The present invention relates to semiconductor device fabrication. More particularly, the present invention relates to a method of fabricating vertical devices using a metal support layer.
Light emitting diodes (“LEDs”) are well-known semiconductor devices that convert electrical current into light. The color (wavelength) of the light that is emitted by an LED depends on the semiconductor material that is used to fabricate the LED. This is because the wavelength of the emitted light depends on the semiconductor material's band-gap, which represents the energy difference between the material's valence band and conduction band electrons.
Gallium-Nitride (GaN) has gained much attention from LED researchers. One reason for this is that GaN can be combined with indium to produce InGaN/GaN semiconductor layers that emit green, blue, and white light. This wavelength control ability enables an LED semiconductor designer to tailor material characteristics to achieve beneficial device characteristics. For example, GaN enables an LED semiconductor designer to produce blue LEDs, which are beneficial in optical recordings, and white LEDs, which can replace incandescent lamps.
Because of the foregoing and other advantageous, the market for GaN-based LEDs is rapidly growing. Accordingly, GaN-based opto-electronic device technology has rapidly evolved since their commercial introduction in 1994. Because the efficiency of GaN light emitting diodes has surpassed that of incandescent lighting, and is now comparable with that of fluorescent lighting, the market for GaN based LEDs is expected to continue its rapid growth.
Despite the rapid development of GaN device technology, GaN devices are too expensive for many applications. One reason for this is the high cost of manufacturing GaN-based devices, which in turn is related to the difficulties of growing GaN epitaxial layers and of subsequently dicing out completed GaN-based devices.
GaN-based devices are typically fabricated on sapphire substrates. This is because sapphire wafers are commercially available in dimensions that are suitable for mass-producing GaN-based devices, because sapphire supports relatively high-quality GaN epitaxial layer growths, and because of the extensive temperature handling capability of sapphire.
Typically, GaN-based devices are fabricated on 2″ diameter sapphire waters that are either 330 or 430 microns thick. Such a diameter enables the fabrication of thousands of individual devices, while the thickness is sufficient to support device fabrication without excessive wafer warping. Furthermore, sapphire is chemically and thermally stable, has a high melting temperature that enables high temperature fabrication processes, has a high bonding energy (122.4 Kcal/mole), and a high dielectric constant. Chemically, sapphires are crystalline aluminum oxide, Al2O3.
Fabricating semiconductor devices on sapphire is typically performed by growing an n-GaN epitaxial layer on a sapphire substrate using metal oxide chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). Then, a plurality of individual devices, such as GaN LEDs, is fabricated on the epitaxial layer using normal semiconductor processing techniques. After the individual devices are fabricated they must be diced out (separated) of the sapphire substrate. However, since sapphires are extremely hard, are chemically resistant, and do not have natural cleave angles, sapphire substrates are difficult to dice. Indeed, dicing typically requires that the sapphire substrate be thinned to about 100 microns by mechanical grinding, lapping, and/or polishing. It should be noted that such mechanical steps are time consuming and expensive, and that such steps reduce device yields. Even after thinning sapphires remain difficult to dice. Thus, after thinning and polishing, the sapphire substrate is usually attached to a supporting tape. Then, a diamond saw or stylus forms scribe lines between the individual devices. Such scribing typically requires at least half an hour to process one substrate, adding even more to the manufacturing costs. Additionally, since the scribe lines have to be relatively wide to enable subsequent dicing, the device yields are reduced, adding even more to manufacturing costs. After scribing, the sapphire substrates can be rolled using a rubber roller or struck with a knife-edge to produce stress cracks that can be used to dice out the individual semiconductor devices. Such mechanical handling reduces yields even more.
Of note, because sapphire is an insulator the LED device topologies that are available when using sapphire substrates (or other insulating substrates) are, in practice, limited to lateral and vertical topologies. In the lateral topology the metallic electrical contacts that are used to inject electrical current into the LED are both located on upper surfaces (or on the same side of the substrate). In the vertical topology one metallic contact is on an upper surface, the sapphire (insulating) substrate is removed, and the other contact is located on a lower surface.
Referring now to
However, most GaN-based LEDs fabricated with a lateral topology. This is primarily because of the difficulties of removing the insulating substrate and of handling the GaN wafer structure without a supporting substrate. Despite these problems, removal of an insulation (growth) substrate and subsequent wafer bonding of the resulting GaN-based wafer on a Si substrate using Pd/In metal layers has been demonstrated for very small area wafers, approx. 1 cm by 1 cm. But, substrate removal and subsequent wafer bonding of large area wafers remains very difficult due to inhomogeneous bonding between the GaN wafer and the 2nd (substitutional) substrate. This is mainly due to wafer bowing during and after laser lift off
Thus, it is apparent that a new method of fabricating vertical topology devices would be beneficial. In particular, a method that provides for mechanical stability of semiconductor wafer layers, that enables vertical topology electrical contact formation, and that improves heat dissipation would be highly useful, particularly with devices subject to high electrical currents, such as laser diodes or high-power LEDs. Beneficially, such a method would enable forming multiple semiconductor layers on an insulating substrate, the adding of a top support metal layer that provides for top electrical contacts and for structural stability, and the removal of the insulating substrate. Of particular benefit would be a new method of forming partially fabricated semiconductor devices on a sapphire (or other insulating) substrate, the adding of a top support metal layer over the partially fabricated semiconductor layers, the removal of the sapphire (or other insulating) substrate, the formation of bottom electrical contacts, and the dicing of the top support metal layer to yield a plurality of devices. Specifically advantageous would be fabrication process that produces vertical topology GaN-based LEDs.
The following summary of the invention is provided to facilitate an understanding of some of the innovative features unique to the present invention, and is not intended to be a full description. A full appreciation of the various aspects of the invention can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
The principles of the present invention provide for a method of fabricating semiconductor devices on insulating substrates by first forming semiconductor layers on the insulating substrate, followed by forming a metal layer over the semiconductor layers, followed by removal of the insulating substrate to isolate a structurally supported wafer comprised of the formed semiconductor layers and the metal layer. The metal layer supports the semiconductor layers to prevent warping and/or other damage and provides for electrical contacts. Beneficially, the metal layer includes a metal, such as Cu, Cr, Ni, Au, Ag, Mo, Pt, Pd, W, or Al, or a metal containing material such as titanium nitride. Forming of the metal layer can be performed in numerous ways, for example, by electroplating, by electro-less plating, by CVD, or by sputtering. Subsequently, bottom electrical contacts can be added to the semiconductor layers and then individual semiconductor devices can be diced from the resulting structure.
The principles of the present invention further provide for a method of fabricating vertical topology GaN-based devices on an insulating substrate by the use of a metal support film and by the subsequent removal of the insulating substrate. According to that method, semiconductor layers for the GaN-based devices are formed on an insulating (sapphire) substrate using normal semiconductor fabrication techniques. Then, trenches that define the boundaries of the individual devices are formed through the semiconductor layers. Those trenches may also be formed into the insulating substrate. Trench forming is beneficially performed using inductive coupled plasma reactive ion etching (ICPRIE). The trenches are then filled with an easily removed layer (such as a photo-resist). A metal support structure is then formed on the semiconductor layers. Beneficially, the metal support structure includes a metal, such as Cu, Cr, Ni, Au, Ag, Mo, Pt, Pd, W, or Al, or a metal-containing material such as titanium nitride. Forming of the metal support structure can be performed in numerous ways, for example, by electroplating, by electro-less plating, by CVD, or by sputtering. The insulating substrate is then removed, beneficially using a laser-lift off process. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
The principles of the present invention specifically provide for a method of fabricating vertical topology GaN-based LEDs on sapphire substrates. According to that method, semiconductor layers for the vertical topology GaN-based LEDs are formed on a sapphire substrate using normal semiconductor fabrication techniques. Then, trenches that define the boundaries of the individual vertical topology GaN-based LEDs are formed through the semiconductor layers. Those trenches may also be formed into the sapphire substrate. Trench forming is beneficially performed using inductive coupled plasma reactive ion etching (ICPRIE). Beneficially, the trenches are fabricated using ICPRIE. The trenches are then beneficially filled with an easily removed layer (such as a photo-resist). A metal support structure is then formed on the semiconductor layers. Beneficially, the metal support structure includes a metal, such as Cu, Cr, Ni, Au, Ag, Mo, Pt, Pd, W, or Al, or a metal-containing material such as titanium nitride. Forming of the metal layer can be performed in numerous ways, for example, by electroplating, by electro-less plating, by CVD, or by sputtering. The sapphire substrate is then removed, beneficially using a laser-lift off process. Electrical contacts, a passivation layer, and metallic pads are then added to the individual LEDs, and the individual LEDs are then diced out.
The novel features of the present invention will become apparent to those of skill in the art upon examination of the following detailed description of the invention or can be learned by practice of the present invention. It should be understood, however, that the detailed description of the invention and the specific examples presented, while indicating certain embodiments of the present invention, are provided for illustration purposes only because various changes and modifications within the spirit and scope of the invention will become apparent to those of skill in the art from the detailed description of the invention and claims that follow.
The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form part of the specification, further illustrate the present invention and, together with the detailed description of the invention, serve to explain the principles of the present invention.
In the drawings:
The principles of the present invention provide for methods of fabricating semiconductor devices, such as GaN-based vertical topology LEDs, on insulating substrates, such as sapphire substrates, using metal support films. While those principles are illustrated in a detailed description of a method of fabricating vertical topology GaN-based LEDs on a sapphire substrate, those principles are broader than that illustrated method. Therefore, the principles of the present invention are to be limited only by the appended claims as understood under United States Patent Laws.
Referring now to
Still referring to
Referring now to
Because of the hardness of sapphire and GaN, the trenches 130 are beneficially formed in the structure of
In the illustrated example, the photo-resist is beneficially spin coated to a thickness of about 10 microns. However, in general, the photo-resist thickness should be about the same as the thickness of the vertical topology GaN-based LED layer structure plus the etch depth into the sapphire substrate 122. This helps ensure that the photo-resist mask remains intact during etching. Because it is difficult to form a thick photo-resist coating in one step, the photo-resist can be applied in two coats, each about 5 microns thick. The first photo-resist coat is spin coated on and then soft baked, for example, at 90° F. for about 15 minutes. Then, the second photo-resist coat is applied in a similar manner, but is soft baked, for example, at 110° F. for about 8 minutes. The photo-resist coating is then patterned to form the scribe lines. This is beneficially performed using lithographic techniques and development. Development takes a relatively long time because of the thickness of the photo-resist coating. After development, the photo-resist pattern is hard baked, for example, at about 80° F. for about 30 minutes. Then, the hard baked photo-resist is beneficially dipped in a MCB (Metal Chlorobenzene) treatment for about 3.5 minutes. Such dipping further hardens the photo-resist.
After the scribe lines are defined, the structure of
Still referring to
Referring now to
As shown in
Referring now to
Turning now to
Laser lift off processes are described in U.S. Pat. No. 6,071,795 to Cheung et al., entitled, “Separation of Thin Films From Transparent Substrates By Selective Optical Processing,” issued on Jun. 6, 2000, and in Kelly et al. “Optical process for liftoff of group III-nitride films”, Physica Status Solidi (a) vol. 159, 1997, pp. R3-R4. Beneficially, the metal support layer 156 fully supports the individual LED semiconductor structures during and after separation of the sapphire substrate.
Still referring to
Turning now to
Turning now to
Turning now to
Turning now to
After the metal pads 164 are formed, individual devices can be diced out. Referring now to
The foregoing has described forming trenches 130 before laser lift off of the sapphire substrate 122. However, this is not required. The sapphire substrate 122 could be removed first, and then trenches 130 can be formed.
The embodiments and examples set forth herein are presented to best explain the present invention and its practical application and to thereby enable those skilled in the art to make and utilize the invention. Those skilled in the art, however, will recognize that the foregoing description and examples have been presented for the purpose of illustration and example only. Other variations and modifications of the present invention will be apparent to those of skill in the art, and it is the intent of the appended claims that such variations and modifications be covered. The description as set forth is not intended to be exhaustive or to limit the scope of the invention. Many modifications and variations are possible in light of the above teaching without departing from the spirit and scope of the following claims. It is contemplated that the use of the present invention can involve components having different characteristics. It is intended that the scope of the present invention be defined by the claims appended hereto, giving full cognizance to equivalents in all respects.
This Application is a Continuation of U.S. patent application Ser. No. 16/268,161 filed Feb. 5, 2019, which is a Continuation of U.S. patent application Ser. No. 15/831,084 filed Dec. 4, 2017 (now U.S. Pat. No. 10,243,101 issued on Mar. 26, 2019), which is a Continuation of U.S. patent application Ser. No. 15/261,172 filed on Sep. 9, 2016 (now U.S. Pat. No. 9,882,084 issued on Jan. 30, 2018), which is a Continuation of U.S. patent application Ser. No. 14/950,773 filed on Nov. 24, 2015 (now U.S. Pat. No. 9,472,727 issued on Oct. 18, 2016), which is a Continuation of U.S. patent application Ser. No. 14/496,076 filed on Sep. 25, 2014 (now U.S. Pat. No. 9,224,907 issued on Dec. 29, 2015), which is a Continuation of U.S. patent application Ser. No. 14/098,185 filed on Dec. 5, 2013 (now U.S. Pat. No. 8,896,017 issued on Nov. 25, 2014), which is a Continuation of U.S. patent application Ser. No. 13/750,376 filed on Jan. 25, 2013 (now U.S. Pat. No. 8,809,898 issued on Aug. 19, 2014), which is a Continuation of U.S. patent application Ser. No. 13/047,371 filed on Mar. 14, 2011 (now U.S. Pat. No. 8,384,120 issued on Feb. 26, 2013), which is a Continuation of U.S. patent application Ser. No. 12/797,335 filed on Jun. 9, 2010 (now U.S. Pat. No. 7,928,465 issued on Apr. 19, 2011), which is a Continuation of U.S. patent application Ser. No. 12/458,703 filed on Jul. 21, 2009 (now U.S. Pat. No. 7,816,705 issued on Oct. 19, 2010), which is a Continuation of U.S. patent application Ser. No. 11/002,413 filed on Dec. 3, 2004 (now U.S. Pat. No. 7,569,865 issued on Aug. 4, 2009), which is a Divisional of U.S. patent application Ser. No. 10/118,316 filed on Apr. 9, 2002, all of which are hereby expressly incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
3602982 | Kooi | Sep 1971 | A |
4141135 | Henry et al. | Feb 1979 | A |
4210878 | Yonezu | Jul 1980 | A |
4406052 | Cogan | Sep 1983 | A |
4966862 | Edmond | Oct 1990 | A |
5034068 | Glenn et al. | Jul 1991 | A |
5040044 | Noguchi et al. | Aug 1991 | A |
5210051 | Carter, Jr. | May 1993 | A |
5429954 | Gerner | Jul 1995 | A |
5504036 | Dekker et al. | Apr 1996 | A |
5620557 | Manabe et al. | Apr 1997 | A |
5661074 | Tischler | Aug 1997 | A |
5712504 | Yano et al. | Jan 1998 | A |
5739554 | Edmond et al. | Apr 1998 | A |
5786606 | Nishio et al. | Jul 1998 | A |
5862167 | Sassa et al. | Jan 1999 | A |
5874747 | Redwing et al. | Feb 1999 | A |
5925896 | Dutta | Jul 1999 | A |
5929466 | Ohba et al. | Jul 1999 | A |
5959307 | Nakamura et al. | Sep 1999 | A |
5959401 | Asami et al. | Sep 1999 | A |
5972781 | Wegleiter et al. | Oct 1999 | A |
6036823 | Inoguchi et al. | Mar 2000 | A |
6041515 | Ally et al. | Mar 2000 | A |
6067309 | Onomura et al. | Mar 2000 | A |
6063643 | Dutta | May 2000 | A |
6066861 | Höhn et al. | May 2000 | A |
6071795 | Cheung et al. | Jun 2000 | A |
6078064 | Ming-Jiunn et al. | Jun 2000 | A |
6093965 | Nakamura et al. | Jul 2000 | A |
6100104 | Haerle | Aug 2000 | A |
6100545 | Chiyo et al. | Aug 2000 | A |
6120600 | Edmond et al. | Sep 2000 | A |
6133589 | Krames et al. | Oct 2000 | A |
6172382 | Nagahama et al. | Jan 2001 | B1 |
6281526 | Nitta et al. | Aug 2001 | B1 |
6303405 | Yoshida et al. | Oct 2001 | B1 |
6319742 | Hayashi et al. | Nov 2001 | B1 |
6320206 | Coman et al. | Nov 2001 | B1 |
6326294 | Jang et al. | Dec 2001 | B1 |
6329216 | Matsumoto et al. | Dec 2001 | B1 |
6335217 | Chiyo et al. | Jan 2002 | B1 |
6339010 | Sameshima | Jan 2002 | B2 |
6350998 | Tsuji | Feb 2002 | B1 |
6358770 | Itoh et al. | Mar 2002 | B2 |
6365429 | Kneissl et al. | Apr 2002 | B1 |
6388275 | Kano | May 2002 | B1 |
6410942 | Thibeault et al. | Jun 2002 | B1 |
6426512 | Ito et al. | Jul 2002 | B1 |
6459712 | Tanaka et al. | Oct 2002 | B2 |
6479836 | Suzuki et al. | Nov 2002 | B1 |
6479839 | Nikolaev et al. | Nov 2002 | B2 |
6510195 | Chappo et al. | Jan 2003 | B1 |
6545296 | Mukaihara et al. | Apr 2003 | B1 |
6555405 | Chen et al. | Apr 2003 | B2 |
6562648 | Wong et al. | May 2003 | B1 |
6614060 | Wang et al. | Sep 2003 | B1 |
6620643 | Koike | Sep 2003 | B1 |
6624491 | Waitl et al. | Sep 2003 | B2 |
6639925 | Niwa et al. | Oct 2003 | B2 |
6677173 | Ota | Jan 2004 | B2 |
6709884 | Miyazaki | Mar 2004 | B2 |
6711192 | Chikuma et al. | Mar 2004 | B1 |
6744071 | Sano et al. | Jun 2004 | B2 |
6744196 | Jeon | Jun 2004 | B1 |
6746889 | Eliashevich et al. | Jun 2004 | B1 |
6765232 | Takahashi et al. | Jul 2004 | B2 |
6784463 | Camras et al. | Aug 2004 | B2 |
6791118 | Furukawa et al. | Sep 2004 | B2 |
6800500 | Coman et al. | Oct 2004 | B2 |
6803603 | Nitta et al. | Oct 2004 | B1 |
6818531 | Yoo et al. | Nov 2004 | B1 |
6846686 | Saeki et al. | Jan 2005 | B2 |
6869820 | Chen | Mar 2005 | B2 |
6936488 | D'Evelyn et al. | Aug 2005 | B2 |
6954034 | Morishita | Oct 2005 | B2 |
6955936 | Uemura et al. | Oct 2005 | B2 |
6960488 | Brosnihan et al. | Nov 2005 | B2 |
7084566 | Nakayama et al. | Aug 2006 | B2 |
7109529 | Uemura et al. | Sep 2006 | B2 |
7125736 | Morita | Oct 2006 | B2 |
7148520 | Yoo | Dec 2006 | B2 |
7250638 | Lee et al. | Jul 2007 | B2 |
7496124 | Kozaki et al. | Feb 2009 | B2 |
7569865 | Lee et al. | Aug 2009 | B2 |
7572478 | Ogura et al. | Aug 2009 | B2 |
7816705 | Lee et al. | Oct 2010 | B2 |
7928465 | Lee et al. | Apr 2011 | B2 |
7977701 | Hayashi et al. | Jul 2011 | B2 |
8049418 | Yamazaki et al. | Nov 2011 | B2 |
8653542 | Hsia | Feb 2014 | B2 |
9368939 | McLaurin | Jun 2016 | B2 |
9583466 | McGroddy | Feb 2017 | B2 |
20010014391 | Forrest et al. | Aug 2001 | A1 |
20010019134 | Chang et al. | Sep 2001 | A1 |
20010022390 | Waitl et al. | Sep 2001 | A1 |
20010028062 | Uemura et al. | Oct 2001 | A1 |
20010042866 | Coman et al. | Nov 2001 | A1 |
20010055324 | Ota | Dec 2001 | A1 |
20020079506 | Komoto et al. | Jun 2002 | A1 |
20020081800 | Morita | Jun 2002 | A1 |
20020137244 | Chen et al. | Sep 2002 | A1 |
20020163302 | Nitta et al. | Nov 2002 | A1 |
20030143772 | Chen | Jul 2003 | A1 |
20040033638 | Bader | Feb 2004 | A1 |
20040051105 | Tsuda et al. | Mar 2004 | A1 |
20040056254 | Bader | Mar 2004 | A1 |
20040259279 | Erchak et al. | Dec 2004 | A1 |
20060027831 | Kioke et al. | Feb 2006 | A1 |
20060060866 | Tezen | Mar 2006 | A1 |
20060175681 | Li | Aug 2006 | A1 |
20060289886 | Sakai | Dec 2006 | A1 |
20070020790 | Erchak et al. | Jan 2007 | A1 |
20070048885 | Jeon | Mar 2007 | A1 |
20070122994 | Sonobe et al. | May 2007 | A1 |
20110037051 | Lin | Feb 2011 | A1 |
20160315218 | Bour | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
10022879 | Dec 2000 | DE |
10044500 | Apr 2002 | DE |
0404565 | Dec 1990 | EP |
1168460 | Jan 2002 | EP |
2 346 478 | Aug 2000 | GB |
4-29374 | Jan 1992 | JP |
5-304315 | Nov 1993 | JP |
6-302856 | Oct 1994 | JP |
6-302857 | Oct 1994 | JP |
7-66450 | Mar 1995 | JP |
9-8403 | Jan 1997 | JP |
10-150220 | Jun 1998 | JP |
11-68157 | Mar 1999 | JP |
11-74560 | Mar 1999 | JP |
11-150301 | Jun 1999 | JP |
11-168236 | Jun 1999 | JP |
11-238913 | Aug 1999 | JP |
11-330552 | Nov 1999 | JP |
2000-77713 | Mar 2000 | JP |
2000-101139 | Apr 2000 | JP |
2000-106473 | Apr 2000 | JP |
2000-315819 | Nov 2000 | JP |
2000-323797 | Nov 2000 | JP |
2001-144321 | May 2001 | JP |
2001-244503 | Sep 2001 | JP |
2001-274507 | Oct 2001 | JP |
2001-339100 | Dec 2001 | JP |
2002-9337 | Jan 2002 | JP |
2005-522873 | Jul 2005 | JP |
10-2002-0000141 | Jan 2002 | KR |
WO 0182384 | Nov 2001 | WO |
Entry |
---|
Chang et al., “The silicon nitried film formed by ECR-CVD for GaN-based LED passivation,” Physica Status Solidi (a), Nov. 22, 2001, vol. 188, No. 1, pp. 175-178. |
Doverspike et al., “Status of nitride based light emitting and laser diodes on SiC,” Mater. Res. Soc. Symp. Proc., vol. 482, Jan. 1997, pp. 1169. |
Herman et al., “Molecular Beam Epitaxy: Fundamentals and Current Status,” Springer-Verlag, New York, vol. 7, 1996. |
Hughes et al., “Molecular beam epitaxy growth and properties of GaN films on GaN/SiC substrates,” J. Vac. Sci. Technol. B, vol. 13, 1995, pp. 1571. |
Johnson et al., “A critical comparison between Movpe and MBE growth of III-V nitride semiconductor materials for opto-electronic device applications,” Jan. 1998, vol. 537, Mater. Res. Soc. Symp. Proc., G5.10. |
Johnson et al., “MBE Growth of III-V Nitride Films and Quantum-well structures using multiple RF plasma sources,” Mater. Res. Soc. Symp. Proc., vol. 449, Jan. 1996, pp. 271. |
Kelly et al., “Optical Process for Liftoff of Group III-nitride Films,” Physica Status Solidi (a), vol. 159, issue 1, Jan. 1997, pp. R3-R4. |
Kneissl et al., “Continuous-Wave Operation of InGaN Multiple-Quantum-Well Laser Diodes on Copper Substrates Obtained by Laser Liftoff,” IEEE Journal on Selected Topics in Quantum Electronics, Mar./Apr. 2001, vol. 7, No. 2, pp. 188-191. |
Nakamura et al., “The Blue Laser Diode,” Chapter 10, InGaN Single-Quantum-Well Leds, Springer-Verlag, New York., 1996. |
Pearton, “GaN and Related Materials,” Gordon and Breach Science Publishers, Netherlands, Oct. 29, 1997. |
Riechert et al., “MBE Growth of (In)GaN For LED Applications,” Mater. Res. Soc. Symp. Proc., vol. 449, Jan. 1996, pp. 149. |
Schraud et al., “Substrateless singlemode vertical cavity surface-emitting GaAs/GaAlAs laser diode,” Electronics Letters, vol. 30, No. 3, Feb. 3, 1994, pp. 238-239. |
Song et al., “A Vertical Injection Blue Light Emitting Diode in Substrate Seperated InGaN Heterostructures,” Appl. Phys. Lett., vol. 74, No. 24, Jun. 14, 1999, pp. 3720-3722. |
Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice,” Academic Press, New York, 1989. |
Van Hove et al., “GaN growth by a controllable RF-excited nitrogen source,” J. Cryst. Growth, vol. 150, No. 1, May 1995, pp. 908-911. |
Wong et al., “Continuous-Wave InGaN Multiple-Quantum-Well Laser Diodes on Copper Substrates,” Applied Physics Letters, vol. 78, No. 9, Feb. 26, 2001, pp. 1198-1200. |
Wong et al., “Integration of InGaN Laser Diodes with Dissimilar Substrates by Laser Lift-Off,” Materials Research Society, vol. 639, 2001 (Nov. 27-Dec. 1, 2000), pp. G12.2.1-G12.2.5. |
Wong et al., “The integration of InxGa1-xN Multiple-Quantum-Well Laser Diodes with Copper Substrates by Laser Lift-Off,” Jpn. J. Appl. Phys., vol. 39, Part 2, No. 12A, 2000, pp. L 1203-L 1205, Dec. 1, 2000. |
Number | Date | Country | |
---|---|---|---|
Parent | 10118316 | Apr 2002 | US |
Child | 11002413 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16268161 | Feb 2019 | US |
Child | 16387312 | US | |
Parent | 15831084 | Dec 2017 | US |
Child | 16268161 | US | |
Parent | 15261172 | Sep 2016 | US |
Child | 15831084 | US | |
Parent | 14950773 | Nov 2015 | US |
Child | 15261172 | US | |
Parent | 14496076 | Sep 2014 | US |
Child | 14950773 | US | |
Parent | 14098185 | Dec 2013 | US |
Child | 14496076 | US | |
Parent | 13750376 | Jan 2013 | US |
Child | 14098185 | US | |
Parent | 13047371 | Mar 2011 | US |
Child | 13750376 | US | |
Parent | 12797335 | Jun 2010 | US |
Child | 13047371 | US | |
Parent | 12458703 | Jul 2009 | US |
Child | 12797335 | US | |
Parent | 11002413 | Dec 2004 | US |
Child | 12458703 | US |