Vessel sealer and divider for use with small trocars and cannulas

Information

  • Patent Grant
  • 9492225
  • Patent Number
    9,492,225
  • Date Filed
    Tuesday, February 11, 2014
    10 years ago
  • Date Issued
    Tuesday, November 15, 2016
    7 years ago
Abstract
An endoscopic bipolar forceps includes a housing, a shaft affixed to the housing, and a pair of jaw members attached to a distal end of the shaft. The forceps also includes a drive assembly for moving one of the jaw members relative to the other jaw member from a first position to a second position for manipulating tissue. A movable handle is included which is rotatable about a pivot to force a drive flange of the movable handle into mechanical cooperation with the drive assembly to move the jaw members from the first position to the second position. The forceps is connected to a source of electrosurgical energy connected to each jaw member such that the jaw members are capable of conducting bipolar energy through tissue held therebetween.
Description
BACKGROUND

The present disclosure relates to an electrosurgical forceps and more particularly, the present disclosure relates to an endoscopic bipolar electrosurgical forceps for sealing and/or cutting tissue.


TECHNICAL FIELD

Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopes and endoscopic instruments for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.


Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.


Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.


It is thought that the process of coagulating vessels is fundamentally different than electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Coagulation of small vessels is sufficient to permanently close them, while larger vessels need to be sealed to assure permanent closure.


In order to effectively seal larger vessels (or tissue) two predominant mechanical parameters must be accurately controlled—the pressure applied to the vessel (tissue) and the gap distance between the electrodes—both of which are affected by the thickness of the sealed vessel. More particularly, accurate application of pressure is important to oppose the walls of the vessel; to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a typical fused vessel wall is optimum between 0.001 and 0.006 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.


With respect to smaller vessels, the pressure applied to the tissue tends to become less relevant whereas the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as vessels become smaller.


Many known instruments include blade members or shearing members which simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes. Other instruments rely on clamping pressure alone to procure proper sealing thickness and are not designed to take into account gap tolerances and/or parallelism and flatness requirements which are parameters which, if properly controlled, can assure a consistent and effective tissue seal. For example, it is known that it is difficult to adequately control thickness of the resulting sealed tissue by controlling clamping pressure alone for either of two reasons: 1) if too much force is applied, there is a possibility that the two poles will touch and energy will not be transferred through the tissue resulting in an ineffective seal; or 2) if too low a force is applied the tissue may pre-maturely move prior to activation and sealing and/or a thicker, less reliable seal may be created.


As mentioned above, in order to properly and effectively seal larger vessels or tissue, a greater closure force between opposing jaw members is required. It is known that a large closure force between the jaws typically requires a large moment about the pivot for each jaw. This presents a design challenge because the jaw members are typically affixed with pins which are positioned to have small moment arms with respect to the pivot of each jaw member. A large force, coupled with a small moment arm, is undesirable because the large forces may shear the pins. As a result, designers must compensate for these large closure forces by either designing instruments with metal pins and/or by designing instruments which at least partially offload these closure forces to reduce the chances of mechanical failure. As can be appreciated, if metal pivot pins are employed, the metal pins must be insulated to avoid the pin acting as an alternate current path between the jaw members which may prove detrimental to effective sealing.


Increasing the closure forces between electrodes may have other undesirable effects, e.g., it may cause the opposing electrodes to come into close contact with one another which may result in a short circuit and a small closure force may cause pre-mature movement of the tissue during compression and prior to activation. As a result thereof, providing an instrument which consistently provides the appropriate closure force between opposing electrode within a preferred pressure range will enhance the chances of a successful seal. As can be appreciated, relying on a surgeon to manually provide the appropriate closure force within the appropriate range on a consistent basis would be difficult and the resultant effectiveness and quality of the seal may vary. Moreover, the overall success of creating an effective tissue seal is greatly reliant upon the user's expertise, vision, dexterity, and experience in judging the appropriate closure force to uniformly, consistently and effectively seal the vessel. In other words, the success of the seal would greatly depend upon the ultimate skill of the surgeon rather than the efficiency of the instrument.


It has been found that the pressure range for assuring a consistent and effective seal is between about 3 kg/cm2 to about 16 kg/cm2 and, preferably, within a working range of 7 kg/cm2 to 13 kg/cm2. Manufacturing an instrument which is capable of providing a closure pressure within this working range has been shown to be effective for sealing arteries, tissues and other vascular bundles.


Various force-actuating assemblies have been developed in the past for providing the appropriate closure forces to effect vessel sealing. For example, one such actuating assembly has been developed by Valleylab Inc., a division of Tyco Healthcare LP, for use with Valleylab's vessel sealing and dividing instrument commonly sold under the trademark LIGASURE ATLAS®. This assembly includes a four-bar mechanical linkage, a spring and a drive assembly which cooperate to consistently provide and maintain tissue pressures within the above working ranges. The LIGASURE ATLAS® is presently designed to fit through a 10 mm cannula and includes a bi-lateral jaw closure mechanism which is activated by a foot switch. A trigger assembly extends a knife distally to separate the tissue along the tissue seal. A rotating mechanism is associated with distal end of the handle to allow a surgeon to selectively rotate the jaw members to facilitate grasping tissue. Co-pending U.S. application Ser. Nos. 10/179,863 and 10/116,944 and PCT Application Serial Nos. PCT/US01/01890 and PCT/7201/11340 describe in detail the operating features of the LIGASURE ATLAS® and various methods relating thereto. The contents of all of these applications are hereby incorporated by reference herein.


It would be desirous to develop a smaller, simpler endoscopic vessel sealing instrument which can be utilized with a 5 mm cannula. Preferably, the instrument would include a simpler and more mechanically advantageous drive assembly to facilitate grasping and manipulating vessels and tissue. In addition, it would be desirous to manufacture an instrument which includes a hand switch and a unilateral jaw closure mechanism.


SUMMARY

The present disclosure relates to an endoscopic bipolar forceps which is designed to be utilized with a 5 mm trocar or cannula and includes a housing and a shaft affixed to the distal end of the housing. Preferably, the shaft includes a reduced diameter such that the shaft is freely insertable through the trocar. The shaft also includes a longitudinal axis defined therethrough and a pair of first and second jaw members attached to a distal end thereof. The forceps includes a drive assembly for moving the first jaw member relative to the second member from a first position wherein the jaw members are disposed in spaced relation relative to each other to a second position wherein the jaw members cooperate to grasp tissue therebetween. A movable handle is included which is rotatable about a pivot located above the longitudinal axis of the shaft. Movement of the handle engages a drive flange into mechanical cooperation with the drive assembly to move the jaw members from the open and closed positions. Advantageously, the pivot is located a fixed distance above the longitudinal axis to provide lever-like mechanical advantage to the drive flange. The drive flange is located generally along the longitudinal axis. The forceps is connected to a source of electrosurgical energy which carries electrical potentials to each respective jaw member such that the jaw members are capable of conducting bipolar energy through tissue held therebetween to effect a tissue seal.


In yet another embodiment, the forceps includes a hand switch disposed within the housing which is electromechanically connected to the energy source. Advantageously, the hand switch allows a user to selectively supply bipolar energy to the jaw members to effect a tissue seal.


In one embodiment, the forceps includes a selectively advanceable knife assembly for cutting tissue in a forward direction along the tissue seal. A rotating assembly may also be included for rotating the jaw members about the longitudinal axis defined through the shaft. Advantageously, the rotating assembly is located proximal to the driving flange and near the hand switch to facilitate rotation.


Preferably, the movable jaw member includes a first electrical potential and the fixed jaw member includes a second electrical potential. A lead connects the movable jaw member to the first potential and a conductive tube (which is disposed through the shaft) conducts a second electrical potential to the fixed jaw member. Advantageously, the conductive tube is connected to the rotating assembly to permit selective rotation of the jaw members.


In one embodiment, the drive assembly includes a reciprocating sleeve which upon activation of the movable handle, translates atop the rotating conductive tube to move the movable jaw member relative to the fixed jaw member. Preferably, the movable jaw member includes a detent which extends beyond the fixed jaw member which is designed for engagement with the reciprocating sleeve such that, upon translation thereof, the movable jaw member moves relative to the fixed jaw member. Advantageously, a spring is included with the drive assembly to facilitate actuation of the movable handle and to assure the closure force is maintained within the working range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, about 7 kg/cm2 to about 13 kg/cm2


Preferably, at least one of the jaw members includes a series of stop members disposed thereon for regulating the distance between the jaw members (i.e., creating a gap between the two opposing jaw members) during the sealing process. As can be appreciated, regulating the gap distance between opposing jaw members along with maintaining the closing pressure to within the above-described ranges will produce a reliable and consistent tissue seal.


The present disclosure also relates to an endoscopic bipolar forceps which includes a shaft having a movable jaw member and a fixed jaw member at a distal end thereof. The forceps also includes a drive assembly for moving the movable jaw member relative to the fixed jaw member from a first position wherein the movable jaw member is disposed in spaced relation relative to the fixed jaw member to a second position wherein the movable jaw member is closer to the fixed jaw member for manipulating tissue. A movable handle is included which actuates the drive assembly to move the movable jaw member.


The forceps connects to a source of electrosurgical energy which is conducted to each jaw member such that the jaw members are capable of conducting bipolar energy through tissue held therebetween to effect a tissue seal. Advantageously, the forceps also includes a selectively advanceable knife assembly for cutting tissue in a distal direction along the tissue seal and a stop member disposed on at least one of the jaw members for regulating the distance between jaw members during sealing.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1 is a left, perspective view of an endoscopic bipolar forceps showing a housing, a shaft and an end effector assembly according to the present disclosure;



FIG. 2 is a top view of the forceps of FIG. 1;



FIG. 3 is a left, side view of the forceps of FIG. 1;



FIG. 4 is a left, perspective view of the forceps of FIG. 1 showing the rotation of the end effector assembly about a longitudinal axis “A”;



FIG. 5 is a front view of the forceps of FIG. 1;



FIG. 6 is an enlarged view of the indicated area of detail of FIG. 5 showing an enhanced view of the end effector assembly detailing a pair of opposing jaw members;



FIG. 7 is an enlarged, rear perspective view of the housing;



FIG. 8 is an enlarged, left perspective view of the end effector assembly with the jaw members shown in open configuration;



FIG. 9 is an enlarged, side view of the end effector assembly;



FIG. 10 is an enlarged, perspective view of the underside of the upper jaw member of the end effector assembly;



FIG. 11 is an enlarged, broken perspective view showing the end effector assembly and highlighting a cam-like closing mechanism which cooperates with a reciprocating pull sleeve to move the jaw members relative to one another;



FIG. 12 is a full perspective view of the end effector assembly of FIG. 11;



FIG. 13 is an enlarged, perspective view of the housing and the internal working components thereof;



FIG. 14 is top, perspective view of the housing of FIG. 13 with parts separated;



FIG. 15 is a left, perspective view of a rotating assembly, drive assembly, knife assembly and lower jaw member according to the present disclosure;



FIG. 16 is a rear, perspective view of the rotating assembly, drive assembly and knife assembly;



FIG. 17 is an enlarged, top, perspective view of the end effector assembly with parts separated;



FIG. 18 is an enlarged, perspective view of the knife assembly;



FIG. 19 is an enlarged, perspective view of the rotating assembly;



FIG. 20 is an enlarged, perspective view of the drive assembly;



FIG. 21 is an enlarged, perspective view of the knife assembly with parts separated;



FIG. 22 is an enlarged view of the indicated area of detail of FIG. 21;



FIG. 23 is a greatly-enlarged, perspective view of a distal end of the knife assembly;



FIG. 24 is a greatly-enlarged, perspective view of a knife drive of the knife assembly;



FIG. 25 is an enlarged, perspective view of the rotating assembly and lower jaw member with parts separated;



FIG. 26 is a cross section of the area indicated in detail in FIG. 25;



FIG. 27 is a greatly-enlarged, perspective view of the lower jaw member;



FIG. 28 is an enlarged, perspective view of the drive assembly;



FIG. 29 is an enlarged perspective view of the drive assembly of FIG. 28 with parts separated;



FIG. 30 is an internal, side view of the housing showing the inner-working components thereof;



FIG. 31 is a cross-section of the housing with the end effector shown in open configuration and showing the internal, electrical routing of an electrosurgical cable and electrical leads;



FIG. 32 is a greatly-enlarged view of the indicated area of detail of FIG. 31;



FIG. 33 is a greatly-enlarged view of the indicated area of detail of FIG. 31;



FIG. 34 is a greatly-enlarged, cross section of the shaft taken along line 34-34;



FIG. 35 is a side, cross section of the shaft and end effector assembly;



FIG. 36 is a perspective view showing the forceps of the present disclosure being utilized with a 5 mm cannula;



FIG. 37 is a side, cross section of the housing showing the moving components of the drive assembly during actuation;



FIG. 38 is a greatly-enlarged, perspective view of a handle locking mechanism for use with the drive assembly;



FIG. 39 is a greatly-enlarged view of the indicated area of detail in FIG. 37;



FIG. 40 is a greatly-enlarged view of the indicated area of detail in FIG. 37;



FIG. 41 is an enlarged, rear, perspective view of the end effectors shown grasping tissue;



FIG. 42 is an enlarged view of a tissue seal;



FIG. 43 is a side, cross section of a tissue seal;



FIG. 44 is a cross section of the housing with the handle in a locked configuration and showing the moving components of the knife assembly during activation;



FIG. 45 is an enlarged view of the area indicated in detail in FIG. 44;



FIG. 46 is a side, cross section of a tissue seal after separation by the knife assembly;



FIG. 47 is a side, cross section of the housing showing the release of the knife assembly and release of the drive assembly to open the jaw members and release the tissue;



FIG. 48 is a greatly-enlarged view of the indicated area of detail in FIG. 47; and



FIG. 49 is a greatly-enlarged view of the indicated area of detail in FIG. 47.





DETAILED DESCRIPTION

Turning now to FIGS. 1-3, one embodiment of an endoscopic bipolar forceps 10 is shown for use with various surgical procedures and generally includes a housing 20, a handle assembly 30, a rotating assembly 80, a trigger assembly 70 and an end effector assembly 100 which mutually cooperate to grasp, seal and divide tubular vessels and vascular tissue 420 (FIG. 36). Although the majority of the figure drawings depict a bipolar forceps 10 for use in connection with endoscopic surgical procedures, the present disclosure may be used for more traditional open surgical procedures. For the purposes herein, the forceps 10 is described in terms of an endoscopic instrument, however, it is contemplated that an open version of the forceps may also include the same or similar operating components and features as described below.


Forceps 10 includes a shaft 12 which has a distal end 16 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 14 which mechanically engages the housing 20. Details of how the shaft 12 connects to the end effector are described in more detail below with respect to FIG. 25. The proximal end 14 of shaft 12 is received within the housing 20 and the connections relating thereto are described in detail below with respect to FIGS. 13 and 14. In the drawings and in the descriptions which follow, the term “proximal”, as is traditional, will refer to the end of the forceps 10 which is closer to the user, while the term “distal” will refer to the end which is further from the user.


As best seen in FIG. 1, forceps 10 also includes an electrosurgical cable 310 which connects the forceps 10 to a source of electrosurgical energy, e.g., a generator (not shown). Preferably, generators such as those sold by Valleylab—a division of Tyco Healthcare LP, located in Boulder Colo. are used as a source of electrosurgical energy, e.g., FORCE EZ™ Electrosurgical Generator, FORCE FX™ Electrosurgical Generator, FORCE 1C™, FORCE 2™ Generator, SurgiStat™ II. One such system is described in commonly-owned U.S. Pat. No. 6,033,399 entitled “ELECTROSURGICAL GENERATOR WITH ADAPTIVE POWER CONTROL” the entire contents of which are hereby incorporated by reference herein. Other systems have been described in commonly-owned U.S. Pat. No. 6,187,003 entitled “BIPOLAR ELECTROSURGICAL INSTRUMENT FOR SEALING VESSELS” the entire contents of which is also incorporated by reference herein.


Preferably, the generator includes various safety and performance features including isolated output, independent activation of accessories. Preferably, the electrosurgical generator includes Valleylab's Instant Response™ technology features which provides an advanced feedback system to sense changes in tissue 200 times per second and adjust voltage and current to maintain appropriate power. The Instant Response™ technology is believed to provide one or more of the following benefits to surgical procedure:

    • Consistent clinical effect through all tissue types;
    • Reduced thermal spread and risk of collateral tissue damage;
    • Less need to “turn up the generator”; and
    • Designed for the minimally invasive environment.


Cable 310 is internally divided into cable lead 310a, 310b and 310c which each transmit electrosurgical energy through their respective feed paths through the forceps 10 to the end effector assembly 100 as explained in more detail below with respect to FIGS. 14 and 30.


Handle assembly 30 includes a fixed handle 50 and a movable handle 40. Fixed handle 50 is integrally associated with housing 20 and handle 40 is movable relative to fixed handle 50 as explained in more detail below with respect to the operation of the forceps 10. Rotating assembly 80 is preferably integrally associated with the housing 20 and is rotatable approximately 180 degrees in either direction about a longitudinal axis “A” (See FIG. 4). Details of the rotating assembly 80 are described in more detail with respect to FIGS. 13, 14, 15 and 16


As best seen in FIGS. 2, 13 and 14, housing 20 is formed from two (2) housing halves 20a and 20b which each include a plurality of interfaces 27a-27f which are dimensioned to mechanically align and engage one another to form housing 20 and enclose the internal working components of forceps 10. As can be appreciated, fixed handle 50 which, as mentioned above, is integrally associated with housing 20, takes shape upon the assembly of the housing halves 20a and 20b.


It is envisioned that a plurality of additional interfaces (not shown) may disposed at various points around the periphery of housing halves 20a and 20b for ultrasonic welding purposes, e.g., energy direction/deflection points. It is also contemplated that housing halves 20a and 20b (as well as the other components described below) may be assembled together in any fashion known in the art. For example, alignment pins, snap-like interfaces, tongue and groove interfaces, locking tabs, adhesive ports, etc. may all be utilized either alone or in combination for assembly purposes.


Rotating assembly 80 includes two halves 82a and 82b which, when assembled, form the rotating assembly 80 which, in turn, houses the drive assembly 150 and the knife assembly 140 (See FIGS. 13, 14 and 25). Half 80a includes a series of detents/flanges 375a, 375b, 375c and 375d (FIG. 25) which are dimensioned to engage a pair of corresponding sockets or other mechanical interfaces (not shown) disposed within rotating half 80a. Movable handle 40 and trigger assembly 70 are preferably of unitary construction and are operatively connected to the housing 20 and the fixed handle 50 during the assembly process.


As mentioned above, end effector assembly 100 is attached at the distal end 14 of shaft 12 and includes a pair of opposing jaw members 110 and 120. Movable handle 40 of handle assembly 30 is ultimately connected to a drive assembly 150 which, together, mechanically cooperate to impart movement of the jaw members 110 and 120 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue 420 (FIG. 36) therebetween.


It is envisioned that the forceps 10 may be designed such that it is fully or partially disposable depending upon a particular purpose or to achieve a particular result. For example, end effector assembly 100 may be selectively and releasably engageable with the distal end 16 of the shaft 12 and/or the proximal end 14 of shaft 12 may be selectively and releasably engageable with the housing 20 and the handle assembly 30. In either of these two instances, the forceps 10 would be considered “partially disposable” or “reposable”, i.e., a new or different end effector assembly 100 (or end effector assembly 100 and shaft 12) selectively replaces the old end effector assembly 100 as needed. As can be appreciated, the presently disclosed electrical connections would have to be altered to modify the instrument to a reposable forceps.


Turning now to the more detailed features of the present disclosure as described with respect to FIGS. 1-14, movable handle 40 includes a finger loop 41 which has an aperture 42 defined therethrough which enables a user to grasp and move the handle 40 relative to the fixed handle 50. Handle 40 also includes an ergonomically-enhanced gripping element 43 disposed along the inner peripheral edge of aperture 42 which is designed to facilitate gripping of the movable handle 40 during activation. It is envisioned that gripping element 43 may include one or more protuberances, scallops and/or ribs to enhance gripping. As best seen in FIG. 14, movable handle 40 is selectively moveable about a pair of pivot pins 29a and 29b from a first position relative to fixed handle 50 to a second position in closer proximity to the fixed handle 50 which, as explained below, imparts movement of the jaw members 110 and 120 relative to one another. The movable handle include a clevis 45 which forms a pair of upper flanges 45a and 45b each having an aperture 49a and 49b, respectively, at an upper end thereof for receiving the pivot pins 29a and 29b therethrough and mounting the upper end of the handle 40 to the housing 20. In turn, each pin 29a and 29b mounts to a respective housing half 20a and 20b.


Each upper flange 45a and 45b also includes a force-actuating flange or drive flange 47a and 47b, respectively, which are aligned along longitudinal axis “A” and which abut the drive assembly 150 such that pivotal movement of the handle 40 forces actuating flange against the drive assembly 150 which, in turn, closes the jaw members 110 and 120. For the purposes herein, 47a and 47b which act simultaneously on the drive assembly are referred to as “driving flange 47”. A more detailed explanation of the inter-cooperating components of the handle assembly 30 and the drive assembly 150 is discussed below.


As best seen in FIG. 14, the lower end of the movable handle 40 includes a flange 90 which is preferably mounted to the movable handle 40 by pins 94a and 94b which engage a corresponding pair of apertures 91a and 91b disposed within the lower portion of handle 40 and apertures 97a and 97b disposed within flange 90, respectively. Other methods of engagement are also contemplated, snap-lock, spring tab, etc. Flange 90 also includes a t-shaped distal end 95 which rides within a predefined channel 51 disposed within fixed handle 50 to lock the movable handle 40 relative to the fixed handle 50. Additional features with respect to the t-shaped end 95 are explained below in the detailed discussion of the operational features of the forceps 10.


Movable handle 40 is designed to provide a distinct mechanical advantage over conventional handle assemblies due to the unique position of the pivot pins 29a and 29b (i.e., pivot point) relative to the longitudinal axis “A” of the shaft 12 and the disposition of the driving flange 47 along longitudinal axis “A”. In other words, it is envisioned that by positioning the pivot pins 29a and 29b above the driving flange 47, the user gains lever-like mechanical advantage to actuate the jaw members 110 and 120 enabling the user to close the jaw members 110 and 120 with lesser force while still generating the required forces necessary to effect a proper and effective tissue seal. It is also envisioned that the unilateral design of the end effector assembly 100 will also increase mechanical advantage as explained in more detail below.


As shown best in FIGS. 6-12, the end effector assembly 100 includes opposing jaw members 110 and 120 which cooperate to effectively grasp tissue 420 for sealing purposes. The end effector assembly 100 is designed as a unilateral assembly, i.e., jaw member 120 is fixed relative to the shaft 12 and jaw member 110 pivots about a pivot pin 103 to grasp tissue 420.


More particularly, the unilateral end effector assembly 100 includes one stationary or fixed jaw member 120 mounted in fixed relation to the shaft 12 and pivoting jaw member 110 mounted about a pivot pin 103 attached to the stationary jaw member 120. A reciprocating sleeve 60 is slidingly disposed within the shaft 12 and is remotely operable by the drive assembly 150. The pivoting jaw member 110 includes a detent or protrusion 117 which extends from jaw member 110 through an aperture 62 disposed within the reciprocating sleeve 60 (FIG. 12). The pivoting jaw member 110 is actuated by sliding the sleeve 60 axially within the shaft 12 such that a distal end 63 of the aperture 62 abuts against the detent 117 on the pivoting jaw member 110 (See FIGS. 11 and 12). Pulling the sleeve 60 proximally closes the jaw members 110 and 120 about tissue 420 grasped therebetween and pushing the sleeve 60 distally opens the jaw members 110 and 120 for grasping purposes.


As best illustrated in FIGS. 8 and 10, a knife channel 115a and 115b runs through the center of the jaw members 110 and 120, respectively, such that a blade 185 from the knife assembly 140 can cut the tissue 420 grasped between the jaw members 110 and 120 when the jaw members 110 and 120 are in a closed position. More particularly, the blade 185 can only be advanced through the tissue 420 when the jaw members 110 and 120 are closed thus preventing accidental or premature activation of the blade 185 through the tissue 420. Put simply, the knife channel 115 (made up of half channels 115a and 115b) is blocked when the jaws members 110 and 120 are opened and aligned for distal activation when the jaw members 110 and 120 are closed (See FIGS. 35 and 39). It is also envisioned that the unilateral end effector assembly 100 may be structured such that electrical energy can be routed through the sleeve 60 at the protrusion 117 contact point with the sleeve 60 or using a “brush” or lever (not shown) to contact the back of the moving jaw member 110 when the jaw member 110 closes. In this instance, the electrical energy would be routed through the protrusion 117 to the stationary jaw member 120. Alternatively, the cable lead 311 may be routed to energize the stationary jaw member 120 and the other electrical potential may be conducted through the sleeve 60 and transferred to the pivoting jaw member 110 which establishes electrical continuity upon retraction of the sleeve 60. It is envisioned that this particular envisioned embodiment will provide at least two important safety features: 1) the blade 185 cannot extend while the jaw members 110 and 120 are opened; and 2) electrical continuity to the jaw members 110 and 120 is made only when the jaw members are closed. The illustrated forceps 10 only includes the novel knife channel 115.


As best shown in FIG. 8, jaw member 110 also includes a jaw housing 116 which has an insulative substrate or insulator 114 and an electrically conducive surface 112. Insulator 114 is preferably dimensioned to securely engage the electrically conductive sealing surface 112. This may be accomplished by stamping, by overmolding, by overmolding a stamped electrically conductive sealing plate and/or by overmolding a metal injection molded seal plate. For example and as shown in FIG. 17, the electrically conductive sealing plate 112 includes a series of upwardly extending flanges 111a and 111b which are designed to matingly engage the insulator 114. The insulator 114 includes a shoe-like interface 107 disposed at a distal end thereof which is dimensioned to engage the outer periphery 116a of the housing 116 in a slip-fit manner. The shoe-like interface 107 may also be overmolded about the outer periphery of the jaw 110 during a manufacturing step. It is envisioned that lead 311 terminates within the shoe-like interface 107 at the point where lead 311 electrically connects to the seal plate 112 (not shown). The movable jaw member 110 also includes a wire channel 113 which is designed to guide cable lead 311 into electrical continuity with sealing plate 112 as described in more detail below.


All of these manufacturing techniques produce jaw member 110 having an electrically conductive surface 112 which is substantially surrounded by an insulating substrate 114. The insulator 114, electrically conductive sealing surface 112 and the outer, non-conductive jaw housing 116 are preferably dimensioned to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread and stray current dissipation. Alternatively, it is also envisioned that the jaw members 110 and 120 may be manufactured from a ceramic-like material and the electrically conductive surface(s) 112 are coated onto the ceramic-like jaw members 110 and 120.


Jaw member 110 includes a pivot flange 118 which includes protrusion 117. Protrusion 117 extends from pivot flange 118 and includes an arcuately-shaped inner surface 111 dimensioned to matingly engage the aperture 62 of sleeve 60 upon retraction thereof. Pivot flange 118 also includes a pin slot 119 which is dimensioned to engage pivot pin 103 to allow jaw member 110 to rotate relative to jaw member 120 upon retraction of the reciprocating sleeve 60. As explained in more detail below, pivot pin 103 also mounts to the stationary jaw member 120 through a pair of apertures 101a and 101b disposed within a proximal portion of the jaw member 120.


It is envisioned that the electrically conductive sealing surface 112 may also include an outer peripheral edge which has a pre-defined radius and the insulator 114 meets the electrically conductive sealing surface 112 along an adjoining edge of the sealing surface 112 in a generally tangential position. Preferably, at the interface, the electrically conductive surface 112 is raised relative to the insulator 114. These and other envisioned embodiments are discussed in co-pending, commonly assigned Application Serial No. PCT/US01/11412 entitled “ELECTROSURGICAL INSTRUMENT WHICH REDUCES COLLATERAL DAMAGE TO ADJACENT TISSUE” by Johnson et al. and co-pending, commonly assigned Application Serial No. PCT/US01/11411 entitled “ELECTROSURGICAL INSTRUMENT WHICH IS DESIGNED TO REDUCE THE INCIDENCE OF FLASHOVER” by Johnson et al.


Preferably, the electrically conductive surface 112 and the insulator 114, when assembled, form a longitudinally-oriented slot 115a defined therethrough for reciprocation of the knife blade 185. It is envisioned that the knife channel 115a cooperates with a corresponding knife channel 115b defined in stationary jaw member 120 to facilitate longitudinal extension of the knife blade 185 along a preferred cutting plane to effectively and accurately separate the tissue 420 along the formed tissue seal 450 (See FIGS. 42 and 46).


Jaw member 120 includes similar elements to jaw member 110 such as jaw housing 126 having an insulator 124 and an electrically conductive sealing surface 122 which is dimensioned to securely engage the insulator 124. Likewise, the electrically conductive surface 122 and the insulator 124, when assembled, include a longitudinally-oriented channel 115a defined therethrough for reciprocation of the knife blade 185. As mentioned above, when the jaw members 110 and 120 are closed about tissue 420, knife channels 115a and 115b form a complete knife channel 115 to allow longitudinal extension of the knife 185 in a distal fashion to sever tissue 420 along the tissue seal 450. It is also envisioned that the knife channel 115 may be completely disposed in one of the two jaw members, e.g., jaw member 120, depending upon a particular purpose. It is envisioned that the fixed jaw member 120 may be assembled in a similar manner as described above with respect to jaw member 110.


As best seen in FIG. 8, jaw member 120 includes a series of stop members 750 preferably disposed on the inner facing surfaces of the electrically conductive sealing surface 122 to facilitate gripping and manipulation of tissue and to define a gap “G” (FIG. 41) between opposing jaw members 110 and 120 during sealing and cutting of tissue. It is envisioned that the series of stop members 750 may be employed on one or both jaw members 110 and 120 depending upon a particular purpose or to achieve a desired result. A detailed discussion of these and other envisioned stop members 750 as well as various manufacturing and assembling processes for attaching and/or affixing the stop members 750 to the electrically conductive sealing surfaces 112, 122 are described in commonly-assigned, co-pending U.S. Application Serial No. PCT/US01/11413 entitled “VESSEL SEALER AND DIVIDER WITH NON-CONDUCTIVE STOP MEMBERS” by Dycus et al. which is hereby incorporated by reference in its entirety herein.


Jaw member 120 is designed to be fixed to the end of a rotating tube 160 which is part of the rotating assembly 80 such that rotation of the tube 160 will impart rotation to the end effector assembly 100 (See FIGS. 25 and 27). Jaw member 120 includes a rear C-shaped cuff 170 having a slot 177 defined therein which is dimensioned to receive a slide pin 171. More particularly, slide pin 171 includes a slide rail 176 which extends substantially the length thereof which is dimensioned to slide into friction-fit engagement within slot 177. A pair of chamfered plates 172a and 172b extend generally radially from the slide rail 176 and include a radius which is substantially the same radius as the outer periphery of the rotating tube 160 such that the shaft 12 can encompass each of the same upon assembly.


As explained in more detail below, fixed jaw member 120 is connected to a second electrical potential through tube 160 which is connected at its proximal end to lead 310c. More particularly, fixed jaw 120 is welded to the rotating tube 160 and includes a fuse clip, spring clip or other electromechanical connection which provides electrical continuity to the fixed jaw member 120 from lead 310c (See FIG. 32). As best shown in FIGS. 25 and 26, the rotating tube 160 includes an elongated guide slot 167 disposed in an upper portion thereof which is dimensioned to carry lead 311 therealong. The chamfered plates 172a and 172b also form a wire channel 175 which is dimensioned to guide the cable lead 311 from the tube 160 and into the movable jaw member 110 (See FIG. 8). Lead 311 carries a first electrical potential to movable jaw 110. As explained in more detail below with respect to the internal electrical connections of the forceps, a second electrical connection from lead 310c is conducted through the tube 160 to the fixed jaw member 120.


As shown in FIG. 25, the distal end of the tube 160 is generally C-shaped to include two upwardly extending flanges 162a and 162b which define a cavity 165 for receiving the proximal end of the fixed jaw member 120 inclusive of C-shaped cuff 170 and slide pin 171 (See FIG. 27). Preferably, the tube cavity 165 retains and secures the jaw member 120 in a friction-fit manner, however, the jaw member 120 may be welded to the tube 160 depending upon a particular purpose. Tube 160 also includes an inner cavity 169 defined therethrough which reciprocates the knife assembly 140 upon distal activation thereof and an elongated guide rail 163 which guides the knife assembly 140 during distal activation. The details with respect to the knife assembly are explained in more detail with respect to FIGS. 21-24. The proximal end of tube 160 includes a laterally oriented slot 168 which is designed to interface with the rotating assembly 80 as described below.



FIG. 25 also shows the rotating assembly 80 which includes C-shaped rotating halves 82a and 82b which, when assembled about tube 160, form a generally circular rotating member 82. More particularly, each rotating half, e.g., 82b, includes a series of mechanical interfaces 375a, 375b, 375c and 375d which matingly engage a corresponding series of mechanical interfaces in half 82a to form rotating member 82. Half 82b also includes a tab 89b which together with a corresponding tab 89a disposed on half 82a (phantomly illustrated) cooperate to matingly engage slot 168 disposed on tube 160. As can be appreciated, this permits selective rotation of the tube 160 about axis “A” by manipulating the rotating member 82 in the direction of the arrow “B” (see FIG. 4).


As best shown in the exploded view of FIG. 17, jaw members 110 and 120 are pivotably mounted with respect to one another such that jaw member 110 pivots in a unilateral fashion from a first open position to a second closed position for grasping and manipulating tissue 420. More particularly, fixed jaw member 120 includes a pair of proximal, upwardly extending flanges 125a and 125b which define a cavity 121 dimensioned to receive flange 118 of movable jaw member 110 therein. Each of the flanges 125a and 125b includes an aperture 101a and 101b, respectively, defined therethrough which secures pivot pin 103 on opposite sides of pivot mount 119 disposed within jaw member 110. As explained in detail below with respect to the operation of the jaw members 110 and 120, proximal movement of the tube 60 engages detent 117 to pivot the jaw member 110 to a closed position.



FIGS. 13 and 14 show the details of the housing 20 and the component features thereof, namely, the drive assembly 150, the rotating assembly 80, the knife assembly 140, the trigger assembly 70 and the handles 40 and 50. More particularly, FIG. 13 shows the above-identified assemblies and components in an assembled form in the housing 20 and FIG. 14 shows an exploded view of each of the above-identified assemblies and components.


As shown best in FIG. 14, the housing includes halves 20a and 20b which, when mated, form housing 20. As can be appreciated, housing 20, once formed, houses the various assemblies identified above which will enable a user to selectively manipulate, grasp, seal and sever tissue 420 in a simple, effective, and efficient manner. Preferably, each half of the housing, e.g., half 20b, includes a series of mechanical interfacing component, e.g., 27a-27f which align and/or mate with a corresponding series of mechanical interfaces (not shown) to align the two housing halves 20a and 20b about the inner components and assemblies. The housing halves 20a and 20b are then preferably sonic welded to secure the housing halves 20a and 20b once assembled.


As mentioned above, the movable handle 40 includes clevis 45 which forms upper flanges 45a and 45b which pivot about pins 29a and 29b to pull the reciprocating sleeve 60 along longitudinal axis “A” and force during flange 47 against the drive assembly 150 which, in turn, closes the jaw members 110 and 120. As mentioned above, the lower end of the movable handle 40 includes a flange 90 which has a t-shaped distal end 95 which rides within a predefined channel 51 disposed within fixed handle 50 to lock the movable handle 40 in a preset orientation relative to the fixed handle 50. The arrangement of the upper flanges 45a and 45b and the pivot point of the movable handle 40 provides a distinct mechanical advantage over conventional handle assemblies due to the unique position of the pivot pins 29a and 29b (i.e., pivot point) relative to the longitudinal axis “A” of the driving flange 47. In other words, by positioning the pivot pins 29a and 29b above the driving flange 47, the user gains lever-like mechanical advantage to actuate the jaw members 110 and 120. This reduces the overall amount of mechanical force necessary to close the jaw members 110 and 120 to effect a tissue seal.


Handle 40 also includes a finger loop 41 which defines opening 42 which is dimensioned to facilitate grasping the handle 40. Preferably, finger loop 41 includes rubber insert 43 which enhances the overall ergonomic “feel” of the handle member 40. A locking flange 44 is disposed on the outer periphery of the handle member 40 above the finger loop 41. Locking flange 44 prevents the trigger assembly 70 from firing when the handle member 40 is oriented in a non-actuated position, i.e., the jaw members 110 and 120 are open. As can be appreciated, this prevents accidental or premature severing of tissue 420 prior to completion of the tissue seal 450.


Fixed handle 50 includes halves 50a and 50b which, when assembled, form handle 50. Fixed handle 50 includes a channel 51 defined therein which is dimensioned to receive flange 90 in a proximal moving manner when movable handle 40 is actuated. The t-shaped free end 95 of handle 40 is dimensioned for facile reception within channel 51 of handle 50. It is envisioned that flange 90 may be dimensioned to allow a user to selectively, progressively and/or incrementally move jaw members 110 and 120 relative to one another from the open to closed positions. For example, it is also contemplated that flange 90 may include a ratchet-like interface which lockingly engages the movable handle 40 and, therefore, jaw members 110 and 120 at selective, incremental positions relative to one another depending upon a particular purpose. Other mechanisms may also be employed to control and/or limit the movement of handle 40 relative to handle 50 (and jaw members 110 and 120) such as, e.g., hydraulic, semi-hydraulic, linear actuator(s), gas-assisted mechanisms and/or gearing systems.


As best illustrated in FIG. 13, housing halves 20a and 20b when assembled form an internal cavity 52 which predefines the channel 51 within fixed handle 50 such that an entrance pathway 54 and an exit pathway 58 are formed for reciprocation of the t-shaped flange end 95 therein. When assembled, two generally triangular-shaped members 57 (one disposed in each handle half 50a and 50b) are positioned in close abutment relative to one another to define a rail or track 192 therebetween. During movement of the flange 90 along the entrance and exit pathways 54 and 58, respectively, the t-shaped end 95 rides along track 192 between the two triangular members 57 according to the particular dimensions of the triangularly-shaped members 57, which, as can be appreciated, predetermines part of the overall pivoting motion of handle 40 relative to fixed handle 50.


Once actuated, handle 40 moves in a generally arcuate fashion towards fixed handle 50 about pivot pins 29a and 29b which forces driving flange 47 proximally against the drive assembly 150 which, in turn, pulls reciprocating sleeve 60 in a generally proximal direction to close jaw member 110 relative to jaw member 120. Moreover, proximal rotation of the handle 40 causes the locking flange 44 to release, i.e., “unlock”, the trigger assembly 70 for selective actuation. This feature is shown in detail with reference to FIGS. 33, 37 and 44 and the explanation of the operation of the knife assembly 70 explained below.


The operating features and relative movements of the internal working components of the forceps 10 are shown by phantom representation in the various figures. As mentioned above, when the forceps 10 is assembled a predefined channel 52 is formed within the fixed handle 50. The channel includes entrance pathway 51 and an exit pathway 58 for reciprocation of the flange 90 and the t-shaped end 95 therein. Once assembled, the two generally triangular-shaped members 57 are positioned in close abutment relative to one another and define track 192 disposed therebetween.


As the handle 40 is squeezed and flange 90 is incorporated into channel 51 of fixed handle 50, the driving flange 47, through the mechanical advantage of the above-the-center pivot points, biases flange 154 of drive ring 159 which, in turn, compresses a spring 67 against a rear ring 156 of the drive assembly 150 (FIG. 40). As a result thereof, the rear ring 156 reciprocates sleeve 60 proximally which, in turn, closes jaw member 110 onto jaw member 120. It is envisioned that the utilization of an over-the-center pivoting mechanism will enable the user to selectively compress the coil spring 67 a specific distance which, in turn, imparts a specific pulling load on the reciprocating sleeve 60 which is converted to a rotational torque about the jaw pivot pin 103. As a result, a specific closure force can be transmitted to the opposing jaw members 110 and 120.



FIGS. 37 and 38 show the initial actuation of handle 40 towards fixed handle 50 which causes the free end 95 of flange 90 to move generally proximally and upwardly along entrance pathway 51. During movement of the flange 90 along the entrance and exit pathways 51 and 58, respectively, the t-shaped end 95 rides along track 192 between the two triangular members 57. Once the desired position for the sealing site is determined and the jaw members 110 and 120 are properly positioned, handle 40 may be compressed fully such that the t-shaped end 95 of flange 90 clears a predefined rail edge 193 located atop the triangular-shaped members 57. Once end 95 clears edge 193, releasing movement of the handle 40 and flange 90 is redirected into a catch basin 194 located at the proximal end of the triangular member 57. More particularly, upon a slight reduction in the closing pressure of handle 40 against handle 50, the handle 40 returns slightly distally towards entrance pathway 51 but is re-directed towards exit pathway 58. At this point, the release or return pressure between the handles 40 and 50 which is attributable and directly proportional to the release pressure associated with the compression of the drive assembly 150 causes the end 95 of flange 90 to settle or lock within catch basin 194. Handle 40 is now secured in position within fixed handle 50 which, in turn, locks the jaw members 110 and 120 in a closed position against the tissue 420.


As mentioned above, the jaw members 110 and 120 may be opened, closed and rotated to manipulate tissue 420 until sealing is desired. This enables the user to position and re-position the forceps 10 prior to activation and sealing. As illustrated in FIG. 4, the end effector assembly 100 is rotatable about longitudinal axis “A” through rotation of the rotating assembly 80. As explained in more detail below, it is envisioned that the unique feed path of the cable lead 311 through the rotating assembly 80, along shaft 12 and, ultimately, to the jaw member 110 enables the user to rotate the end effector assembly 100 about 180 degrees in both the clockwise and counterclockwise direction without tangling or causing undue strain on cable lead 311. Cable lead 310c is fused or clipped to the proximal end of tube 160 and is generally unaffected by rotation of the jaw members 110 and 120. As can be appreciated, this facilitates the grasping and manipulation of tissue 420.


Again as best shown in FIGS. 13 and 14, trigger assembly 70 mounts atop movable handle 40 and cooperates with the knife assembly 140 to selectively translate knife 185 through a tissue seal 450. More particularly, the trigger assembly 70 includes a finger actuator 71 and a U-shaped upwardly-extending flange 74 having legs 74a and 74b. A pivot pin 73 mounts the trigger assembly 70 between housing halves 20a and 20b for selective rotation thereof. A pair of safety tabs 76a and 76b are disposed atop finger actuator 71 and are dimensioned to abut the locking flange 44 on handle 40 when the handle 40 is disposed in a non-actuated position, i.e., the jaw members 110 and 120 are opened.


As best seen in FIG. 14, the legs 74a and 74b of the U-shaped flange 74 each include a respective slot 77a and 77b defined therein which are each dimensioned to receive a free end of an elongated drive bar 75. Drive bar 75, in turn, is dimensioned to sit within a drive slot 147 which is part of the knife assembly 140 explained in detail below. The trigger assembly 70 is mounted atop the donut-like drive ring 141 of the knife assembly 140. Proximal activation of the finger actuator 71 rotates the trigger assembly 70 about pivot pin 73 which, in turn, forces the drive bar 75 distally, which, as explained in more detail below, ultimately extends the knife 185 through the tissue 420. A spring 350 biases the knife assembly 70 in a retracted position such that after severing tissue 420 the knife 185 and the knife assembly 70 are automatically returned to a pre-firing position.


As mentioned above, the locking flange 44 abuts tabs 76a and 76b when the handle 40 is disposed in a non-actuated position. When the handle 40 is actuated and flange 90 is fully reciprocated within channel 51 of the fixed handle 50, the locking flange 44 moves proximally allowing activation of the trigger assembly 70 (See FIGS. 37 and 44).


Drive assembly 150 includes reciprocating sleeve 60, drive housing 158, spring 67, drive ring 159, drive stop 155 and guide sleeve 157 which all cooperate to form the drive assembly 150. More particularly and as best shown in FIGS. 28 and 29, the reciprocating sleeve 60 includes a distal end 65 which as mentioned above has an aperture 62 formed therein for actuating the detent 117 of jaw member 110. The distal end 65 preferably includes a scoop-like support member 69 for supporting the proximal end of the fixed jaw member 120 therein. The proximal end 61 of the reciprocating sleeve 60 includes a slot 68 defined therein which is dimensioned to slidingly support the knife assembly 70 for longitudinal reciprocation thereof to sever tissue 420. The slot 68 also permits retraction of the reciprocating sleeve 60 over the knife assembly 140 during the closing of jaw member 110 relative to jaw member 120.


The proximal end 61 of the reciprocating sleeve 60 is positioned within an aperture 151 in drive housing 158 to permit selective reciprocation thereof upon actuation of the movable handle 40. The spring 67 is assembled atop the drive housing 158 between a rear stop 156 of the drive housing 158 and a forward stop 154 of the drive ring 159 such that movement of the forward stop 154 compresses the spring 67 against the rear stop 156 which, in turn, reciprocates the drive sleeve 60. As a result thereof, the jaw members 110 and 120 and the movable handle 40 are biased by spring 67 in an open configuration. The drive stop 155 is fixedly positioned atop the drive housing 158 and biases the upper flanges 45a and 45b of the movable handle 40 when actuated such that the driving flange 47 forces the stop 154 of the drive ring 159 proximally against the force of the spring 67. The spring 67, in turn, forces the rear stop 156 proximally to reciprocate the sleeve 60 (See FIG. 40). Preferably, the rotating assembly 80 is located proximate the driving flange 47 to facilitate rotation of the end effector assembly 100. The guide sleeve 157 mates with the proximal end 61 of the reciprocating sleeve 60 and affixes to the drive housing 158. The assembled drive assembly 150 is shown best in FIG. 20.


As best shown in FIGS. 18 and 21-24, the knife assembly 140 includes an elongated rod 182 having a bifurcated distal end comprising prongs 182a and 182b which cooperate to receive a knife bar 184 therein. The knife assembly 180 also includes a proximal end 183 which is keyed to facilitate insertion into tube 160 of the rotating assembly 80. A knife wheel 148 is secured to the knife bar 182 by a pin 143. More particularly, the elongated knife rod 182 includes apertures 181a and 181b which are dimensioned to receive and secure the knife wheel 148 to the knife rod 182 such that longitudinal reciprocation of the knife wheel 148, in turn, moves the elongated knife rod 182 to sever tissue 420.


The knife wheel 148 is preferably donut-like and includes rings 141a and 141b which define a drive slot 147 designed to receive the drive bar 75 of the trigger assembly 70 such that proximal actuation of the trigger assembly 70 forces the drive bar 75 and the knife wheel 148 distally. It is envisioned that aperture 181a may be used for a particular trigger assembly 70 configuration and aperture 181b may be used for a different trigger assembly 70 configuration. As such, pin 143 is designed for attachment through either aperture 181a or 181b to mount the knife wheel 148 (See FIG. 24). Knife wheel 148 also includes a series of radial flanges 142a and 142b which are dimensioned to slide along both channel 163 of tube 160 and slot 68 of the reciprocating sleeve 60 (See FIG. 18).


As mentioned above, the knife rod 182 is dimensioned to mount the knife bar 184 between prongs 182a and 182b preferably in friction-fit engagement. The knife bar 184 includes a series of steps 186a, 186b and 186c which reduce the profile of the knife bar 184 towards the distal end thereof. The distal end of the knife bar 184 includes a knife support 188 which is dimensioned to retain knife blade 185. The end of the knife support preferably includes a chamfered edge 188a. It is envisioned that the knife blade 185 may be welded to the knife support 188 of secured in any manner known in the trade.


As best shown in the exploded view of the FIGS. 14 and 30-32, the electrical leads 310a, 310b, 310c and 311 are fed through the housing 20 by electrosurgical cable 310. More particularly, the electrosurgical cable 310 is fed into the bottom of the housing 20 through fixed handle 50. Lead 310c extends directly from cable 310 into the rotating assembly 80 and connects (via a fused clip or spring clip or the like) to tube 60 to conduct the second electrical potential to fixed jaw member 120. Leads 310a and 310b extend from cable 310 and connect to the hand switch or joy-stick-like toggle switch 200.


Switch 200 includes an ergonomically dimensioned toggle plate 205 having a pair of wings 207a and 207b which preferably conform to the outer shape of housing 20 (once assembled). It is envisioned that the switch 200 permits the user to selectively activate the forceps 10 in a variety of different orientations, i.e., multi-oriented activation. As can be appreciated, this simplifies activation. A pair of prongs 204a and 204b extend distally and mate with a corresponding pair of mechanical interfaces 21a and 21b disposed within housing 20 (See FIG. 32). Prongs 204a and 204b preferably snap-fit to the housing 20 during assembly. Toggle plate 205 also includes a switch interface 203 with mates with a switch button 202 which, in turn, connects to electrical interface 201. The electrical leads 310a and 310b are electrically connected to electrical interface 201. When the toggle plate 205 is depressed, trigger lead 311 carries the first electrical potential to jaw member 110. More particularly, lead 311 extends from interface 201 through a plurality of slots 84a, 84b and 84c of the rotating assembly 80 (See FIGS. 25 and 30) and along the upper portion of tube 160 and eventually connects to the movable jaw member 110 as described above (See FIGS. 32, 34 and 35).


When the switch 200 is depressed, electrosurgical energy is transferred through leads 311 and 310c to jaw members 110 and 120, respectively. It is envisioned that a safety switch or circuit (not shown) may be employed such that the switch cannot fire unless the jaw members 110 and 120 are closed and/or unless the jaw members 110 and 120 have tissue 420 held therebetween. In the latter instance, a sensor (not shown) may be employed to determine if tissue 420 is held therebetween. In addition, other sensor mechanisms may be employed which determine pre-surgical, concurrent surgical (i.e., during surgery) and/or post surgical conditions. The sensor mechanisms may also be utilized with a closed-loop feedback system coupled to the electrosurgical generator to regulate the electrosurgical energy based upon one or more pre-surgical, concurrent surgical or post surgical conditions. Various sensor mechanisms and feedback systems are described in commonly-owned, co-pending U.S. patent application Ser. No. 10/427,832 entitled “METHOD AND SYSTEM FOR CONTROLLING OUTPUT OF RF MEDICAL GENERATOR” filed on May 1, 2003 the entire contents of which are hereby incorporated by reference herein.


Preferably, the jaw members 110 and 120 are electrically isolated from one another such that electrosurgical energy can be effectively transferred through the tissue 420 to form seal 450. For example and as best illustrated in FIGS. 32, 34 and 35, each jaw member, e.g., 110, includes a uniquely-designed electrosurgical cable path disposed therethrough which transmits electrosurgical energy to the electrically conductive sealing surface 112. It is envisioned that jaw member 110 may include one or more cable guides or crimp-like electrical connectors to direct cable lead 311 towards electrically conductive sealing surface 112. Preferably, cable lead 311 is held loosely but securely along the cable path to permit rotation of the jaw member 110 about pivot 103. As can be appreciated, this isolates electrically conductive sealing surface 112 from the remaining operative components of the end effector assembly 100, jaw member 120 and shaft 12. As explained in detail above, the second electrical potential is conducted to jaw member 120 through tube 160. The two potentials are isolated from one another by virtue of the insulative sheathing surrounding cable lead 311.


It is contemplated that utilizing a cable feed path for cable lead 311 and by utilizing a conductive tube 160 to carry the first and second electrical potentials not only electrically isolates each jaw member 110 and 120 but also allows the jaw members 110 and 120 to pivot about pivot pin 103 without unduly straining or possibly tangling cable lead 311. Moreover, it is envisioned that the simplicity of the electrical connections greatly facilitates the manufacturing and assembly process and assures a consistent and tight electrical connection for the transfer of energy through the tissue 420.


As mentioned above, it is envisioned that cable leads 311 and 310c are fed through respective halves 82a and 82b of the rotating assembly 80 in such a manner to allow rotation of the shaft 12 (via rotation of the rotating assembly 80) in the clockwise or counter-clockwise direction without unduly tangling or twisting the cable leads 311 and 310c. More particularly, each cable lead 311 and 310c is fed through a series of conjoining slots 84a, 84b, 84c and 84d located in the two halves 82a and 82b of the rotating assembly 80. Preferably each conjoining pair of slots, e.g., 84a, 84b and 84c, 84d, are large enough to permit rotation of the rotating assembly 80 without unduly straining or tangling the cable leads 311 and 310c. The presently disclosed cable lead feed path is envisioned to allow rotation of the rotation assembly approximately 180 degrees in either direction.


Turning back to FIG. 14 which shows the exploded view of the housing 20, rotating assembly 80, trigger assembly 70, movable handle 40 and fixed handle 50, it is envisioned that all of these various component parts along with the shaft 12 and the end effector assembly 100 are assembled during the manufacturing process to form a partially and/or fully disposable forceps 10. For example and as mentioned above, the shaft 12 and/or end effector assembly 100 may be disposable and, therefore, selectively/releasably engagable with the housing 20 and rotating assembly 80 to form a partially disposable forceps 10 and/or the entire forceps 10 may be disposable after use.


As best seen in FIG. 13, once assembled, spring 67 is poised for compression atop drive housing 158 upon actuation of the movable handle 40. More particularly, movement of the handle 40 about pivot pins 29a and 29b reciprocates the flange 90 into fixed handle 50 and forces drive flange 47 against flange 154 of drive ring 159 to compress spring 67 against the rear stop 156 to reciprocate the sleeve 60 (See FIG. 40).


Preferably, the trigger assembly 70 is initially prevented from firing by the locking flange 44 disposed on movable handle 40 which abuts against the trigger assembly 70 prior to actuation. It is envisioned that the opposing jaw members 110 and 120 may be rotated and partially opened and closed without unlocking the trigger assembly 70 which, as can be appreciated, allows the user to grip and manipulate the tissue 420 without premature activation of the knife assembly 140. As mentioned below, only when the t-shaped end 95 of flange 90 is completely reciprocated within channel 51 of the fixed handle 50 and seated within pre-defined catch basin 194 will the locking flange allow activation of the trigger assembly 70. The operating features and relative movements of these internal working components of the forceps 10 are shown by phantom representation and directional arrows and are best illustrated in FIGS. 36-49.



FIG. 36 shows the forceps approximating tissue. As the handle 40 is squeezed and flange 90 is incorporated into channel 54 of fixed handle 50, the drive flange 47, through the mechanical advantage of the over the center pivot pins 29a and 29b is rotated generally proximally to compress spring 67. Simultaneously, the reciprocating sleeve 60 is pulled proximally by the movement of rear ring 156 which, in turn, causes aperture 62 of sleeve 60 to proximally cam detent 117 and close the jaw member 110 relative to jaw member 120 (See FIGS. 37-40).


It is envisioned that the mechanical advantage of the over-the-center pivot will enable the user to selectively compress the coil spring 67 a specific distance which, in turn, imparts a specific load on the reciprocating sleeve 60. The reciprocating sleeve's 60 load is converted to a torque about the jaw pivot 103. As a result, a specific closure force can be transmitted to the opposing jaw members 110 and 120. As mentioned above, the jaw members 110 and 120 may be opened, closed and rotated to manipulate tissue 420 until sealing is desired without unlocking the trigger assembly 70. This enables the user to position and re-position the forceps 10 prior to activation and sealing. More particularly, as illustrated in FIG. 4, the end effector assembly 100 is rotatable about longitudinal axis “A” through rotation of the rotating assembly 80.


Once the desired position for the sealing site is determined and the jaw members 110 and 120 are properly positioned, handle 40 may be compressed fully such that the t-shaped end 95 of flange 90 clears a predefined rail edge 193 located atop the triangular-shaped members 57. Once end 95 clears edge 193, the end is directed into catch basin 194 located within the exit pathway 58. More particularly, upon a slight reduction in the closing pressure of handle 40 against handle 50, the handle 40 returns slightly distally towards entrance pathway 54 but is re-directed towards exit pathway 58 into catch basin 194 (See FIG. 38). At this point, the release or return pressure between the handles 40 and 50 which is attributable and directly proportional to the release pressure associated with the compression of the drive assembly 150 causes the end 95 of flange 90 to settle or lock within catch basin 194. Handle 40 is now secured in position within fixed handle 50 which, in turn, locks the jaw members 110 and 120 in a closed position against the tissue 420.


At this point the jaws members 110 and 120 are fully compressed about the tissue 420 (FIG. 41). Moreover, the forceps 10 is now ready for selective application of electrosurgical energy and subsequent separation of the tissue 420, i.e., as t-shaped end 95 seats within catch basin 194, locking flange 44 moves into a position to permit activation of the trigger assembly 70 (FIGS. 44 and 45).


As the t-shaped end 95 of flange 90 becomes seated within catch basin 194, a proportional axial force on the reciprocating sleeve 60 is maintained which, in turn, maintains a compressive force between opposing jaw members 110 and 120 against the tissue 420. It is envisioned that the end effector assembly 100 and/or the jaw members 110 and 120 may be dimensioned to off-load some of the excessive clamping forces to prevent mechanical failure of certain internal operating elements of the end effector 100.


As can be appreciated, the combination of the mechanical advantage of the over-the-center pivot along with the compressive force associated with the compression spring 67 facilitate and assure consistent, uniform and accurate closure pressure about the tissue 420 within the desired working pressure range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, about 7 kg/cm2 to about 13 kg/cm2. By controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue 420, the user can either cauterize, coagulate/desiccate, seal and/or simply reduce or slow bleeding. As mentioned above, two mechanical factors play an important role in determining the resulting thickness of the sealed tissue and effectiveness of the seal 450, i.e., the pressure applied between opposing jaw members 110 and 120 and the gap distance “G” between the opposing sealing surfaces 112, 122 of the jaw members 110 and 120 during the sealing process. However, thickness of the resulting tissue seal 450 cannot be adequately controlled by force alone. In other words, too much force and the two jaw members 110 and 120 would touch and possibly short resulting in little energy traveling through the tissue 420 thus resulting in a bad tissue seal 450. Too little force and the seal 450 would be too thick.


Applying the correct force is also important for other reasons: to oppose the walls of the vessel; to reduce the tissue impedance to a low enough value that allows enough current through the tissue 420; and to overcome the forces of expansion during tissue heating in addition to contributing towards creating the required end tissue thickness which is an indication of a good seal 450.


Preferably, the electrically conductive sealing surfaces 112, 122 of the jaw members 110, 120, respectively, are relatively flat to avoid current concentrations at sharp edges and to avoid arcing between high points. In addition and due to the reaction force of the tissue 420 when engaged, jaw members 110 and 120 are preferably manufactured to resist bending. For example, the jaw members 110 and 120 may be tapered along the width thereof which is advantageous for two reasons: 1) the taper will apply constant pressure for a constant tissue thickness at parallel; 2) the thicker proximal portion of the jaw members 110 and 120 will resist bending due to the reaction force of the tissue 420.


As mentioned above, at least one jaw member, e.g., 120, may include a stop member 750 which limits the movement of the two opposing jaw members 110 and 120 relative to one another. Preferably, the stop member 750 extends from the sealing surface 122 a predetermined distance according to the specific material properties (e.g., compressive strength, thermal expansion, etc.) to yield a consistent and accurate gap distance “G” during sealing (FIG. 41). Preferably, the gap distance between opposing sealing surfaces 112 and 122 during sealing ranges from about 0.001 inches to about 0.006 inches and, more preferably, between about 0.002 and about 0.003 inches. Preferably, the non-conductive stop members 750 are molded onto the jaw members 110 and 120 (e.g., overmolding, injection molding, etc.), stamped onto the jaw members 110 and 120 or deposited (e.g., deposition) onto the jaw members 110 and 120. For example, one technique involves thermally spraying a ceramic material onto the surface of the jaw member 110 and 120 to form the stop members 750. Several thermal spraying techniques are contemplated which involve depositing a broad range of heat resistant and insulative materials on various surfaces to create stop members 750 for controlling the gap distance between electrically conductive surfaces 112 and 122.


As energy is being selectively transferred to the end effector assembly 100, across the jaw members 110 and 120 and through the tissue 420, a tissue seal 450 forms isolating two tissue halves 420a and 420b. At this point and with other known vessel sealing instruments, the user must remove and replace the forceps 10 with a cutting instrument (not shown) to divide the tissue halves 420a and 420b along the tissue seal 450. As can be appreciated, this is both time consuming and tedious and may result in inaccurate tissue division across the tissue seal 450 due to misalignment or misplacement of the cutting instrument along the ideal tissue cutting plane.


As explained in detail above, the present disclosure incorporates knife assembly 140 which, when activated via the trigger assembly 70, progressively and selectively divides the tissue 420 along an ideal tissue plane in precise manner to effectively and reliably divide the tissue 420 into two sealed halves 420a and 420b (See FIG. 46) with a tissue gap 475 therebetween. The knife assembly 140 allows the user to quickly separate the tissue 420 immediately after sealing without substituting a cutting instrument through a cannula or trocar port. As can be appreciated, accurate sealing and dividing of tissue 420 is accomplished with the same forceps 10.


It is envisioned that knife blade 185 may also be coupled to the same or an alternative electrosurgical energy source to facilitate separation of the tissue 420 along the tissue seal 450 (Not shown). Moreover, it is envisioned that the angle of the knife blade tip 185 may be dimensioned to provide more or less aggressive cutting angles depending upon a particular purpose. For example, the knife blade 185 may be positioned at an angle which reduces “tissue wisps” associated with cutting. More over, the knife blade 185 may be designed having different blade geometries such as serrated, notched, perforated, hollow, concave, convex etc. depending upon a particular purpose or to achieve a particular result.


Once the tissue 420 is divided into tissue halves 420a and 420b, the jaw members 110 and 120 may be opened by re-grasping the handle 40 as explained below. It is envisioned that the knife assembly 140 generally cuts in a progressive, uni-directional fashion (i.e., distally).


As best shown in FIGS. 47-49, re-initiation or re-grasping of the handle 40 again moves t-shaped end 95 of flange 90 generally proximally along exit pathway 58 until end 95 clears a lip 196 disposed atop triangular-shaped members 57 along exit pathway 58. Once lip 196 is sufficiently cleared, handle 40 and flange 90 are fully and freely releasable from handle 50 along exit pathway 58 upon the reduction of grasping/gripping pressure which, in turn, returns the jaw members 110 and 120 to the open, pre-activated position.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, it may be preferable to add other features to the forceps 10, e.g., an articulating assembly to axially displace the end effector assembly 100 relative to the elongated shaft 12.


It is also contemplated that the forceps 10 (and/or the electrosurgical generator used in connection with the forceps 10) may include a sensor or feedback mechanism (not shown) which automatically selects the appropriate amount of electrosurgical energy to effectively seal the particularly-sized tissue grasped between the jaw members 110 and 120. The sensor or feedback mechanism may also measure the impedance across the tissue during sealing and provide an indicator (visual and/or audible) that an effective seal has been created between the jaw members 110 and 120. Examples of such sensor systems are described in commonly-owned U.S. patent application Ser. No. 10/427,832 entitled “METHOD AND SYSTEM FOR CONTROLLING OUTPUT OF RF MEDICAL GENERATOR” filed on May 1, 2003 the entire contents of which are hereby incorporated by reference herein.


Moreover, it is contemplated that the trigger assembly 70 may include other types of recoil mechanism which are designed to accomplish the same purpose, e.g., gas-actuated recoil, electrically-actuated recoil (i.e., solenoid), etc. It is also envisioned that the forceps 10 may be used to cut tissue 420 without sealing. Alternatively, the knife assembly 70 may be coupled to the same or alternate electrosurgical energy source to facilitate cutting of the tissue 420.


Although the figures depict the forceps 10 manipulating an isolated vessel 420, it is contemplated that the forceps 10 may be used with non-isolated vessels as well. Other cutting mechanisms are also contemplated to cut tissue 420 along the ideal tissue plane.


It is envisioned that the outer surface of the end effector assembly 100 may include a nickel-based material, coating, stamping, metal injection molding which is designed to reduce adhesion between the jaw members 110 and 120 with the surrounding tissue during activation and sealing. Moreover, it is also contemplated that the conductive surfaces 112 and 122 of the jaw members 110 and 120 may be manufactured from one (or a combination of one or more) of the following materials: nickel-chrome, chromium nitride, MedCoat 2000 manufactured by The Electrolizing Corporation of OHIO, inconel 600 and tin-nickel. The tissue conductive surfaces 112 and 122 may also be coated with one or more of the above materials to achieve the same result, i.e., a “non-stick surface”. As can be appreciated, reducing the amount that the tissue “sticks” during sealing improves the overall efficacy of the instrument.


One particular class of materials disclosed herein has demonstrated superior non-stick properties and, in some instances, superior seal quality. For example, nitride coatings which include, but not are not limited to: TiN, ZrN, TiAlN, and CrN are preferred materials used for non-stick purposes. CrN has been found to be particularly useful for non-stick purposes due to its overall surface properties and optimal performance. Other classes of materials have also been found to reducing overall sticking. For example, high nickel/chrome alloys with a Ni/Cr ratio of approximately 5:1 have been found to significantly reduce sticking in bipolar instrumentation. One particularly useful non-stick material in this class is Inconel 600. Bipolar instrumentation having sealing surfaces 112 and 122 made from or coated with Ni200, Ni201 (˜100% Ni) also showed improved non-stick performance over typical bipolar stainless steel electrodes.


As can be appreciated, locating the switch 200 on the forceps 10 has many advantages. For example, the switch 200 reduces the amount of electrical cable in the operating room and eliminates the possibility of activating the wrong instrument during a surgical procedure due to “line-of-sight” activation. Moreover, decommissioning the switch 200 when the trigger is actuated eliminates unintentionally activating the device during the cutting process. It is also envisioned that the switch 200 may be disposed on another part of the forceps 10, e.g., the fixed handle 40, rotating assembly 80, housing 20, etc.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An endoscopic forceps, comprising: a housing including a handle moveable about a pivot;a shaft extending distally from the housing having a pair of jaw members adjacent a distal end thereof, at least one jaw member of the pair of jaw members pivotable with respect to the shaft, the shaft defining a longitudinal axis therethrough;a drive assembly having a drive sleeve configured to move the at least one pivotable jaw member relative to another jaw member of the pair of jaw members from a first position wherein the pair of jaw members are disposed in spaced relation to a second position wherein the pair of jaw members are closer together, the drive assembly including a proximal stop disposed about and fixed relative to the drive sleeve, a distal stop disposed about and movable relative to the drive sleeve, and a spring disposed about the drive sleeve between the proximal stop and the distal stop; anda drive flange disposed distally of the distal stop, the drive flange including a contact portion in contact with the distal stop, wherein proximal actuation of the handle about the pivot causes proximal movement of the contact portion, which, as a result, causes proximal movement of the distal stop to urge the spring into the proximal stop to move the proximal stop proximally which, in turn, moves the drive sleeve proximally to thereby move the at least one pivotable jaw member toward the second position;wherein the pivot is located on one side of the contact portion of the drive flange orthogonal to the longitudinal axis; and wherein a gripping portion of the handle is located on an opposite side of the contact portion of the drive flange orthogonal to the longitudinal axis.
  • 2. The endoscopic forceps of claim 1, wherein the drive sleeve is translatable in a direction that is parallel to the longitudinal axis.
  • 3. The endoscopic forceps of claim 1, wherein the at least one pivotable jaw member includes a pivot flange and wherein the drive sleeve includes an aperture defined therein at a distal end thereof, the aperture configured to mechanically engage the pivot flange of the at least one pivotable jaw member to impart a closure force within a predetermined range to the at least one pivotable jaw member.
  • 4. The endoscopic forceps of claim 3, wherein the predetermined range is about 3 kg/cm2 to about 16 kg/cm2.
  • 5. The endoscopic forceps of claim 1, wherein at least one jaw member of the pair of jaw members is adapted to connect to a source of electrosurgical energy to enable conduction of energy through tissue held by the pair of jaw members to effect a tissue seal.
  • 6. The endoscopic forceps of claim 1, further comprising a selectively advanceable knife assembly including a knife blade that is configured to cut tissue as the knife assembly is advanced distally.
  • 7. The endoscopic forceps of claim 6, wherein the handle includes a lockout flange dimensioned to impede selective advancement of the knife assembly when the handle is disposed in a first position and wherein the lockout flange of the handle is repositioned to permit selective advancement of the knife assembly when the handle rotates to a second position.
  • 8. The endoscopic forceps of claim 1, wherein the longitudinal axis extends through the drive flange.
  • 9. The endoscopic forceps of claim 1, further comprising a hand switch disposed at least partially within the housing and in electromechanical cooperation with a source of electrosurgical energy, the hand switch operable to allow a user to selectively supply energy to at least one of the jaw members of the pair of jaw members.
  • 10. The endoscopic forceps of claim 9, wherein the pair of jaw members includes one jaw member that is fixed with respect to the shaft.
  • 11. The endoscopic forceps of claim 10, wherein upon electrical activation of the hand switch, the at least one pivotable jaw member includes a first electrical potential and the fixed jaw member includes a second electrical potential, wherein the second electrical potential is conducted to the fixed jaw member by a conductive tube disposed through the shaft.
  • 12. The endoscopic forceps of claim 1, wherein at least one jaw member of the pair of jaw members includes at least one stop member disposed thereon configured to regulate a distance between the pair of jaw members in the second position thereof.
  • 13. The endoscopic forceps of claim 1, wherein the proximal movement of the distal stop compresses the spring against the proximal stop.
  • 14. The endoscopic forceps of claim 13 wherein the compression of the spring imparts a closure force within a predetermined range to the at least one pivotable jaw member.
  • 15. The endoscopic forceps of claim 14, wherein the predetermined range is about 3 kg/cm2 to about 16 kg/cm2.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefits of, priority to and is a Continuation of U.S. patent application Ser. No. 11/588,482, filed on Oct. 27, 2006 by Dycus et al., which is a Continuation of U.S. Pat. No. 7,156,846, filed on Jun. 13, 2003 by Dycus et al. The entire contents of each of these applications are hereby incorporated by reference herein.

US Referenced Citations (900)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
1822330 Ainslie Sep 1931 A
1852542 Sovatkin Apr 1932 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2054149 Wappler Sep 1936 A
2176479 Willis Oct 1939 A
2279753 Knopp Apr 1942 A
2305156 Grubel Dec 1942 A
2327353 Karle Aug 1943 A
2632661 Cristofv Mar 1953 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3073311 Tibbs et al. Jan 1963 A
3372288 Wigington Mar 1968 A
3459187 Pallotta Aug 1969 A
3643663 Sutter Feb 1972 A
3648001 Anderson et al. Mar 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3678229 Osika Jul 1972 A
3720896 Beierlein Mar 1973 A
3763726 Hildebrand Oct 1973 A
3779918 Ikeda et al. Dec 1973 A
3801766 Morrison, Jr. Apr 1974 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4016881 Rioux et al. Apr 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4076028 Simmons Feb 1978 A
4080820 Allen Mar 1978 A
4088134 Mazzariello May 1978 A
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4187420 Piber Feb 1980 A
4233734 Bies Nov 1980 A
4236470 Stenson Dec 1980 A
4300564 Furihata Nov 1981 A
4311145 Esty et al. Jan 1982 A
D263020 Rau, III Feb 1982 S
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4443935 Zamba et al. Apr 1984 A
4452246 Bader et al. Jun 1984 A
4470786 Sano et al. Sep 1984 A
4492231 Auth Jan 1985 A
4493320 Treat Jan 1985 A
4503855 Maslanka Mar 1985 A
4506669 Blake, III Mar 1985 A
4509518 McGarry et al. Apr 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4624254 McGarry et al. Nov 1986 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4685459 Koch et al. Aug 1987 A
4733662 DeSatnick et al. Mar 1988 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
4827929 Hodge May 1989 A
4829313 Taggart May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4938761 Ensslin Jul 1990 A
4947009 Osika et al. Aug 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5026371 Rydell et al. Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5047046 Bodoia Sep 1991 A
5078716 Doll Jan 1992 A
5084057 Green et al. Jan 1992 A
5085659 Rydell Feb 1992 A
5099840 Goble et al. Mar 1992 A
5100430 Avellanet et al. Mar 1992 A
5108392 Spingler Apr 1992 A
5112343 Thornton May 1992 A
5116332 Lottick May 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5151978 Bronikowski et al. Sep 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5209747 Knoepfler May 1993 A
5211655 Hasson May 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5281220 Blake, III Jan 1994 A
5282799 Rydell Feb 1994 A
5282800 Foshee et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5290286 Parins Mar 1994 A
5300082 Sharpe et al. Apr 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308353 Beurrier May 1994 A
5308357 Lichtman May 1994 A
5312433 Boebel et al. May 1994 A
5313027 Inoue et al. May 1994 A
5314445 Heidmueller nee Degwitz et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
D348930 Olson Jul 1994 S
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5368600 Failla et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5376089 Smith Dec 1994 A
5383875 Bays et al. Jan 1995 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389103 Melzer et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5409763 Serizawa et al. Apr 1995 A
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415656 Tihon et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439478 Palmer Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5449480 Kuriya et al. Sep 1995 A
5451224 Goble et al. Sep 1995 A
5454823 Richardson et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5461765 Linden et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480406 Nolan et al. Jan 1996 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5528833 Sakuma Jun 1996 A
5529067 Larsen et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5562699 Heimberger et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579781 Cooke Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5591181 Stone et al. Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5601641 Stephens Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5611798 Eggers Mar 1997 A
5611808 Hossain et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620453 Nallakrishnan Apr 1997 A
5620459 Lichtman Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638003 Hall Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5655650 Naitou Aug 1997 A
5658281 Heard Aug 1997 A
D384413 Zlock et al. Sep 1997 S
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5674229 Tovey et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690652 Wurster et al. Nov 1997 A
5690653 Richardson et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5693920 Maeda Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5759188 Yoon Jun 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5766196 Griffiths Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5779646 Koblish et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
H1745 Paraschac Aug 1998 H
5792137 Carr et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5814054 Kortenbach et al. Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820630 Lind Oct 1998 A
5824978 Karasik et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5859527 Cook Jan 1999 A
5860976 Billings et al. Jan 1999 A
5876401 Schulze et al. Mar 1999 A
5876412 Piraka Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5897563 Yoon et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921916 Aeikens et al. Jul 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5928136 Barry Jul 1999 A
5935126 Riza Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951546 Lorentzen Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5954733 Yoon Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
5976132 Morris Nov 1999 A
5984932 Yoon Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
5997565 Inoue Dec 1999 A
6004332 Yoon et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6021693 Feng-Sing Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024743 Edwards Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027522 Palmer Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
6066139 Ryan et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6077287 Taylor et al. Jun 2000 A
6080180 Yoon et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6086601 Yoon Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6106542 Toybin et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6126665 Yoon Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6143005 Yoon et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6162220 Nezhat Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6178628 Clemens et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse Feb 2001 B1
6190386 Rydell Feb 2001 B1
6190400 Van De Moer et al. Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217602 Redmon Apr 2001 B1
6217615 Sioshansi et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6224614 Yoon May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6248124 Pedros et al. Jun 2001 B1
6248944 Ito Jun 2001 B1
6261307 Yoon et al. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6298550 Kirwan, Jr. Oct 2001 B1
6302424 Gisinger et al. Oct 2001 B1
6319262 Bates et al. Nov 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358259 Swain et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6461368 Fogarty et al. Oct 2002 B2
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6485489 Teirstein et al. Nov 2002 B2
6494888 Laufer et al. Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514215 Ouchi Feb 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517539 Smith et al. Feb 2003 B1
6527771 Weadock et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6545239 Spedale et al. Apr 2003 B2
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6569105 Kortenbach et al. May 2003 B1
6582450 Ouchi Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6605790 Yoshida Aug 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620184 de Laforcade et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6638287 Danitz et al. Oct 2003 B2
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656175 Francischelli et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6663639 Laufer et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6669696 Bacher Dec 2003 B2
6673092 Bacher Jan 2004 B1
6676660 Wampler et al. Jan 2004 B2
6676676 Danitz et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6693246 Rudolph et al. Feb 2004 B1
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6723092 Brown et al. Apr 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6726694 Blatter et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756553 Yamaguchi et al. Jun 2004 B1
6757977 Dambal et al. Jul 2004 B2
D493888 Reschke Aug 2004 S
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773432 Clayman et al. Aug 2004 B1
6773434 Ciarrocca Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800825 Sasaki et al. Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835200 Laufer et al. Dec 2004 B2
6857357 Fujii Feb 2005 B2
6860880 Treat et al. Mar 2005 B2
6887240 Lands et al. May 2005 B1
6889116 Jinno May 2005 B2
6914201 Van Vooren et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
D509297 Wells Sep 2005 S
6942662 Goble et al. Sep 2005 B2
6943311 Miyako Sep 2005 B2
6953430 Kidooka Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6972017 Smith et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6987244 Bauer Jan 2006 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052489 Griego et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7063715 Onuki et al. Jun 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7179258 Buysse et al. Feb 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7207990 Lands et al. Apr 2007 B2
D541938 Kerr et al. May 2007 S
7223264 Daniel et al. May 2007 B2
7223265 Keppel May 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7244257 Podhajsky et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7248944 Green Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7318823 Sharps et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7338526 Steinberg Mar 2008 B2
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jigamian Mar 2008 B2
D567943 Moses et al. Apr 2008 S
7367976 Lawes et al. May 2008 B2
7377920 Buysse et al. May 2008 B2
7384420 Dycus et al. Jun 2008 B2
7384421 Hushka Jun 2008 B2
7396336 Orszulak et al. Jul 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7435249 Buysse et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7458972 Keppel Dec 2008 B2
7473253 Dycus et al. Jan 2009 B2
7481810 Dumbauld et al. Jan 2009 B2
7487780 Hooven Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7500975 Cunningham et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513898 Johnson et al. Apr 2009 B2
7540872 Schechter et al. Jun 2009 B2
7549995 Schultz Jun 2009 B2
7553312 Tetzlaff et al. Jun 2009 B2
8647341 Dycus et al. Feb 2014 B2
20020013583 Camran et al. Jan 2002 A1
20020049442 Roberts et al. Apr 2002 A1
20020099372 Schulze et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018331 Dycus et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030032956 Lands et al. Feb 2003 A1
20030055424 Ciarrocca Mar 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078578 Truckai et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030158549 Swanson Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030199869 Johnson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220637 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20030236518 Marchitto et al. Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040073256 Marchitto et al. Apr 2004 A1
20040078035 Kanehira et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040107785 Gagner Jun 2004 A1
20040115296 Duffin Jun 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040116979 Truckai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040148035 Barrett et al. Jul 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040193153 Sartor et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040210282 Flock et al. Oct 2004 A1
20040224590 Rawa et al. Nov 2004 A1
20040230189 Keppel Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040250419 Sremcich et al. Dec 2004 A1
20040254573 Dycus et al. Dec 2004 A1
20040260281 Baxter et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050059934 Wenchell et al. Mar 2005 A1
20050096645 Wellman et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050107784 Moses et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050113827 Dumbauld et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20050149017 Dycus Jul 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20050154387 Moses et al. Jul 2005 A1
20050187547 Sugi Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050240179 Buysse et al. Oct 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060052779 Hammill Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060074417 Cunningham et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060079933 Hushka et al. Apr 2006 A1
20060084973 Hushka Apr 2006 A1
20060089670 Hushka Apr 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060161150 Keppel Jul 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189980 Johnson et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060224158 Odom et al. Oct 2006 A1
20060229666 Suzuki et al. Oct 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060259036 Tetzlaff et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060271038 Johnson et al. Nov 2006 A1
20060283093 Petrovic et al. Dec 2006 A1
20060287641 Perlin Dec 2006 A1
20070016182 Lipson et al. Jan 2007 A1
20070016187 Weinberg et al. Jan 2007 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070055231 Dycus et al. Mar 2007 A1
20070060919 Isaacson et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070078459 Johnson et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070106297 Dumbauld et al. May 2007 A1
20070118111 Weinberg May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070198011 Sugita Aug 2007 A1
20070203485 Keppel Aug 2007 A1
20070213706 Dumbauld et al. Sep 2007 A1
20070213707 Dumbauld et al. Sep 2007 A1
20070213708 Dumbauld et al. Sep 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070255279 Buysse et al. Nov 2007 A1
20070260235 Podhajsky Nov 2007 A1
20070260238 Guerra Nov 2007 A1
20070260241 Dalla Betta et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080009860 Odom Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080021450 Couture Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080039835 Johnson et al. Feb 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082100 Orton et al. Apr 2008 A1
20080091189 Carlton Apr 2008 A1
20080114356 Johnson et al. May 2008 A1
20080167651 Tetzlaff et al. Jul 2008 A1
20080195093 Couture et al. Aug 2008 A1
20080215051 Buysse et al. Sep 2008 A1
20080243120 Lawes et al. Oct 2008 A1
20080249527 Couture Oct 2008 A1
20080312653 Arts et al. Dec 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090018535 Schechter et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090048596 Shields et al. Feb 2009 A1
20090062794 Buysse et al. Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090082767 Unger et al. Mar 2009 A1
20090082769 Unger et al. Mar 2009 A1
20090088738 Guerra et al. Apr 2009 A1
20090088739 Hushka et al. Apr 2009 A1
20090088740 Guerra et al. Apr 2009 A1
20090088741 Hushka et al. Apr 2009 A1
20090088744 Townsend Apr 2009 A1
20090088745 Hushka et al. Apr 2009 A1
20090088746 Hushka et al. Apr 2009 A1
20090088747 Hushka et al. Apr 2009 A1
20090088748 Guerra et al. Apr 2009 A1
20090088749 Hushka et al. Apr 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090112206 Dumbauld et al. Apr 2009 A1
20090131934 Odom et al. May 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090171350 Dycus et al. Jul 2009 A1
20090171353 Johnson et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090187188 Guerra et al. Jul 2009 A1
Foreign Referenced Citations (160)
Number Date Country
2104423 Feb 1994 CA
2415263 Oct 1975 DE
02514501 Oct 1976 DE
2627679 Jan 1977 DE
03612646 Apr 1987 DE
8712328 Feb 1988 DE
04303882 Feb 1995 DE
04403252 Aug 1995 DE
19515914 Jul 1996 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
19738457 Jan 2009 DE
0467501 Jan 1992 EP
0572131 Dec 1993 EP
0584787 Mar 1994 EP
0589555 Mar 1994 EP
0589453 Apr 1994 EP
0624348 Jun 1995 EP
0364216 Jan 1996 EP
0518230 May 1996 EP
0517243 Sep 1997 EP
0541930 Mar 1998 EP
0878169 Nov 1998 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0923907 Jun 1999 EP
0640317 Sep 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1 159 926 Dec 2001 EP
1177771 Feb 2002 EP
0717966 Apr 2003 EP
1301135 Apr 2003 EP
0887046 Jul 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
1472984 Nov 2004 EP
0754437 Dec 2004 EP
1025807 Dec 2004 EP
0774232 Jan 2005 EP
0853922 Feb 2005 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1034746 Mar 2006 EP
1632192 Mar 2006 EP
1642543 Apr 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1649821 Apr 2006 EP
0875209 May 2006 EP
1707143 Oct 2006 EP
1769765 Apr 2007 EP
1769766 Apr 2007 EP
1929970 Jun 2008 EP
1683496 Dec 2008 EP
623316 May 1949 GB
1490585 Nov 1977 GB
2213416 Aug 1989 GB
2214430 Sep 1989 GB
501068 Sep 1984 JP
502328 Mar 1992 JP
5-5106 Jan 1993 JP
05-40112 Feb 1993 JP
6-121797 May 1994 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09010223 Jan 1997 JP
11-192238 Jul 1999 JP
11244298 Sep 1999 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
2004-517668 Jun 2004 JP
2004524922 Aug 2004 JP
2004535236 Nov 2004 JP
401367 Oct 1973 SU
8900757 Jan 1989 WO
9204873 Apr 1992 WO
9206642 Apr 1992 WO
9321845 Nov 1993 WO
9408524 Apr 1994 WO
9420025 Sep 1994 WO
9502369 Jan 1995 WO
9507662 Mar 1995 WO
9515124 Jun 1995 WO
9605776 Feb 1996 WO
96-22056 Jul 1996 WO
9613218 Sep 1996 WO
9700646 Jan 1997 WO
9700647 Jan 1997 WO
9710764 Mar 1997 WO
9724073 Jul 1997 WO
9724993 Jul 1997 WO
9827880 Jul 1998 WO
9903407 Jan 1999 WO
9903408 Jan 1999 WO
9903409 Jan 1999 WO
9912488 Mar 1999 WO
99-23933 May 1999 WO
9940857 Aug 1999 WO
9940861 Aug 1999 WO
9951158 Oct 1999 WO
9966850 Dec 1999 WO
0024330 May 2000 WO
0024331 May 2000 WO
0036986 Jun 2000 WO
0041638 Jul 2000 WO
0047124 Aug 2000 WO
0053112 Sep 2000 WO
0117448 Mar 2001 WO
0154604 Aug 2001 WO
0207627 Jan 2002 WO
02067798 Sep 2002 WO
02080783 Oct 2002 WO
02080784 Oct 2002 WO
02080785 Oct 2002 WO
02080786 Oct 2002 WO
02080793 Oct 2002 WO
02080794 Oct 2002 WO
02080795 Oct 2002 WO
02080796 Oct 2002 WO
02080797 Oct 2002 WO
02080798 Oct 2002 WO
02080799 Oct 2002 WO
02081170 Oct 2002 WO
03061500 Jul 2003 WO
03101311 Dec 2003 WO
03090630 Apr 2004 WO
2004032776 Apr 2004 WO
2004032777 Apr 2004 WO
2004052221 Jun 2004 WO
2004073488 Sep 2004 WO
2004073490 Sep 2004 WO
2004073753 Sep 2004 WO
2004082495 Sep 2004 WO
2004098383 Nov 2004 WO
2004103156 Dec 2004 WO
2005004734 Jan 2005 WO
2005004735 Jan 2005 WO
2005110264 Nov 2005 WO
2008045348 Apr 2008 WO
2008045350 Apr 2008 WO
Non-Patent Literature Citations (120)
Entry
Int'l Search Report EP 04 752343.6 dated Jul. 20, 2007.
Int'l Search Report EP 06 024122.1 dated Mar. 19, 2007.
Int'l Search Report EP 07 001480.8 dated Apr. 12, 2007.
Int'l Search Report EP 07 001488.1 dated May 29, 2007.
Int'l Search Report—Extended EP 07 009029.5 dated Jul. 12, 2007.
Int'l Search Report EP 07 009321.6 dated Aug. 17, 2007.
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
Linehan et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001 pp. 21-24.
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
“Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery Sales/Product Literature; Jan. 2004.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Seater and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC 2003.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature 1999.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Seater in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
Johnson et al. “Evaluation of a Bipolar electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature Jan. 2004.
Int'l Search Report PCT/US98/18640 dated Dec. 17, 1998.
Int'l Search Report PCT/US98/23950 dated Dec. 29, 1998.
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000.
Int'l Search Report PCT/US01/11218 dated Aug. 3, 2001.
International Search Report PCT/US01/11224 dated Nov. 13, 2001.
Int'l Search Report PCT/US01/11340 dated Aug. 7, 2001.
Int'l Search Report PCT/US01/11420 dated Oct. 8, 2001.
Int'l Search Report PCT/US02/01890 dated Jul. 17, 2002.
Int'l Search Report PCT/US02/11100 dated Jul. 9, 2002.
Int'l Search Report PCT/US04/03436 dated Oct. 5, 2004.
Int'l Search Report PCT/US04/13273 dated Nov. 22, 2004.
Int'l Search Report PCT/US04/15311 dated Nov. 18, 2004.
Int'l Search Report EP 98944778 dated Oct. 31, 2000.
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002.
Int'l Search Report EP 04027314 dated Mar. 10, 2005.
Int'l Search Report EP 04027479 dated Mar. 8, 2005.
Int'l Search Report EP 04027705 dated Feb. 3, 2005.
Int'l Search Report EP 04013772 dated Apr. 1, 2005.
Int'l Search Report EP 05013463.4 dated Sep. 28, 2005.
Int'l Search Report EP 05013895 dated Oct. 14, 2005.
Int'l Search Report EP 05016399 dated Jan. 5, 2006.
Int'l Search Report EP 05017281 dated Nov. 16, 2005.
Int'l Search Report EP 05019130.3 dated Oct. 18, 2005.
Int'l Search Report EP 05020665.5 dated Feb. 16, 2006.
Int'l Search Report EP 05020666.3 dated Feb. 17, 2006.
Int'l Search Report EP 05021779.3 dated Jan. 18, 2006.
Int'l Search Report EP 05021197.8 dated Jan. 31, 2006.
Int'l Search Report EP 05021937.7 dated Jan. 13, 2006.
Int'l Search Report—extended—EP 05021937.7 dated Mar. 6, 2006.
Int'l Search Report EP 05023017.6 dated Feb. 16, 2006.
Int'l Search Report EP 05021780.1 dated Feb. 9, 2006.
Int'l Search Report EP 06002279.5 dated Mar. 22, 2006.
Int'l Search Report EP 06005185.1 dated Apr. 18, 2006.
Int'l Search Report EP 06006716 dated Aug. 4, 2006.
Int'l Search Report EP 06008779.8 dated Jun. 13, 2006.
Int'l Search Report EP 1683496 dated Jun. 13, 2006.
Int'l Search Report EP 06014461.5 dated Oct. 20, 2006.
Int'l Search Report EP 06020584.6 dated Jan. 12, 2007.
Int'l Search Report EP 06020583.8 dated Jan. 30, 2007.
Int'l Search Report EP 06020756.0 dated Feb. 5, 2007.
Int'l Search Report EP 06024123.9 dated Feb. 26, 2007.
Int'l Search Report EP 06 020574.7 dated Sep. 21, 2007.
Int'l Search Report EP 07 010672.9 dated Oct. 1, 2007.
Int'l Search Report EP 07 013779.9 dated Oct. 18, 2007.
Int'l Search Report EP 07 009026.1 dated Sep. 12, 2007.
Int'l Search Report EP 07 015601.3 dated Dec. 6, 2007.
Int'l Search Report EP 07 015191.5 dated Dec. 19, 2007.
Int'l Search Report EP 07 020283.3 dated Jan. 16, 2008.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
Int'l Search Report EP 98957771 dated Aug. 9, 2001.
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008.
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009.
Int'l Search Report EP 05019429.9 dated May 6, 2008.
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009.
Int'l Search Report EP 07 014016 dated Jan. 28, 2008.
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008.
Int'l Search Report EP 07 021647.8 dated May 2, 2008.
Int'l Search Report EP 08 02692.5 dated Dec. 12, 2008.
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008.
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008.
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008.
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009.
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009.
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009.
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999.
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003.
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008.
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008.
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008.
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009.
Official Action issued in corresponding Japanese Application No. 2005-283135 dated Mar. 31, 2011.
European Search Report for EP 10172005.0-2310 date of completion Sep. 30, 2010.
European Search Report dated Aug. 31, 2011 for EP Appln. No. EP 10 16 7655.
Related Publications (1)
Number Date Country
20140228842 A1 Aug 2014 US
Continuations (2)
Number Date Country
Parent 11588482 Oct 2006 US
Child 14177812 US
Parent 10460926 Jun 2003 US
Child 11588482 US