This disclosure relates to vehicle vision systems and, more particularly, to a vehicle vision system that displays images derived from image data captured by one or more vehicle cameras.
Vehicle camera systems can provide vehicle operators with valuable information about driving conditions. For example, a typical vehicle camera system can aid a driver in parking her automobile by alerting her to hazards around her automobile that should be avoided. Other uses for vehicle camera system are also known. However, a typical vehicle camera system may not be able to provide video that is quickly and reliably comprehensible to the driver.
The present invention provides a vision system having a camera that captures image data representative of a scene exterior of a vehicle equipped with the vision system. Different regions of the image data captured by a single vehicular camera can be manipulated by different image manipulation techniques before the captured image is displayed at a display for viewing by a driver of the equipped vehicle.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
The drawings illustrate, by way of example only, embodiments of the present disclosure.
Referring now to the drawings and the illustrative embodiments depicted therein, and with reference to
In this example, the camera 12 is positioned at a rear-portion of the body 14 of the vehicle 10 and is rear-facing to capture video of the scene behind the vehicle 12. In another example, the camera 12 can be positioned at a rear bumper of the vehicle 10. In still other examples, the camera can be forward-facing and can be positioned, for example, at the front windshield, at the rear-view mirror, or at the grille of the vehicle 10. For example, the camera may comprise a forward facing camera, such as for assisting the driver of the vehicle during forward parking maneuvers and/or to detect cross traffic at intersections and parking lots and the like. Optionally, the camera may be part of a multi-camera system of the vehicle, such as for a surround view or top-down view system of the vehicle or the like, such as discussed below.
The camera 12 is a single imager or camera comprising a single photosensor array, and the camera may include a wide-angle lens, such as a lens with a horizontal field of view of at least about 120 degrees to about 180 degrees or more than about 180 degrees. In this way, the camera 12 can capture the scene directly behind or ahead of the vehicle 10 as well as areas to the right and left of the vehicle 10. When the camera 12 is rear-facing and has a lens with a horizontal field of view of more than about 180 degrees, the horizontal extents of the field of view of the camera 12 are shown at 13 in
The camera 12 is coupled via a line 16 (such as, for example, conductive wires) to a controller 18 located at a forward portion of the vehicle 10, such as under the hood or below the dash. In other examples, the camera 12 can be coupled to the controller 18 via a wireless communications technique instead of via the line 16. Moreover, the controller 18 can be positioned elsewhere in the vehicle 10. The controller may also be inside the camera 12 or incorporated into the camera or camera module. The processor in the controller may comprise any suitable processing device, such as an ASIC, a digital signal processor (DSP), a FPGA, a system-on-chip (SOC), or any other suitable digital processing unit. The controller also includes a video signal generator/converter, which converts video image data from digital data format to output video format, such as NTSC analog video, LVDS digital video, MOST digital video or Ethernet digital video format or the like.
As shown in
The controller 18 includes a processor 22 and connected memory 24. The controller 18 is operatively coupled to both the camera 12, as mentioned above, and to a display 30.
The display 30 is configured to be positioned inside the cabin of the vehicle 10. The display 30 is coupled to the controller 18 by way of, for example, conductive lines. The display 30 can include an in-vehicle display panel situated in the dash of the vehicle 10. The display 30 can include a liquid-crystal display (LCD) panel, a light-emitting diode (LED) display panel, an active-matrix organic LED (AMOLED) display panel, or the like, as well as a circuit to drive the display panel with a video signal received from the controller 18. The display 30 can include a touch-screen interface to control how the video is displayed by, for example, outputting a mode signal to the controller 18.
The processor 22 can execute program code stored in the memory 24. The memory 24 can store program code, such as a first image manipulation routine 26 and a second image manipulation routine 28. As will be discussed in detail below, the processor 22 can be configured by the first and second image manipulation routines 26, 28 to manipulate an image received from the camera 12 to generate a manipulated image. The first and second image manipulation routines 26, 28 are different, such as different types of processing, so that pixels of one region of the image are manipulated by a different manipulation than pixels of another region of the image. Performing such manipulations to a consecutive series of images captured by the camera 12 results in manipulated video being displayed on the display 30 to aid the driver in operating the vehicle 10.
The image processing or manipulation may be performed on any given frame of captured image data or a series of frames of captured image data or intervals or sequences of frames or the like of captured image data. For example, the camera may be operable to capture frames of image data at a rate of about 15 frames per second or about 30 frames per second or more, and the system may be operable to manipulate the image data of each frame of captured image data, or optionally every other frame of captured image data or every third frame of captured image data or the like may be processed and manipulated (depending on the particular application of the system) in accordance with the present invention.
The first image manipulation routine 26 includes instructions executable by the processor 22 to perform a first image manipulation on a first region of an image. The first image manipulation routine 26 can define the first region of the image as well as the first image manipulation to be performed on the first region. The first region can be defined by a first set of coordinates of a first set of pixels, one or more boundaries or partitions that fence in a first set of pixels, or the like.
Similarly, the second image manipulation routine 28 includes instructions executable by the processor 22 to perform a second image manipulation on a second region of an image. The second image manipulation routine 26 can define the second region of the image as well as the second image manipulation to be performed on the second region. The second region can be defined by a second set of coordinates of a second set of pixels, one or more boundaries or partitions that fence in a second set of pixels, or the like.
Selection of the two or more regions (such as by partitioning the captured image into a plurality of distinct regions, such as a left region and a right region or such as a center region and left region and right region or the like) may be a predetermined or preset decision based on the known field of view optics/parameters of a given camera at a given location at a vehicle (such as a rearward facing camera at the rear of the vehicle) or may be dynamically or automatically selected based at least in part on the given camera at a given location at a vehicle or the like, and/or based at least in part on the environment or lighting conditions at the scene being imaged and/or based at least in part on the type of driving maneuver being performed by the driver of the vehicle.
Each of the first and second image manipulations can be defined by one or more of a remapping table, function, algorithm, or process that acts on the respective first or second set of pixels to generate a respective first or second manipulated region. In one example, a remapping table (see
In another example, a remapping function takes as input source pixel coordinates and color values and outputs destination pixel coordinates and color values. In this case, the first and second image manipulation routines 26, 28 include instructions that define the respective remapping function. Each of the first and second image manipulation routines 26, 28 can use interpolation or extrapolation to output color values for pixels that do not directly correlate to pixels in the captured image. Although interpolation or extrapolation may result in blur or an apparent loss of image fidelity, it can also result in a larger or more easily comprehensible image.
In other examples, other techniques can alternatively or additionally be used for the first and second image manipulation routines 26, 28.
The first and second image manipulations defined by the respective first and second image manipulation routines 26, 28 are different. In one example, the first image manipulation routine 26 includes dewarping instructions that, for example, flatten the first region of the image to reduce the apparent curvature in the image resulting from optical distortion causes by the wide-angle lens 32. In the same example, the second image manipulation includes reshaping instructions that reshape the second region of the image by one or more of enlarging, moving, cropping, stretching, compressing, skewing, rotating, and tilting, for example, parts of the second region or the entire second region. In addition to reshaping, the second image manipulation routine 28 can further perform dewarping in the second region, similar to that performed in the first region. The second image manipulation routine 28 can be configured to move an apparent viewpoint of the camera 12 along a path of travel of the vehicle, so that if the camera 12 is rear-facing the apparent viewpoint of the camera 12 is moved rearward, and if the camera 12 is forward-facing then the apparent viewpoint of the camera 12 is moved forward. Furthermore, although the different manipulations may comprise similar types of manipulation (such as, for example, dewarping or the like), the character or degree or technique of the particular type of manipulation (such as, for example, dewarping or the like) may be different between the two manipulations.
Similarly, a third image manipulation routine can also be stored in the memory 24. In this example, the third image manipulation routine performs the same manipulation as the second image manipulation routine but on a different, third region of the image. Third region of the image has a shape that is similar, preferably mirror-symmetric, to a shape of the second region, and accordingly, the third image manipulation routine generates a third manipulated region that has a shape that is mirror-symmetric to a shape of the second manipulated region. Accordingly, the second and third image manipulation routines can be the same routine executed with different parameters. For example, when a remapping table is referenced to generate the third manipulated region, a parameter can be used to indicate that the remapping table is to be traversed differently than when the remapping table is used to generate the second manipulated region. When a remapping function is used, the remapping function can be passed a parameter that identifies whether pixels of the second region or the third region are being remapped, so that the remapping function can operate on such pixels accordingly. However, in other examples, the third image manipulation routine can be a separate routine from the second image manipulation routine 28.
In another example, the second image manipulation routine 28 is a remapping table that includes coordinates of pixels of the second and third regions. This is analogous to the second and third regions being parts of the same discontinuous region.
In still another example, the first and second image mapping routines 26, 28 can be a single routine that applies a single remapping table to an image to generate a manipulated image. The two or more different types of manipulations performed to the two or more different regions of the image are realized by the selected coordinate values of the remapping table.
The processor 22 can be configured to generate the manipulated image based on image data received from only the camera. That is, in this example, the processor 22 does not use image data provided by other cameras, if any other cameras are provided to the vehicle 10, to carry out the image manipulations described herein.
Referring to
At 42, an image 60, such as a frame of video, is captured by the camera 12.
Next, at 44, the processor 22 receives image data from the camera 12. The image data is representative of the image 60 captured by the camera 12, and may be a series of pixel color values of the image, a compressed stream of pixel color values, pixel color values of a frame of video differentially encoded with respect to a previous frame (such as, for example, an MPEG video P-frame or B-frame that refers back to a previous frame, such as an I-frame), or the like. Irrespective of the form of the image data, the processor 22 can be considered to have received the image 60 and to have access to all the pixels of the image 60 for the purposes of image manipulation.
Referring to
At 48, the processor 22 performs second and third image manipulations on respective second and third regions 72, 74 of the image 60 to generate second and third manipulated regions 82, 84. The second and third image manipulations can be defined by the second image manipulation routine 28 (and, optionally, by the third image manipulation routine), and can act on second and third portions of the image data corresponding to the second and third regions 82, 84 to generate second and third region manipulated image data representative of respective second and third manipulated regions 82, 84. In this example, the second and third regions 72, 74 are respectively left and right region 72, 74 of the image 60, as shown in
In this example, the left and right regions 72, 74 are different regions that undergo the same type of manipulation, albeit in a mirror-symmetric manner about a central vertical axis 76 of the image 60. This is because the camera 12 is forward- or rear-facing and the left and right directions generally have about the same importance to the operator of the vehicle 10 when assessing potential external hazards.
Next, at 50, the processor 22 composes the first (central), second (left), and third (right) manipulated regions 80, 82, 84 into the larger manipulated image 86, shown in
Regarding the shape of the manipulated image 86, it can be seen that the central region 80 is rectangular while the left and right manipulated regions 82, 84 are complementary shaped trapezoids. These are merely example shapes. Other shapes of image 86 and/or other shapes of individual regions may also be possible or suitable with this architecture (such as by utilizing aspects of the vision systems described in U.S. provisional applications, Ser. No. 61/745,864, filed Dec. 26, 2012; Ser. No. 61/700,617, filed Sep. 13, 2012, and Ser. No. 61/616,855, filed Mar. 28, 2012, which are hereby incorporated herein by reference in their entireties.
Finally, at 52, the processor 22 outputs manipulated image data, including the first (central) region manipulated image data and the second and third (left and right) region manipulated image data, to the display 30 to cause the display 30 to display the manipulated image 86 to the operator of the vehicle 10.
It can be seen from
In this example, image manipulation used on the left and right regions 72, 74 is one that moves an apparent viewpoint of the camera along the path of travel of the vehicle. That is, it gives the driver the impression of peeking around the corner behind (in the case of the camera 12 being rear-facing) or ahead (in the case of the camera 12 being front-facing) of the vehicle 10. Although no additional information is added to the left and right manipulated regions 82, 84 (at most, interpolation or extrapolation may be used to enlarge these regions), the reshaping performed can alter the driver's perception of these regions in a way than better alerts the driver to hazards. The presence of the seams 87, whether enhanced or not, can also contribute to increased hazard perception.
Although showing the left and right manipulated regions 82, 84 has the advantage of alerting drivers to oncoming cross-traffic or other hazards that may be obstructed by blind spots or obstacles, showing the central manipulated region 80 as well provides a further advantage even if the scene of the central region is clearly directly visible via the rear-view mirror or front windshield. This advantage is that the driver does not have to switch his/her attention between the display 30 and the rear view mirror or front windshield, and can thus observe the entire scene on the display 30.
In the examples described herein, the field of view shown on the display 30 has no gaps. More particularly, there is no gap in the field of view between the fields of view displayed in the left and right views and the central view on the in-cabin display. There is in at least some embodiments, overlap between the central view and the respective left and right views so as to ensure that the views (such as the left, right and central views) represent a continuous field of view without gaps on the display. Some known systems omit a horizontal angular region, such as the central region, in order to have more room to display left and right regions. However, omitting any such region from the display may result in a safety concern, in that the driver may not be able to properly see the omitted region by another means. Moreover, the driver may incorrectly assume that an omitted region, by virtue of its omission, is unimportant to safe operation of the vehicle. To address this, the examples described herein show a continuous horizontal field of view in one place on the display 30.
Steps of the method 40 can be performed in orders different from that described and can be aggregated together or further separated.
In another example, dewarping is performed on the entire image 60 while reshaping is only performed on the left and right regions 72, 74. This means that the first region is substantially the entire image 60 while the second and third regions are different as they are smaller regions of the full image 60. In short, the regions of the image being differently manipulated can overlap.
The manipulated images 80, 90 of
The image manipulation and display system of the present invention may utilize aspects of the systems described in U.S. provisional applications, U.S. provisional applications, Ser. No. 61/745,864, filed Dec. 26, 2012; Ser. No. 61/700,617, filed Sep. 13, 2012; and Ser. No. 61/616,855, filed Mar. 28, 2012, which are hereby incorporated herein by reference in their entireties.
According to one aspect of this disclosure, a vehicle camera system includes a camera configured to be positioned on a vehicle, a display configured to be positioned in a cabin of the vehicle, and a processor operatively coupled to the camera and the display. The processor is configured to receive image data from the camera, the image data being representative of an image captured by the camera, and perform a first image manipulation on a first portion of the image data corresponding to a first region of the image to generate first region manipulated image data. The processor is further configured to perform a second image manipulation on a second portion of the image data corresponding to a second region of the image to generate second region manipulated image data. The second region is different from the first region, and the second image manipulation is of a type different from the first image manipulation. The processor is further configured to output to the display manipulated image data including the first region manipulated image data and the second region manipulated image data to cause the display to display a manipulated image based on the manipulated image data. The manipulated image has a first manipulated region corresponding to the first region manipulated image data and a second manipulated region corresponding to the second region manipulated image data.
The first image manipulation can include dewarping.
The second image manipulation can include reshaping, and further, can include dewarping.
The second image manipulation can be configured to move an apparent viewpoint of the camera along a path of travel of the vehicle.
The processor can be further configured to perform a third image manipulation on a third portion of the image data corresponding to a third region of the image to generate third region manipulated image data. The third region is different from the first region and the second region. The third image manipulation is of a same type as the second image manipulation. The manipulated image data includes the third region manipulated image data, which corresponds to a third manipulated region that forms part of the manipulated image.
The third region of the image can have a shape that is mirror-symmetric to a shape of the second region of the image.
The third manipulated region of the manipulated image can have a shape that is mirror-symmetric to a shape of the second manipulated region of the manipulated image.
The first region can be a central region, the second region can be a left region, and the third region can be a right region of a scene captured by the camera.
The manipulated image can include a generally discontinuous seam between the first manipulated region and the second manipulated region.
The processor can be configured to graphically enhance the discontinuous seam.
The image data can be representative of at least a frame of video captured by the camera.
The camera can include a wide-angle lens.
The processor can be configured to generate the manipulated image based on image data received from only the camera.
The camera can be configured to be rear-facing on the vehicle.
The camera can be configured to be forward-facing on the vehicle.
The manipulated image can include substantially the entire horizontal field of view of the camera.
According to another aspect of this disclosure, a vehicle camera system includes a camera configured to be positioned on a vehicle, a display configured to be positioned in a cabin of the vehicle, and a processor operatively coupled to the camera and the display. The processor is configured to manipulate an image received from the camera to generate a manipulated image. Pixels of a central region of the image are manipulated by a different type of manipulation than pixels of left and right regions of the image. The pixels of the left and right regions of the image are manipulated symmetrically about a vertical axis central to the central region.
According to another aspect of this disclosure, a method includes capturing an image with a camera positioned on a vehicle, performing a first image manipulation on a first region of the image to generate a first manipulated region, and performing a second image manipulation on a second region of the image to generate a second manipulated region. The second region is different from the first region. The second image manipulation is of a type different from the first image manipulation. The method further includes displaying a manipulated image including the first manipulated region and the second manipulated region.
The first image manipulation can include dewarping.
The second image manipulation can include reshaping, and further, can include dewarping.
The second image manipulation can be configured to move an apparent viewpoint of the camera along a path of travel of the vehicle.
The method can further include performing a third image manipulation on a third region of the image to generate a third manipulated region. The third region is different from the first region and the second region. The third image manipulation is of a same type as the second image manipulation. The manipulated image further includes the third manipulated region.
The third region of the image can have a shape that is mirror-symmetric to a shape of the second region of the image.
The third manipulated region of the manipulated image can have a shape that is mirror-symmetric to a shape of the second manipulated region of the manipulated image.
The first region can be a central region, the second region can be a left region, and the third region can be a right region of a scene captured by the camera.
The manipulated image can include a generally discontinuous seam between the first manipulated region and the second manipulated region.
The method can further include graphically enhancing the discontinuous seam.
The image can be a frame of video captured by the camera.
The image can be captured with only the camera.
The manipulated image can include substantially the entire horizontal field of view of the camera.
The camera or cameras may include or may be associated with an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EYEQ2 or EYEQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
The camera or imager or imaging sensor may comprise any suitable camera or imager or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in PCT Application No. PCT/US2012/066571, filed Nov. 27, 2012, and published on Jun. 6, 2013 as International Publication No. WO 2013/081985, which is hereby incorporated herein by reference in its entirety.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, an array of a plurality of photosensor elements arranged in at least about 640 columns and 480 rows (at least about a 640×480 imaging array), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data. For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, PCT Application No. PCT/US2010/047256, filed Aug. 31, 2010 and published Mar. 10, 2011 as International Publication No. WO 2011/028686 and/or International Publication No. WO 2010/099416, published Sep. 2, 2010, and/or PCT Application No. PCT/US10/25545, filed Feb. 26, 2010 and published Sep. 2, 2010 as International Publication No. WO 2010/099416, and/or PCT Application No. PCT/US2012/048800, filed Jul. 30, 2012, and published on Feb. 7, 2013 as International Publication No. WO 2013/019707, and/or PCT Application No. PCT/US2012/048110, filed Jul. 25, 2012, and published on Jan. 31, 2013 as International Publication No. WO 2013/016409, and/or PCT Application No. PCT/CA2012/000378, filed Apr. 25, 2012, and published Nov. 1, 2012 as International Publication No. WO 2012/145822, and/or PCT Application No. PCT/US2012/056014, filed Sep. 19, 2012, and published Mar. 28, 2013 as International Publication No. WO 2013/043661, and/or PCT Application No. PCT/US12/57007, filed Sep. 25, 2012, and published Apr. 4, 2013 as International Publication No. WO 2013/048994, and/or PCT Application No. PCT/US2012/061548, filed Oct. 24, 2012, and published on May 2, 2013 as International Publication No. WO 2013/063014, and/or PCT Application No. PCT/US2012/062906, filed Nov. 1, 2012, and published May 1, 2013 as International Publication No. WO 2013/067083, and/or PCT Application No. PCT/US2012/063520, filed Nov. 5, 2012, and published May 16, 2013 as International Publication No. WO 2013/070539, and/or PCT Application No. PCT/US2012/064980, filed Nov. 14, 2012, and published May 23, 2013 as International Publication No. WO 2013/074604, and/or PCT Application No. PCT/US2012/066570, filed Nov. 27, 2012, and published Jun. 6, 2013 as International Publication No. WO 2013/081984, and/or PCT Application No. PCT/US2012/066571, filed Nov. 27, 2012, and published Jun. 6, 2013 as International Publication No. WO 2013/081985, and/or PCT Application No. PCT/US2012/068331, filed Dec. 7, 2012, and published Jun. 13, 2013 as International Publication No. WO 2013/086249, and/or PCT Application No. PCT/US2012/071219, filed Dec. 21, 2012, and published Jul. 11, 2013 as International Publication No. WO 2013/103548, and/or PCT Application No. PCT/US2013/022119, filed Jan. 18, 2013, and published Jul. 25, 2013 as International Publication No. WO 2013/109869, and/or PCT Application No. PCT/US2013/026101, filed Feb. 14, 2013, and published Aug. 22, 2013 as International Publication No. WO 2013/123161, and/or U.S. patent application Ser. No. 13/681,963, filed Nov. 20, 2012, now U.S. Pat. No. 9,264,673; Ser. No. 13/660,306, filed Oct. 25, 2012, now U.S. Pat. No. 9,146,898; Ser. No. 13/653,577, filed Oct. 17, 2012, now U.S. Pat. No. 9,174,574; and/or Ser. No. 13/534,657, filed Jun. 27, 2012, and published on Jan. 3, 2013 as U.S. Patent Publication No. US-2013-0002873, and/or U.S. provisional applications, Ser. No. 61/766,883, filed Feb. 20, 2013; Ser. No. 61/760,368, filed Feb. 4, 2013; Ser. No. 61/760,364, filed Feb. 4, 2013; Ser. No. 61/758,537, filed Jan. 30, 2013; Ser. No. 61/754,8004, filed Jan. 21, 2013; Ser. No. 61/745,925, filed Dec. 26, 2012; Ser. No. 61/745,864, filed Dec. 26, 2012; Ser. No. 61/736,104, filed Dec. 12, 2012; Ser. No. 61/736,103, filed Dec. 12, 2012; Ser. No. 61/735,314, filed Dec. 10, 2012; Ser. No. 61/734,457, filed Dec. 7, 2012; Ser. No. 61/733,598, filed Dec. 5, 2012; Ser. No. 61/733,093, filed Dec. 4, 2012; Ser. No. 61/727,912, filed Nov. 19, 2012; Ser. No. 61/727,911, filed Nov. 19, 2012; Ser. No. 61/727,910, filed Nov. 19, 2012; Ser. No. 61/718,382, filed Oct. 25, 2012; Ser. No. 61/710,924, filed Oct. 8, 2012; Ser. No. 61/696,416, filed Sep. 4, 2012; Ser. No. 61/682,995, filed Aug. 14, 2012; Ser. No. 61/682,486, filed Aug. 13, 2012; Ser. No. 61/680,883, filed Aug. 8, 2012; Ser. No. 61/676,405, filed Jul. 27, 2012; Ser. No. 61/666,146, filed Jun. 29, 2012; Ser. No. 61/648,744, filed May 18, 2012; Ser. No. 61/624,507, filed Apr. 16, 2012; Ser. No. 61/616,126, filed Mar. 27, 2012; Ser. No. 61/615,410, filed Mar. 26, 2012; Ser. No. 61/613,651, filed Mar. 21, 2012; Ser. No. 61/607,229, filed Mar. 6, 2012; Ser. No. 61/602,876, filed Feb. 24, 2012; and/or Ser. No. 61/601,651, filed Feb. 22, 2012, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in PCT Application No. PCT/US10/038477, filed Jun. 14, 2010, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, now U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.
The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and 6,824,281, and/or International Publication No. WO 2010/099416, published Sep. 2, 2010, and/or PCT Application No. PCT/US10/47256, filed Aug. 31, 2010 and published Mar. 10, 2011 as International Publication No. WO 2011/028686, and/or U.S. patent application Ser. No. 12/508,840, filed Jul. 24, 2009, and published Jan. 28, 2010 as U.S. Pat. Publication No. US 2010-0020170, and/or PCT Application No. PCT/US2012/048110, filed Jul. 25, 2012, and published on Jan. 31, 2013 as International Publication No. WO 2013/016409, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012, and published on Jan. 3, 2013 as U.S. Patent Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. patent application Ser. No. 12/091,359, filed Apr. 24, 2008 and published Oct. 1, 2009 as U.S. Publication No. US-2009-0244361, and/or Ser. No. 13/260,400, filed Sep. 26, 2011, now U.S. Pat. Nos. 8,542,451, and/or 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606 and/or 7,720,580, and/or U.S. patent application Ser. No. 10/534,632, filed May 11, 2005, now U.S. Pat. No. 7,965,336; and/or PCT Application No. PCT/US2008/076022, filed Sep. 11, 2008 and published Mar. 19, 2009 as International Publication No. WO 2009/036176, and/or PCT Application No. PCT/US2008/078700, filed Oct. 3, 2008 and published Apr. 9, 2009 as International Publication No. WO 2009/046268, which are all hereby incorporated herein by reference in their entireties.
The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, and/or U.S. patent application Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.
Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451 and/or 7,480,149; and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, and/or Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.
Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in PCT Application No. PCT/US2011/056295, filed Oct. 14, 2011 and published Apr. 19, 2012 as International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).
Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in PCT Application No. PCT/US10/25545, filed Feb. 26, 2010 and published on Sep. 2, 2010 as International Publication No. WO 2010/099416, and/or PCT Application No. PCT/US10/47256, filed Aug. 31, 2010 and published Mar. 10, 2011 as International Publication No. WO 2011/028686, and/or PCT Application No. PCT/US2011/062834, filed Dec. 1, 2011 and published Jun. 7, 2012 as International Publication No. WO 2012/075250, and/or PCT Application No. PCT/US2012/048993, filed Jul. 31, 2012, and published on Feb. 7, 2013 as International Publication No. WO 2013/019795, and/or PCT Application No. PCT/US11/62755, filed Dec. 1, 2011 and published Jun. 7, 2012 as International Publication No. WO 2012/075250, and/or PCT Application No. PCT/CA2012/000378, filed Apr. 25, 2012, and published on Nov. 1, 2012 as International Publication No. WO 2012/145822, and/or PCT Application No. PCT/US2012/066571, filed Nov. 27, 2012, and published Jun. 6, 2013 as International Publication No. WO 2013/081985, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, and/or U.S. provisional applications, Ser. No. 61/615,410, filed Mar. 26, 2012, which are hereby incorporated herein by reference in their entireties.
Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. patent application Ser. No. 12/091,525, filed Apr. 25, 2008, now U.S. Pat. No. 7,855,755; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008; and/or Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.
Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and 6,124,886, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.
While the foregoing provides certain non-limiting example embodiments, it should be understood that combinations, subsets, and variations of the foregoing are contemplated. The monopoly sought is defined by the claims.
The present application is a continuation of U.S. patent application Ser. No. 16/699,900, filed Dec. 2, 2019, now U.S. Pat. No. 10,926,702, which is a continuation of U.S. patent application Ser. No. 14/377,940, filed Aug. 11, 2014, now U.S. Pat. No. 10,493,916, which is a 371 national phase filing of PCT Application No. PCT/US2013/027342, filed Feb. 22, 2013, which claims the filing benefit of U.S. provisional application Ser. No. 61/601,669, filed Feb. 22, 2012, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4891559 | Matsumoto et al. | Jan 1990 | A |
4961625 | Wood et al. | Oct 1990 | A |
4966441 | Conner | Oct 1990 | A |
4967319 | Seko | Oct 1990 | A |
4970653 | Kenue | Nov 1990 | A |
5003288 | Wilhelm | Mar 1991 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5166681 | Bottesch et al. | Nov 1992 | A |
5245422 | Borcherts et al. | Sep 1993 | A |
5313072 | Vachss | May 1994 | A |
5355118 | Fukuhara | Oct 1994 | A |
5359666 | Nakayama et al. | Oct 1994 | A |
5374852 | Parkes | Dec 1994 | A |
5386285 | Asayama | Jan 1995 | A |
5394333 | Kao | Feb 1995 | A |
5406395 | Wilson et al. | Apr 1995 | A |
5408346 | Trissel et al. | Apr 1995 | A |
5410346 | Saneyoshi et al. | Apr 1995 | A |
5414257 | Stanton | May 1995 | A |
5414461 | Kishi et al. | May 1995 | A |
5416313 | Larson et al. | May 1995 | A |
5416318 | Hegyi | May 1995 | A |
5416478 | Morinaga | May 1995 | A |
5424952 | Asayama | Jun 1995 | A |
5426294 | Kobayashi et al. | Jun 1995 | A |
5430431 | Nelson | Jul 1995 | A |
5434407 | Bauer et al. | Jul 1995 | A |
5440428 | Hegg et al. | Aug 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5451822 | Bechtel et al. | Sep 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5461357 | Yoshioka et al. | Oct 1995 | A |
5461361 | Moore | Oct 1995 | A |
5469298 | Suman et al. | Nov 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5475494 | Nishida et al. | Dec 1995 | A |
5487116 | Nakano et al. | Jan 1996 | A |
5498866 | Bendicks et al. | Mar 1996 | A |
5500766 | Stonecypher | Mar 1996 | A |
5510983 | Lino | Apr 1996 | A |
5515448 | Nishitani | May 1996 | A |
5521633 | Nakajima et al. | May 1996 | A |
5528698 | Kamei et al. | Jun 1996 | A |
5529138 | Shaw et al. | Jun 1996 | A |
5530240 | Larson et al. | Jun 1996 | A |
5530420 | Tsuchiya et al. | Jun 1996 | A |
5535144 | Kise | Jul 1996 | A |
5535314 | Alves et al. | Jul 1996 | A |
5537003 | Bechtel et al. | Jul 1996 | A |
5539397 | Asanuma et al. | Jul 1996 | A |
5541590 | Nishio | Jul 1996 | A |
5550677 | Schofield et al. | Aug 1996 | A |
5555312 | Shima et al. | Sep 1996 | A |
5555555 | Sato et al. | Sep 1996 | A |
5559695 | Daily | Sep 1996 | A |
5568027 | Teder | Oct 1996 | A |
5574443 | Hsieh | Nov 1996 | A |
5581464 | Woll et al. | Dec 1996 | A |
5594222 | Caldwell | Jan 1997 | A |
5614788 | Mullins | Mar 1997 | A |
5619370 | Guinosso | Apr 1997 | A |
5634709 | Iwama | Jun 1997 | A |
5638116 | Shimoura et al. | Jun 1997 | A |
5642299 | Hardin et al. | Jun 1997 | A |
5648835 | Uzawa | Jul 1997 | A |
5650944 | Kise | Jul 1997 | A |
5660454 | Mori et al. | Aug 1997 | A |
5661303 | Feder | Aug 1997 | A |
5666028 | Bechtel et al. | Sep 1997 | A |
5668663 | Varaprasad et al. | Sep 1997 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5675489 | Pomerleau | Oct 1997 | A |
5677851 | Kingdon et al. | Oct 1997 | A |
5699044 | Van Lente et al. | Dec 1997 | A |
5724316 | Brunts | Mar 1998 | A |
5737226 | Olson et al. | Apr 1998 | A |
5757949 | Kinoshita et al. | May 1998 | A |
5760826 | Nayar | Jun 1998 | A |
5760828 | Cortes | Jun 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5760962 | Schofield et al. | Jun 1998 | A |
5761094 | Olson et al. | Jun 1998 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5781437 | Wiemer et al. | Jul 1998 | A |
5790403 | Nakayama | Aug 1998 | A |
5790973 | Blaker et al. | Aug 1998 | A |
5793308 | Rosinski et al. | Aug 1998 | A |
5793420 | Schmidt | Aug 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5837994 | Stam et al. | Nov 1998 | A |
5844505 | Van Ryzin | Dec 1998 | A |
5844682 | Kiyomoto et al. | Dec 1998 | A |
5845000 | Breed et al. | Dec 1998 | A |
5848802 | Breed et al. | Dec 1998 | A |
5850176 | Kinoshita et al. | Dec 1998 | A |
5850254 | Takano et al. | Dec 1998 | A |
5867591 | Onda | Feb 1999 | A |
5877707 | Kowalick | Mar 1999 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5878370 | Olson | Mar 1999 | A |
5883684 | Millikan et al. | Mar 1999 | A |
5883739 | Ashihara et al. | Mar 1999 | A |
5884212 | Lion | Mar 1999 | A |
5890021 | Onoda | Mar 1999 | A |
5896085 | Mori et al. | Apr 1999 | A |
5899956 | Chan | May 1999 | A |
5904725 | Iisaka et al. | May 1999 | A |
5914815 | Bos | Jun 1999 | A |
5920367 | Kajimoto et al. | Jul 1999 | A |
5923027 | Stam et al. | Jul 1999 | A |
5959555 | Furuta | Sep 1999 | A |
5963247 | Banitt | Oct 1999 | A |
5964822 | Alland et al. | Oct 1999 | A |
5990469 | Bechtel et al. | Nov 1999 | A |
5990649 | Nagao et al. | Nov 1999 | A |
6009336 | Harris et al. | Dec 1999 | A |
6020704 | Buschur | Feb 2000 | A |
6049171 | Stam et al. | Apr 2000 | A |
6052124 | Stein et al. | Apr 2000 | A |
6066933 | Ponziana | May 2000 | A |
6084519 | Coulling et al. | Jul 2000 | A |
6091833 | Yasui et al. | Jul 2000 | A |
6097024 | Stam et al. | Aug 2000 | A |
6100811 | Hsu et al. | Aug 2000 | A |
6139172 | Bos et al. | Oct 2000 | A |
6144022 | Fenenbaum et al. | Nov 2000 | A |
6158655 | DeVries, Jr. et al. | Dec 2000 | A |
6175300 | Kendrick | Jan 2001 | B1 |
6201642 | Bos | Mar 2001 | B1 |
6226061 | Tagusa | May 2001 | B1 |
6259412 | Duroux | Jul 2001 | B1 |
6259423 | Tokito et al. | Jul 2001 | B1 |
6266082 | Yonezawa et al. | Jul 2001 | B1 |
6266442 | Laumeyer et al. | Jul 2001 | B1 |
6285393 | Shimoura et al. | Sep 2001 | B1 |
6285778 | Nakajima et al. | Sep 2001 | B1 |
6297781 | Turnbull et al. | Oct 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6313454 | Bos et al. | Nov 2001 | B1 |
6317057 | Lee | Nov 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6333759 | Mazzilli | Dec 2001 | B1 |
6359392 | He | Mar 2002 | B1 |
6370329 | Feuchert | Apr 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6411328 | Franke et al. | Jun 2002 | B1 |
6424273 | Gulla et al. | Jul 2002 | B1 |
6430303 | Naoi et al. | Aug 2002 | B1 |
6433817 | Guerra | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6485155 | Duroux et al. | Nov 2002 | B1 |
6497503 | Dassanayake et al. | Dec 2002 | B1 |
6539306 | Turnbull | Mar 2003 | B2 |
6547133 | Devries, Jr. et al. | Apr 2003 | B1 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6570998 | Ohtsuka et al. | May 2003 | B1 |
6574033 | Chui et al. | Jun 2003 | B1 |
6578017 | Ebersole et al. | Jun 2003 | B1 |
6587573 | Stam et al. | Jul 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6593011 | Liu et al. | Jul 2003 | B2 |
6593698 | Stam et al. | Jul 2003 | B2 |
6593960 | Sugimoto et al. | Jul 2003 | B1 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6611610 | Stam et al. | Aug 2003 | B1 |
6631316 | Stam et al. | Oct 2003 | B2 |
6631994 | Suzuki et al. | Oct 2003 | B2 |
6636258 | Strumolo | Oct 2003 | B2 |
6672731 | Schnell et al. | Jan 2004 | B2 |
6678056 | Downs | Jan 2004 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6693524 | Payne | Feb 2004 | B1 |
6700605 | Toyoda et al. | Mar 2004 | B1 |
6704621 | Stein et al. | Mar 2004 | B1 |
6711474 | Freyz et al. | Mar 2004 | B1 |
6714331 | Lewis et al. | Mar 2004 | B2 |
6717610 | Bos et al. | Apr 2004 | B1 |
6735506 | Breed et al. | May 2004 | B2 |
6744353 | Sjonell | Jun 2004 | B2 |
6757109 | Bos | Jun 2004 | B2 |
6762867 | Lippert et al. | Jul 2004 | B2 |
6795221 | Urey | Sep 2004 | B1 |
6806452 | Bos et al. | Oct 2004 | B2 |
6807287 | Hermans | Oct 2004 | B1 |
6823241 | Shirato et al. | Nov 2004 | B2 |
6824281 | Schofield et al. | Nov 2004 | B2 |
6864930 | Matsushita et al. | Mar 2005 | B2 |
6889161 | Winner et al. | May 2005 | B2 |
6909753 | Meehan et al. | Jun 2005 | B2 |
6975775 | Rykowski et al. | Dec 2005 | B2 |
7004593 | Weller et al. | Feb 2006 | B2 |
7005974 | McMahon et al. | Feb 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7062300 | Kim | Jun 2006 | B1 |
7065432 | Moisel et al. | Jun 2006 | B2 |
7085637 | Breed et al. | Aug 2006 | B2 |
7092548 | Laumeyer et al. | Aug 2006 | B2 |
7113867 | Stein | Sep 2006 | B1 |
7116246 | Winter et al. | Oct 2006 | B2 |
7133661 | Hatae et al. | Nov 2006 | B2 |
7149613 | Stam et al. | Dec 2006 | B2 |
7151996 | Stein | Dec 2006 | B2 |
7161616 | Okamoto et al. | Jan 2007 | B1 |
7195381 | Lynam et al. | Mar 2007 | B2 |
7202776 | Breed | Apr 2007 | B2 |
7227611 | Hull et al. | Jun 2007 | B2 |
7375803 | Bamji | May 2008 | B1 |
7423821 | Bechtel et al. | Sep 2008 | B2 |
7541743 | Salmeen et al. | Jun 2009 | B2 |
7565006 | Stam et al. | Jul 2009 | B2 |
7566851 | Stein et al. | Jul 2009 | B2 |
7605856 | Imoto | Oct 2009 | B2 |
7619508 | Lynam et al. | Nov 2009 | B2 |
7633383 | Dunsmoir et al. | Dec 2009 | B2 |
7639149 | Katoh | Dec 2009 | B2 |
7676087 | Dhua et al. | Mar 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7786898 | Stein et al. | Aug 2010 | B2 |
7843451 | Lafon | Nov 2010 | B2 |
7855778 | Yung et al. | Dec 2010 | B2 |
7881496 | Camilleri et al. | Feb 2011 | B2 |
7930160 | Hosagrahara et al. | Apr 2011 | B1 |
7949486 | Denny et al. | May 2011 | B2 |
8017898 | Lu et al. | Sep 2011 | B2 |
8064643 | Stein et al. | Nov 2011 | B2 |
8082101 | Stein et al. | Dec 2011 | B2 |
8164628 | Stein et al. | Apr 2012 | B2 |
8224031 | Saito | Jul 2012 | B2 |
8233045 | Luo et al. | Jul 2012 | B2 |
8254635 | Stein et al. | Aug 2012 | B2 |
8300886 | Hoffmann | Oct 2012 | B2 |
8378851 | Stein et al. | Feb 2013 | B2 |
8421865 | Euler et al. | Apr 2013 | B2 |
8452055 | Stein et al. | May 2013 | B2 |
8553088 | Stein et al. | Oct 2013 | B2 |
8736680 | Cilia et al. | May 2014 | B1 |
10493916 | Lu | Dec 2019 | B2 |
10926702 | Lu | Feb 2021 | B2 |
20010002451 | Breed | May 2001 | A1 |
20020005778 | Breed et al. | Jan 2002 | A1 |
20020011611 | Huang et al. | Jan 2002 | A1 |
20020113873 | Williams | Aug 2002 | A1 |
20030103142 | Hitomi et al. | Jun 2003 | A1 |
20030122930 | Schofield et al. | Jul 2003 | A1 |
20030137586 | Lewellen | Jul 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20040046889 | Imoto | Mar 2004 | A1 |
20040164228 | Fogg et al. | Aug 2004 | A1 |
20050174429 | Yanai | Aug 2005 | A1 |
20050219852 | Stam et al. | Oct 2005 | A1 |
20050237385 | Kosaka et al. | Oct 2005 | A1 |
20060017807 | Lee | Jan 2006 | A1 |
20060018511 | Stam et al. | Jan 2006 | A1 |
20060018512 | Stam et al. | Jan 2006 | A1 |
20060029255 | Ozaki | Feb 2006 | A1 |
20060088190 | Chinomi | Apr 2006 | A1 |
20060091813 | Stam et al. | May 2006 | A1 |
20060103727 | Tseng | May 2006 | A1 |
20060125919 | Camilleri et al. | Jun 2006 | A1 |
20060192660 | Watanabe | Aug 2006 | A1 |
20060250501 | Wildmann et al. | Nov 2006 | A1 |
20070024724 | Stein et al. | Feb 2007 | A1 |
20070104476 | Yasutomi et al. | May 2007 | A1 |
20070242339 | Bradley | Oct 2007 | A1 |
20080043099 | Stein et al. | Feb 2008 | A1 |
20080117287 | Park et al. | May 2008 | A1 |
20080147321 | Howard et al. | Jun 2008 | A1 |
20080192132 | Bechtel et al. | Aug 2008 | A1 |
20080231710 | Asari et al. | Sep 2008 | A1 |
20080246843 | Nagata | Oct 2008 | A1 |
20080266396 | Stein | Oct 2008 | A1 |
20090079553 | Yanagi | Mar 2009 | A1 |
20090079585 | Chinomi et al. | Mar 2009 | A1 |
20090113509 | Tseng et al. | Apr 2009 | A1 |
20100045797 | Schofield et al. | Feb 2010 | A1 |
20100194889 | Arndt et al. | Aug 2010 | A1 |
20100295945 | Plemons et al. | Nov 2010 | A1 |
20110122249 | Camilleri et al. | May 2011 | A1 |
20110216201 | McAndrew et al. | Sep 2011 | A1 |
20120045112 | Lundblad et al. | Feb 2012 | A1 |
20120069185 | Stein | Mar 2012 | A1 |
20120098968 | Schofield et al. | Apr 2012 | A1 |
20120154589 | Watanabe | Jun 2012 | A1 |
20120200707 | Stein et al. | Aug 2012 | A1 |
20120265416 | Lu et al. | Oct 2012 | A1 |
20120314071 | Rosenbaum et al. | Dec 2012 | A1 |
20120320209 | Vico et al. | Dec 2012 | A1 |
20130027558 | Ramanath et al. | Jan 2013 | A1 |
20130141580 | Stein et al. | Jun 2013 | A1 |
20130147957 | Stein | Jun 2013 | A1 |
20130169812 | Lu et al. | Jul 2013 | A1 |
20130222593 | Byrne et al. | Aug 2013 | A1 |
20130286193 | Pflug | Oct 2013 | A1 |
20140043473 | Gupta et al. | Feb 2014 | A1 |
20140063254 | Shi et al. | Mar 2014 | A1 |
20140098229 | Lu et al. | Apr 2014 | A1 |
20140247352 | Rathi et al. | Sep 2014 | A1 |
20140247354 | Knudsen | Sep 2014 | A1 |
20140320658 | Pliefke | Oct 2014 | A1 |
20140333729 | Pflug | Nov 2014 | A1 |
20140347486 | Okouneva | Nov 2014 | A1 |
20140350834 | Turk | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
102010038825 | Feb 2011 | DE |
2011014497 | Feb 2011 | WO |
WO-2011014497 | Feb 2011 | WO |
2011030698 | Mar 2011 | WO |
WO-2011030698 | Mar 2011 | WO |
Entry |
---|
Achler et al., “Vehicle Wheel Detector using 2D Filter Banks,” IEEE Intelligent Vehicles Symposium of Jun. 2004. |
Wolberg, Digital Image Warping, IEEE Computer Society Press, 1990. |
Wolberg, “A Two-Pass Mesh Warping Implementation of Morphing,” Dr. Dobb's Journal, No. 202, Jul. 1993. |
Praitt, “Digital Image Processing, Passage—ED.3”, John Wiley & Sons, US, Jan. 1, 2001, pp. 657-659, XP002529771. |
Greene et al., Creating Raster Omnimax Images from Multiple Perspective Views Using the Elliptical Weighted Average Filter, IEEE Computer Graphics and Applications, vol. 6, No. 6, pp. 21-27, Jun. 1986. |
Burt et al., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on Graphics, vol. 2 No. 4, pp. 217-236, Oct. 1983. |
Brown, A Survey of Image Registration Techniques, vol. 24, ACM Computing Surveys, pp. 325-376, 1992. |
Broggi et al., “Multi-Resolution Vehicle Detection using Artificial Vision,” IEEE Intelligent Vehicles Symposium of Jun. 2004. |
Bow, Sing T., “Pattern Recognition and Image Preprocessing (Signal Processing and Communications)”, CRC Press, Jan. 15, 2002, pp. 557-559. |
International Search Report and Written Opinion dated Apr. 29, 2013 for corresponding PCT application No. PCT/US2013/027342. |
Number | Date | Country | |
---|---|---|---|
20210178970 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
61601669 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16699900 | Dec 2019 | US |
Child | 17249121 | US | |
Parent | 14377940 | US | |
Child | 16699900 | US |