Vehicular vision system with video display

Information

  • Patent Grant
  • 11616910
  • Patent Number
    11,616,910
  • Date Filed
    Monday, June 28, 2021
    2 years ago
  • Date Issued
    Tuesday, March 28, 2023
    a year ago
Abstract
A vehicular vision system includes a plurality of cameras and an ECU. The cameras are in communication with one another via a vehicle network and image data captured by the cameras is provided to the ECU. Responsive to a type of driving maneuver of the vehicle, (i) the ECU generates a first control signal that enables automatic control of exposure, gain and white balance of one camera of the plurality of cameras and (ii) the ECU generates respective second control signals that disable automatic control of exposure, gain and white balance of at least one other camera of the plurality of cameras. Responsive to processing of captured image data, composite video images derived from image data captured by the plurality of cameras are synthesized, and composite images are displayed that provides bird's eye view video images derived from video image data captured by the cameras.
Description
FIELD OF THE INVENTION

The present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes one or more cameras at a vehicle.


BACKGROUND OF THE INVENTION

Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.


SUMMARY OF THE INVENTION

The present invention provides a vision system or imaging system for a vehicle that utilizes a plurality of cameras (preferably one or more CMOS cameras) to capture image data representative of images exterior of the vehicle, and provides a multi-camera vision system image balancing technique that is easier to implement and cost-effective and provides improved image balancing performance.


The vision system or imaging system of the present invention utilizes multiple cameras to capture image data representative of images exterior of the vehicle, and provides the communication/data signals, including camera data or captured image data, that may be displayed at a display screen that is viewable by the driver of the vehicle, such as when the driver is parking the vehicle and/or backing up the vehicle, and that may be processed and, responsive to such image processing, the system may detect an object at or near the vehicle and in the path of travel of the vehicle, such as when the vehicle is backing up. The vision system may be operable to display a surround view or bird's eye view of the environment at or around or at least partially surrounding the subject or equipped vehicle, and the displayed image may include a displayed image representation of the subject vehicle.


The present invention provides a vision system that selects a camera of the plurality of cameras to be a master camera, whereby the operating parameters determined by or suitable for the images or image data captured by the selected master camera are applied to or used by the other cameras or applied to the image data captured by the other cameras of the plurality of cameras. By using one camera's operating parameters for all of the cameras, image balancing at the junctions of the merged or stitched images of the surround view displayed image are enhanced. The present invention provides such enhancement while reducing overall costs of the system, because no control unit image signal processing (ISP) control algorithms are needed, thus avoiding ISP development cost and royalty cost.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a vehicle with a vision system that incorporates cameras in accordance with the present invention;



FIG. 2 is a bird's eye view image showing good and bad image balance at the border areas;



FIG. 3 is a schematic of a vision system, with the ISP algorithms running in ECU and controlling all cameras through network link;



FIG. 4 is a schematic of a vision system with a master camera, with the other cameras in the system being slave cameras, with one part of the ECU acting as a network gateway or controller;



FIG. 5 is a schematic of a vision system with one master camera, with the other cameras in the system being slave cameras, and with a separate network controller outside of the ECU acting as a network gateway or controller, wherein the separated network controller can be a part of a different vehicle ECU that already exists; and



FIG. 6 is a schematic of a vision system with one master camera, with the other cameras in the system being slave cameras, and with the master camera acting as a network gateway or controller.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

A vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide a top down or bird's eye or surround view display and may provide a displayed image that is representative of the subject vehicle, and optionally with the displayed image being customized to at least partially correspond to the actual subject vehicle.


Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forwardly facing camera 14b at the front (or at the windshield) of the vehicle, and a sidewardly/rearwardly facing camera 14c, 14d at respective sides of the vehicle, such as at or in respective exterior rearview mirror assemblies at the sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (FIG. 1). The vision system 12 includes a control or electronic control unit (ECU) or processor 18 that is operable to process image data captured by the cameras and may provide displayed images at a display device 16 for viewing by the driver of the vehicle (although shown in FIG. 1 as being part of or incorporated in or at an interior rearview mirror assembly 20 of the vehicle, the control and/or the display device may be disposed elsewhere at or in the vehicle). The data transfer or signal communication from the camera to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.


In a multi-camera surround view system, the sections of a bird's-eye-view (BEV) image derived from image data captured by multiple cameras may appear to have different brightness and color (such as described, for example, in U.S. Pat. No. 7,714,887, which is hereby incorporated herein by reference in its entirety). The current technique to balancing the BEV image to deliver generally uniform brightness and color at the section border areas involves the surround view control unit (such as an electronic control unit or ECU) controlling camera exposure and color parameters of all cameras through the network connections to the cameras. This technique requires image signal processing (ISP) algorithms running in the ECU (see, for example, FIG. 3). Normally, ISP algorithms are tied tightly with the imager sensor and run on a processor in the same silicon die of the imager, or in a companion chip placed next to the image sensor inside the camera. In the ECU, the ISP algorithms may run on a different type of processor (such as, for example, a field programmable gate array (FPGA) or an ARM core or any other suitable type of microprocessor). It takes extra software development effort to port the imager ISP algorithms from the imager ISP processor to the ECU processor, and involves paying royalty of ISP to the imager ISP provider. For the ECU supplier, development of a home-grown ISP core in the ECU processor, without the detailed knowledge of the image sensor and ISP algorithms, the performance of the ISP may not be as good as the imager ISP. A reason for this is that the imager ISP involves with complex control mechanisms, and the access of intimate knowledge of imager registers and performance tuning skills.


The present invention involves using existing ISP of one of the cameras to control the rest of the cameras of the vision system. One of the cameras is configured as the “master” camera, and the rest of the cameras are configured as “slave” cameras. The master camera's ISP imager control commands are sent or communicated over network links to all the slave cameras for slave ISP controls. As a result, all of the cameras will have a balanced BEV image. With this technique, no ECU ISP control algorithms are needed, thus avoiding ISP development cost and royalty cost, while enhancing or optimizing the ISP performance and BEV image balancing performance.


The goal of BEV image balancing is to make the image sections from different cameras appear uniform in brightness and color at the borders of the sections. FIG. 2 shows an example of a BEV image that has good image balance (such as at the rear right corner of the vehicle) and bad image balance (such as at the left front corner of the vehicle) at the border areas.


In accordance with the present invention, an alternative technique is proposed and implemented, which involves a master-slave camera configuration. An ISP is running in the master camera which determines proper parameters that control camera performances, such as, for example, brightness, color, dynamic range, and/or the like. All of the slave cameras are controlled by the ISP algorithms of the master camera. By being controlled with a single ISP, all of the cameras have the same image performances, which include brightness, color, dynamic range, and/or the like, if they are facing the same scene. At the BEV camera divider border areas, the image brightness and color uniformity are substantially or generally maintained.


This technique can be applied to two or more cameras that are used in a multi-camera surround view system or similar systems. The multi-camera system may be in a vehicle to assist driver parking or to provide a security monitoring system that involves multiple cameras installed at multiple angles and locations, and that may provide composite image (comprising portions of images captured by multiple cameras), such as a continuous/seamless and stitched view image having images captured by the multiple cameras stitched together in a generally or substantially seamless manner (such as described in U.S. Pat. No. 7,859,565, which is hereby incorporated herein by reference in its entirety). With such a vision system, all of the vehicle cameras are connected or linked through a network connection. The network connection may comprise a vehicle CAN bus, LIN bus, Ethernet bus, wireless networks, UART connection or other types of suitable network links. The topologies of the network connection may comprise star, daisy chain, or other suitable topologies. For the network connection between the cameras, there is a network hub or switch or gateway that routes the camera ISP control commands from the master camera to the slave cameras. With the daisy chain topology, there are distributed network gateways at each camera node. The hub/switch/gateway may be a part of the multi-camera ECU, a part of a separate and existing ECU in vehicle, a separate network controller, or inside the master camera, or other means. These configurations are depicted in FIGS. 4-6.


The camera ISP control may be in the form of writing registers to the imager/camera (such as a CMOS photosensor array of photosensing elements or pixels), sending commands to the imager, or other suitable means. As an example of master-slave control technique, the master is running in its normal mode (in other words, with automatic exposure control, gain control and white balance/color control modes), while the slave cameras are running with all above mentioned auto controls turned off. The microprocessor inside the hub/switch/gateway reads all relevant control registers from the master camera and sends them over network connection and writes these registers to the imagers or circuitry inside the slave cameras with fast enough speed. The master camera controls the slave cameras in real time with the same set of imager control parameters, and thus all of the cameras produce the same image performances in terms of exposure/gain, color, dynamic range, and/or the like. For a multi-camera system that employs these cameras, a uniformly bordered or continuous brightness and color BEV image can be reached.


The master camera may be any one of the multiple cameras of the vision system, and the system or user may select which camera acts as the master camera for a given application. Depending on the viewing mode of the multi-camera system, the network controller can assign any one of the cameras as the master and the rest of cameras as slaves. For example, with a viewing mode that includes a BEV image and an image captured by the rear view camera, the rear view camera may be selected as the master camera. In another example, with a viewing mode that includes a BEV image and an image captured by a front view camera, the front view camera may be selected as the master camera. When the ECU makes a viewing mode change, selection of master and slave decision may be made by the ECU and the configuration commands may be sent to all of the cameras to re-configure them to suitable master and slave modes.


The multi-camera vision system includes two or more cameras, such as a rearward viewing camera and a driver side sideward viewing camera and a passenger side sideward viewing camera, whereby the system may synthesize a composite image derived from image data captured by at least two of the cameras. Optionally, the vision system may utilize a forward viewing camera and the rearward viewing camera and the sideward viewing cameras disposed at the vehicle with exterior fields of view, and may be part of or may provide a display of a top-down view or bird's eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties.


The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.


The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EYEQ2 or EYEQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.


The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.


For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or International Publication Nos. WO 2011/028686; WO 2010/099416; WO 2012/061567; WO 2012/068331; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145313; WO 2012/0145501; WO 2012/145818; WO 2012/145822; WO 2012/158167; WO 2012/075250; WO 2012/0116043; WO 2012/0145501; WO 2012/154919; WO 2013/019707; WO 2013/016409; WO 2013/019795; WO 2013/067083; WO 2013/070539; WO 2013/043661; WO 2013/048994; WO 2013/063014, WO 2013/081984; WO 2013/081985; WO 2013/074604; WO 2013/086249; WO 2013/103548; WO 2013/109869; WO 2013/123161; WO 2013/126715; WO 2013/043661 and/or WO 2013/158592, and/or U.S. patent application Ser. No. 14/242,038, filed Apr. 1, 2014, now U.S. Pat. No. 9,487,159; Ser. No. 14/229,061, filed Mar. 28, 2014 and published Oct. 2, 2014 as U.S. Publication No. US-2014-0293042; Ser. No. 14/343,937, filed Mar. 10, 2014 and published Aug. 21, 2014 as U.S. Publication No. US-2014-0232872; Ser. No. 14/343,936, filed Mar. 10, 2014 and published Aug. 7, 2014 as U.S. Publication No. US-2014-0218535; Ser. No. 14/195,135, filed Mar. 3, 2014 and published Sep. 4, 2014 as U.S. Publication No. US-2014-0247354; Ser. No. 14/195,136, filed Mar. 3, 2014 and published Sep. 4, 2014 as U.S. Publication No. US-2014-0247355; Ser. No. 14/191,512, filed Feb. 27, 2014 and published Sep. 4, 2014 as U.S. Publication No. US-2014-0247352; Ser. No. 14/183,613, filed Feb. 19, 2014, now U.S. Pat. No. 9,445,057; Ser. No. 14/169,329, filed Jan. 31, 2014 and published Aug. 7, 2014 as U.S. Publication No. US-2014-0218529; Ser. No. 14/169,328, filed Jan. 31, 2014, now U.S. Pat. No. 9,092,986; Ser. No. 14/163,325, filed Jan. 24, 2014 and published Jul. 31, 2014 as U.S. Publication No. US-2014-0211009; Ser. No. 14/159,772, filed Jan. 21, 2014, now U.S. Pat. No. 9,068,390; Ser. No. 14/107,624, filed Dec. 16, 2013, now U.S. Pat. No. 9,140,789; Ser. No. 14/102,981, filed Dec. 11, 2013 and published Jun. 12, 2014 as U.S. Publication No. US-2014-0160276; Ser. No. 14/102,980, filed Dec. 11, 2013 and published Jun. 19, 2014 as U.S. Publication No. US-2014-0168437; Ser. No. 14/098,817, filed Dec. 6, 2013 and published Jun. 19, 2014 as U.S. Publication No. US-2014-0168415; Ser. No. 14/097,581, filed Dec. 5, 2013 and published Jun. 12, 2014 as U.S. Publication No. US-2014-0160291; Ser. No. 14/093,981, filed Dec. 2, 2013, now U.S. Pat. No. 8,917,169; Ser. No. 14/093,980, filed Dec. 2, 2013 and published Jun. 5, 2014 as U.S. Publication No. US-2014-0152825; Ser. No. 14/082,573, filed Nov. 18, 2013 and published May 22, 2014 as U.S. Publication No. US-2014-0139676; Ser. No. 14/082,574, filed Nov. 18, 2013, now U.S. Pat. No. 9,307,640; Ser. No. 14/082,575, filed Nov. 18, 2013, now U.S. Pat. No. 9,090,234; Ser. No. 14/082,577, filed Nov. 18, 2013, now U.S. Pat. No. 8,818,042; Ser. No. 14/071,086, filed Nov. 4, 2013, now U.S. Pat. No. 8,886,401; Ser. No. 14/076,524, filed Nov. 11, 2013, now U.S. Pat. No. 9,077,962; Ser. No. 14/052,945, filed Oct. 14, 2013 and published Apr. 17, 2014 as U.S. Publication No. US-2014-0104426; Ser. No. 14/046,174, filed Oct. 4, 2013 and published Apr. 10, 2014 as U.S. Publication No. US-2014-0098229; Ser. No. 14/016,790, filed Sep. 3, 2013 and published Mar. 6, 2014 as U.S. Publication No. US-2014-0067206; Ser. No. 14/036,723, filed Sep. 25, 2013 and published Mar. 27, 2014 as U.S. Publication No. US-2014-0085472; Ser. No. 14/016,790, filed Sep. 3, 2013 and published Mar. 6, 2014 as U.S. Publication No. US-2014-0067206; Ser. No. 14/001,272, filed Aug. 23, 2013, now U.S. Pat. No. 9,233,641; Ser. No. 13/970,868, filed Aug. 20, 2013 and published Feb. 20, 2014 as U.S. Publication No. US-2014-0049646; Ser. No. 13/964,134, filed Aug. 12, 2013, now U.S. Pat. No. 9,340,227; Ser. No. 13/942,758, filed Jul. 16, 2013 and published Jan. 23, 2014 as U.S. Publication No. US-2014-0025240; Ser. No. 13/942,753, filed Jul. 16, 2013 and published Jan. 30, 2014 as U.S. Publication No. US-2014-0028852; Ser. No. 13/927,680, filed Jun. 26, 2013 and published Jan. 2, 2014 as U.S. Publication No. US-2014-0005907; Ser. No. 13/916,051, filed Jun. 12, 2013, now U.S. Pat. No. 9,077,098; Ser. No. 13/894,870, filed May 15, 2013 and published Nov. 28, 2013 as U.S. Publication No. US-2013-0314503; Ser. No. 13/887,724, filed May 6, 2013 and published Nov. 14, 2013 as U.S. Publication No. US-2013-0298866; Ser. No. 13/852,190, filed Mar. 28, 2013 and published Aug. 29, 2013 as U.S. Publication No. US-2013-0222593; Ser. No. 13/851,378, filed Mar. 27, 2013, now U.S. Pat. No. 9,319,637; Ser. No. 13/848,796, filed Mar. 22, 2012 and published Oct. 24, 2013 as U.S. Publication No. US-2013-0278769; Ser. No. 13/847,815, filed Mar. 20, 2013 and published Oct. 31, 2013 as U.S. Publication No. US-2013-0286193; Ser. No. 13/800,697, filed Mar. 13, 2013 and published Oct. 3, 2013 as U.S. Publication No. US-2013-0258077; Ser. No. 13/785,099, filed Mar. 5, 2013 and published Sep. 19, 2013 as U.S. Publication No. US-2013-0242099; Ser. No. 13/779,881, filed Feb. 28, 2013, now U.S. Pat. No. 8,694,224; Ser. No. 13/774,317, filed Feb. 22, 2013, now U.S. Pat. No. 9,269,263; Ser. No. 13/774,315, filed Feb. 22, 2013 and published Aug. 22, 2013 as U.S. Publication No. US-2013-0215271; Ser. No. 13/681,963, filed Nov. 20, 2012, now U.S. Pat. No. 9,264,673; Ser. No. 13/660,306, filed Oct. 25, 2012, now U.S. Pat. No. 9,146,898; Ser. No. 13/653,577, filed Oct. 17, 2012, now U.S. Pat. No. 9,174,574; and/or Ser. No. 13/534,657, filed Jun. 27, 2012 and published Jan. 3, 2013 as U.S. Publication No. US-2013-0002873, and/or U.S. provisional applications, Ser. No. 61/972,708, filed Mar. 31, 2014; Ser. No. 61/972,707, filed Mar. 31, 2014; Ser. No. 61/969,474, filed Mar. 24, 2014; Ser. No. 61/955,831, filed Mar. 20, 2014; Ser. No. 61/952,335, filed Mar. 13, 2014; Ser. No. 61/952,334, filed Mar. 13, 2014; Ser. No. 61/950,261, filed Mar. 10, 2014; Ser. No. 61/950,261, filed Mar. 10, 2014; Ser. No. 61/947,638, filed Mar. 4, 2014; Ser. No. 61/947,053, filed Mar. 3, 2014; Ser. No. 61/942,568, filed Feb. 19, 2014; Ser. No. 61/935,485, filed Feb. 4, 2014; Ser. No. 61/935,057, filed Feb. 3, 2014; Ser. No. 61/935,056, filed Feb. 3, 2014; Ser. No. 61/935,055, filed Feb. 3, 2014; Ser. 61/931,811, filed Jan. 27, 2014; Ser. No. 61/919,129, filed Dec. 20, 2013; Ser. No. 61/919,130, filed Dec. 20, 2013; Ser. No. 61/919,131, filed Dec. 20, 2013; Ser. No. 61/919,147, filed Dec. 20, 2013; Ser. No. 61/919,138, filed Dec. 20, 2013, Ser. No. 61/919,133, filed Dec. 20, 2013; Ser. No. 61/918,290, filed Dec. 19, 2013; Ser. No. 61/915,218, filed Dec. 12, 2013; Ser. No. 61/912,146, filed Dec. 5, 2013; Ser. No. 61/911,666, filed Dec. 4, 2013; Ser. No. 61/911,665, filed Dec. 4, 2013; Ser. No. 61/905,461, filed Nov. 18, 2013; Ser. No. 61/905,462, filed Nov. 18, 2013; Ser. No. 61/901,127, filed Nov. 7, 2013; Ser. No. 61/895,610, filed Oct. 25, 2013; Ser. No. 61/895,609, filed Oct. 25, 2013; Ser. No. 61/879,837, filed Sep. 19, 2013; Ser. No. 61/879,835, filed Sep. 19, 2013; Ser. No. 61/878,877, filed Sep. 17, 2013; Ser. No. 61/875,351, filed Sep. 9, 2013; Ser. No. 61/869,195, filed. Aug. 23, 2013; Ser. No. 61/864,835, filed Aug. 12, 2013; Ser. No. 61/864,836, filed Aug. 12, 2013; Ser. No. 61/864,837, filed Aug. 12, 2013; Ser. No. 61/864,838, filed Aug. 12, 2013; Ser. No. 61/856,843, filed Jul. 22, 2013, Ser. No. 61/845,061, filed Jul. 11, 2013; Ser. No. 61/844,630, filed Jul. 10, 2013; Ser. No. 61/844,173, filed Jul. 9, 2013; Ser. No. 61/844,171, filed Jul. 9, 2013; Ser. No. 61/842,644, filed Jul. 3, 2013; Ser. No. 61/840,542, filed Jun. 28, 2013; Ser. No. 61/838,619, filed Jun. 24, 2013; Ser. No. 61/838,621, filed Jun. 24, 2013; Ser. No. 61/837,955, filed Jun. 21, 2013; Ser. No. 61/836,900, filed Jun. 19, 2013; Ser. No. 61/836,380, filed Jun. 18, 2013; Ser. No. 61/833,080, filed Jun. 10, 2013; Ser. No. 61/830,375, filed Jun. 3, 2013; Ser. No. 61/830,377, filed Jun. 3, 2013; Ser. No. 61/825,752, filed May 21, 2013; Ser. No. 61/825,753, filed May 21, 2013; Ser. No. 61/823,648, filed May 15, 2013; Ser. No. 61/823,644, filed May 15, 2013; Ser. No. 61/821,922, filed May 10, 2013; Ser. No. 61/819,033, filed May 3, 2013; Ser. No. 61/816,956, filed Apr. 29, 2013; Ser. No. 61/815,044, filed Apr. 23, 2013; Ser. No. 61/814,533, filed Apr. 22, 2013; Ser. No. 61/813,361, filed Apr. 18, 2013; and/or Ser. No. 61/810,407, filed Apr. 10, 2013, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO 2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, now U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.


The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and/or 6,824,281, and/or International Publication Nos. WO 2010/099416; WO 2011/028686 and/or WO 2013/016409, and/or U.S. Pat. Publication No. US 2010-0020170, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012 and published Jan. 3, 2013 as U.S. Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. Publication No. US-2009-0244361 and/or U.S. patent application Ser. No. 13/260,400, filed Sep. 26, 2011, now U.S. Pat. Nos. 8,542,451, 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580 and/or 7,965,336, and/or International Publication Nos. WO 2009/036176 and/or WO 2009/046268, which are all hereby incorporated herein by reference in their entireties.


The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.


Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451 and/or 7,480,149; and/or U.S. Publication No. US-2006-0061008 and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.


Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).


Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. Publication Nos. US-2006-0061008 and/or US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.


Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A vehicular vision system comprising: a plurality of cameras disposed at a vehicle equipped with the vehicular vision system;wherein each camera of the plurality of cameras comprises a two-dimensional imaging array of at least one million photosensors arranged in rows and columns;wherein the plurality of cameras comprises a forward viewing camera having a forward field of view at least forward of the vehicle, a rearward viewing camera having a rearward field of view at least rearward of the vehicle, a driver-side sideward viewing camera having a sideward field of view at least sideward of a driver side of the vehicle and a passenger-side sideward viewing camera having a sideward field of view at least sideward of a passenger side of the vehicle;an electronic control unit disposed at the vehicle;wherein image data captured by the plurality of cameras is provided to the electronic control unit;wherein each camera of the plurality of cameras is in communication with the other cameras of the plurality of cameras via a vehicle network;wherein, responsive to a type of driving maneuver of the vehicle, (i) the electronic control unit generates a first control signal that enables automatic control of exposure, gain and white balance of one camera of the plurality of cameras and (ii) the electronic control unit generates respective second control signals that disable automatic control of exposure, gain and white balance of at least one other camera of the plurality of cameras;wherein exposure, gain and white balance parameters of the one camera are communicated via the vehicle network from the one camera to the at least one other camera, whereby exposure, gain and white balance of the at least one other camera is controlled in accordance with the enabled automatic control of exposure, gain and white balance parameters of the one camera;wherein image data captured by the plurality of cameras is processed at the electronic control unit;wherein, responsive to processing of captured image data, composite video images derived from image data captured by the plurality of cameras are synthesized; andwherein the composite video images are displayed at a display device of the vehicle for viewing by a driver of the vehicle, and wherein the composite video images comprise bird's eye view video images derived from image data captured by the plurality of cameras.
  • 2. The vehicular vision system of claim 1, wherein each camera of the plurality of cameras is in communication with the other cameras of the plurality of cameras via an Ethernet bus.
  • 3. The vehicular vision system of claim 1, wherein image data captured by the plurality of cameras is processed at the electronic control unit to detect an object present in the respective field of view of at least one camera of the plurality of cameras.
  • 4. The vehicular vision system of claim 1, wherein, when the type of driving maneuver of the vehicle comprises a backing up maneuver, image data captured by at least the rearward viewing camera is processed at the electronic control unit to detect an object present in a rearward path of travel of the vehicle.
  • 5. The vehicular vision system of claim 1, wherein, responsive to a viewing mode change, the electronic control unit selects which camera of the plurality of cameras will be designated as the one camera, and wherein configuration commands are communicated to at least some of the plurality of cameras to re-configure them to function as the one camera or as the at least one other camera, respectively.
  • 6. The vehicular vision system of claim 1, wherein borders of adjacent image sections of the composite video images, when displayed at the display device of the vehicle for viewing by the driver of the vehicle, are uniform in brightness at the borders of the adjacent image sections.
  • 7. The vehicular vision system of claim 1, wherein borders of adjacent image sections of the composite video images, when displayed at the display device of the vehicle for viewing by the driver of the vehicle, are uniform in color at the borders of the adjacent image sections.
  • 8. The vehicular vision system of claim 1, wherein the composite video images comprise bird's eye view video images derived from image data captured by the rearward viewing camera, the driver-side sideward viewing camera, the forward viewing camera and the passenger-side sideward viewing camera.
  • 9. The vehicular vision system of claim 1, wherein, when the type of driving maneuver of the vehicle comprises a forward driving maneuver, the forward viewing camera is designated as the one camera and automatic control of exposure, gain and white balance is disabled for at least the rearward viewing camera.
  • 10. The vehicular vision system of claim 1, wherein, when the type of driving maneuver of the vehicle comprises a rearward driving maneuver, the rearward viewing camera is designated as the one camera and automatic control of exposure, gain and white balance is disabled for at least the forward viewing camera.
  • 11. The vehicular vision system of claim 1, wherein, when the type of driving maneuver of the vehicle comprises a forward driving maneuver, (i) the forward viewing camera is designated as the one camera, (ii) the rearward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera are designated as the at least one other camera, and (iii) exposure, gain and white balance parameters from the forward viewing camera are communicated, via the vehicle network, to the rearward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera.
  • 12. The vehicular vision system of claim 1, wherein, when the type of driving maneuver of the vehicle comprises a backing up maneuver, (i) the rearward viewing camera is designated as the one camera, (ii) the forward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera are designated as the at least one other camera, and (iii) exposure, gain and white balance parameters from the rearward viewing camera are communicated, via the vehicle network, to the forward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera.
  • 13. The vehicular vision system of claim 1, wherein any camera of the plurality of cameras is operable to (i) automatically control its exposure, gain and white balance responsive to the first control signal received from the electronic control unit and (ii) disable automatic control of its exposure, gain and white balance responsive to the respective second control signal received from the electronic control unit.
  • 14. A vehicular vision system comprising: a plurality of cameras disposed at a vehicle equipped with the vehicular vision system;wherein each camera of the plurality of cameras comprises a two-dimensional imaging array of at least one million photosensors arranged in rows and columns;wherein the plurality of cameras comprises a forward viewing camera having a forward field of view at least forward of the vehicle, a rearward viewing camera having a rearward field of view at least rearward of the vehicle, a driver-side sideward viewing camera having a sideward field of view at least sideward of a driver side of the vehicle and a passenger-side sideward viewing camera having a sideward field of view at least sideward of a passenger side of the vehicle;an electronic control unit disposed at the vehicle;wherein image data captured by the plurality of cameras is provided to the electronic control unit;wherein each camera of the plurality of cameras is in communication with the other cameras of the plurality of cameras via an Ethernet bus of the vehicle;wherein, responsive to a type of driving maneuver of the vehicle, (i) the electronic control unit generates a first control signal that enables automatic control of exposure, gain and white balance of one camera of the plurality of cameras and (ii) the electronic control unit generates respective second control signals that disable automatic control of exposure, gain and white balance of at least one other camera of the plurality of cameras;wherein exposure, gain and white balance parameters of the one camera are communicated via the Ethernet bus from the one camera to the at least one other camera, whereby exposure, gain and white balance of the at least one other camera is controlled in accordance with the enabled automatic control of exposure, gain and white balance parameters of the one camera;wherein image data captured by the plurality of cameras is processed at the electronic control unit;wherein, responsive to processing of captured image data, composite video images derived from image data captured by the plurality of cameras are synthesized;wherein the composite video images are displayed at a display device of the vehicle for viewing by a driver of the vehicle, and wherein the composite video images comprise bird's eye view video images derived from image data captured by the plurality of cameras; andwherein image data captured by the plurality of cameras is processed at the electronic control unit to detect an object present in the respective field of view of at least one camera of the plurality of cameras.
  • 15. The vehicular vision system of claim 14, wherein, responsive to a viewing mode change, the electronic control unit selects which camera of the plurality of cameras will be designated as the one camera, and wherein configuration commands are communicated to at least some of the plurality of cameras to re-configure them to function as the one camera or as the at least one other camera, respectively.
  • 16. The vehicular vision system of claim 14, wherein the composite video images comprise bird's eye view video images derived from image data captured by the rearward viewing camera, the driver-side sideward viewing camera, the forward viewing camera and the passenger-side sideward viewing camera.
  • 17. The vehicular vision system of claim 14, wherein, when the type of driving maneuver of the vehicle comprises a forward driving maneuver, the forward viewing camera is designated as the one camera and automatic control of exposure, gain and white balance is disabled for at least the rearward viewing camera.
  • 18. The vehicular vision system of claim 14, wherein, when the type of driving maneuver of the vehicle comprises a rearward driving maneuver, the rearward viewing camera is designated as the one camera and automatic control of exposure, gain and white balance is disabled for at least the forward viewing camera.
  • 19. The vehicular vision system of claim 14, wherein, when the type of driving maneuver of the vehicle comprises a forward driving maneuver, (i) the forward viewing camera is designated as the one camera, (ii) the rearward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera are designated as the at least one other camera, and (iii) exposure, gain and white balance parameters from the forward viewing camera are communicated, via the Ethernet bus, to the rearward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera.
  • 20. The vehicular vision system of claim 14, wherein, when the type of driving maneuver of the vehicle comprises a backing up maneuver, (i) the rearward viewing camera is designated as the one camera, (ii) the forward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera are designated as the at least one other camera, and (iii) exposure, gain and white balance parameters from the rearward viewing camera are communicated, via the Ethernet bus, to the forward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera.
  • 21. The vehicular vision system of claim 14, wherein any camera of the plurality of cameras is operable to (i) automatically control its exposure, gain and white balance responsive to the first control signal received from the electronic control unit and (ii) disable automatic control of its exposure, gain and white balance responsive to the respective second control signal received from the electronic control unit.
  • 22. A vehicular vision system comprising: a plurality of cameras disposed at a vehicle equipped with the vehicular vision system;wherein each camera of the plurality of cameras comprises a two-dimensional imaging array of at least one million photosensors arranged in rows and columns;wherein the plurality of cameras comprises a forward viewing camera having a forward field of view at least forward of the vehicle, a rearward viewing camera having a rearward field of view at least rearward of the vehicle, a driver-side sideward viewing camera having a sideward field of view at least sideward of a driver side of the vehicle and a passenger-side sideward viewing camera having a sideward field of view at least sideward of a passenger side of the vehicle;an electronic control unit disposed at the vehicle;wherein image data captured by the plurality of cameras is provided to the electronic control unit;wherein each camera of the plurality of cameras is in communication with the other cameras of the plurality of cameras via a vehicle network;wherein, responsive to a type of driving maneuver of the vehicle, (i) the electronic control unit generates a first control signal that enables automatic control of exposure, gain and white balance of one camera of the plurality of cameras and (ii) the electronic control unit generates respective second control signals that disable automatic control of exposure, gain and white balance of at least one other camera of the plurality of cameras;wherein any camera of the plurality of cameras is operable to (i) automatically control its exposure, gain and white balance responsive to the first control signal received from the electronic control unit and (ii) disable automatic control of its exposure, gain and white balance responsive to the respective second control signal received from the electronic control unit;wherein exposure, gain and white balance parameters of the one camera are communicated via the vehicle network from the one camera to the at least one other camera, whereby exposure, gain and white balance of the at least one other camera is controlled in accordance with the enabled automatic control of exposure, gain and white balance parameters of the one camera;wherein image data captured by the plurality of cameras is processed at the electronic control unit;wherein, responsive to processing of captured image data, composite video images derived from image data captured by the plurality of cameras are synthesized;wherein the composite video images are displayed at a display device of the vehicle for viewing by a driver of the vehicle, and wherein the composite video images comprise bird's eye view video images derived from image data captured by the plurality of cameras; andwherein, when the type of driving maneuver of the vehicle comprises a backing up maneuver, image data captured by at least the rearward viewing camera is processed at the electronic control unit to detect an object present in a rearward path of travel of the vehicle.
  • 23. The vehicular vision system of claim 22, wherein each camera of the plurality of cameras is in communication with the other cameras of the plurality of cameras via an Ethernet bus.
  • 24. The vehicular vision system of claim 22, wherein, when the type of driving maneuver of the vehicle comprises a forward driving maneuver, the forward viewing camera is designated as the one camera and automatic control of exposure, gain and white balance is disabled for at least the rearward viewing camera.
  • 25. The vehicular vision system of claim 22, wherein, when the type of driving maneuver of the vehicle comprises a rearward driving maneuver, the rearward viewing camera is designated as the one camera and automatic control of exposure, gain and white balance is disabled for at least the forward viewing camera.
  • 26. The vehicular vision system of claim 22, wherein, when the type of driving maneuver of the vehicle comprises a forward driving maneuver, (i) the forward viewing camera is designated as the one camera, (ii) the rearward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera are designated as the at least one other camera, and (iii) exposure, gain and white balance parameters from the forward viewing camera are communicated, via the vehicle network, to the rearward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera.
  • 27. The vehicular vision system of claim 22, wherein, when the type of driving maneuver of the vehicle comprises a backing up maneuver, (i) the rearward viewing camera is designated as the one camera, (ii) the forward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera are designated as the at least one other camera, and (iii) exposure, gain and white balance parameters from the rearward viewing camera are communicated, via the vehicle network, to the forward viewing camera, the driver-side sideward viewing camera and the passenger-side sideward viewing camera.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/798,783, filed Feb. 24, 2020, now U.S. Pat. No. 11,050,934, which is a continuation of U.S. patent application Ser. No. 16/105,195, filed Aug. 20, 2018, now U.S. Pat. No. 10,574,885, which is a continuation of U.S. patent application Ser. No. 15/707,025, filed Sep. 18, 2017, now U.S. Pat. No. 10,057,489, which is a continuation of U.S. patent application Ser. No. 15/361,749, filed Nov. 28, 2016, now U.S. Pat. No. 9,769,381, which is a continuation of U.S. patent application Ser. No. 14/269,788, filed May 5, 2014, now U.S. Pat. No. 9,508,014, which claims the filing benefits of U.S. provisional application Ser. No. 61/819,835, filed May 6, 2013, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (352)
Number Name Date Kind
4987357 Masaki Jan 1991 A
4987410 Berman et al. Jan 1991 A
4991054 Walters Feb 1991 A
5001558 Burley et al. Mar 1991 A
5003288 Wilhelm Mar 1991 A
5012082 Watanabe Apr 1991 A
5016977 Baude et al. May 1991 A
5027001 Torbert Jun 1991 A
5027200 Petrossian et al. Jun 1991 A
5044706 Chen Sep 1991 A
5050966 Berman Sep 1991 A
5055668 French Oct 1991 A
5059877 Teder Oct 1991 A
5064274 Alten Nov 1991 A
5072154 Chen Dec 1991 A
5075768 Wirtz et al. Dec 1991 A
5086253 Lawler Feb 1992 A
5096287 Kakinami et al. Mar 1992 A
5097362 Lynas Mar 1992 A
5121200 Choi Jun 1992 A
5124549 Michaels et al. Jun 1992 A
5130709 Toyama et al. Jul 1992 A
5166681 Bottesch et al. Nov 1992 A
5168378 Black Dec 1992 A
5170374 Shimohigashi et al. Dec 1992 A
5172235 Wilm et al. Dec 1992 A
5172317 Asanuma et al. Dec 1992 A
5177606 Koshizawa Jan 1993 A
5177685 Davis et al. Jan 1993 A
5182502 Slotkowski et al. Jan 1993 A
5184956 Langlais et al. Feb 1993 A
5189561 Hong Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5193029 Schofield et al. Mar 1993 A
5204778 Bechtel Apr 1993 A
5208701 Maeda May 1993 A
5208750 Kurami et al. May 1993 A
5214408 Asayama May 1993 A
5243524 Ishida et al. Sep 1993 A
5245422 Borcherts et al. Sep 1993 A
5276389 Levers Jan 1994 A
5285060 Larson et al. Feb 1994 A
5289182 Brillard et al. Feb 1994 A
5289321 Secor Feb 1994 A
5305012 Faris Apr 1994 A
5307136 Saneyoshi Apr 1994 A
5309137 Kajiwara May 1994 A
5313072 Vachss May 1994 A
5325096 Pakett Jun 1994 A
5325386 Jewell et al. Jun 1994 A
5329206 Slotkowski et al. Jul 1994 A
5331312 Kudoh Jul 1994 A
5336980 Levers Aug 1994 A
5341437 Nakayama Aug 1994 A
5343206 Ansaldi et al. Aug 1994 A
5351044 Mathur et al. Sep 1994 A
5355118 Fukuhara Oct 1994 A
5359666 Nakayama et al. Oct 1994 A
5374852 Parkes Dec 1994 A
5386285 Asayama Jan 1995 A
5394333 Kao Feb 1995 A
5406395 Wilson et al. Apr 1995 A
5408346 Trissel et al. Apr 1995 A
5410346 Saneyoshi et al. Apr 1995 A
5414257 Stanton May 1995 A
5414461 Kishi et al. May 1995 A
5416313 Larson et al. May 1995 A
5416318 Hegyi May 1995 A
5416478 Morinaga May 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5430431 Nelson Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5440428 Hegg et al. Aug 1995 A
5444478 Lelong et al. Aug 1995 A
5451822 Bechtel et al. Sep 1995 A
5457493 Leddy et al. Oct 1995 A
5461357 Yoshioka et al. Oct 1995 A
5461361 Moore Oct 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475494 Nishida et al. Dec 1995 A
5487116 Nakano et al. Jan 1996 A
5498866 Bendicks et al. Mar 1996 A
5500766 Stonecypher Mar 1996 A
5510983 Lino Apr 1996 A
5515448 Nishitani May 1996 A
5521633 Nakajima et al. May 1996 A
5528698 Kamei et al. Jun 1996 A
5529138 Shaw et al. Jun 1996 A
5530240 Larson et al. Jun 1996 A
5530420 Tsuchiya et al. Jun 1996 A
5535144 Kise Jul 1996 A
5535314 Alves et al. Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5539397 Asanuma et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5555312 Shima et al. Sep 1996 A
5555555 Sato et al. Sep 1996 A
5559695 Daily Sep 1996 A
5568027 Teder Oct 1996 A
5574443 Hsieh Nov 1996 A
5581464 Woll et al. Dec 1996 A
5594222 Caldwell Jan 1997 A
5614788 Mullins Mar 1997 A
5619370 Guinosso Apr 1997 A
5634709 Iwama Jun 1997 A
5638116 Shimoura et al. Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5648835 Uzawa Jul 1997 A
5650944 Kise Jul 1997 A
5660454 Mori et al. Aug 1997 A
5661303 Teder Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5675489 Pomerleau Oct 1997 A
5677851 Kingdon et al. Oct 1997 A
5699044 Van Lente et al. Dec 1997 A
5724316 Brunts Mar 1998 A
5737226 Olson et al. Apr 1998 A
5757949 Kinoshita et al. May 1998 A
5760826 Nayar Jun 1998 A
5760828 Cortes Jun 1998 A
5760931 Saburi et al. Jun 1998 A
5760962 Schofield et al. Jun 1998 A
5761094 Olson et al. Jun 1998 A
5765116 Wilson-Jones et al. Jun 1998 A
5781437 Wiemer et al. Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker et al. Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5837994 Stam et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5844682 Kiyomoto et al. Dec 1998 A
5845000 Breed et al. Dec 1998 A
5848802 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5850254 Takano et al. Dec 1998 A
5867591 Onda Feb 1999 A
5877707 Kowalick Mar 1999 A
5877897 Schofield et al. Mar 1999 A
5878370 Olson Mar 1999 A
5883684 Millikan et al. Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5884212 Lion Mar 1999 A
5890021 Onoda Mar 1999 A
5896085 Mori et al. Apr 1999 A
5899956 Chan May 1999 A
5904725 Iisaka et al. May 1999 A
5914815 Bos Jun 1999 A
5920367 Kajimoto et al. Jul 1999 A
5923027 Stam et al. Jul 1999 A
5938810 De Vries, Jr. et al. Aug 1999 A
5940120 Frankhouse et al. Aug 1999 A
5949331 Schofield et al. Sep 1999 A
5956181 Lin Sep 1999 A
5959367 O'Farrell et al. Sep 1999 A
5959555 Furuta Sep 1999 A
5963247 Banitt Oct 1999 A
5964822 Alland et al. Oct 1999 A
5990469 Bechtel et al. Nov 1999 A
5990649 Nagao et al. Nov 1999 A
6009336 Harris et al. Dec 1999 A
6020704 Buschur Feb 2000 A
6049171 Stam et al. Apr 2000 A
6052124 Stein et al. Apr 2000 A
6066933 Ponziana May 2000 A
6084519 Coulling et al. Jul 2000 A
6087953 DeLine et al. Jul 2000 A
6091833 Yasui et al. Jul 2000 A
6097024 Stam et al. Aug 2000 A
6100811 Hsu et al. Aug 2000 A
6139172 Bos et al. Oct 2000 A
6144022 Tenenbaum et al. Nov 2000 A
6158655 DeVries, Jr. et al. Dec 2000 A
6175300 Kendrick Jan 2001 B1
6201642 Bos Mar 2001 B1
6222460 DeLine et al. Apr 2001 B1
6226061 Tagusa May 2001 B1
6243003 DeLine et al. Jun 2001 B1
6250148 Lynam Jun 2001 B1
6259412 Duroux Jul 2001 B1
6259423 Tokito et al. Jul 2001 B1
6266082 Yonezawa et al. Jul 2001 B1
6266442 Laumeyer et al. Jul 2001 B1
6285393 Shimoura et al. Sep 2001 B1
6285778 Nakajima et al. Sep 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6313454 Bos et al. Nov 2001 B1
6317057 Lee Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6333759 Mazzilli Dec 2001 B1
6359392 He Mar 2002 B1
6370329 Teuchert Apr 2002 B1
6396397 Bos et al. May 2002 B1
6411328 Franke et al. Jun 2002 B1
6424273 Gutta et al. Jul 2002 B1
6430303 Naoi et al. Aug 2002 B1
6433817 Guerra Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6477464 McCarthy et al. Nov 2002 B2
6485155 Duroux et al. Nov 2002 B1
6497503 Dassanayake et al. Dec 2002 B1
6539306 Turnbull Mar 2003 B2
6547133 Devries, Jr. et al. Apr 2003 B1
6553130 Lemelson et al. Apr 2003 B1
6559435 Schofield et al. May 2003 B2
6570998 Ohtsuka et al. May 2003 B1
6574033 Chui et al. Jun 2003 B1
6578017 Ebersole et al. Jun 2003 B1
6587573 Stam et al. Jul 2003 B1
6589625 Kothari et al. Jul 2003 B1
6593011 Liu et al. Jul 2003 B2
6593698 Stam et al. Jul 2003 B2
6594583 Ogura et al. Jul 2003 B2
6611202 Schofield et al. Aug 2003 B2
6611610 Stam et al. Aug 2003 B1
6627918 Getz et al. Sep 2003 B2
6631316 Stam et al. Oct 2003 B2
6631994 Suzuki et al. Oct 2003 B2
6636258 Strumolo Oct 2003 B2
6672731 Schnell et al. Jan 2004 B2
6678056 Downs Jan 2004 B2
6690268 Schofield et al. Feb 2004 B2
6693524 Payne Feb 2004 B1
6700605 Toyoda et al. Mar 2004 B1
6703925 Steffel Mar 2004 B2
6704621 Stein et al. Mar 2004 B1
6711474 Treyz et al. Mar 2004 B1
6714331 Lewis et al. Mar 2004 B2
6717610 Bos et al. Apr 2004 B1
6735506 Breed et al. May 2004 B2
6744353 Sjonell Jun 2004 B2
6757109 Bos Jun 2004 B2
6762867 Lippert et al. Jul 2004 B2
6795221 Urey Sep 2004 B1
6807287 Hermans Oct 2004 B1
6823241 Shirato et al. Nov 2004 B2
6824281 Schofield et al. Nov 2004 B2
6847487 Burgner Jan 2005 B2
6864930 Matsushita et al. Mar 2005 B2
6882287 Schofield Apr 2005 B2
6889161 Winner et al. May 2005 B2
6909753 Meehan et al. Jun 2005 B2
6946978 Schofield Sep 2005 B2
6975775 Rykowski et al. Dec 2005 B2
7004593 Weller et al. Feb 2006 B2
7004606 Schofield Feb 2006 B2
7005974 McMahon et al. Feb 2006 B2
7038577 Pawlicki et al. May 2006 B2
7062300 Kim Jun 2006 B1
7065432 Moisel et al. Jun 2006 B2
7085637 Breed et al. Aug 2006 B2
7092548 Laumeyer et al. Aug 2006 B2
7113867 Stein Sep 2006 B1
7116246 Winter et al. Oct 2006 B2
7133661 Hatae et al. Nov 2006 B2
7149613 Stam et al. Dec 2006 B2
7151996 Stein Dec 2006 B2
7195381 Lynam et al. Mar 2007 B2
7202776 Breed Apr 2007 B2
7224324 Quist et al. May 2007 B2
7227459 Bos et al. Jun 2007 B2
7227611 Hull et al. Jun 2007 B2
7375803 Bamji May 2008 B1
7423821 Bechtel et al. Sep 2008 B2
7541743 Salmeen et al. Jun 2009 B2
7565006 Stam et al. Jul 2009 B2
7566851 Stein et al. Jul 2009 B2
7605856 Imoto Oct 2009 B2
7633383 Dunsmoir et al. Dec 2009 B2
7639149 Katoh Dec 2009 B2
7676087 Dhua et al. Mar 2010 B2
7720580 Higgins-Luthman May 2010 B2
7786898 Stein et al. Aug 2010 B2
7843451 Lafon Nov 2010 B2
7855778 Yung et al. Dec 2010 B2
7930160 Hosagrahara et al. Apr 2011 B1
7949486 Denny et al. May 2011 B2
8017898 Lu et al. Sep 2011 B2
8064643 Stein et al. Nov 2011 B2
8082101 Stein et al. Dec 2011 B2
8164628 Stein et al. Apr 2012 B2
8224031 Saito Jul 2012 B2
8233045 Luo et al. Jul 2012 B2
8254635 Stein et al. Aug 2012 B2
8300886 Hoffmann Oct 2012 B2
8378851 Stein et al. Feb 2013 B2
8421865 Euler et al. Apr 2013 B2
8452055 Stein et al. May 2013 B2
8553088 Stein et al. Oct 2013 B2
9508014 Lu et al. Nov 2016 B2
9769381 Lu Sep 2017 B2
10057489 Lu Aug 2018 B2
10574885 Lu Feb 2020 B2
11050934 Lu Jun 2021 B2
20010002451 Breed May 2001 A1
20020005778 Breed et al. Jan 2002 A1
20020011611 Huang et al. Jan 2002 A1
20020113873 Williams Aug 2002 A1
20030103142 Hitomi et al. Jun 2003 A1
20030137586 Lewellen Jul 2003 A1
20030222982 Hamdan et al. Dec 2003 A1
20040164228 Fogg et al. Aug 2004 A1
20050219852 Stam et al. Oct 2005 A1
20050237385 Kosaka et al. Oct 2005 A1
20060018511 Stam et al. Jan 2006 A1
20060018512 Stam et al. Jan 2006 A1
20060044160 Hong Mar 2006 A1
20060091813 Stam et al. May 2006 A1
20060103727 Tseng May 2006 A1
20060250501 Wildmann et al. Nov 2006 A1
20070024724 Stein et al. Feb 2007 A1
20070104476 Yasutomi et al. May 2007 A1
20070242339 Bradley Oct 2007 A1
20070285282 Nakayama Dec 2007 A1
20080043099 Stein et al. Feb 2008 A1
20080147321 Howard et al. Jun 2008 A1
20080186382 Tauchi Aug 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080266396 Stein Oct 2008 A1
20090113509 Tseng et al. Apr 2009 A1
20090160987 Bechtel et al. Jun 2009 A1
20090190015 Bechtel et al. Jul 2009 A1
20090256938 Bechtel et al. Oct 2009 A1
20090290032 Zhang et al. Nov 2009 A1
20110216201 McAndrew et al. Sep 2011 A1
20110310219 Kim et al. Dec 2011 A1
20120045112 Lundblad et al. Feb 2012 A1
20120069185 Stein Mar 2012 A1
20120194735 Luo Aug 2012 A1
20120200707 Stein et al. Aug 2012 A1
20120314071 Rosenbaum et al. Dec 2012 A1
20120320209 Vico et al. Dec 2012 A1
20130141580 Stein et al. Jun 2013 A1
20130147957 Stein Jun 2013 A1
20130169812 Lu et al. Jul 2013 A1
20130286193 Pflug Oct 2013 A1
20140043473 Gupta et al. Feb 2014 A1
20140063254 Shi et al. Mar 2014 A1
20140098229 Lu et al. Apr 2014 A1
20140240492 Lee Aug 2014 A1
20140247352 Rathi et al. Sep 2014 A1
20140247354 Knudsen Sep 2014 A1
20140320658 Pliefke Oct 2014 A1
20140333729 Pflug Nov 2014 A1
20140347486 Okouneva Nov 2014 A1
20140350834 Turk Nov 2014 A1
Foreign Referenced Citations (17)
Number Date Country
0640903 Mar 1995 EP
2377094 Oct 2011 EP
S58110334 Jun 1983 JP
59114139 Jul 1984 JP
6080953 May 1985 JP
S6216073 Apr 1987 JP
6414700 Jan 1989 JP
H1168538 Jul 1989 JP
H236417 Aug 1990 JP
H2117935 Sep 1990 JP
3099952 Apr 1991 JP
6227318 Aug 1994 JP
07105496 Apr 1995 JP
2630604 Jul 1997 JP
200274339 Mar 2002 JP
200383742 Mar 2003 JP
20041658 Jan 2004 JP
Non-Patent Literature Citations (9)
Entry
Achler et al., “Vehicle Wheel Detector using 2D Filter Banks,” IEEE Intelligent Vehicles Symposium of Jun. 2004.
Broggi et al., “Multi-Resolution Vehicle Detection using Artificial Vision,” IEEE Intelligent Vehicles Symposium of Jun. 2004.
Broggi et al., “Self-Calibration of a Stereo Vision System for Automotive Applications”, Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, KR, May 21-26, 2001.
Miro, “Real-Time Image Stitching for Automotive 360° Vision Systems”, Audio Visual Engineering, Barcelona, Jul. 2014.
Porter et al., “Compositing Digital Images,” Computer Graphics (Proc. Siggraph), vol. 18, No. 3, pp. 253-259, Jul. 1984.
Stenkula, “Vehicle Vicinity from Above: a study of All-Around Environment Displaying System for Heavy Vehicles”, Master of Science Thesis, Stockholm, SE 2009.
Szeliski, Image Mosaicing for Tele-Reality Applications, DEC Cambridge Research Laboratory, CRL 94/2, May 1994.
Wolberg, “A Two-Pass Mesh Warping Implementation of Morphing,” Dr. Dobb's Journal, No. 202, Jul. 1993.
Wolberg, Digital Image Warping, IEEE Computer Society Press, 1990.
Related Publications (1)
Number Date Country
20210329167 A1 Oct 2021 US
Provisional Applications (1)
Number Date Country
61819835 May 2013 US
Continuations (5)
Number Date Country
Parent 16798783 Feb 2020 US
Child 17304860 US
Parent 16105195 Aug 2018 US
Child 16798783 US
Parent 15707025 Sep 2017 US
Child 16105195 US
Parent 15361749 Nov 2016 US
Child 15707025 US
Parent 14269788 May 2014 US
Child 15361749 US