat information. For example, vehicular threat information determined as between two vehicles may be relevant and thus shared with a third vehicle that is in proximity to the other two vehicles.


2. Example Processes


FIGS. 3.1-3.70 are example flow diagrams of ability enhancement processes performed by example embodiments.



FIG. 3.1 is an example flow diagram of example logic for enhancing ability in a transportation-related context. The illustrated logic in this and the following flow diagrams may be performed by, for example, one or more components of the AEFS 100 described with respect to FIG. 2, above. As noted, one or more functions of the AEFS 100 may be performed at various locations, including at the wearable device, in a vehicle of a user, in some other vehicle, in an in-situ road-side computing system, or the like. More particularly, FIG. 3.1 illustrates a process 3.100 that includes operations performed by or at the following block(s).


At block 3.103, the process performs receiving data representing an audio signal obtained in proximity to a user, the audio signal emitted by a first vehicle. The data representing the audio signal may be raw audio samples, compressed audio data, frequency coefficients, or the like. The data representing the audio signal may represent the sound made by the first vehicle, such as from its engine, a horn, tires, or any other source of sound. The data representing the audio signal may include sounds from other sources, including other vehicles, pedestrians, or the like. The audio signal may be obtained at or about a user who is a pedestrian or who is in a vehicle that is not the first vehicle, either as the operator or a passenger.


At block 3.105, the process performs determining vehicular threat information based at least in part on the data representing the audio signal. Vehicular threat information may be determined in various ways, including by analyzing the data representing the audio signal to determine whether it indicates that the first vehicle is approaching the user. Analyzing the data may be based on various techniques, including analyzing audio levels, frequency shifts (e.g., the Doppler effect), acoustic source localization, or the like.


At block 3.107, the process performs presenting the vehicular threat information via a wearable device of the user. The determined threat information may be presented in various ways, such as by presenting an audible or visible warning or other indication that the first vehicle is approaching the user. Different types of wearable devices are contemplated, including helmets, eyeglasses, goggles, hats, and the like. In other embodiments, the vehicular threat information may also or instead be presented in other ways, such as via an output device on a vehicle of the user, in-situ output devices (e.g., traffic signs, road-side speakers), or the like.



FIG. 3.2 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.2 illustrates a process 3.200 that includes the process 3.100, wherein the receiving data representing an audio signal includes operations performed by or at the following block(s).


At block 3.204, the process performs receiving data obtained at a microphone array that includes multiple microphones. In some embodiments, a microphone array having two or more microphones is employed to receive audio signals. Differences between the received audio signals may be utilized to perform acoustic source localization or other functions, as discussed further herein.



FIG. 3.3 is an example flow diagram of example logic illustrating an example embodiment of process 3.200 of FIG. 3.2. More particularly, FIG. 3.3 illustrates a process 3.300 that includes the process 3.200, wherein the receiving data obtained at a microphone array includes operations performed by or at the following block(s).


At block 3.304, the process performs receiving data obtained at a microphone array, the microphone array coupled to a vehicle of the user. In some embodiments, such as when the user is operating or otherwise traveling in a vehicle of his own (that is not the same as the first vehicle), the microphone array may be coupled or attached to the user's vehicle, such as by having a microphone located at each of the four corners of the user's vehicle.



FIG. 3.4 is an example flow diagram of example logic illustrating an example embodiment of process 3.200 of FIG. 3.2. More particularly, FIG. 3.4 illustrates a process 3.400 that includes the process 3.200, wherein the receiving data obtained at a microphone array includes operations performed by or at the following block(s).


At block 3.404, the process performs receiving data obtained at a microphone array, the microphone array coupled to the wearable device. For example, if the wearable device is a helmet, then a first microphone may be located on the left side of the helmet while a second microphone may be located on the right side of the helmet.



FIG. 3.5 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.5 illustrates a process 3.500 that includes the process 3.100, wherein the determining vehicular threat information includes operations performed by or at the following block(s).


At block 3.504, the process performs determining a position of the first vehicle. The position of the first vehicle may be expressed absolutely, such as via a GPS coordinate or similar representation, or relatively, such as with respect to the position of the user (e.g., 20 meters away from the first user). In addition, the position of the first vehicle may be represented as a point or collection of points (e.g., a region, arc, or line).



FIG. 3.6 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.6 illustrates a process 3.600 that includes the process 3.100, wherein the determining vehicular threat information includes operations performed by or at the following block(s).


At block 3.604, the process performs determining a velocity of the first vehicle. The process may determine the velocity of the first vehicle in absolute or relative terms (e.g., with respect to the velocity of the user). The velocity may be expressed or represented as a magnitude (e.g., 10 meters per second), a vector (e.g., having a magnitude and a direction), or the like.



FIG. 3.7 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.7 illustrates a process 3.700 that includes the process 3.100, wherein the determining vehicular threat information includes operations performed by or at the following block(s).


At block 3.704, the process performs determining a direction of travel of the first vehicle. The process may determine a direction in which the first vehicle is traveling, such as with respect to the user and/or some absolute coordinate system.



FIG. 3.8 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.8 illustrates a process 3.800 that includes the process 3.100, wherein the determining vehicular threat information includes operations performed by or at the following block(s).


At block 3.804, the process performs determining whether the first vehicle is approaching the user. Determining whether the first vehicle is approaching the user may include determining information about the movements of the user and the first vehicle, including position, direction of travel, velocity, acceleration, and the like. Based on such information, the process may determine whether the courses of the user and the first vehicle will (or are likely to) intersect one another.



FIG. 3.9 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.9 illustrates a process 3.900 that includes the process 3.100, wherein the determining vehicular threat information includes operations performed by or at the following block(s).


At block 3.904, the process performs performing acoustic source localization to determine a position of the first vehicle based on multiple audio signals received via multiple microphones. The process may determine a position of the first vehicle by analyzing audio signals received via multiple distinct microphones. For example, engine noise of the first vehicle may have different characteristics (e.g., in volume, in time of arrival, in frequency) as received by different microphones. Differences between the audio signal measured at different microphones may be exploited to determine one or more positions (e.g., points, arcs, lines, regions) at which the first vehicle may be located.



FIG. 3.10 is an example flow diagram of example logic illustrating an example embodiment of process 3.900 of FIG. 3.9. More particularly, FIG. 3.10 illustrates a process 3.1000 that includes the process 3.900, wherein the performing acoustic source localization includes operations performed by or at the following block(s).


At block 3.1004, the process performs receiving an audio signal via a first one of the multiple microphones, the audio signal representing a sound created by the first vehicle. In one approach, at least two microphones are employed. By measuring differences in the arrival time of an audio signal at the two microphones, the position of the first vehicle may be determined. The determined position may be a point, a line, an area, or the like.


At block 3.1005, the process performs receiving the audio signal via a second one of the multiple microphones.


At block 3.1006, the process performs determining the position of the first vehicle by determining a difference between an arrival time of the audio signal at the first microphone and an arrival time of the audio signal at the second microphone. In some embodiments, given information about the distance between the two microphones and the speed of sound, the process may determine the respective distances between each of the two microphones and the first vehicle. Given these two distances (along with the distance between the microphones), the process can solve for the one or more positions at which the first vehicle may be located.



FIG. 3.11 is an example flow diagram of example logic illustrating an example embodiment of process 3.900 of FIG. 3.9. More particularly, FIG. 3.11 illustrates a process 3.1100 that includes the process 3.900, wherein the performing acoustic source localization includes operations performed by or at the following block(s).


At block 3.1104, the process performs triangulating the position of the first vehicle based on a first and second angle, the first angle measured between a first one of the multiple microphones and the first vehicle, the second angle measured between a second one of the multiple microphones and the first vehicle. In some embodiments, the microphones may be directional, in that they may be used to determine the direction from which the sound is coming. Given such information, the process may use triangulation techniques to determine the position of the first vehicle.



FIG. 3.12 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.12 illustrates a process 3.1200 that includes the process 3.100, wherein the determining vehicular threat information includes operations performed by or at the following block(s).


At block 3.1204, the process performs performing a Doppler analysis of the data representing the audio signal to determine whether the first vehicle is approaching the user. The process may analyze whether the frequency of the audio signal is shifting in order to determine whether the first vehicle is approaching or departing the position of the user. For example, if the frequency is shifting higher, the first vehicle may be determined to be approaching the user. Note that the determination is typically made from the frame of reference of the user (who may be moving or not). Thus, the first vehicle may be determined to be approaching the user when, as viewed from a fixed frame of reference, the user is approaching the first vehicle (e.g., a moving user traveling towards a stationary vehicle) or the first vehicle is approaching the user (e.g., a moving vehicle approaching a stationary user). In other embodiments, other frames of reference may be employed, such as a fixed frame, a frame associated with the first vehicle, or the like.



FIG. 3.13 is an example flow diagram of example logic illustrating an example embodiment of process 3.1200 of FIG. 3.12. More particularly, FIG. 3.13 illustrates a process 3.1300 that includes the process 3.1200, wherein the performing a Doppler analysis includes operations performed by or at the following block(s).


At block 3.1304, the process performs determining whether frequency of the audio signal is increasing or decreasing.



FIG. 3.14 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.14 illustrates a process 3.1400 that includes the process 3.100, wherein the determining vehicular threat information includes operations performed by or at the following block(s).


At block 3.1404, the process performs performing a volume analysis of the data representing the audio signal to determine whether the first vehicle is approaching the user. The process may analyze whether the volume (e.g., amplitude) of the audio signal is shifting in order to determine whether the first vehicle is approaching or departing the position of the user. An increasing volume may indicate that the first vehicle is approaching the user. As noted, different embodiments may use different frames of reference when making this determination.



FIG. 3.15 is an example flow diagram of example logic illustrating an example embodiment of process 3.1400 of FIG. 3.14. More particularly, FIG. 3.15 illustrates a process 3.1500 that includes the process 3.1400, wherein the performing a volume analysis includes operations performed by or at the following block(s).


At block 3.1504, the process performs determining whether volume of the audio signal is increasing or decreasing.



FIG. 3.16 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.16 illustrates a process 3.1600 that includes the process 3.100, wherein the determining vehicular threat information includes operations performed by or at the following block(s).


At block 3.1604, the process performs determining the vehicular threat information based on gaze information associated with the user. In some embodiments, the process may consider the direction in which the user is looking when determining the vehicular threat information. For example, the vehicular threat information may depend on whether the user is or is not looking at the first vehicle, as discussed further below.



FIG. 3.17 is an example flow diagram of example logic illustrating an example embodiment of process 3.1600 of FIG. 3.16. More particularly, FIG. 3.17 illustrates a process 3.1700 that includes the process 3.1600 and which further includes operations performed by or at the following block(s).


At block 3.1704, the process performs receiving an indication of a direction in which the user is looking. In some embodiments, an orientation sensor such as a gyroscope or accelerometer may be employed to determine the orientation of the user's head, face, or other body part. In some embodiments, a camera or other image sensing device may track the orientation of the user's eyes.


At block 3.1705, the process performs determining that the user is not looking towards the first vehicle. As noted, the process may track the position of the first vehicle. Given this information, coupled with information about the direction of the user's gaze, the process may determine whether or not the user is (or likely is) looking in the direction of the first vehicle.


At block 3.1706, the process performs in response to determining that the user is not looking towards the first vehicle, directing the user to look towards the first vehicle. When it is determined that the user is not looking at the first vehicle, the process may warn or otherwise direct the user to look in that direction, such as by saying or otherwise presenting “Look right!”, “Car on your left,” or similar message.



FIG. 3.18 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.18 illustrates a process 3.1800 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.1804, the process performs identifying multiple threats to the user. The process may in some cases identify multiple potential threats, such as one car approaching the user from behind and another car approaching the user from the left. In some cases, one or more of the multiple threats may themselves arise if or when the user takes evasive action to avoid some other threat. For example, the process may determine that a bus traveling behind the user will become a threat if the user responds to a bike approaching from his side by slamming on the brakes.


At block 3.1805, the process performs identifying a first one of the multiple threats that is more significant than at least one other of the multiple threats. The process may rank, order, or otherwise evaluate the relative significance or risk presented by each of the identified threats. For example, the process may determine that a truck approaching from the right is a bigger risk than a bicycle approaching from behind. On the other hand, if the truck is moving very slowly (thus leaving more time for the truck and/or the user to avoid it) compared to the bicycle, the process may instead determine that the bicycle is the bigger risk.


At block 3.1806, the process performs causing the user to avoid the first one of the multiple threats. The process may so cause the user to avoid the more significant threat by warning the user of the more significant threat. In some embodiments, the process may instead or in addition display a ranking of the multiple threats. In some embodiments, the process may so cause the user by not informing the user of the less significant threat.



FIG. 3.19 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.19 illustrates a process 3.1900 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.1904, the process performs determining vehicular threat information related to factors other than ones related to the first vehicle. The process may consider a variety of other factors or information in addition to those related to the first vehicle, such as road conditions, the presence or absence of other vehicles, or the like.



FIG. 3.20 is an example flow diagram of example logic illustrating an example embodiment of process 3.1900 of FIG. 3.19. More particularly, FIG. 3.20 illustrates a process 3.2000 that includes the process 3.1900, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes operations performed by or at the following block(s).


At block 3.2004, the process performs determining that poor driving conditions exist. Poor driving conditions may include or be based on weather information (e.g., snow, rain, ice, temperature), time information (e.g., night or day), lighting information (e.g., a light sensor indicating that the user is traveling towards the setting sun), or the like.



FIG. 3.21 is an example flow diagram of example logic illustrating an example embodiment of process 3.1900 of FIG. 3.19. More particularly, FIG. 3.21 illustrates a process 3.2100 that includes the process 3.1900, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes operations performed by or at the following block(s).


At block 3.2104, the process performs determining that a limited visibility condition exists. Limited visibility may be due to the time of day (e.g., at dusk, dawn, or night), weather (e.g., fog, rain), or the like.



FIG. 3.22 is an example flow diagram of example logic illustrating an example embodiment of process 3.1900 of FIG. 3.19. More particularly, FIG. 3.22 illustrates a process 3.2200 that includes the process 3.1900, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes operations performed by or at the following block(s).


At block 3.2204, the process performs determining that there is stalled or slow traffic in proximity to the user. The process may receive and integrate information from traffic information systems (e.g., that report accidents), other vehicles (e.g., that are reporting their speeds), or the like.



FIG. 3.23 is an example flow diagram of example logic illustrating an example embodiment of process 3.1900 of FIG. 3.19. More particularly, FIG. 3.23 illustrates a process 3.2300 that includes the process 3.1900, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes operations performed by or at the following block(s).


At block 3.2304, the process performs determining that poor surface conditions exist on a roadway traveled by the user. Poor surface conditions may be due to weather (e.g., ice, snow, rain), temperature, surface type (e.g., gravel road), foreign materials (e.g., oil), or the like.



FIG. 3.24 is an example flow diagram of example logic illustrating an example embodiment of process 3.1900 of FIG. 3.19. More particularly, FIG. 3.24 illustrates a process 3.2400 that includes the process 3.1900, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes operations performed by or at the following block(s).


At block 3.2404, the process performs determining that there is a pedestrian in proximity to the user. The presence of pedestrians may be determined in various ways. In some embodiments pedestrians may wear devices that transmit their location and/or presence. In other embodiments, pedestrians may be detected based on their heat signature, such as by an infrared sensor on the wearable device, user vehicle, or the like.



FIG. 3.25 is an example flow diagram of example logic illustrating an example embodiment of process 3.1900 of FIG. 3.19. More particularly, FIG. 3.25 illustrates a process 3.2500 that includes the process 3.1900, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes operations performed by or at the following block(s).


At block 3.2504, the process performs determining that there is an accident in proximity to the user. Accidents may be identified based on traffic information systems that report accidents, vehicle-based systems that transmit when collisions have occurred, or the like.



FIG. 3.26 is an example flow diagram of example logic illustrating an example embodiment of process 3.1900 of FIG. 3.19. More particularly, FIG. 3.26 illustrates a process 3.2600 that includes the process 3.1900, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes operations performed by or at the following block(s).


At block 3.2604, the process performs determining that there is an animal in proximity to the user. The presence of an animal may be determined as discussed with respect to pedestrians, above.



FIG. 3.27 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.27 illustrates a process 3.2700 that includes the process 3.100, wherein the determining vehicular threat information includes operations performed by or at the following block(s).


At block 3.2704, the process performs determining the vehicular threat information based on kinematic information. The process may consider a variety of kinematic information received from various sources, such as the wearable device, a vehicle of the user, the first vehicle, or the like. The kinematic information may include information about the position, velocity, acceleration, or the like of the user and/or the first vehicle.



FIG. 3.28 is an example flow diagram of example logic illustrating an example embodiment of process 3.2700 of FIG. 3.27. More particularly, FIG. 3.28 illustrates a process 3.2800 that includes the process 3.2700, wherein the determining the vehicular threat information based on kinematic information includes operations performed by or at the following block(s).


At block 3.2804, the process performs determining the vehicular threat information based on information about position, velocity, and/or acceleration of the user obtained from sensors in the wearable device. The wearable device may include position sensors (e.g., GPS), accelerometers, or other devices configured to provide kinematic information about the user to the process.



FIG. 3.29 is an example flow diagram of example logic illustrating an example embodiment of process 3.2700 of FIG. 3.27. More particularly, FIG. 3.29 illustrates a process 3.2900 that includes the process 3.2700, wherein the determining the vehicular threat information based on kinematic information includes operations performed by or at the following block(s).


At block 3.2904, the process performs determining the vehicular threat information based on information about position, velocity, and/or acceleration of the user obtained from devices in a vehicle of the user. A vehicle occupied or operated by the user may include position sensors (e.g., GPS), accelerometers, speedometers, or other devices configured to provide kinematic information about the user to the process.



FIG. 3.30 is an example flow diagram of example logic illustrating an example embodiment of process 3.2700 of FIG. 3.27. More particularly, FIG. 3.30 illustrates a process 3.3000 that includes the process 3.2700, wherein the determining the vehicular threat information based on kinematic information includes operations performed by or at the following block(s).


At block 3.3004, the process performs determining the vehicular threat information based on information about position, velocity, and/or acceleration of the first vehicle. The first vehicle may include position sensors (e.g., GPS), accelerometers, speedometers, or other devices configured to provide kinematic information about the user to the process. In other embodiments, kinematic information may be obtained from other sources, such as a radar gun deployed at the side of a road, from other vehicles, or the like.



FIG. 3.31 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.31 illustrates a process 3.3100 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.3104, the process performs presenting the vehicular threat information via an audio output device of the wearable device. The process may play an alarm, bell, chime, voice message, or the like that warns or otherwise informs the user of the vehicular threat information. The wearable device may include audio speakers operable to output audio signals, including as part of a set of earphones, earbuds, a headset, a helmet, or the like.



FIG. 3.32 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.32 illustrates a process 3.3200 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.3204, the process performs presenting the vehicular threat information via a visual display device of the wearable device. In some embodiments, the wearable device includes a display screen or other mechanism for presenting visual information. For example, when the wearable device is a helmet, a face shield of the helmet may be used as a type of heads-up display for presenting the vehicular threat information.



FIG. 3.33 is an example flow diagram of example logic illustrating an example embodiment of process 3.3200 of FIG. 3.32. More particularly, FIG. 3.33 illustrates a process 3.3300 that includes the process 3.3200, wherein the presenting the vehicular threat information via a visual display device includes operations performed by or at the following block(s).


At block 3.3304, the process performs displaying an indicator that instructs the user to look towards the first vehicle. The displayed indicator may be textual (e.g., “Look right!”), iconic (e.g., an arrow), or the like.



FIG. 3.34 is an example flow diagram of example logic illustrating an example embodiment of process 3.3200 of FIG. 3.32. More particularly, FIG. 3.34 illustrates a process 3.3400 that includes the process 3.3200, wherein the presenting the vehicular threat information via a visual display device includes operations performed by or at the following block(s).


At block 3.3404, the process performs displaying an indicator that instructs the user to accelerate, decelerate, and/or turn. An example indicator may be or include the text “Speed up,” “slow down,” “turn left,” or similar language.



FIG. 3.35 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.35 illustrates a process 3.3500 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.3504, the process performs directing the user to accelerate.



FIG. 3.36 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.36 illustrates a process 3.3600 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.3604, the process performs directing the user to decelerate.



FIG. 3.37 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.37 illustrates a process 3.3700 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.3704, the process performs directing the user to turn.



FIG. 3.38 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.38 illustrates a process 3.3800 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.3804, the process performs transmitting to the first vehicle a warning based on the vehicular threat information. The process may send or otherwise transmit a warning or other message to the first vehicle that instructs the operator of the first vehicle to take evasive action. The instruction to the first vehicle may be complimentary to any instructions given to the user, such that if both instructions are followed, the risk of collision decreases. In this manner, the process may help avoid a situation in which the user and the operator of the first vehicle take actions that actually increase the risk of collision, such as may occur when the user and the first vehicle are approaching head but do not turn away from one another.



FIG. 3.39 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.39 illustrates a process 3.3900 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.3904, the process performs presenting the vehicular threat information via an output device of a vehicle of the user, the output device including a visual display and/or an audio speaker. In some embodiments, the process may use other devices to output the vehicular threat information, such as output devices of a vehicle of the user, including a car stereo, dashboard display, or the like.



FIG. 3.40 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.40 illustrates a process 3.4000 that includes the process 3.100, wherein the wearable device is a helmet worn by the user. Various types of helmets are contemplated, including motorcycle helmets, bicycle helmets, and the like.



FIG. 3.41 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.41 illustrates a process 3.4100 that includes the process 3.100, wherein the wearable device is goggles worn by the user.



FIG. 3.42 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.42 illustrates a process 3.4200 that includes the process 3.100, wherein the wearable device is eyeglasses worn by the user.



FIG. 3.43 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.43 illustrates a process 3.4300 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.4304, the process performs presenting the vehicular threat information via goggles worn by the user. The goggles may include a small display, an audio speaker, or haptic output device, or the like.



FIG. 3.44 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.44 illustrates a process 3.4400 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.4404, the process performs presenting the vehicular threat information via a helmet worn by the user. The helmet may include an audio speaker or visual output device, such as a display that presents information on the inside of the face screen of the helmet. Other output devices, including haptic devices, are contemplated.



FIG. 3.45 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.45 illustrates a process 3.4500 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.4504, the process performs presenting the vehicular threat information via a hat worn by the user. The hat may include an audio speaker or similar output device.



FIG. 3.46 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.46 illustrates a process 3.4600 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.4604, the process performs presenting the vehicular threat information via eyeglasses worn by the user. The eyeglasses may include a small display, an audio speaker, or haptic output device, or the like.



FIG. 3.47 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.47 illustrates a process 3.4700 that includes the process 3.100, wherein the presenting the vehicular threat information includes operations performed by or at the following block(s).


At block 3.4704, the process performs presenting the vehicular threat information via audio speakers that are part of at least one of earphones, a headset, earbuds, and/or a hearing aid. The audio speakers may be integrated into the wearable device. In other embodiments, other audio speakers (e.g., of a car stereo) may be employed instead or in addition.



FIG. 3.48 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.48 illustrates a process 3.4800 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.4804, the process performs performing the receiving data representing an audio signal, the determining vehicular threat information, and/or the presenting the vehicular threat information on a computing device in the wearable device of the user. In some embodiments, a computing device of or in the wearable device may be responsible for performing one or more of the operations of the process. For example, a computing device situated within a helmet worn by the user may receive and analyze audio data to determine and present the vehicular threat information to the user.



FIG. 3.49 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.49 illustrates a process 3.4900 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.4904, the process performs performing the receiving data representing an audio signal, the determining vehicular threat information, and/or the presenting the vehicular threat information on a road-side computing system. In some embodiments, an in-situ computing system may be responsible for performing one or more of the operations of the process. For example, a computing system situated at or about a street intersection may receive and analyze audio signals of vehicles that are entering or nearing the intersection. Such an architecture may be beneficial when the wearable device is a “thin” device that does not have sufficient processing power to, for example, determine whether the first vehicle is approaching the user.


At block 3.4905, the process performs transmitting the vehicular threat information from the road-side computing system to the wearable device of the user. For example, when the road-side computing system determines that two vehicles may be on a collision course, the computing system can transmit vehicular threat information to the wearable device so that the user can take evasive action and avoid a possible accident.



FIG. 3.50 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.50 illustrates a process 3.5000 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.5004, the process performs performing the receiving data representing an audio signal, the determining vehicular threat information, and/or the presenting the vehicular threat information on a computing system in the first vehicle. In some embodiments, a computing system in the first vehicle performs one or more of the operations of the process. Such an architecture may be beneficial when the wearable device is a “thin” device that does not have sufficient processing power to, for example, determine whether the first vehicle is approaching the user.


At block 3.5005, the process performs transmitting the vehicular threat information from the computing system to the wearable device of the user.



FIG. 3.51 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.51 illustrates a process 3.5100 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.5104, the process performs performing the receiving data representing an audio signal, the determining vehicular threat information, and/or the presenting the vehicular threat information on a computing system in a second vehicle, wherein the user is not traveling in the second vehicle. In some embodiments, other vehicles that are not carrying the user and are not the same as the first user may perform one or more of the operations of the process. In general, computing systems/devices situated in or at multiple vehicles, wearable devices, or fixed stations in a roadway may each perform operations related to determining vehicular threat information, which may then be shared with other users and devices to improve traffic flow, avoid collisions, and generally enhance the abilities of users of the roadway.


At block 3.5105, the process performs transmitting the vehicular threat information from the computing system to the wearable device of the user.



FIG. 3.52 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.52 illustrates a process 3.5200 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.5204, the process performs receiving data representing a visual signal that represents the first vehicle. In some embodiments, the process may also consider video data, such as by performing image processing to identify vehicles or other hazards, to determine whether collisions may occur, and the like. The video data may be obtained from various sources, including the wearable device, a vehicle, a road-side camera, or the like.


At block 3.5206, the process performs determining the vehicular threat information based further on the data representing the visual signal. For example, the process may determine that a car is approaching by analyzing an image taken from a camera that is part of the wearable device.



FIG. 3.53 is an example flow diagram of example logic illustrating an example embodiment of process 3.5200 of FIG. 3.52. More particularly, FIG. 3.53 illustrates a process 3.5300 that includes the process 3.5200, wherein the receiving data representing a visual signal includes operations performed by or at the following block(s).


At block 3.5304, the process performs receiving an image of the first vehicle obtained by a camera of a vehicle operated by the user. The user's vehicle may include one or more cameras that may capture views to the front, sides, and/or rear of the vehicle, and provide these images to the process for image processing or other analysis.



FIG. 3.54 is an example flow diagram of example logic illustrating an example embodiment of process 3.5200 of FIG. 3.52. More particularly, FIG. 3.54 illustrates a process 3.5400 that includes the process 3.5200, wherein the receiving data representing a visual signal includes operations performed by or at the following block(s).


At block 3.5404, the process performs receiving an image of the first vehicle obtained by a camera of the wearable device. For example, where the wearable device is a helmet, the helmet may include one or more helmet cameras that may capture views to the front, sides, and/or rear of the helmet.



FIG. 3.55 is an example flow diagram of example logic illustrating an example embodiment of process 3.5200 of FIG. 3.52. More particularly, FIG. 3.55 illustrates a process 3.5500 that includes the process 3.5200, wherein the determining the vehicular threat information based further on the data representing the visual signal includes operations performed by or at the following block(s).


At block 3.5504, the process performs identifying the first vehicle in an image represented by the data representing a visual signal. Image processing techniques may be employed to identify the presence of a vehicle, its type (e.g., car or truck), its size, or other information.



FIG. 3.56 is an example flow diagram of example logic illustrating an example embodiment of process 3.5200 of FIG. 3.52. More particularly, FIG. 3.56 illustrates a process 3.5600 that includes the process 3.5200, wherein the determining the vehicular threat information based further on the data representing the visual signal includes operations performed by or at the following block(s).


At block 3.5604, the process performs determining whether the first vehicle is moving towards the user based on multiple images represented by the data representing the visual signal. In some embodiments, a video feed or other sequence of images may be analyzed to determine the relative motion of the first vehicle. For example, if the first vehicle appears to be becoming larger over a sequence of images, then it is likely that the first vehicle is moving towards the user.



FIG. 3.57 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.57 illustrates a process 3.5700 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.5704, the process performs receiving data representing the first vehicle obtained at a road-based device. In some embodiments, the process may also consider data received from devices that are located in or about the roadway traveled by the user. Such devices may include cameras, loop coils, motion sensors, and the like.


At block 3.5706, the process performs determining the vehicular threat information based further on the data representing the first vehicle. For example, the process may determine that a car is approaching the user by analyzing an image taken from a camera that is mounted on or near a traffic signal over an intersection.



FIG. 3.58 is an example flow diagram of example logic illustrating an example embodiment of process 3.5700 of FIG. 3.57. More particularly, FIG. 3.58 illustrates a process 3.5800 that includes the process 3.5700, wherein the receiving data representing the first vehicle obtained at a road-based device includes operations performed by or at the following block(s).


At block 3.5804, the process performs receiving the data from a sensor deployed at an intersection. Various types of sensors are contemplated, including cameras, range sensors (e.g., sonar, LIDAR, IR-based), magnetic coils, audio sensors, or the like.



FIG. 3.59 is an example flow diagram of example logic illustrating an example embodiment of process 3.5700 of FIG. 3.57. More particularly, FIG. 3.59 illustrates a process 3.5900 that includes the process 3.5700, wherein the receiving data representing the first vehicle obtained at a road-based device includes operations performed by or at the following block(s).


At block 3.5904, the process performs receiving an image of the first vehicle from a camera deployed at an intersection. For example, the process may receive images from a camera that is fixed to a traffic light or other signal at an intersection.



FIG. 3.60 is an example flow diagram of example logic illustrating an example embodiment of process 3.5700 of FIG. 3.57. More particularly, FIG. 3.60 illustrates a process 3.6000 that includes the process 3.5700, wherein the receiving data representing the first vehicle obtained at a road-based device includes operations performed by or at the following block(s).


At block 3.6004, the process performs receiving ranging data from a range sensor deployed at an intersection, the ranging data representing a distance between the first vehicle and the intersection. For example, the process may receive a distance (e.g., 75 meters) measured between some known point in the intersection (e.g., the position of the range sensor) and an oncoming vehicle.



FIG. 3.61 is an example flow diagram of example logic illustrating an example embodiment of process 3.5700 of FIG. 3.57. More particularly, FIG. 3.61 illustrates a process 3.6100 that includes the process 3.5700, wherein the receiving data representing the first vehicle obtained at a road-based device includes operations performed by or at the following block(s).


At block 3.6104, the process performs receiving data from an induction loop deployed in a road surface, the induction loop configured to detect the presence and/or velocity of the first vehicle. Induction loops may be embedded in the roadway and configured to detect the presence of vehicles passing over them. Some types of loops and/or processing may be employed to detect other information, including velocity, vehicle size, and the like.



FIG. 3.62 is an example flow diagram of example logic illustrating an example embodiment of process 3.5700 of FIG. 3.57. More particularly, FIG. 3.62 illustrates a process 3.6200 that includes the process 3.5700, wherein the determining the vehicular threat information based further on the data representing the first vehicle includes operations performed by or at the following block(s).


At block 3.6204, the process performs identifying the first vehicle in an image obtained from the road-based sensor. Image processing techniques may be employed to identify the presence of a vehicle, its type (e.g., car or truck), its size, or other information.



FIG. 3.63 is an example flow diagram of example logic illustrating an example embodiment of process 3.5700 of FIG. 3.57. More particularly, FIG. 3.63 illustrates a process 3.6300 that includes the process 3.5700, wherein the determining the vehicular threat information based further on the data representing the first vehicle includes operations performed by or at the following block(s).


At block 3.6304, the process performs determining a trajectory of the first vehicle based on multiple images obtained from the road-based device. In some embodiments, a video feed or other sequence of images may be analyzed to determine the position, speed, and/or direction of travel of the first vehicle.



FIG. 3.64 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.64 illustrates a process 3.6400 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.6404, the process performs receiving data representing vehicular threat information relevant to a second vehicle, the second vehicle not being used for travel by user. As noted, vehicular threat information may in some embodiments be shared amongst vehicles and entities present in a roadway. For example, a vehicle that is traveling just ahead of the user may determine that it is threatened by the first vehicle. This information may be shared with the user so that the user can also take evasive action, such as by slowing down or changing course.


At block 3.6406, the process performs determining the vehicular threat information based on the data representing vehicular threat information relevant to the second vehicle. Having received vehicular threat information from the second vehicle, the process may determine that it is also relevant to the user, and then accordingly present it to the user.



FIG. 3.65 is an example flow diagram of example logic illustrating an example embodiment of process 3.6400 of FIG. 3.64. More particularly, FIG. 3.65 illustrates a process 3.6500 that includes the process 3.6400, wherein the receiving data representing vehicular threat information relevant to a second vehicle includes operations performed by or at the following block(s).


At block 3.6504, the process performs receiving from the second vehicle an indication of stalled or slow traffic encountered by the second vehicle. Various types of threat information relevant to the second vehicle may be provided to the process, such as that there is stalled or slow traffic ahead of the second vehicle.



FIG. 3.66 is an example flow diagram of example logic illustrating an example embodiment of process 3.6400 of FIG. 3.64. More particularly, FIG. 3.66 illustrates a process 3.6600 that includes the process 3.6400, wherein the receiving data representing vehicular threat information relevant to a second vehicle includes operations performed by or at the following block(s).


At block 3.6604, the process performs receiving from the second vehicle an indication of poor driving conditions experienced by the second vehicle. The second vehicle may share the fact that it is experiencing poor driving conditions, such as an icy or wet roadway.



FIG. 3.67 is an example flow diagram of example logic illustrating an example embodiment of process 3.6400 of FIG. 3.64. More particularly, FIG. 3.67 illustrates a process 3.6700 that includes the process 3.6400, wherein the receiving data representing vehicular threat information relevant to a second vehicle includes operations performed by or at the following block(s).


At block 3.6704, the process performs receiving from the second vehicle an indication that the first vehicle is driving erratically. The second vehicle may share a determination that the first vehicle is driving erratically, such as by swerving, driving with excessive speed, driving too slow, or the like.



FIG. 3.68 is an example flow diagram of example logic illustrating an example embodiment of process 3.6400 of FIG. 3.64. More particularly, FIG. 3.68 illustrates a process 3.6800 that includes the process 3.6400, wherein the receiving data representing vehicular threat information relevant to a second vehicle includes operations performed by or at the following block(s).


At block 3.6804, the process performs receiving from the second vehicle an image of the first vehicle. The second vehicle may include one or more cameras, and may share images obtained via those cameras with other entities.



FIG. 3.69 is an example flow diagram of example logic illustrating an example embodiment of process 3.100 of FIG. 3.1. More particularly, FIG. 3.69 illustrates a process 3.6900 that includes the process 3.100 and which further includes operations performed by or at the following block(s).


At block 3.6904, the process performs transmitting the vehicular threat information to a second vehicle. As noted, vehicular threat information may in some embodiments be shared amongst vehicles and entities present in a roadway. In this example, the vehicular threat information is transmitted to a second vehicle (e.g., one following behind the user), so that the second vehicle may benefit from the determined vehicular threat information as well.



FIG. 3.70 is an example flow diagram of example logic illustrating an example embodiment of process 3.6900 of FIG. 3.69. More particularly, FIG. 3.70 illustrates a process 3.7000 that includes the process 3.6900, wherein the transmitting the vehicular threat information to a second vehicle includes operations performed by or at the following block(s).


At block 3.7004, the process performs transmitting the vehicular threat information to an intermediary server system for distribution to other vehicles in proximity to the user. In some embodiments, intermediary systems may operate as relays for sharing the vehicular threat information with other vehicles and users of a roadway.


3. Example Computing System Implementation



FIG. 4 is an example block diagram of an example computing system for implementing an ability enhancement facilitator system according to an example embodiment. In particular, FIG. 4 shows a computing system 400 that may be utilized to implement an AEFS 100.


Note that one or more general purpose or special purpose computing systems/devices may be used to implement the AEFS 100. In addition, the computing system 400 may comprise one or more distinct computing systems/devices and may span distributed locations. Furthermore, each block shown may represent one or more such blocks as appropriate to a specific embodiment or may be combined with other blocks. Also, the AEFS 100 may be implemented in software, hardware, firmware, or in some combination to achieve the capabilities described herein.


In the embodiment shown, computing system 400 comprises a computer memory (“memory”) 401, a display 402, one or more Central Processing Units (“CPU”) 403, Input/Output devices 404 (e.g., keyboard, mouse, CRT or LCD display, and the like), other computer-readable media 405, and network connections 406. The AEFS 100 is shown residing in memory 401. In other embodiments, some portion of the contents, some or all of the components of the AEFS 100 may be stored on and/or transmitted over the other computer-readable media 405. The components of the AEFS 100 preferably execute on one or more CPUs 403 and implement techniques described herein. Other code or programs 430 (e.g., an administrative interface, a Web server, and the like) and potentially other data repositories, such as data repository 420, also reside in the memory 401, and preferably execute on one or more CPUs 403. Of note, one or more of the components in FIG. 4 may not be present in any specific implementation. For example, some embodiments may not provide other computer readable media 405 or a display 402.


The AEFS 100 interacts via the network 450 with wearable devices 120, information sources 130, and third-party systems/applications 455. The network 450 may be any combination of media (e.g., twisted pair, coaxial, fiber optic, radio frequency), hardware (e.g., routers, switches, repeaters, transceivers), and protocols (e.g., TCP/IP, UDP, Ethernet, Wi-Fi, WiMAX) that facilitate communication between remotely situated humans and/or devices. The third-party systems/applications 455 may include any systems that provide data to, or utilize data from, the AEFS 100, including Web browsers, vehicle-based client systems, traffic tracking, monitoring, or prediction systems, and the like.


The AEFS 100 is shown executing in the memory 401 of the computing system 400. Also included in the memory are a user interface manager 415 and an application program interface (“API”) 416. The user interface manager 415 and the API 416 are drawn in dashed lines to indicate that in other embodiments, functions performed by one or more of these components may be performed externally to the AEFS 100.


The UI manager 415 provides a view and a controller that facilitate user interaction with the AEFS 100 and its various components. For example, the UI manager 415 may provide interactive access to the AEFS 100, such that users can configure the operation of the AEFS 100, such as by providing the AEFS 100 with information about common routes traveled, vehicle types used, driving patterns, or the like. The UI manager 415 may also manage and/or implement various output abstractions, such that the AEFS 100 can cause vehicular threat information to be displayed on different media, devices, or systems. In some embodiments, access to the functionality of the UI manager 415 may be provided via a Web server, possibly executing as one of the other programs 430. In such embodiments, a user operating a Web browser executing on one of the third-party systems 455 can interact with the AEFS 100 via the UI manager 415.


The API 416 provides programmatic access to one or more functions of the AEFS 100. For example, the API 416 may provide a programmatic interface to one or more functions of the AEFS 100 that may be invoked by one of the other programs 430 or some other module. In this manner, the API 416 facilitates the development of third-party software, such as user interfaces, plug-ins, adapters (e.g., for integrating functions of the AEFS 100 into vehicle-based client systems or devices), and the like.


In addition, the API 416 may be in at least some embodiments invoked or otherwise accessed via remote entities, such as code executing on one of the wearable devices 120, information sources 130, and/or one of the third-party systems/applications 455, to access various functions of the AEFS 100. For example, an information source 130 such as a radar gun installed at an intersection may push kinematic information (e.g., velocity) about vehicles to the AEFS 100 via the API 416. As another example, a weather information system may push current conditions information (e.g., temperature, precipitation) to the AEFS 100 via the API 416. The API 416 may also be configured to provide management widgets (e.g., code modules) that can be integrated into the third-party applications 455 and that are configured to interact with the AEFS 100 to make at least some of the described functionality available within the context of other applications (e.g., mobile apps).


In an example embodiment, components/modules of the AEFS 100 are implemented using standard programming techniques. For example, the AEFS 100 may be implemented as a “native” executable running on the CPU 403, along with one or more static or dynamic libraries. In other embodiments, the AEFS 100 may be implemented as instructions processed by a virtual machine that executes as one of the other programs 430. In general, a range of programming languages known in the art may be employed for implementing such example embodiments, including representative implementations of various programming language paradigms, including but not limited to, object-oriented (e.g., Java, C++, C#, Visual Basic.NET, Smalltalk, and the like), functional (e.g., ML, Lisp, Scheme, and the like), procedural (e.g., C, Pascal, Ada, Modula, and the like), scripting (e.g., Perl, Ruby, Python, JavaScript, VBScript, and the like), and declarative (e.g., SQL, Prolog, and the like).


The embodiments described above may also use either well-known or proprietary synchronous or asynchronous client-server computing techniques. Also, the various components may be implemented using more monolithic programming techniques, for example, as an executable running on a single CPU computer system, or alternatively decomposed using a variety of structuring techniques known in the art, including but not limited to, multiprogramming, multithreading, client-server, or peer-to-peer, running on one or more computer systems each having one or more CPUs. Some embodiments may execute concurrently and asynchronously, and communicate using message passing techniques. Equivalent synchronous embodiments are also supported. Also, other functions could be implemented and/or performed by each component/module, and in different orders, and by different components/modules, yet still achieve the described functions.


In addition, programming interfaces to the data stored as part of the AEFS 100, such as in the data store 420 (or 240), can be available by standard mechanisms such as through C, C++, C#, and Java APIs; libraries for accessing files, databases, or other data repositories; through scripting languages such as XML; or through Web servers, FTP servers, or other types of servers providing access to stored data. The data store 420 may be implemented as one or more database systems, file systems, or any other technique for storing such information, or any combination of the above, including implementations using distributed computing techniques.


Different configurations and locations of programs and data are contemplated for use with techniques of described herein. A variety of distributed computing techniques are appropriate for implementing the components of the illustrated embodiments in a distributed manner including but not limited to TCP/IP sockets, RPC, RMI, HTTP, Web Services (XML-RPC, JAX-RPC, SOAP, and the like). Other variations are possible. Also, other functionality could be provided by each component/module, or existing functionality could be distributed amongst the components/modules in different ways, yet still achieve the functions described herein.


Furthermore, in some embodiments, some or all of the components of the AEFS 100 may be implemented or provided in other manners, such as at least partially in firmware and/or hardware, including, but not limited to one or more application-specific integrated circuits (“ASICs”), standard integrated circuits, controllers executing appropriate instructions, and including microcontrollers and/or embedded controllers, field-programmable gate arrays (“FPGAs”), complex programmable logic devices (“CPLDs”), and the like. Some or all of the system components and/or data structures may also be stored as contents (e.g., as executable or other machine-readable software instructions or structured data) on a computer-readable medium (e.g., as a hard disk; a memory; a computer network or cellular wireless network or other data transmission medium; or a portable media article to be read by an appropriate drive or via an appropriate connection, such as a DVD or flash memory device) so as to enable or configure the computer-readable medium and/or one or more associated computing systems or devices to execute or otherwise use or provide the contents to perform at least some of the described techniques. Some or all of the components and/or data structures may be stored on tangible, non-transitory storage mediums. Some or all of the system components and data structures may also be stored as data signals (e.g., by being encoded as part of a carrier wave or included as part of an analog or digital propagated signal) on a variety of computer-readable transmission mediums, which are then transmitted, including across wireless-based and wired/cable-based mediums, and may take a variety of forms (e.g., as part of a single or multiplexed analog signal, or as multiple discrete digital packets or frames). Such computer program products may also take other forms in other embodiments. Accordingly, embodiments of this disclosure may be practiced with other computer system configurations.


From the foregoing it will be appreciated that, although specific embodiments have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of this disclosure. For example, the methods, techniques, and systems for ability enhancement are applicable to other architectures or in other settings. For example, instead of providing vehicular threat information to human users who are vehicle operators or pedestrians, some embodiments may provide such information to control systems that are installed in vehicles and that are configured to automatically take action to avoid collisions in response to such information. Also, the methods, techniques, and systems discussed herein are applicable to differing protocols, communication media (optical, wireless, cable, etc.) and devices (e.g., desktop computers, wireless handsets, electronic organizers, personal digital assistants, tablet computers, portable email machines, game machines, pagers, navigation devices, etc.).

Claims
  • 1. A method for enhancing ability in a transportation-related context, the method comprising: receiving data representing an audio signal obtained in proximity to a user, the audio signal emitted by a first vehicle;determining vehicular threat information based at least in part on the data representing the audio signal, wherein the determining vehicular threat information includes: performing acoustic source localization to determine a position of the first vehicle based on the audio signal emitted by the first vehicle measured via multiple microphones. wherein the performing acoustic source localization includes triangulating the position of the first vehicle based on a first and second angle, wherein the first angle is measured between a first one of the multiple microphones and the first vehicle, wherein the first angle is based on the audio signal emitted by the first vehicle as measured by the first microphone, wherein the second angle is measured between a second one of the multiple microphones and the first vehicle. wherein the second angle is based on the audio signal emitted by the first vehicle as measured by the second microphone;determining vehicular threat information related to factors other than ones related to the first vehicle, by: determining that poor surface conditions exist on a road traveled by the user by considering weather conditions, temperature, road surface type, and foreign materials on the road; andpresenting the vehicular threat information via a visual display device and/or an audio output device of a wearable device of the user by presenting a visual and/or audio message directing the user to accelerate, decelerate, or turn.
  • 2. The method of claim 1, wherein the receiving data representing an audio signal includes: receiving data obtained at a microphone array that includes the multiple microphones.
  • 3. The method of claim 2, wherein the receiving data obtained at a microphone array includes: receiving data obtained at a microphone array, the microphone array coupled to a vehicle of the user.
  • 4. The method of claim 2, wherein the receiving data obtained at a microphone array includes: receiving data obtained at a microphone array, the microphone array coupled to the wearable device.
  • 5. The method of claim 1, wherein the determining vehicular threat information includes: determining a position of the first vehicle.
  • 6. The method of claim 1, wherein the determining vehicular threat information includes: determining a velocity of the first vehicle.
  • 7. The method of claim 1, wherein the determining vehicular threat information includes: determining a direction of travel of the first vehicle.
  • 8. The method of claim 1, wherein the determining vehicular threat information includes: determining whether the first vehicle is approaching the user.
  • 9. The method of claim 1, wherein the performing acoustic source localization includes: receiving an audio signal via a first one of the multiple microphones, the audio signal representing a sound created by the first vehicle;receiving the audio signal via a second one of the multiple microphones; anddetermining the position of the first vehicle by determining a difference between an arrival time of the audio signal at the first microphone and an arrival time of the audio signal at the second microphone.
  • 10. The method of claim 1, wherein the determining vehicular threat information includes: performing a Doppler analysis of the data representing the audio signal to determine whether the first vehicle is approaching the user.
  • 11. The method of claim 10, wherein the performing a Doppler analysis includes: determining whether frequency of the audio signal is increasing or decreasing.
  • 12. The method of claim 1, wherein the determining vehicular threat information includes: performing a volume analysis of the data representing the audio signal to determine whether the first vehicle is approaching the user.
  • 13. The method of claim 12, wherein the performing a volume analysis includes: determining whether volume of the audio signal is increasing or decreasing.
  • 14. The method of claim 1, wherein the determining vehicular threat information includes: determining the vehicular threat information based on gaze information associated with the user.
  • 15. The method of claim 14, further comprising: receiving an indication of a direction in which the user is looking;determining that the user is not looking towards the first vehicle; andin response to determining that the user is not looking towards the first vehicle, directing the user to look towards the first vehicle.
  • 16. The method of claim 1, further comprising: identifying multiple threats to the user;identifying a first one of the multiple threats that is more significant than at least one other of the multiple threats; andcausing the user to avoid the first one of the multiple threats.
  • 17. The method of claim 1, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes determining that there is a pedestrian in proximity to the user based on a heat signature of the pedestrian detected by an infrared sensor of the wearable device.
  • 18. The method of claim 1, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes determining that there is an animal that is not a pedestrian and that is in proximity to the user.
  • 19. The method of claim 1, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes: determining that there is an accident in proximity to the user based on information received from a vehicle-based system that transmits when a collision occurs.
  • 20. The method of claim 1, wherein the determining vehicular threat information includes: determining the vehicular threat information based on kinematic information.
  • 21. The method of claim 20, wherein the determining the vehicular threat information based on kinematic information includes: determining the vehicular threat information based on information about position, velocity, and/or acceleration of the user obtained from sensors in the wearable device.
  • 22. The method of claim 20, wherein the determining the vehicular threat information based on kinematic information includes: determining the vehicular threat information based on information about position, velocity, and/or acceleration of the user obtained from devices in a vehicle of the user.
  • 23. The method of claim 20, wherein the determining the vehicular threat information based on kinematic information includes: determining the vehicular threat information based on information about position, velocity, and/or acceleration of the first vehicle.
  • 24. The method of claim 1, wherein the presenting the vehicular threat information includes: presenting the vehicular threat information via an audio output device of the wearable device.
  • 25. The method of claim 1, wherein the presenting the vehicular threat information via a visual display device includes: displaying an indicator that instructs the user to look towards the first vehicle.
  • 26. The method of claim 1, wherein the presenting the vehicular threat information includes at least one of: directing the user to accelerate, directing the user to decelerate, and/or directing the user to turn.
  • 27. The method of claim 1, further comprising: when the user and the first vehicle are approaching head on and not turning away from one another, transmitting to the first vehicle a warning based on the vehicular threat information, wherein the warning is complementary to the message presented to the user, thereby reducing risk of a collision between the first vehicle and the user when the warning and the presented message are both followed.
  • 28. The method of claim 1, further comprising: presenting the vehicular threat information via an output device of a vehicle of the user, the output device including a visual display and/or an audio speaker.
  • 29. The method of claim 1, wherein the wearable device is one of a helmet, goggles, eyeglasses, or a hat worn by the user.
  • 30. The method of claim 1, wherein the presenting the vehicular threat information includes: presenting the vehicular threat information via audio speakers that are part of at least one of earphones, a headset, earbuds, and/or a hearing aid.
  • 31. The method of claim 1, further comprising: performing the receiving data representing an audio signal, the determining vehicular threat information, and/or the presenting the vehicular threat information on a computing device in the wearable device of the user.
  • 32. The method of claim 1, further comprising: performing the receiving data representing an audio signal, the determining vehicular threat information, and/or the presenting the vehicular threat information on a road-side computing system; andtransmitting the vehicular threat information from the road-side computing system to the wearable device of the user.
  • 33. The method of claim 1, further comprising: performing the receiving data representing an audio signal, the determining vehicular threat information, and/or the presenting the vehicular threat information on a computing system in the first vehicle; andtransmitting the vehicular threat information from the computing system to the wearable device of the user.
  • 34. The method of claim 1, further comprising: performing the receiving data representing an audio signal, the determining vehicular threat information, and/or the presenting the vehicular threat information on a computing system in a second vehicle, wherein the user is not traveling in the second vehicle; andtransmitting the vehicular threat information from the computing system to the wearable device of the user.
  • 35. The method of claim 1, further comprising: receiving data representing a visual signal that represents the first vehicle, the receiving including receiving an image of the first vehicle obtained by a camera of the wearable device; anddetermining the vehicular threat information based further on the data representing the visual signal, the determining including identifying the first vehicle in an image represented by the data representing a visual signal and determining whether the first vehicle is moving towards the user based on multiple images represented by the data representing the visual signal.
  • 36. The method of claim 1, further comprising: receiving data representing the first vehicle obtained at a road-based device; anddetermining the vehicular threat information based further on the data representing the first vehicle.
  • 37. The method of claim 36, wherein the receiving data representing the first vehicle obtained at a road-based device includes at least one of: receiving the data from a sensor deployed at an intersection; receiving an image of the rust vehicle from a camera deployed at an intersection; receiving ranging data from a range sensor deployed at an intersection, the ranging data representing a distance between the first vehicle and the intersection; and/or receiving data from an induction loop deployed in a road surface, the induction loop configured to detect the presence and/or velocity of the first vehicle.
  • 38. The method of claim 36, wherein the determining the vehicular threat information based further on the data representing the first vehicle includes: identifying the first vehicle in an image obtained from the road-based sensor.
  • 39. The method of claim 36, wherein the determining the vehicular threat information based further on the data representing the first vehicle includes: determining a trajectory of the first vehicle based on multiple images obtained from the road-based device.
  • 40. The method of claim 1, further comprising: receiving data representing vehicular threat information relevant to a second vehicle, the second vehicle not being used for travel by the user; anddetermining the vehicular threat information based on the data representing vehicular threat information relevant to the second vehicle.
  • 41. The method of claim 40, wherein the receiving data representing vehicular threat information relevant to a second vehicle includes: receiving from the second vehicle at least one of: an indication of stalled or slow traffic encountered by the second vehicle, an indication of poor driving conditions experienced by the second vehicle, an indication that the first vehicle is driving erratically, and/or an image of the first vehicle.
  • 42. The method of claim 1, further comprising: transmitting the vehicular threat information to a second vehicle by transmitting the vehicular threat information to an intermediary server system for distribution to other vehicles in proximity to the user.
  • 43. The method of claim 1, wherein the determining vehicular threat information related to factors other than ones related to the first vehicle includes determining that there is a pedestrian in proximity to the user based on a location signal transmitted by a device worn by the pedestrian.
  • 44. The method of claim 1, further comprising: receiving data representing vehicular threat information relevant to a second vehicle by receiving an image of the first vehicle and an indication that the first vehicle is driving erratically, wherein neither the first nor the second vehicle are being used for travel by the user; anddetermining the vehicular threat information based on the data representing vehicular threat information relevant to the second vehicle.
  • 45. A non-transitory computer-readable medium including instructions that are configured, when executed by a processor of a computing system, to cause the computing system to perform a method for ability enhancement in a transportation-related context, the method comprising: receiving data representing an audio signal obtained in proximity to a user, the audio signal emitted by a first vehicle;determining vehicular threat information based at least in part on the data representing the audio signal, wherein the determining vehicular threat information includes: performing acoustic source localization to determine a position of the first vehicle based on the audio signal emitted by the first vehicle measured via multiple microphones, wherein the performing acoustic source localization includes triangulating the position of the first vehicle based on a first and second angle, wherein the first angle is measured between a first one of the multiple microphones and the first vehicle, wherein the first angle is based on the audio signal emitted by the first vehicle as measured by the first microphone, wherein the second angle is measured between a second one of the multiple microphones and the first vehicle, wherein the second angle is based on the audio signal emitted by the first vehicle as measured by the second microphone;determining vehicular threat information related to factors other than ones related to the first vehicle, by: determining that poor surface conditions exist on a road traveled by the user by considering weather conditions, temperature, road surface type, and foreign materials on the road; andpresenting the vehicular threat information via a visual display device and/or an audio output device of a wearable device of the user by presenting a visual and/or audio message directing the user to accelerate, decelerate, or turn.
  • 46. A computing system for ability enhancement in a transportation-related context, the computing system comprising: a processor;a memory;multiple microphones; andlogic instructions that are stored in the memory and that are configured, when executed by the processor, to perform a method comprising: receiving data representing an audio signal obtained in proximity to a user, the audio signal emitted by a first vehicle;determining vehicular threat information based at least in part on the data representing the audio signal, wherein the determining vehicular threat information includes: performing acoustic source localization to determine a position of the first vehicle based on multiple audio signals received via the multiple microphones, wherein the performing acoustic source localization includes triangulating the position of the first vehicle based on a first and second angle, wherein the first angle is measured between a first one of the multiple microphones and the first vehicle wherein the first angle is based on the audio signal emitted by the first vehicle as measured by the first microphone, wherein the second angle is measured between a second one of the multiple microphones and the first vehicle, wherein the second angle is based on the audio signal emitted by the first vehicle as measured by the second microphone;determining vehicular threat information related to factors other than ones related to the first vehicle, by: determining that poor surface conditions exist on a road traveled by the user by considering weather conditions, temperature, road surface type, and foreign materials on the road; andpresenting the vehicular threat information via a visual display device and/or an audio output device of a wearable device of the user by presenting a visual and/or audio message directing the user to accelerate, decelerate, or turn.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to and claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Related Applications”) (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC §119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Related Application(s)). All subject matter of the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Related Applications is incorporated herein by reference to the extent such subject matter is not inconsistent herewith. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 13/309,248, entitled AUDIBLE ASSISTANCE, filed 1 Dec. 2011, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 13/324,232, entitled VISUAL PRESENTATION OF SPEAKER-RELATED INFORMATION, filed 13 Dec. 2011, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 13/340,143, entitled LANGUAGE TRANSLATION BASED ON SPEAKER-RELATED INFORMATION, filed 29 Dec. 2011, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 13/356,419, entitled ENHANCED VOICE CONFERENCING, filed 23 Jan. 2012, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.

US Referenced Citations (78)
Number Name Date Kind
5239586 Marui Aug 1993 A
5983161 Lemelson et al. Nov 1999 A
5995898 Tuttle Nov 1999 A
6226389 Lemelson et al. May 2001 B1
6304648 Chang Oct 2001 B1
6326903 Gross et al. Dec 2001 B1
6529866 Cope et al. Mar 2003 B1
6628767 Wellner et al. Sep 2003 B1
6731202 Klaus May 2004 B1
6944474 Rader et al. Sep 2005 B2
7224981 Deisher et al. May 2007 B2
7324015 Allen et al. Jan 2008 B1
7606444 Erol et al. Oct 2009 B1
7783022 Jay et al. Aug 2010 B1
8050917 Caspi et al. Nov 2011 B2
8369184 Calhoun Feb 2013 B2
8618952 Mochizuki Dec 2013 B2
8669854 D'Ambrosio et al. Mar 2014 B2
20020021799 Kaufholz Feb 2002 A1
20020196134 Lutter et al. Dec 2002 A1
20030139881 Miller et al. Jul 2003 A1
20030158900 Santos Aug 2003 A1
20040064322 Georgiopoulos et al. Apr 2004 A1
20040100868 Patterson et al. May 2004 A1
20040122678 Rousseau Jun 2004 A1
20040172252 Aoki et al. Sep 2004 A1
20040230651 Ivashin Nov 2004 A1
20040263610 Whynot et al. Dec 2004 A1
20050018828 Nierhaus et al. Jan 2005 A1
20050038648 Ju et al. Feb 2005 A1
20050041529 Schliep et al. Feb 2005 A1
20050088981 Woodruff et al. Apr 2005 A1
20050135583 Kardos Jun 2005 A1
20050207554 Ortel Sep 2005 A1
20060080004 Cheok et al. Apr 2006 A1
20060195850 Knight et al. Aug 2006 A1
20080061958 Birk et al. Mar 2008 A1
20080195387 Zigel et al. Aug 2008 A1
20080270132 Navratil et al. Oct 2008 A1
20080300777 Fehr et al. Dec 2008 A1
20090040037 Schraga Feb 2009 A1
20090070102 Maegawa Mar 2009 A1
20090198735 Yu et al. Aug 2009 A1
20090204620 Thione et al. Aug 2009 A1
20090271176 Bodin et al. Oct 2009 A1
20090281789 Waibel et al. Nov 2009 A1
20090282103 Thakkar et al. Nov 2009 A1
20090306957 Gao et al. Dec 2009 A1
20090307616 Nielsen Dec 2009 A1
20100040217 Aberg et al. Feb 2010 A1
20100135478 Wald et al. Jun 2010 A1
20100153497 Sylvain et al. Jun 2010 A1
20100185434 Burvall et al. Jul 2010 A1
20100222098 Garg Sep 2010 A1
20100315218 Cades et al. Dec 2010 A1
20110010041 Wagner et al. Jan 2011 A1
20110153324 Ballinger et al. Jun 2011 A1
20110184721 Subramanian et al. Jul 2011 A1
20110196580 Xu et al. Aug 2011 A1
20110237295 Bartkowiak et al. Sep 2011 A1
20110270922 Jones et al. Nov 2011 A1
20110307241 Waibel et al. Dec 2011 A1
20120010886 Razavilar Jan 2012 A1
20120025965 Mochizuki et al. Feb 2012 A1
20120046833 Sanma et al. Feb 2012 A1
20120069131 Abelow Mar 2012 A1
20120072109 Waite et al. Mar 2012 A1
20120075407 Wessling Mar 2012 A1
20120197629 Nakamura et al. Aug 2012 A1
20120323575 Gibbon et al. Dec 2012 A1
20130021950 Chen et al. Jan 2013 A1
20130022189 Ganong, III et al. Jan 2013 A1
20130057691 Atsmon et al. Mar 2013 A1
20130058471 Garcia Mar 2013 A1
20130063542 Bhat et al. Mar 2013 A1
20130103399 Gammon Apr 2013 A1
20130204616 Aoki et al. Aug 2013 A1
20140055242 Mendonca et al. Feb 2014 A1
Non-Patent Literature Citations (9)
Entry
Roadside Range Sensors: Arvind Menon, Alec Gorjestani, Craig Shankwitz, and Max Donath: Apr. 1, 2004: pp. 1-6.
U.S. Appl. No. 13/434,475, Lord et al.
U.S. Appl. No. 13/425,210, Lord et al.
U.S. Appl. No. 13/407,570, Lord et al.
U.S. Appl. No. 13/397,289, Lord et al.
U.S. Appl. No. 13/356,419, Lord et al.
U.S. Appl. No. 13/340,143, Lord et al.
U.S. Appl. No. 13/324,232, Lord et al.
U.S. Appl. No. 13/309,248, Lord et al.
Related Publications (1)
Number Date Country
20130142347 A1 Jun 2013 US
Continuation in Parts (4)
Number Date Country
Parent 13309248 Dec 2011 US
Child 13362823 US
Parent 13324232 Dec 2011 US
Child 13309248 US
Parent 13340143 Dec 2011 US
Child 13324232 US
Parent 13356419 Jan 2012 US
Child 13340143 US