This invention relates generally to medical instruments and, in particular, to generators that provide radio frequency (RF) energy useful in sealing tissue and vessels during electrosurgical and other procedures. Electrosurgical generators are employed by surgeons to cut and coagulate the tissue of a patient.
High frequency electrical power, which may be also referred to as radio frequency (RF) power or energy, is produced by the electrosurgical generator and applied to the tissue by an electrosurgical tool. Both monopolar and bipolar configurations are commonly used during electrosurgical procedures.
Electrosurgical techniques can be used to seal small diameter blood vessels and vascular bundles. Another application of electrosurgical techniques is in tissue fusion wherein two layers of tissue are grasped and clamped together by a suitable electrosurgical tool while the electrosurgical RF energy is applied. The two layers of tissue are then fused together.
At this point it is significant to note that the process of coagulating small vessels is fundamentally different than vessel sealing or tissue fusion. For the purposes herein the term coagulation can be defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. Vessel sealing or tissue fusion can both be defined as desiccating tissue by the process of liquefying the collagen in the tissue so that it crosslinks and reforms into a fused mass. Thus, the coagulation of small vessels if generally sufficient to close them, however, larger vessels normally need to be sealed to assure permanent closure.
However, and as employed herein, the term “electrosurgical desiccation” is intended to encompass any tissue desiccation procedure, including electrosurgical coagulation, desiccation, vessel sealing, and tissue fusion.
One of the problems that can arise from electrosurgical desiccation is undesirable tissue damage due to thermal effects, wherein otherwise healthy tissue surrounding the tissue to which the electrosurgical energy is being applied is thermally damaged by an effect known in the art as “thermal spread”. During the occurrence of thermal spread excess heat from the operative site can be directly conducted to the adjacent tissue, and/or the release of steam from the tissue being treated at the operative site can result in damage to the surrounding tissue.
It can be appreciated that it would be desirable to provide an electrosurgical generator that limited the possibility of the occurrence of thermal spread.
Another problem that can arise with conventional electrosurgical techniques is a buildup of eschar on the electrosurgical tool or instrument. Eschar is a deposit that forms on working surface(s) of the tool, and results from tissue that is electrosurgically desiccated and then charred. One result of the buildup of eschar is a reduction in the effectiveness of the surgical tool. The buildup of eschar on the electrosurgical tool can be reduced if less heat is developed at the operative site.
It has been well established that a measurement of the electrical impedance of tissue provides an indication of the state of desiccation of the tissue, and this observation has been utilized in some electrosurgical generators to automatically terminate the generation of electrosurgical power based on a measurement of tissue impedance.
At least two techniques for determining an optimal amount of desiccation are known by those skilled in this art. One technique sets a threshold impedance, and terminates electrosurgical power when the measured tissue impedance crosses the threshold. A second technique terminates the generation of electrosurgical power based on dynamic variations in the tissue impedance.
A discussion of the dynamic variations of tissue impedance can be found in a publication entitled “Automatically Controlled Bipolar Electrocoagulation”, Neurosurgical Review, 7:2-3, pp. 187-190, 1984, by Vallfors and Bergdahl. FIG. 2 of this publication depicts the impedance as a function of time during the heating of a tissue, and the authors reported that the impedance value of tissue was observed to be near to a minimum value at the moment of coagulation. Based on this observation, the authors suggest a micro-computer technique for monitoring the minimum impedance and subsequently terminating the output power to avoid charring the tissue.
Another publication by the same authors, “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator”, Journal of Neurosurgery, 75:1, pp. 148-151, July 1991, discusses the impedance behavior of tissue and its application to electrosurgical vessel sealing, and reports that the impedance has a minimum value at the moment of coagulation.
The following U.S. Patents are also of interest in this area. U.S. Pat. No. 5,540,684, Hassler, Jr. addresses the problem associated with turning off the RF energy output automatically after the tissue impedance has fallen from a predetermined maximum, subsequently risen from a predetermined minimum and then reached a particular threshold. A storage device records maximum and minimum impedance values, and a circuit determines the threshold. U.S. Pat. No. 5,472,443, Cordis et al., discusses a variation of tissue impedance with temperature, wherein the impedance is shown to fall, and then to rise, as the temperature is increased. FIG. 2 of this patent shows a relatively lower temperature Region A where salts contained in body fluids are believed to dissociate, thereby decreasing the electrical impedance. A relatively next higher temperature Region B is where the water in the tissue boils away, causing the impedance to rise. The next relatively higher temperature Region C is where the tissue becomes charred, which results in a slight lowering of the electrical impedance. U.S. Pat. No. 4,191,188, Belt et al., discloses the use of two timers whose duty cycles are simultaneously and proportionately adjusted so that high frequency signal bursts are constantly centered about the peak power point, regardless of duty cycle variations.
Also of interest is U.S. Pat. No. 5,827,271, Buysse et al., “Energy Delivery System for Vessel Sealing”, which employs a surgical tool capable of grasping a tissue and applying an appropriate amount of closure force to the tissue, and for then conducting electrosurgical energy to the tissue concurrently with the application of the closure force. FIG. 2 of this patent, shown herein as
Based on the foregoing it should be evident that electrosurgery requires the controlled application of RF energy to an operative tissue site. To achieve successful clinical results during surgery, the electrosurgical generator should produce a controlled output RF signal having an amplitude and wave shape that is applied to the tissue within predetermined operating levels. However, problems can arise during electrosurgery when rapid desiccation of tissue occurs resulting in excess RF levels being applied to the tissue. These excess levels produce less than desirable tissue effects, which can increase thermal spread, or can cause tissue charring and may shred and disintegrate tissue. It would be desirable to provide a system with more controlled output to improve vessel sealing and reduce damage to surrounding tissue. The factors that affect vessel sealing include the surgical instrument utilized, as well as the generator for applying RF energy to the instrument jaws. It has been recognized that the gap between the instrument jaws and the pressure of the jaws against the tissue affect tissue sealing because of their impact on current flow. For example, insufficient pressure or an excessive gap will not supply sufficient energy to the tissue and could result in an inadequate seal.
However, it has also been recognized that the application of RF energy also affects the seal. For example, pulsing of RF energy will improve the seal. This is because the tissue loses moisture as it desiccates and by stopping or significantly lowering the output the generator between pulses, this allows some moisture to return to the tissue for the application of next RF pulse. It has also been recognized by the inventors that varying each pulse dependent on certain parameters is also advantageous in providing an improved seal. Thus, it would be advantageous to provide a vessel sealing system which better controls RF energy and which can be varied at the outset of the procedure to accommodate different tissue structures, and which can further be varied during the procedure itself to accommodate changes in the tissue as it desiccates.
An accommodation for overvoltage clamping is also desirable. In this regard, conventional overvoltage techniques use a means of clamping or clipping the excess overvoltage using avalanche devices such as diodes, zener diodes and transorbs so as to limit the operating levels. In these techniques the excess energy, as well as the forward conduction energy, is absorbed by the protection device and inefficiently dissipated in the form of heat. More advanced prior art techniques actively clamp only the excess energy using a predetermined comparator reference value, but still absorb and dissipate the excess energy in the form of heat.
U.S. Pat. No. 5,594,636 discloses a system for AC to AC power conversion using switched commutation. This system addresses overvoltage conditions which occur during switched commutation by incorporating an active output voltage sensing and clamping using an active clamp voltage regulator which energizes to limit the output. The active clamp switches in a resistive load to dissipate the excess energy caused by the overvoltage condition.
Other patents in this area include U.S. Pat. No. 5,500,616, which discloses an overvoltage clamp circuit, and U.S. Pat. No. 5,596,466, which discloses an isolated half-bridge power module. Both of these patents identify output overvoltage limiting for all power devices, and overvoltage limit protection is provided for power devices by using proportionately scaled zeners to monitor and track the output off voltage of each device to prevent power device failure. The zener device is circuit configured such that it provides feedback to the gate of the power device. When zener avalanche occurs the power device partially turns on, absorbing the excess overvoltage energy in conjunction with the connective load.
Reference can also be had to U.S. Pat. No. 4,646,222 for disclosing an inverter incorporating overvoltage clamping. Overvoltage clamping is provided by using diode clamping devices referenced to DC power sources. The DC power sources provide a predetermined reference voltage to clamp the overvoltage condition, absorbing the excess energy through clamp diodes which dissipate the excess voltage in the form of heat.
It would be advantageous as to provide an electrosurgical generator having improved overvoltage limit and transient energy suppression.
The foregoing and other problems are overcome by methods and apparatus in accordance with embodiments disclosed herein.
An electrosurgical generator includes a controlling data processor that executes software algorithms providing a number of new and useful features. These features preferably include the generation of an initial pulse, that is a low power pulse of RF energy that is used to sense at least one electrical characteristic of the tissue prior to starting an electrosurgical desiccation cycle, such as a tissue sealing cycle. The sensed electrical characteristic is then used as an input into the determination of initial sealing parameters, thereby making the sealing procedure adaptive to the characteristics of the tissue to be sealed. Another feature preferably provided measures the time required for the tissue to begin desiccating, preferably by observing an electrical transient at the beginning of an RF energy pulse, to determine and/or modify further seal parameters. Another preferable feature performs a tissue temperature control function by adjusting the duty cycle of the RF energy pulses applied to the tissue, thereby avoiding the problems that can result from excessive tissue heating. A further preferable feature controllably decreases the RF pulse voltage with each pulse of RF energy so that as the tissue desiccates and shrinks (thereby reducing the spacing between the surgical tool electrodes), arcing between the electrodes is avoided, as is the tissue destruction that may result from uncontrolled arcing. Preferably a Seal Intensity operator control is provided that enables the operator to control the sealing of tissue by varying parameters other than simply the RF power.
The system disclosed herein preferably further provides a unique method for overvoltage limiting and transient energy suppression. An electrosurgical system uses dynamic, real-time automatic detuning of the RF energy delivered to the tissue of interest. More specifically, this technique automatically limits excess output RF voltages by dynamically changing the tuning in a resonant source of RF electrosurgical energy, and by altering the shape of the RF source signal used to develop the output RF signal. The inventive technique limits the excess output transient RF energy by a resonant detuning of the generator. This occurs in a manner which does not clip or significantly distort the generated RF output signal used in a clinical environment for electrosurgical applications.
A method for electrosurgically sealing a tissue, in accordance with this disclosure, preferably includes the steps of (A) applying an initial pulse of RF energy to the tissue, the pulse having characteristics selected so as not to appreciably heat the tissue; (B) measuring a value of at least one electrical characteristic of the tissue in response to the applied first pulse; (C) in accordance with the measured at least one electrical characteristic, determining an initial set of pulse parameters for use during a first RF energy pulse that is applied to the tissue; and (D) varying the pulse parameters of subsequent RF energy pulses individually in accordance with at least one characteristic of an electrical transient that occurs at the beginning of each individual subsequent RF energy pulse. The method terminates the generation of subsequent RF energy pulses based upon a reduction in the output voltage or upon a determination that the electrical transient is absent.
The at least one characteristic that controls the variation of the pulse parameters is preferably a width of the electrical transient that occurs at the beginning of each subsequent RF energy pulse. The initial set of pulse parameters include a magnitude of a starting power and a magnitude of a starting voltage, and the pulse parameters that are varied include a pulse duty cycle and a pulse amplitude. Preferably, the subsequent RF energy pulses are each reduced in amplitude by a controlled amount from a previous RF energy pulse, thereby compensating for a decrease in the spacing between the surgical tool electrodes due to desiccation of the tissue between the electrodes.
The step of determining an initial set of pulse parameters preferably includes a step of using the measured value of at least one electrical characteristic of the tissue to readout the initial set of pulse parameters from an entry in a lookup table.
The step of determining an initial set of pulse parameters may also preferably include a step of reading out the initial set of pulse parameters from an entry in one of a plurality of lookup tables, where the lookup table is selected either manually or automatically, based on the electrosurgical instrument or tool that is being used.
The method also preferably includes a step of modifying predetermined ones of the pulse parameters in accordance with a control input from an operator. The predetermined ones of the pulse parameters that are modified include a pulse power, a pulse starting voltage level, a pulse voltage decay scale factor, and a pulse dwell time.
Preferably a circuit is coupled to the output of the electrosurgical generator for protecting the output against an overvoltage condition, and includes a suppressor that detunes a tuned resonant circuit at the output for reducing a magnitude of a voltage appearing at the output. In accordance with this aspect of the disclosure, the circuit has a capacitance network in parallel with an inductance that forms a portion of the output stage of the generator. A voltage actuated switch, such as a transorb, couples an additional capacitance across the network upon an occurrence of an overvoltage condition, thereby detuning the resonant network and reducing the magnitude of the voltage output.
The above set forth and other features of the invention are made more apparent in the ensuing Detailed Description when read in conjunction with the attached Drawings, wherein:
An electrosurgical system 1, which can be used to practice this invention, is shown in
The member 6 is provided in the form of bipolar electrosurgical forceps using two generally opposing electrodes disposed on inner opposing surfaces of the member 6, and which are both electrically coupled to the output of the electrosurgical generator 2. During use, different electric potentials are applied to each electrode. In that tissue is an electrical conductor, when the forceps are utilized to clamp or grasp the vessel 3 therebetween, the electrical energy output from the electrosurgical generator 2 is transferred through the intervening tissue. Both open surgical procedures and endoscopic surgical procedures can be performed with suitably adapted surgical instruments 4. It should also be noted that the member 6 could be monopolar forceps that utilize one active electrode, with the other (return) electrode or pad being attached externally to the patient, or a combination of bipolar and monopolar forceps.
By way of further explanation,
Referring now to
Mechanical forceps 20 includes first and second members 9 and 11 which each have an elongated shaft 12 and 14, respectively. Shafts 12 and 14 each include a proximal end and a distal end. Each proximal end of each shaft portion 12, 14 includes a handle member 16 and 18 attached thereto to allow a user to effect movement of the two shaft portions 12 and 14 relative to one another. Extending from the distal end of each shaft portion 12 and 14 are end effectors 22 and 24, respectively. The end effectors 22 and 24 are movable relative to one another in response to movement of handle members 16 and 18. These end effectors members 6A can be referred to collectively as bipolar forceps.
Preferably, shaft portions 12 and 14 are affixed to one another at a point proximate the end effectors 22 and 24 about a pivot 25. As such, movement of the handles 16 and 18 imparts movement of the end effectors 22 and 24 from an open position, wherein the end effectors 22 and 24 are disposed in spaced relation relative to one another, to a clamping or closed position, wherein the end effectors 22 and 24 cooperate to grasp the tubular vessel 3 therebetween. Either one or both of the end effectors 22, 24 can be movable.
As is best seen in
Preferably, shaft members 12 and 14 of the mechanical forceps 20 are designed to transmit a particular desired force to the opposing inner facing surfaces of the jaw members 22 and 24 when clamped. In particular, since the shaft members 12 and 14 effectively act together in a spring-like manner (i.e., bending that behaves like a spring), the length, width, height and deflection of the shaft members 12 and 14 directly impacts the overall transmitted force imposed on opposing jaw members 42 and 44. Preferably, jaw members 22 and 24 are more rigid than the shaft members 12 and 14 and the strain energy stored in the shaft members 12 and 14 provides a constant closure force between the jaw members 42 and 44.
Each shaft member 12 and 14 also includes a ratchet portion 32 and 34. Preferably, each ratchet, e.g., 32, extends from the proximal end of its respective shaft member 12 towards the other ratchet 34 in a generally vertically aligned manner such that the inner facing surfaces of each ratchet 32 and 34 abut one another when the end effectors 22 and 24 are moved from the open position to the closed position. Each ratchet 32 and 34 includes a plurality of flanges which project from the inner facing surface of each ratchet 32 and 34 such that the ratchets 32 and 34 can interlock in at least one position. In the embodiment shown in
In some cases it may be preferable to include other mechanisms to control and/or limit the movement of the jaw members 42 and 44 relative to one another. For example, a ratchet and pawl system could be utilized to segment the movement of the two handles into discrete units which, in turn, impart discrete movement to the jaw members 42 and 44 relative to one another.
The surgical instrument 4 for use with endoscopic surgical procedures includes a drive rod assembly 50 which is coupled to a handle assembly 54. The drive rod assembly 50 includes an elongated hollow shaft portion 52 having a proximal end and a distal end. An end effector assembly 63 is attached to the distal end of shaft 52 and includes a pair of opposing jaw members. Preferably, handle assembly 54 is attached to the proximal end of shaft 52 and includes an activator 56 for imparting movement of the forceps jaw members of end effector member 63 from an open position, wherein the jaw members are disposed in spaced relation relative to one another, to a clamping or closed position, wherein the jaw members cooperate to grasp tissue therebetween.
Activator 56 includes a movable handle 58 having an aperture 60 defined therein for receiving at least one of the operator's fingers and a fixed handle 62 having an aperture 64 defined therein for receiving an operator's thumb. Movable handle 58 is selectively moveable from a first position relative to fixed handle 62 to a second position in the fixed handle 62 to close the jaw members. Preferably, fixed handle 62 includes a channel 66 which extends proximally for receiving a ratchet 68 which is coupled to movable handle 58. This structure allows for progressive closure of the end effector assembly, as well as a locking engagement of the opposing jaw members. In some cases it may be preferable to include other mechanisms to control and/or limit the movement of handle 58 relative to handle 62 such as, e.g., hydraulic, semi-hydraulic and/or gearing systems. As with instrument 4, a stop can also be provided to maintain a preferred gap between the jaw members.
The handle 62 includes handle sections 62a and 62b, and is generally hollow such that a cavity is formed therein for housing various internal components. For example, the cavity can house a PC board which connects the electrosurgical energy being transmitted from the electrosurgical generator 2 to each jaw member, via connector 5. More particularly, electrosurgical energy generated from the electrosurgical generator 2 is transmitted to the handle PC board by a cable 5A. The PC board diverts the electrosurgical energy from the generator into two different electrical potentials which are transmitted to each jaw member by a separate terminal clip. The handle 62 may also house circuitry that communicates with the generator 2, for example, identifying characteristics of the electrosurgical tool 4 for use by the electrosurgical generator 2, where the electrosurgical generator 2 may select a particular seal parameter lookup table based on those characteristics (as described below).
Preferably, a lost motion mechanism is positioned between each of the handle sections 62a and 62b for maintaining a predetermined or maximum clamping force for sealing tissue between the jaw members.
Having thus described two exemplary and non-limiting embodiments of surgical instruments 4 that can be employed with the electrosurgical generator 2, a description will now be provided of various aspects of the inventive electrosurgical generator 2.
An analog to digital converter (ADC) block 78 receives analog inputs and sources a digital input bus of the feedback microcontroller 70B. Using the ADC block 78 the microcontroller 70B is apprised of the value of the actual output voltage and the actual output current, thereby closing the feedback loop with the SCV signal. The values of the output voltage and current can be used for determining tissue impedance, power and energy delivery for the overall, general control of the applied RF energy waveform. It should be noted that at least the ADC block 78 can be an internal block of the feedback microcontroller 70B, and need not be a separate, external component. It should be further noted that the same analog signals can be digitized and read into the master microcontroller 70A, thereby providing redundancy. The master microcontroller 70A controls the state (on/off) of the high voltage (e.g., 190V max) power supply as a safety precaution, controls the front panel display(s), such as a Seal Intensity display, described below and shown in
It is noted that in a preferred embodiment of the electrosurgical generator 2 a third (waveform) microcontroller 70C is employed to generate the desired 470 kHz sinusoidal waveform that forms the basis of the RF pulses applied to the tissue to be sealed, such as the vessel 3 (
As an overview, the software algorithms executed by the data processor 70 provide the following features. First, and referring now also to the preferred waveform depicted in
Referring now also to the logic flow diagram of
In a most preferred embodiment the electrical characteristic sensed is the tissue impedance which is employed to determine an initial set of parameters that are input to the sealing algorithm, and which are used to control the selection of sealing parameters, including the starting power, current and voltage (
In other embodiments at least one of any other tissue electrical characteristic, for example, the voltage or current, can be used to set the parameters. These initial parameters are preferably modified in accordance with the setting of the Seal Intensity control input (
Referring again to
Discussing this aspect of the disclosure now in further detail, and referring as well to
As each pulse of RF energy is applied to the tissue, the current initially rises to a maximum (Pulse Peak) and then, as the tissue desiccates and the impedance rises due to loss of moisture in the tissue, the current falls. Reference in this regard can be had to the circled areas designated as “A” in the Irms waveform of
As an alternative to directly measuring the pulse width, the rate of change of an electrical characteristic (for example current, voltage, impedance, etc.) of the transient “A” (shown in
Δt≈de/dt
where de/dt is the change in the electrical characteristic over time. This rate of change may then be used to provide an indication of the width of the transient “A” in determining the type and amount of tissue that is between the jaws (electrodes) of the surgical instrument 4, as well as the subsequent pulse duty cycle (“Dwell Time”), the amount of subsequent pulse voltage reduction, as well as other parameters.
Referring to
Assuming that the current transient is present, and referring to
If a current pulse is not observed at
If the tissue impedance is otherwise found to be between the high and low threshold values, a determination is made as to whether the Max RF On Time has been exceeded. If the Max RF On Time has been exceeded, it is assumed that the seal cannot be successfully completed for some reason and the sealing procedure is terminated. If the Max RF On Time has not been exceeded then it is assumed that the tissue has not yet received enough RF energy to start desiccation, and the seal cycle continues (connector “c”).
After the actual pulse width measurement has been completed, the Dwell Time is determined based on the actual pulse width and on the Dwell Time field in the seal parameter LUT 80 (see
Based on the initial Desired Pulse Width field of the seal parameter LUT 80 for the first pulse, or, for subsequent pulses, the actual pulse width of the previous pulse, the desired voltage limit kept constant or adjusted based on the Voltage Decay and Voltage Ramp fields. The desired voltage limit is kept constant or raised during the pulse if the actual pulse width is greater than the Desired Pulse Width field (or last actual) pulse width), and is kept constant or lowered if the actual pulse width is less than the Desired Pulse Width field (or the last actual pulse width).
When the Desired Voltage has been reduced to the Minimum Voltage field, then the RF energy pulsing is terminated and the electrosurgical generator 2 enters a cool-down period having a duration that is set by the Maximum Cool SF field and the actual pulse width of the first pulse.
Several of the foregoing and other terms are defined with greater specificity as follows (see also
The Actual Pulse width is the time from pulse start to pulse low. The Pulse Peak is the point where the current reaches a maximum value, and does not exceed this value for some predetermined period of time (measured in milliseconds). The peak value of the Pulse Peak can be reached until the Pulse Peak-X % value is reached, which is the point where the current has decreased to some predetermined determined percentage, X, of the value of Pulse Peak. Pulse Low is the point where the current reaches a low point, and does not go lower for another predetermined period of time. The value of the Maximum RF On Time or MAX Pulse Time is preferably preprogrammed to some value that cannot be readily changed. The RF pulse is terminated automatically if the Pulse Peak is reached but the Pulse Peak-X % value is not obtained with the duration set by the Maximum RF On Time field of the seal parameter LUT 80.
Referring to
The actual values for the Impedance Ranges of Low, Med Low, Med High, or High, are preferably contained in one of a plurality of tables stored in the generator 2, or otherwise accessible to the generator 2. A specific table may be selected automatically, for example, based on signals received from the electrosurgical tool 4 being used, or by the operator indicating what electrosurgical tool is in use.
Power is the RF power setting to be used (in Watts). Max Voltage is the greatest value that the output voltage can achieve (e.g., range 0-about 190V). Start Voltage is the greatest value that the first pulse voltage can achieve (e.g., range 0-about 190V). Subsequent pulse voltage values are typically modified downwards from this value. The Minimum Voltage is the voltage endpoint, and the seal cycle can be assumed to be complete when the RF pulse voltage has been reduced to this value. The Voltage Decay scale factor is the rate (in volts) at which the desired voltage is lowered if the current Actual Pulse Width is less than the Desired Pulse Width. The Voltage Ramp scale factor is the rate at which the desired voltage will be increased if the Actual Pulse Width is greater than the Desired Pulse Width. The Maximum RF On Time is the maximum amount of time (e.g., about 5-20 seconds) that the RF power can be delivered, as described above. The Maximum Cool Down Time determines the generator cool down time, also as described above. Pulse Minimum establishes the minimum Desired Pulse Width value. It can be noted that for each RF pulse, the Desired Pulse Width is equal to the Actual Pulse Width from the previous pulse, or the Desired Pulse field if the first pulse. The Dwell Time scale factor was also discussed previously, and is the time (in milliseconds) that the RF pulse is continued after the current drops to the Pulse Low and Stable point (see
By applying the series of RF pulses to the tissue, the surgical generator 2 effectively raises the tissue temperature to a certain level, and then maintains the temperature relatively constant. If the RF pulse width is too long, then the tissue may be excessively heated and may stick to the electrodes 21A, 21B of the surgical instrument 4, and/or an explosive vaporization of tissue fluid may damage the tissue, such as the vessel 3. If the RF pulse width is too narrow, then the tissue will not reach a temperature that is high enough to properly seal. As such, it can be appreciated that a proper balance of duty cycle to tissue type is important.
During the pulse off cycle that is made possible in accordance with the teachings herein, the tissue relaxes, thereby allowing the steam to exit without tissue destruction. The tissue responds by rehydrating, which in turn lowers the tissue impedance. The lower impedance allows the delivery of more current in the next pulse. This type of pulsed operation thus tends to regulate the tissue temperature so that the temperature does not rise to an undesirable level, while still performing the desired electrosurgical procedure, and may also allow more energy to be delivered, and thus achieving better desiccation.
As each RF pulse is delivered to the tissue, the tissue desiccates and shrinks due to pressure being applied by the jaws of the surgical instrument 4. The inventors have realized that if the voltage applied to the tissue is not reduced, then as the spacing between the jaws of the surgical instrument 4 is gradually reduced due to shrinking of the tissue, an undesirable arcing can develop which may vaporize the tissue, resulting in bleeding.
As is made evident in the VRMS trace of
As was noted previously, the Seal Intensity front panel adjustment is not a simple RF power control. The adjustment of the seal intensity is accomplished by adjusting the power of the electrosurgical generator 2, as well as the generator voltage, the duty cycle of the RF pulses, the length of time of the seal cycle (e.g., number of RF pulses), and the rate of voltage reduction for successive RF pulses.
In the
Based on the foregoing it can be appreciated that an aspect of this disclosure is a method for electrosurgically sealing a tissue. Referring to
Reference is now made to
A bi-directional transorb TS1 normally is non-operational. As long as the operating RF output levels stay below the turn-on threshold of TS1, electrosurgical energy is provided at a controlled rate of tissue desiccation. However, in the event that rapid tissue desiccation occurs, or that arcing is present in the surgical tissue field, the RF output may exhibit operating voltage levels in excess of the normal RF levels used to achieve the controlled rate of tissue desiccation. If the excess voltage present is left unrestrained, the tissue 3 may begin to exhibit undesirable clinical effects contrary to the desired clinical outcome. The TS1 is a strategic threshold that is set to turn on above normal operating levels, but below and just prior to the RF output reaching an excess voltage level where undesirable tissue effects begin to occur. The voltage applied across TS1 is proportionately scaled to follow the RF output voltage delivered to the tissue 3. The transorb TS1 is selected such that its turn on response is faster than the generator source RF signal. This allows the transorb TS1 to automatically track and respond quickly in the first cycle of an excess RF output overvoltage condition.
Note should be made in
A turn on of transorb device TS1, which functions as a voltage controlled switch, instantaneously connects the serial capacitance C1 across the capacitor network C2, C3, and C4. An immediate change then appears in the tuning of the resonant network mentioned above, which then instantaneously alters the waveshape of the RF source signal shown in
As the peak voltage decreases, the excess overvoltage is automatically limited and is restricted to operating levels below that which cause negative clinical effects. Once the excess RF output voltage level falls below the transorb threshold, the TS1 device turns off and the electrosurgical generator 2 returns to a controlled rate of tissue desiccation.
In the event that arcing is present in the surgical tissue field, undesirable excess transient RF energy may exist and may be reflected in the RF output of the electrosurgical generator 2. This in turn may generate a corresponding excess RF output voltage that creates sufficient transient overvoltage to turn on the transorb TS1. In this condition the cycle repeats as described above, where TS1 turns on, alters the resonant tuned network comprised of the magnetic and capacitive components, and thus also alters the RF source signal waveshape. This automatically reduces the excess overvoltage.
In accordance with this aspect of the disclosure, the excess RF transient energy is suppressed and the overvoltage is limited by the dynamic, real-time automatic detuning of the RF energy delivered to the tissue being treated.
It should be noted that the embodiment of
In an additional embodiment the measured electrical characteristic of the tissue, preferably the impedance (Zi), and the RMS current pulse width (PW) may be used to determine a fixed voltage reduction factor (Vdec) to be used for subsequent pulses, and to determine a fixed number of pulses (PF) to be delivered for the sealing procedure. The relationship among the voltage reduction factor, the measured impedance and the RMS current pulse width may be defined as Vdec=F (ZI, PW), and the relationship among the number of pulses, the measured impedance and the RMS current pulse width may be defined as PF=F′ (ZI, PW). In
In a further additional embodiment, tissue sealing is accomplished by the electrosurgical system described above by continuously monitoring or sensing the current or tissue impedance rate of change. If the rate of change increases above a predetermined limit, then RF pulsing is automatically terminated by controlling the electrosurgical generator 2 accordingly and any previously changed pulse parameters (e.g., power, voltage and current increments) are reset to the original default values. In this embodiment, the ending current or tissue impedance, i.e., the current or tissue impedance at the end of each RF pulse, is also continuously monitored or sensed. The ending values are then used to determine the pulse parameters for the subsequent RF pulse; to determine if the seal cycle should end (based on the ending values of the last few RF pulses which did not change by more than a predetermined amount); and to determine the duty cycle of the subsequent RF pulse.
Further, in this embodiment, RF power, pulse width, current and/or voltage levels of subsequent RF pulses can be kept constant or modified on a pulse-by-pulse basis depending on whether the tissue has responded to the previously applied RF energy or pulse (i.e., if the tissue impedance has begun to rise). For example, if the tissue has not responded to a previously applied RF pulse, the RF power output, pulse width, current and/or voltage levels are increased for the subsequent RF pulse.
Hence, since these RF pulse parameters can subsequently be modified following the initial RF pulse, the initial set of RF pulse parameters, i.e., a magnitude of a starting RF power level, a magnitude of a starting voltage level, a magnitude of the starting pulse width, and a magnitude of a starting current level, are selected accordingly such that the first or initial RF pulse does not excessively heat the tissue. One or more of these starting levels are modified during subsequent RF pulses to account for varying tissue properties, if the tissue has not responded to the previously applied RF pulse which includes the initial RF pulse.
The above functions are implemented by a seal intensity algorithm represented as a set of programmable instructions configured for being executed by at least one processing unit of a vessel sealing system. The vessel sealing system includes a Seal Intensity control panel for manually adjusting the starting voltage level, in a similar fashion as described above with reference to
As shown in
The Seal Intensity front panel settings, as shown in
At step E′, a determination is made as to whether the RF pulse has ended. If no, the process loops back to step B′. If yes, the process proceeds to step F′. At step F′, the ending current or tissue impedance is measured. At step G′, the measured ending values are used for determining if the seal cycle should end (based on the current level or ending impedance of the last few RF pulses which did not change by more than a predetermined amount). If yes, the process terminates at step H′. If no, the process continues at step I′, where the ending values are used for determining the pulse parameters, i.e., the power, pulse width, current and/or voltage levels, and the duty cycle of the subsequent RF pulse from an entry in one of a plurality of lookup tables. The process then loops back to step A′. One of the plurality of lookup tables is selected manually or automatically, based on a choice of an electrosurgical tool or instrument.
While the system has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that changes in form and details may be made therein without departing from its scope and spirit.
The present application is a continuation of U.S. patent application Ser. No. 13/652,932, entitled “Vessel Sealing System”, by Robert Wham et al., now U.S. Pat. No. 8,591,506, which is a continuation of U.S. patent application Ser. No. 12/057,557 entitled “Vessel Sealing System”, by Robert Wham et al., now U.S. Pat. No. 8,287,528, which is a continuation of U.S. patent application Ser. No. 10/626,390 also entitled “Vessel Sealing System”, by Robert Wham et al., now U.S. Pat. No. 7,364,577, which is a continuation-in-part application of U.S. patent application Ser. No. 10/073,761 also entitled “Vessel Sealing System”, by Robert Wham et al., now U.S. Pat. No. 6,796,981, which is a continuation-in-part of U.S. patent application Ser. No. 09/408,944 also entitled “Vessel Sealing System”, by Robert Wham et al., now U.S. Pat. No. 6,398,779, and which claims priority to U.S. Provisional Patent Application Ser. No. 60/105,417 filed on Oct. 23, 1998. The disclosure of each Patent Application is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
702472 | Pignolet | Jun 1902 | A |
728883 | Downes | May 1903 | A |
1586645 | Bierman | Jun 1926 | A |
1813902 | Bovie | Jul 1931 | A |
1822330 | Ainslie | Sep 1931 | A |
1852542 | Sovatkin | Apr 1932 | A |
1908201 | Welch et al. | May 1933 | A |
1918889 | Bacon | Jul 1933 | A |
2002594 | Wappler et al. | May 1935 | A |
2011169 | Wappler | Aug 1935 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2054149 | Wappler | Sep 1936 | A |
2113246 | Wappler | May 1937 | A |
2141936 | Schmitt | Dec 1938 | A |
2176479 | Willis | Oct 1939 | A |
2245030 | Gottesfeld et al. | Apr 1941 | A |
2305156 | Grubel | Apr 1941 | A |
2279753 | Knopp | Apr 1942 | A |
2327353 | Karle | Aug 1943 | A |
2632661 | Cristofv | Aug 1948 | A |
2668538 | Baker | Feb 1954 | A |
2796065 | Kapp | Jun 1957 | A |
2824915 | Buturuga | Feb 1958 | A |
3073311 | Tibbs et al. | Jan 1963 | A |
3100489 | Bagley | Aug 1963 | A |
3204807 | Ramsing | Sep 1965 | A |
3372288 | Wigington | Mar 1968 | A |
3459187 | Pallotta | Aug 1969 | A |
3561448 | Peternel | Feb 1971 | A |
3643663 | Sutter | Feb 1972 | A |
3648001 | Anderson et al. | Mar 1972 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3678229 | Osika | Jul 1972 | A |
3720896 | Beierlein | Mar 1973 | A |
3763726 | Hildebrand | Oct 1973 | A |
3779918 | Ikeda et al. | Dec 1973 | A |
3798688 | Wasson | Mar 1974 | A |
3801766 | Morrison, Jr. | Apr 1974 | A |
3839614 | Saganowski et al. | Oct 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3863339 | Reaney et al. | Feb 1975 | A |
3866610 | Kletschka | Feb 1975 | A |
3875945 | Friedman | Apr 1975 | A |
3897786 | Garnett et al. | Aug 1975 | A |
3911766 | Fridolph et al. | Oct 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3921641 | Hulka | Nov 1975 | A |
3938527 | Rioux et al. | Feb 1976 | A |
3952749 | Fridolph et al. | Apr 1976 | A |
3970088 | Morrison | Jul 1976 | A |
3987795 | Morrison | Oct 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4016881 | Rioux et al. | Apr 1977 | A |
4031898 | Hiltebrandt et al. | Jun 1977 | A |
4041952 | Morrison, Jr. et al. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4076028 | Simmons | Feb 1978 | A |
4080820 | Allen | Mar 1978 | A |
4088134 | Mazzariello | May 1978 | A |
4102471 | Lore et al. | Jul 1978 | A |
D249549 | Pike | Sep 1978 | S |
4112950 | Pike | Sep 1978 | A |
4127222 | Adams | Nov 1978 | A |
4128099 | Bauer | Dec 1978 | A |
4165746 | Burgin | Aug 1979 | A |
4187420 | Piber | Feb 1980 | A |
4200104 | Harris | Apr 1980 | A |
4200105 | Gonser | Apr 1980 | A |
4233734 | Bies | Nov 1980 | A |
4236470 | Stenson | Dec 1980 | A |
4274413 | Hahn et al. | Jun 1981 | A |
4300564 | Furihata | Nov 1981 | A |
4306561 | De Medinaceli | Dec 1981 | A |
4311145 | Esty et al. | Jan 1982 | A |
D263020 | Rau, III | Feb 1982 | S |
4315510 | Kihn | Feb 1982 | A |
4363944 | Poirier | Dec 1982 | A |
4370980 | Lottick | Feb 1983 | A |
4375218 | DiGeronimo | Mar 1983 | A |
4394552 | Schlosser | Jul 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4418692 | Guay | Dec 1983 | A |
4443935 | Zamba et al. | Apr 1984 | A |
4452246 | Bader et al. | Jun 1984 | A |
4470786 | Sano et al. | Sep 1984 | A |
4492231 | Auth | Jan 1985 | A |
4493320 | Treat | Jan 1985 | A |
4503855 | Maslanka | Mar 1985 | A |
4506669 | Blake, III | Mar 1985 | A |
4509518 | McGarry et al. | Apr 1985 | A |
4513271 | Reisem | Apr 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4574804 | Kurwa | Mar 1986 | A |
4597379 | Kihn et al. | Jul 1986 | A |
4600007 | Lahodny et al. | Jul 1986 | A |
4619258 | Pool | Oct 1986 | A |
4624254 | McGarry et al. | Nov 1986 | A |
4625723 | Altnether et al. | Dec 1986 | A |
4644950 | Valli | Feb 1987 | A |
4655215 | Pike | Apr 1987 | A |
4655216 | Tischer | Apr 1987 | A |
4657016 | Garito et al. | Apr 1987 | A |
4662372 | Sharkany et al. | May 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4674499 | Pao | Jun 1987 | A |
4685459 | Xoch et al. | Aug 1987 | A |
4733662 | DeSatnick et al. | Mar 1988 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4753235 | Hasson | Jun 1988 | A |
4754892 | Retief | Jul 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
D298353 | Manno | Nov 1988 | S |
4781175 | McGreevy et al. | Nov 1988 | A |
D299413 | DeCarolis | Jan 1989 | S |
4805616 | Pao | Feb 1989 | A |
4827927 | Newton | May 1989 | A |
4827929 | Hodge | May 1989 | A |
4829313 | Taggart | May 1989 | A |
4846171 | Kauphusman et al. | Jul 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4890610 | Kirwan, Sr. et al. | Jan 1990 | A |
4938761 | Ensslin | Jul 1990 | A |
4947009 | Osika et al. | Aug 1990 | A |
4973801 | Frick et al. | Nov 1990 | A |
4985030 | Melzer et al. | Jan 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5019678 | Templeton et al. | May 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026371 | Rydell et al. | Jun 1991 | A |
5035695 | Weber, Jr. et al. | Jul 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047046 | Bodoia | Sep 1991 | A |
5052402 | Bencini et al. | Oct 1991 | A |
5078716 | Doll | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5085659 | Rydell | Feb 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5100430 | Avellanet et al. | Mar 1992 | A |
5108392 | Spingler | Apr 1992 | A |
5112343 | Thornton | May 1992 | A |
5116332 | Lottick | May 1992 | A |
5122139 | Sutter | Jun 1992 | A |
5144323 | Yonkers | Sep 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5151978 | Bronikowski et al. | Sep 1992 | A |
5158561 | Rydell et al. | Oct 1992 | A |
5169396 | Dowlatshahi et al. | Dec 1992 | A |
5176695 | Dulebohn | Jan 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196009 | Kirwan, Jr. | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5215101 | Jacobs et al. | Jun 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217458 | Parins | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5219354 | Choudhury et al. | Jun 1993 | A |
5231997 | Kikuchi et al. | Aug 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5250056 | Hasson | Oct 1993 | A |
5250063 | Abidin et al. | Oct 1993 | A |
5254129 | Alexander | Oct 1993 | A |
5258001 | Corman | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261918 | Phillips et al. | Nov 1993 | A |
5267998 | Hagen | Dec 1993 | A |
5269780 | Roos | Dec 1993 | A |
5269804 | Bales et al. | Dec 1993 | A |
D343453 | Noda | Jan 1994 | S |
5275615 | Rose | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5281220 | Blake, III | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282826 | Quadri | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5290287 | Boebel et al. | Mar 1994 | A |
5300082 | Sharpe et al. | Apr 1994 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308353 | Beurrier | May 1994 | A |
5308357 | Lichtman | May 1994 | A |
5312433 | Boebel et al. | May 1994 | A |
5313027 | Inoue et al. | May 1994 | A |
5314445 | Degwitz et al. | May 1994 | A |
5314463 | Camps et al. | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
D348930 | Olson | Jul 1994 | S |
5326806 | Yokoshima et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
D349341 | Lichtman et al. | Aug 1994 | S |
5334166 | Palestrant | Aug 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334215 | Chen | Aug 1994 | A |
5336220 | Ryan et al. | Aug 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5344424 | Roberts et al. | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354271 | Voda | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5359993 | Slater et al. | Nov 1994 | A |
5366477 | LeMarie, III et al. | Nov 1994 | A |
5367250 | Whisenand | Nov 1994 | A |
5368600 | Failla et al. | Nov 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5376089 | Smith | Dec 1994 | A |
5376094 | Kline | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5383875 | Bays et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5383897 | Wholey | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389103 | Melzer et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5391183 | Janzen et al. | Feb 1995 | A |
5395360 | Manoukian | Mar 1995 | A |
5396194 | Williamson et al. | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5397325 | Della Badia et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5409763 | Serizawa et al. | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411519 | Tovey et al. | May 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5415656 | Tihon et al. | May 1995 | A |
5415657 | Taymor-Luria | May 1995 | A |
5417709 | Slater | May 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5425690 | Chang | Jun 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5429616 | Schaffer | Jul 1995 | A |
5431672 | Cote et al. | Jul 1995 | A |
5431674 | Basile et al. | Jul 1995 | A |
5437277 | Dumoulin et al. | Aug 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5439478 | Palmer | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443464 | Russell et al. | Aug 1995 | A |
5443479 | Bressi, Jr. | Aug 1995 | A |
5443480 | Jacobs et al. | Aug 1995 | A |
5445622 | Brown | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445658 | Durrfeld et al. | Aug 1995 | A |
5449480 | Kuriya et al. | Sep 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5454739 | Strand | Oct 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5454823 | Richardson et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5461765 | Linden et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5480406 | Nolan et al. | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5482054 | Slater et al. | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5493899 | Beck et al. | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499997 | Sharpe et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5512721 | Young et al. | Apr 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5528833 | Sakuma | Jun 1996 | A |
5529067 | Larsen et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5549604 | Sutcu et al. | Aug 1996 | A |
5554172 | Horner et al. | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5562619 | Mirarchi et al. | Oct 1996 | A |
5562699 | Heimberger et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5568859 | Levy et al. | Oct 1996 | A |
5569241 | Edwardds | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5579781 | Cooke | Dec 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5585896 | Yamazaki et al. | Dec 1996 | A |
5590570 | LeMaire, III et al. | Jan 1997 | A |
5591181 | Stone et al. | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5601641 | Stephens | Feb 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5611798 | Eggers | Mar 1997 | A |
5611808 | Hossain et al. | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620453 | Nallakrishnan | Apr 1997 | A |
5620459 | Lichtman | Apr 1997 | A |
5624281 | Christensson | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5637111 | Sutcu et al. | Jun 1997 | A |
5638003 | Hall | Jun 1997 | A |
5638827 | Palmer et al. | Jun 1997 | A |
5639403 | Ida et al. | Jun 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5655650 | Naitou | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5662667 | Knodel | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674229 | Tovey et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690652 | Wurster et al. | Nov 1997 | A |
5690653 | Richardson et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5693920 | Maeda | Dec 1997 | A |
5695522 | LeMaire, III et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5713895 | Lontine et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720742 | Zacharias | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5727428 | LeMaire, III et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735849 | Baden et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5759188 | Yoon | Jun 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762609 | Benaron et al. | Jun 1998 | A |
5766130 | Selmonosky | Jun 1998 | A |
5766166 | Hooven | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5766196 | Griffiths | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5772655 | Bauer et al. | Jun 1998 | A |
5772670 | Brosa | Jun 1998 | A |
5776128 | Eggers | Jul 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5776156 | Shikhman | Jul 1998 | A |
5777519 | Simopoulos | Jul 1998 | A |
5779646 | Koblish et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5779727 | Orejola | Jul 1998 | A |
5781048 | Nakao et al. | Jul 1998 | A |
H1745 | Paraschac | Aug 1998 | H |
5791231 | Cohn et al. | Aug 1998 | A |
5792137 | Carr et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5792177 | Kaseda | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797938 | Paraschac et al. | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5800448 | Banko | Sep 1998 | A |
5800449 | Wales | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5810805 | Sutcu et al. | Sep 1998 | A |
5810808 | Eggers | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5814043 | Shapeton | Sep 1998 | A |
5814054 | Kortenbach et al. | Sep 1998 | A |
5817083 | Shemesh et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5824978 | Karasik et al. | Oct 1998 | A |
5827271 | Buysse | Oct 1998 | A |
5827274 | Bonnet et al. | Oct 1998 | A |
5827279 | Hughett et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5827548 | Lavallee et al. | Oct 1998 | A |
5830212 | Cartmell et al. | Nov 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5836072 | Sullivan et al. | Nov 1998 | A |
D402028 | Grimm et al. | Dec 1998 | S |
5843080 | Fleenor et al. | Dec 1998 | A |
5849020 | Long et al. | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5851214 | Larsen et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5859527 | Cook | Jan 1999 | A |
5860976 | Billings et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5876410 | Petillo | Mar 1999 | A |
5876412 | Piraka | Mar 1999 | A |
5882567 | Cavallaro et al. | Mar 1999 | A |
D408018 | McNaughton | Apr 1999 | S |
5891141 | Rydell | Apr 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5893877 | Gampp, Jr. et al. | Apr 1999 | A |
5897563 | Yoon et al. | Apr 1999 | A |
5902301 | Olig | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5907140 | Smith | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5908432 | Pan | Jun 1999 | A |
5911719 | Eggers | Jun 1999 | A |
5913874 | Berns et al. | Jun 1999 | A |
5921916 | Aeikens et al. | Jul 1999 | A |
5921984 | Sutcu et al. | Jul 1999 | A |
5925043 | Kumar et al. | Jul 1999 | A |
5928136 | Barry | Jul 1999 | A |
5935126 | Riza | Aug 1999 | A |
5938589 | Wako et al. | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5944562 | Christensson | Aug 1999 | A |
5944718 | Dafforn et al. | Aug 1999 | A |
5951545 | Schilling et al. | Sep 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5954733 | Yoon | Sep 1999 | A |
5957923 | Hahnen et al. | Sep 1999 | A |
5957937 | Yoon | Sep 1999 | A |
5960544 | Beyers | Oct 1999 | A |
5961514 | Long et al. | Oct 1999 | A |
5964758 | Dresden | Oct 1999 | A |
5967997 | Turturro et al. | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5976132 | Morris | Nov 1999 | A |
5984932 | Yoon | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
5989277 | LeMaire, III et al. | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
5993467 | Yoon | Nov 1999 | A |
5993474 | Ouchi | Nov 1999 | A |
5997565 | Inoue | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004332 | Yoon et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010516 | Hulka et al. | Jan 2000 | A |
6010519 | Mawhirt et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6017358 | Yoon et al. | Jan 2000 | A |
6021693 | Feng-Sing | Feb 2000 | A |
6024741 | Williamson et al. | Feb 2000 | A |
6024743 | Edwards | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6027522 | Palmer | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6041679 | Slater et al. | Mar 2000 | A |
6050995 | Durgin | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053914 | Eggers et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6056735 | Okada et al. | May 2000 | A |
6059782 | Novak et al. | May 2000 | A |
6063086 | Benecke et al. | May 2000 | A |
6063103 | Hashiguchi | May 2000 | A |
6066137 | Greep | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6071283 | Nardella et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6077287 | Taylor et al. | Jun 2000 | A |
6080180 | Yoon et al. | Jun 2000 | A |
RE36795 | Rydell | Jul 2000 | E |
6083150 | Aznoian et al. | Jul 2000 | A |
6083223 | Baker | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6086601 | Yoon | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6106542 | Toybin et al. | Aug 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126658 | Baker | Oct 2000 | A |
6126665 | Yoon | Oct 2000 | A |
6139563 | Cosgrove, III et al. | Oct 2000 | A |
6143005 | Yoon et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6152924 | Parins | Nov 2000 | A |
6159217 | Robie et al. | Dec 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6171316 | Kovac et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6174310 | Kirwan, Jr. | Jan 2001 | B1 |
6178628 | Clemens et al. | Jan 2001 | B1 |
6179834 | Buysse et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183467 | Shapeton et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6190399 | Palmer et al. | Feb 2001 | B1 |
6190400 | Vandemoer et al. | Feb 2001 | B1 |
6193709 | Miyawaki et al. | Feb 2001 | B1 |
6193718 | Kortenbach et al. | Feb 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6217602 | Redmon | Apr 2001 | B1 |
6217615 | Sioshansi et al. | Apr 2001 | B1 |
6221039 | Durgin et al. | Apr 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6224593 | Ryan et al. | May 2001 | B1 |
6224614 | Yoon | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6248124 | Pedros et al. | Jun 2001 | B1 |
6248944 | Ito | Jun 2001 | B1 |
6249706 | Sobota et al. | Jun 2001 | B1 |
6261307 | Yoon et al. | Jul 2001 | B1 |
6267758 | Daw et al. | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6280458 | Boche et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6298550 | Kirwan | Oct 2001 | B1 |
6302424 | Gisinger et al. | Oct 2001 | B1 |
6303166 | Kolbe et al. | Oct 2001 | B1 |
6309404 | Krzyzanowski | Oct 2001 | B1 |
6319262 | Bates et al. | Nov 2001 | B1 |
6319451 | Brune | Nov 2001 | B1 |
6322561 | Eggers et al. | Nov 2001 | B1 |
6322580 | Kanner | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
D453923 | Olson | Feb 2002 | S |
6345532 | Coudray et al. | Feb 2002 | B1 |
6350264 | Hooven | Feb 2002 | B1 |
D454951 | Bon | Mar 2002 | S |
6352536 | Buysse et al. | Mar 2002 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
6358259 | Swain et al. | Mar 2002 | B1 |
6358268 | Hunt et al. | Mar 2002 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6364876 | Erb et al. | Apr 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6385265 | Duffy et al. | May 2002 | B1 |
6387094 | Eitenmuller | May 2002 | B1 |
6391035 | Appleby et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402747 | Lindemann et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6425896 | Baltschun et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6440130 | Mulier et al. | Aug 2002 | B1 |
6440144 | Bacher | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458125 | Cosmescu | Oct 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458129 | Scarfi | Oct 2002 | B2 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
6471696 | Berube et al. | Oct 2002 | B1 |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6488680 | Francischelli et al. | Dec 2002 | B1 |
6494882 | Lebouitz et al. | Dec 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6506196 | Laufer | Jan 2003 | B1 |
6508815 | Strul et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514215 | Ouchi | Feb 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517536 | Hooven et al. | Feb 2003 | B2 |
6517539 | Smith et al. | Feb 2003 | B1 |
6527771 | Weadock et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6540745 | Fairbourn et al. | Apr 2003 | B1 |
6545239 | Spedale et al. | Apr 2003 | B2 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6554844 | Lee et al. | Apr 2003 | B2 |
6558385 | McClurken et al. | May 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6569105 | Kortenbach et al. | May 2003 | B1 |
6582450 | Ouchi | Jun 2003 | B2 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6605790 | Yoshida | Aug 2003 | B2 |
6610060 | Mulier et al. | Aug 2003 | B2 |
6613048 | Mulier et al. | Sep 2003 | B2 |
6616654 | Mollenauer | Sep 2003 | B2 |
6616658 | Ineson | Sep 2003 | B2 |
6616661 | Wellman et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6620184 | De Laforcade et al. | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6626901 | Treat et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6638287 | Danitz et al. | Oct 2003 | B2 |
6641595 | Moran et al. | Nov 2003 | B1 |
6652514 | Ellman et al. | Nov 2003 | B2 |
6652518 | Wellman et al. | Nov 2003 | B2 |
6652521 | Schulze | Nov 2003 | B2 |
6656173 | Palermo | Dec 2003 | B1 |
6656175 | Francischelli et al. | Dec 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6660072 | Chatterjee | Dec 2003 | B2 |
6663639 | Laufer et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6666862 | Jain et al. | Dec 2003 | B2 |
6669696 | Bacher et al. | Dec 2003 | B2 |
6673092 | Bacher | Jan 2004 | B1 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6676676 | Danitz et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6685704 | Greep | Feb 2004 | B2 |
6685724 | Haluck | Feb 2004 | B1 |
6689131 | McClurken | Feb 2004 | B2 |
6692445 | Roberts et al. | Feb 2004 | B2 |
6693246 | Rudolph et al. | Feb 2004 | B1 |
6695840 | Schulze | Feb 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6709445 | Boebel et al. | Mar 2004 | B2 |
6723092 | Brown et al. | Apr 2004 | B2 |
6726068 | Miller | Apr 2004 | B2 |
6726686 | Buysse et al. | Apr 2004 | B2 |
6726694 | Blatter et al. | Apr 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6733501 | Levine | May 2004 | B2 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6743230 | Lutze et al. | Jun 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6755824 | Jain et al. | Jun 2004 | B2 |
6755843 | Chung et al. | Jun 2004 | B2 |
6756553 | Yamaguchi et al. | Jun 2004 | B1 |
6757977 | Dambal et al. | Jul 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
D493888 | Reschke | Aug 2004 | S |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773432 | Clayman et al. | Aug 2004 | B1 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773435 | Schulze et al. | Aug 2004 | B2 |
6773441 | Laufer et al. | Aug 2004 | B1 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776780 | Mulier et al. | Aug 2004 | B2 |
6780181 | Kroll et al. | Aug 2004 | B2 |
6784405 | Flugstad et al. | Aug 2004 | B2 |
6786905 | Swanson et al. | Sep 2004 | B2 |
6790217 | Schulze et al. | Sep 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800825 | Sasaki et al. | Oct 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
D499181 | Dycus et al. | Nov 2004 | S |
6818000 | Muller et al. | Nov 2004 | B2 |
6818007 | Dampney et al. | Nov 2004 | B1 |
6821273 | Mollenauer | Nov 2004 | B2 |
6821285 | Laufer et al. | Nov 2004 | B2 |
6824547 | Wilson, Jr. et al. | Nov 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6835200 | Laufer et al. | Dec 2004 | B2 |
6843789 | Goble | Jan 2005 | B2 |
6857357 | Fujii | Feb 2005 | B2 |
6858028 | Mulier et al. | Feb 2005 | B2 |
D502994 | Blake, III | Mar 2005 | S |
6860880 | Treat et al. | Mar 2005 | B2 |
6878147 | Prakash et al. | Apr 2005 | B2 |
6887240 | Lands et al. | May 2005 | B1 |
6889116 | Jinno | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6914201 | Van Vooren et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932816 | Phan | Aug 2005 | B2 |
6934134 | Mori et al. | Aug 2005 | B2 |
6936061 | Sasaki | Aug 2005 | B2 |
D509297 | Wells | Sep 2005 | S |
6942662 | Goble et al. | Sep 2005 | B2 |
6943311 | Miyako | Sep 2005 | B2 |
6951559 | Greep | Oct 2005 | B1 |
6953430 | Kodooka | Oct 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6958070 | Witt et al. | Oct 2005 | B2 |
6960210 | Lands et al. | Nov 2005 | B2 |
6964662 | Kidooka | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6972017 | Smith et al. | Dec 2005 | B2 |
6974452 | Gille et al. | Dec 2005 | B1 |
6976492 | Ingle et al. | Dec 2005 | B2 |
6976992 | Sachatello et al. | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979786 | Aukland et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6987244 | Bauer | Jan 2006 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6989017 | Howell et al. | Jan 2006 | B2 |
6994707 | Ellman et al. | Feb 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7001381 | Harano et al. | Feb 2006 | B2 |
7001408 | Knodel et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7025763 | Karasawa et al. | Apr 2006 | B2 |
7033354 | Keppel | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044948 | Keppel | May 2006 | B2 |
7052489 | Griego et al. | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7063715 | Onuki et al. | Jun 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
7070597 | Truckai et al. | Jul 2006 | B2 |
7083480 | Silber | Aug 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7087051 | Bourne et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090689 | Nagase et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7103947 | Sartor et al. | Sep 2006 | B2 |
7107124 | Green | Sep 2006 | B2 |
7108694 | Miura et al. | Sep 2006 | B2 |
7112199 | Cosmescu | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7115123 | Knowlton et al. | Oct 2006 | B2 |
7115139 | McClurken et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135020 | Lawes et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
7145757 | Shea et al. | Dec 2006 | B2 |
7147632 | Prakash et al. | Dec 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7150097 | Sremcich et al. | Dec 2006 | B2 |
7150749 | Dycus et al. | Dec 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
7156842 | Sartor et al. | Jan 2007 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7166106 | Bartel et al. | Jan 2007 | B2 |
7169145 | Isaacson et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7179258 | Buysse et al. | Feb 2007 | B2 |
7184820 | Jersey-Willuhn et al. | Feb 2007 | B2 |
D538932 | Malik | Mar 2007 | S |
7189233 | Truckai et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7204832 | Altshuler et al. | Apr 2007 | B2 |
7204835 | Latterell et al. | Apr 2007 | B2 |
7207990 | Lands et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
D541611 | Aglassinge | May 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
7211084 | Goble et al. | May 2007 | B2 |
7223264 | Daniel et al. | May 2007 | B2 |
7223265 | Keppel | May 2007 | B2 |
D545432 | Watanabe | Jun 2007 | S |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
D547154 | Lee | Jul 2007 | S |
7238184 | Megerman et al. | Jul 2007 | B2 |
7241288 | Braun | Jul 2007 | B2 |
7241296 | Buysse et al. | Jul 2007 | B2 |
7244257 | Podhajsky et al. | Jul 2007 | B2 |
7246734 | Shelto, IV | Jul 2007 | B2 |
7248944 | Green | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7254433 | Diab et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7258688 | Shah et al. | Aug 2007 | B1 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7270660 | Ryan | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
7288103 | Suzuki | Oct 2007 | B2 |
7291161 | Hooven | Nov 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7314471 | Holman | Jan 2008 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7326202 | McGaffigan | Feb 2008 | B2 |
7329256 | Johnson et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
7338526 | Steinberg | Mar 2008 | B2 |
7342754 | Fitzgerald et al. | Mar 2008 | B2 |
7344268 | Jigamian | Mar 2008 | B2 |
7347864 | Vargas | Mar 2008 | B2 |
D567943 | Moses et al. | Apr 2008 | S |
7354440 | Truckal et al. | Apr 2008 | B2 |
7361172 | Cimino | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7377920 | Buysse et al. | May 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7384421 | Hushka | Jun 2008 | B2 |
7396265 | Darley et al. | Jul 2008 | B2 |
7396336 | Orszulak et al. | Jul 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7422592 | Morley et al. | Sep 2008 | B2 |
7425835 | Eisele | Sep 2008 | B2 |
7431721 | Paton et al. | Oct 2008 | B2 |
7435249 | Buysse et al. | Oct 2008 | B2 |
7438714 | Phan | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7442194 | Dumbauld et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
D582038 | Swoyer et al. | Dec 2008 | S |
7458972 | Keppel | Dec 2008 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7481810 | Dumbauld et al. | Jan 2009 | B2 |
7487780 | Hooven | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7491202 | Odom et al. | Feb 2009 | B2 |
7500975 | Cunningham et al. | Mar 2009 | B2 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7513898 | Johnson et al. | Apr 2009 | B2 |
7517351 | Culp et al. | Apr 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7549995 | Schultz | Jun 2009 | B2 |
7553312 | Tetzlaff et al. | Jun 2009 | B2 |
7553686 | George et al. | Jun 2009 | B2 |
7569626 | Truckai | Aug 2009 | B2 |
7582087 | Tetzlaff et al. | Sep 2009 | B2 |
7588565 | Marchitto et al. | Sep 2009 | B2 |
7594313 | Prakash et al. | Sep 2009 | B2 |
7594916 | Weinberg | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7621910 | Sugi | Nov 2009 | B2 |
7624186 | Tanida | Nov 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7651493 | Arts et al. | Jan 2010 | B2 |
7651494 | McClurken et al. | Jan 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7655007 | Baily | Feb 2010 | B2 |
7668597 | Engmark et al. | Feb 2010 | B2 |
7678111 | Mulier et al. | Mar 2010 | B2 |
7686804 | Johnson et al. | Mar 2010 | B2 |
7686827 | Hushka | Mar 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
7717115 | Barrett et al. | May 2010 | B2 |
7717904 | Suzuki et al. | May 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
7727231 | Swanson | Jun 2010 | B2 |
7731717 | Odom et al. | Jun 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7744615 | Couture | Jun 2010 | B2 |
7749217 | Podhajsky | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7753909 | Chapman et al. | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766910 | Hixson et al. | Aug 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7776036 | Schechter et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780662 | Bahney | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7789878 | Dumbauld et al. | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7799028 | Schechter et al. | Sep 2010 | B2 |
7806892 | Makin et al. | Oct 2010 | B2 |
7811283 | Moses et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
7828798 | Buysse et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7837685 | Weinberg et al. | Nov 2010 | B2 |
7839674 | Lowrey et al. | Nov 2010 | B2 |
7842033 | Isaacson et al. | Nov 2010 | B2 |
7846158 | Podhajsky | Dec 2010 | B2 |
7846161 | Dumbauld et al. | Dec 2010 | B2 |
7857812 | Dycus et al. | Dec 2010 | B2 |
D630324 | Reschke | Jan 2011 | S |
7877852 | Unger et al. | Feb 2011 | B2 |
7877853 | Unger et al. | Feb 2011 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7887535 | Lands et al. | Feb 2011 | B2 |
7887536 | Johnson et al. | Feb 2011 | B2 |
7896878 | Johnson et al. | Mar 2011 | B2 |
7898288 | Wong | Mar 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7905380 | Shelton, IV et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7909820 | Lipson et al. | Mar 2011 | B2 |
7909823 | Moses et al. | Mar 2011 | B2 |
7909824 | Masuda et al. | Mar 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7922718 | Moses et al. | Apr 2011 | B2 |
7922742 | Hillstead et al. | Apr 2011 | B2 |
7922953 | Guerra | Apr 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
7935052 | Dumbauld | May 2011 | B2 |
7945332 | Schechter | May 2011 | B2 |
7947041 | Tetzlaff et al. | May 2011 | B2 |
7949407 | Kaplan et al. | May 2011 | B2 |
7951149 | Carlton | May 2011 | B2 |
7951150 | Johnson et al. | May 2011 | B2 |
7955326 | Paul et al. | Jun 2011 | B2 |
7955327 | Sartor et al. | Jun 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7955332 | Arts et al. | Jun 2011 | B2 |
7963965 | Buysse et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
7972328 | Wham et al. | Jul 2011 | B2 |
7972331 | Hafner | Jul 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
7988507 | Darley et al. | Aug 2011 | B2 |
7998095 | McAuley | Aug 2011 | B2 |
8012150 | Wham et al. | Sep 2011 | B2 |
8016827 | Chojin | Sep 2011 | B2 |
8034049 | Odom et al. | Oct 2011 | B2 |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
8048074 | Masuda | Nov 2011 | B2 |
8070746 | Orton et al. | Dec 2011 | B2 |
8070748 | Hixson et al. | Dec 2011 | B2 |
8075580 | Makower | Dec 2011 | B2 |
8089417 | Popovic et al. | Jan 2012 | B2 |
8092451 | Schechter et al. | Jan 2012 | B2 |
8104956 | Blaha | Jan 2012 | B2 |
8112871 | Brandt et al. | Feb 2012 | B2 |
8114122 | Nau, Jr. | Feb 2012 | B2 |
8123743 | Arts et al. | Feb 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8128625 | Odom | Mar 2012 | B2 |
8133224 | Geiselhart | Mar 2012 | B2 |
8133254 | Dumbauld et al. | Mar 2012 | B2 |
8142425 | Eggers | Mar 2012 | B2 |
8142473 | Cunningham | Mar 2012 | B2 |
8147485 | Wham et al. | Apr 2012 | B2 |
8147489 | Moses et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162940 | Johnson et al. | Apr 2012 | B2 |
8162965 | Reschke et al. | Apr 2012 | B2 |
8162973 | Cunningham | Apr 2012 | B2 |
8177794 | Cabrera et al. | May 2012 | B2 |
8181649 | Brunner | May 2012 | B2 |
8182476 | Julian et al. | May 2012 | B2 |
8187273 | Kerr et al. | May 2012 | B2 |
D661394 | Romero et al. | Jun 2012 | S |
8192433 | Johnson et al. | Jun 2012 | B2 |
8192444 | Dycus | Jun 2012 | B2 |
8197479 | Olson et al. | Jun 2012 | B2 |
8197633 | Guerra | Jun 2012 | B2 |
8207651 | Gilbert | Jun 2012 | B2 |
8211105 | Buysse et al. | Jul 2012 | B2 |
8215182 | Artale et al. | Jul 2012 | B2 |
8216223 | Wham et al. | Jul 2012 | B2 |
8221416 | Townsend | Jul 2012 | B2 |
8226650 | Kerr | Jul 2012 | B2 |
8235992 | Guerra et al. | Aug 2012 | B2 |
8235993 | Hushka et al. | Aug 2012 | B2 |
8236025 | Hushka et al. | Aug 2012 | B2 |
8241282 | Unger et al. | Aug 2012 | B2 |
8241283 | Guerra et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8251996 | Hushka et al. | Aug 2012 | B2 |
8257352 | Lawes et al. | Sep 2012 | B2 |
8257387 | Cunningham | Sep 2012 | B2 |
8287528 | Wham et al. | Oct 2012 | B2 |
8333765 | Johnson | Dec 2012 | B2 |
8454602 | Kerr | Jun 2013 | B2 |
8523898 | Bucciaglia | Sep 2013 | B2 |
8529566 | Kappus | Sep 2013 | B2 |
8568408 | Townsend | Oct 2013 | B2 |
8591510 | Allen, IV | Nov 2013 | B2 |
8628557 | Collings | Jan 2014 | B2 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020111624 | Witt et al. | Aug 2002 | A1 |
20020165469 | Murakami | Nov 2002 | A1 |
20030014052 | Buysse et al. | Jan 2003 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130653 | Sixto, Jr. et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030181898 | Bowers | Sep 2003 | A1 |
20030181910 | Dycus et al. | Sep 2003 | A1 |
20030191396 | Sanghvi et al. | Oct 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20030236325 | Bonora | Dec 2003 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040115296 | Duffin | Jun 2004 | A1 |
20040176779 | Casutt et al. | Sep 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040224590 | Rawa et al. | Nov 2004 | A1 |
20040236326 | Schulze et al. | Nov 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040260281 | Baxter, III et al. | Dec 2004 | A1 |
20050004569 | Witt et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050059858 | Frith et al. | Mar 2005 | A1 |
20050059934 | Wenchell et al. | Mar 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096645 | Wellman et al. | May 2005 | A1 |
20050149017 | Dycus | Jul 2005 | A1 |
20050222560 | Kimura et al. | Oct 2005 | A1 |
20050254081 | Ryu et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050283148 | Janssen et al. | Dec 2005 | A1 |
20060052779 | Hammill | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060079933 | Hushka et al. | Apr 2006 | A1 |
20060084973 | Hushka | Apr 2006 | A1 |
20060111711 | Goble | May 2006 | A1 |
20060173452 | Buysse et al. | Aug 2006 | A1 |
20060190035 | Hushka et al. | Aug 2006 | A1 |
20060224053 | Black et al. | Oct 2006 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20060259036 | Tetzlaff et al. | Nov 2006 | A1 |
20060264922 | Sartor et al. | Nov 2006 | A1 |
20060271030 | Francis et al. | Nov 2006 | A1 |
20060283093 | Petrovic et al. | Dec 2006 | A1 |
20060287641 | Perlin | Dec 2006 | A1 |
20070027447 | Theroux et al. | Feb 2007 | A1 |
20070043353 | Dycus et al. | Feb 2007 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070173811 | Couture et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070198011 | Sugita | Aug 2007 | A1 |
20070225695 | Mayer et al. | Sep 2007 | A1 |
20070260238 | Guerra | Nov 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20070265620 | Kraas et al. | Nov 2007 | A1 |
20080004616 | Patrick | Jan 2008 | A1 |
20080015563 | Hoey et al. | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080033428 | Artale et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080058802 | Couture et al. | Mar 2008 | A1 |
20080125797 | Kelleher | May 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080172051 | Masuda et al. | Jul 2008 | A1 |
20080215050 | Bakos | Sep 2008 | A1 |
20080234672 | Bastian | Sep 2008 | A1 |
20080234701 | Morales et al. | Sep 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080243120 | Lawes et al. | Oct 2008 | A1 |
20080243158 | Morgan | Oct 2008 | A1 |
20080249523 | McPherson et al. | Oct 2008 | A1 |
20080249527 | Couture | Oct 2008 | A1 |
20080271360 | Barfield | Nov 2008 | A1 |
20080281311 | Dunning et al. | Nov 2008 | A1 |
20080319292 | Say et al. | Dec 2008 | A1 |
20090012520 | Hixson et al. | Jan 2009 | A1 |
20090012556 | Boudreaux et al. | Jan 2009 | A1 |
20090024126 | Artale et al. | Jan 2009 | A1 |
20090036881 | Artale et al. | Feb 2009 | A1 |
20090036899 | Carlton et al. | Feb 2009 | A1 |
20090043304 | Tetzlaff et al. | Feb 2009 | A1 |
20090048596 | Shields et al. | Feb 2009 | A1 |
20090054894 | Yachi | Feb 2009 | A1 |
20090062794 | Buysse et al. | Mar 2009 | A1 |
20090065565 | Cao | Mar 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090088739 | Hushka et al. | Apr 2009 | A1 |
20090088745 | Hushka et al. | Apr 2009 | A1 |
20090088746 | Hushka et al. | Apr 2009 | A1 |
20090088748 | Guerra et al. | Apr 2009 | A1 |
20090088750 | Hushka et al. | Apr 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090112206 | Dumbauld et al. | Apr 2009 | A1 |
20090112229 | Omori et al. | Apr 2009 | A1 |
20090131934 | Odom et al. | May 2009 | A1 |
20090138003 | Deville et al. | May 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090149853 | Shields et al. | Jun 2009 | A1 |
20090149854 | Cunningham et al. | Jun 2009 | A1 |
20090157071 | Wham et al. | Jun 2009 | A1 |
20090171354 | Deville et al. | Jul 2009 | A1 |
20090177094 | Brown et al. | Jul 2009 | A1 |
20090182327 | Unger | Jul 2009 | A1 |
20090187188 | Guerra et al. | Jul 2009 | A1 |
20090198233 | Chojin | Aug 2009 | A1 |
20090204114 | Odom | Aug 2009 | A1 |
20090204137 | Maxwell | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090209957 | Schmaltz et al. | Aug 2009 | A1 |
20090209960 | Chojin | Aug 2009 | A1 |
20090234354 | Johnson et al. | Sep 2009 | A1 |
20090248007 | Falkenstein et al. | Oct 2009 | A1 |
20090248013 | Falkenstein et al. | Oct 2009 | A1 |
20090248019 | Falkenstein et al. | Oct 2009 | A1 |
20090248020 | Falkenstein et al. | Oct 2009 | A1 |
20090248021 | McKenna | Oct 2009 | A1 |
20090248022 | Falkenstein et al. | Oct 2009 | A1 |
20090248050 | Hirai | Oct 2009 | A1 |
20090254080 | Honda | Oct 2009 | A1 |
20090254081 | Allison et al. | Oct 2009 | A1 |
20090261804 | McKenna et al. | Oct 2009 | A1 |
20090270771 | Takahashi | Oct 2009 | A1 |
20090275865 | Zhao et al. | Nov 2009 | A1 |
20090292282 | Dycus | Nov 2009 | A9 |
20090299364 | Batchelor et al. | Dec 2009 | A1 |
20090312773 | Cabrera et al. | Dec 2009 | A1 |
20090318912 | Mayer et al. | Dec 2009 | A1 |
20100016857 | McKenna et al. | Jan 2010 | A1 |
20100023009 | Moses et al. | Jan 2010 | A1 |
20100036375 | Regadas | Feb 2010 | A1 |
20100042143 | Cunningham | Feb 2010 | A1 |
20100049187 | Carlton et al. | Feb 2010 | A1 |
20100049194 | Hart et al. | Feb 2010 | A1 |
20100057078 | Arts et al. | Mar 2010 | A1 |
20100057081 | Hanna | Mar 2010 | A1 |
20100057082 | Hanna | Mar 2010 | A1 |
20100057083 | Hanna | Mar 2010 | A1 |
20100057084 | Hanna | Mar 2010 | A1 |
20100063500 | Muszala | Mar 2010 | A1 |
20100069903 | Allen, IV et al. | Mar 2010 | A1 |
20100069904 | Cunningham | Mar 2010 | A1 |
20100069953 | Cunningham et al. | Mar 2010 | A1 |
20100076427 | Heard | Mar 2010 | A1 |
20100076430 | Romero | Mar 2010 | A1 |
20100076431 | Allen, IV | Mar 2010 | A1 |
20100076432 | Horner | Mar 2010 | A1 |
20100087816 | Roy | Apr 2010 | A1 |
20100094271 | Ward et al. | Apr 2010 | A1 |
20100094287 | Cunningham et al. | Apr 2010 | A1 |
20100094289 | Taylor et al. | Apr 2010 | A1 |
20100100122 | Hinton | Apr 2010 | A1 |
20100130971 | Baily | May 2010 | A1 |
20100130977 | Garrison et al. | May 2010 | A1 |
20100168741 | Sanai et al. | Jul 2010 | A1 |
20100179543 | Johnson et al. | Jul 2010 | A1 |
20100179545 | Twomey et al. | Jul 2010 | A1 |
20100179546 | Cunningham | Jul 2010 | A1 |
20100179547 | Cunningham et al. | Jul 2010 | A1 |
20100198218 | Manzo | Aug 2010 | A1 |
20100198248 | Vakharia | Aug 2010 | A1 |
20100204697 | Dumbauld et al. | Aug 2010 | A1 |
20100204698 | Chapman et al. | Aug 2010 | A1 |
20100217258 | Floume et al. | Aug 2010 | A1 |
20100217264 | Odom et al. | Aug 2010 | A1 |
20100228249 | Mohr et al. | Sep 2010 | A1 |
20100228250 | Brogna | Sep 2010 | A1 |
20100249769 | Nau, Jr. et al. | Sep 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100274244 | Heard | Oct 2010 | A1 |
20100274265 | Wingardner et al. | Oct 2010 | A1 |
20100280511 | Rachlin et al. | Nov 2010 | A1 |
20100292691 | Brogna | Nov 2010 | A1 |
20100305558 | Kimura et al. | Dec 2010 | A1 |
20100307934 | Chowaniec et al. | Dec 2010 | A1 |
20100312235 | Bahney | Dec 2010 | A1 |
20100331742 | Masuda | Dec 2010 | A1 |
20100331839 | Schechter et al. | Dec 2010 | A1 |
20110004210 | Johnson et al. | Jan 2011 | A1 |
20110015632 | Artale | Jan 2011 | A1 |
20110018164 | Sartor et al. | Jan 2011 | A1 |
20110034918 | Reschke | Feb 2011 | A1 |
20110046623 | Reschke | Feb 2011 | A1 |
20110054467 | Mueller et al. | Mar 2011 | A1 |
20110054468 | Dycus | Mar 2011 | A1 |
20110054469 | Kappus et al. | Mar 2011 | A1 |
20110054471 | Gerhardt et al. | Mar 2011 | A1 |
20110054472 | Romero | Mar 2011 | A1 |
20110060333 | Mueller | Mar 2011 | A1 |
20110060334 | Brandt et al. | Mar 2011 | A1 |
20110060335 | Harper et al. | Mar 2011 | A1 |
20110071523 | Dickhans | Mar 2011 | A1 |
20110071525 | Dumbauld et al. | Mar 2011 | A1 |
20110072638 | Brandt et al. | Mar 2011 | A1 |
20110073594 | Bonn | Mar 2011 | A1 |
20110077637 | Brannan | Mar 2011 | A1 |
20110077648 | Lee et al. | Mar 2011 | A1 |
20110077649 | Kingsley | Mar 2011 | A1 |
20110082457 | Kerr et al. | Apr 2011 | A1 |
20110082494 | Kerr et al. | Apr 2011 | A1 |
20110087221 | Siebrecht et al. | Apr 2011 | A1 |
20110098689 | Nau, Jr. et al. | Apr 2011 | A1 |
20110106079 | Garrison et al. | May 2011 | A1 |
20110118736 | Harper et al. | May 2011 | A1 |
20110178519 | Couture et al. | Jul 2011 | A1 |
20110184405 | Mueller | Jul 2011 | A1 |
20110190653 | Harper et al. | Aug 2011 | A1 |
20110190765 | Chojin | Aug 2011 | A1 |
20110193608 | Krapohl | Aug 2011 | A1 |
20110218530 | Reschke | Sep 2011 | A1 |
20110230880 | Chojin et al. | Sep 2011 | A1 |
20110238066 | Olson | Sep 2011 | A1 |
20110238067 | Moses et al. | Sep 2011 | A1 |
20110251605 | Hoarau et al. | Oct 2011 | A1 |
20110251606 | Kerr | Oct 2011 | A1 |
20110251611 | Horner et al. | Oct 2011 | A1 |
20110257680 | Reschke et al. | Oct 2011 | A1 |
20110257681 | Reschke et al. | Oct 2011 | A1 |
20110270245 | Horner et al. | Nov 2011 | A1 |
20110270250 | Horner et al. | Nov 2011 | A1 |
20110270251 | Horner et al. | Nov 2011 | A1 |
20110270252 | Horner et al. | Nov 2011 | A1 |
20110276048 | Kerr et al. | Nov 2011 | A1 |
20110276049 | Gerhardt | Nov 2011 | A1 |
20110295251 | Garrison | Dec 2011 | A1 |
20110295313 | Kerr | Dec 2011 | A1 |
20110301592 | Kerr et al. | Dec 2011 | A1 |
20110301599 | Roy et al. | Dec 2011 | A1 |
20110301600 | Garrison et al. | Dec 2011 | A1 |
20110301601 | Garrison et al. | Dec 2011 | A1 |
20110301602 | Roy et al. | Dec 2011 | A1 |
20110301603 | Kerr et al. | Dec 2011 | A1 |
20110301604 | Horner et al. | Dec 2011 | A1 |
20110301605 | Horner | Dec 2011 | A1 |
20110301606 | Kerr | Dec 2011 | A1 |
20110301637 | Kerr et al. | Dec 2011 | A1 |
20110319886 | Chojin et al. | Dec 2011 | A1 |
20110319888 | Mueller et al. | Dec 2011 | A1 |
20120004658 | Chojin | Jan 2012 | A1 |
20120010614 | Couture | Jan 2012 | A1 |
20120022532 | Garrison | Jan 2012 | A1 |
20120029515 | Couture | Feb 2012 | A1 |
20120041438 | Nau, Jr. et al. | Feb 2012 | A1 |
20120046659 | Mueller | Feb 2012 | A1 |
20120046660 | Nau, Jr. | Feb 2012 | A1 |
20120046662 | Gilbert | Feb 2012 | A1 |
20120059371 | Anderson et al. | Mar 2012 | A1 |
20120059372 | Johnson | Mar 2012 | A1 |
20120059374 | Johnson et al. | Mar 2012 | A1 |
20120059375 | Couture et al. | Mar 2012 | A1 |
20120059408 | Mueller | Mar 2012 | A1 |
20120059409 | Reschke et al. | Mar 2012 | A1 |
20120078250 | Orton et al. | Mar 2012 | A1 |
20120083785 | Roy et al. | Apr 2012 | A1 |
20120083786 | Artale et al. | Apr 2012 | A1 |
20120083827 | Artale et al. | Apr 2012 | A1 |
20120095456 | Schechter et al. | Apr 2012 | A1 |
20120095460 | Rooks et al. | Apr 2012 | A1 |
20120109187 | Gerhardt, Jr. et al. | May 2012 | A1 |
20120118507 | Brandt et al. | May 2012 | A1 |
20120123402 | Chernov et al. | May 2012 | A1 |
20120123404 | Craig | May 2012 | A1 |
20120123410 | Craig | May 2012 | A1 |
20120123413 | Chernov et al. | May 2012 | A1 |
20120130367 | Garrison | May 2012 | A1 |
20120136353 | Romero | May 2012 | A1 |
20120136354 | Rupp | May 2012 | A1 |
20120143185 | Nau, Jr. | Jun 2012 | A1 |
20120165797 | Cunningham | Jun 2012 | A1 |
20120165818 | Odom | Jun 2012 | A1 |
20120172868 | Twomey et al. | Jul 2012 | A1 |
20120172873 | Artale et al. | Jul 2012 | A1 |
20120172924 | Allen, IV | Jul 2012 | A1 |
20120172925 | Dumbauld et al. | Jul 2012 | A1 |
20120184989 | Twomey | Jul 2012 | A1 |
20120184990 | Twomey | Jul 2012 | A1 |
20120202179 | Fedotov et al. | Aug 2012 | A1 |
20120209263 | Sharp et al. | Aug 2012 | A1 |
20120215219 | Roy et al. | Aug 2012 | A1 |
20120215242 | Reschke et al. | Aug 2012 | A1 |
20120226276 | Dycus | Sep 2012 | A1 |
20120239034 | Horner | Sep 2012 | A1 |
20120253344 | Dumbauld | Oct 2012 | A1 |
20120259331 | Garrison | Oct 2012 | A1 |
20120265241 | Hart | Oct 2012 | A1 |
20120283727 | Twomey | Nov 2012 | A1 |
20120283734 | Ourada | Nov 2012 | A1 |
20120296205 | Chernov | Nov 2012 | A1 |
20120296238 | Chernov | Nov 2012 | A1 |
20120296239 | Chernov | Nov 2012 | A1 |
20120296317 | Chernov | Nov 2012 | A1 |
20120296323 | Chernov | Nov 2012 | A1 |
20120296324 | Chernov | Nov 2012 | A1 |
20120296332 | Chernov | Nov 2012 | A1 |
20120296333 | Twomey | Nov 2012 | A1 |
20120296334 | Kharin | Nov 2012 | A1 |
20120296371 | Kappus | Nov 2012 | A1 |
20120303021 | Guerra | Nov 2012 | A1 |
20120303025 | Garrison | Nov 2012 | A1 |
20120303026 | Dycus | Nov 2012 | A1 |
20120310240 | Olson | Dec 2012 | A1 |
20120316601 | Twomey | Dec 2012 | A1 |
20120323238 | Tyrell | Dec 2012 | A1 |
20120330308 | Joseph | Dec 2012 | A1 |
20120330309 | Joseph | Dec 2012 | A1 |
20130014375 | Hempstead | Jan 2013 | A1 |
20130018364 | Chernov | Jan 2013 | A1 |
20130018371 | Twomey | Jan 2013 | A1 |
20130018372 | Sims | Jan 2013 | A1 |
20130022495 | Allen, IV | Jan 2013 | A1 |
20130041370 | Unger | Feb 2013 | A1 |
20130041402 | Chojin | Feb 2013 | A1 |
20130046295 | Kerr | Feb 2013 | A1 |
20130046303 | Evans | Feb 2013 | A1 |
20130046306 | Evans | Feb 2013 | A1 |
20130046337 | Evans | Feb 2013 | A1 |
20130060250 | Twomey | Mar 2013 | A1 |
20130066303 | Hart | Mar 2013 | A1 |
20130066318 | Kerr | Mar 2013 | A1 |
20130071282 | Fry | Mar 2013 | A1 |
20130072919 | Allen, IV | Mar 2013 | A1 |
20130072927 | Allen, IV | Mar 2013 | A1 |
20130079760 | Twomey | Mar 2013 | A1 |
20130079762 | Twomey | Mar 2013 | A1 |
20130079774 | Whitney | Mar 2013 | A1 |
20130082035 | Allen, IV | Apr 2013 | A1 |
20130085491 | Twomey | Apr 2013 | A1 |
20130085496 | Unger | Apr 2013 | A1 |
20130085516 | Kerr | Apr 2013 | A1 |
20130103030 | Garrison | Apr 2013 | A1 |
20130103031 | Garrison | Apr 2013 | A1 |
20130103035 | Horner | Apr 2013 | A1 |
20130123837 | Roy | May 2013 | A1 |
20130138101 | Kerr | May 2013 | A1 |
20130138102 | Twomey | May 2013 | A1 |
20130138129 | Garrison | May 2013 | A1 |
20130144284 | Behnke, II | Jun 2013 | A1 |
20130150842 | Nau, Jr. | Jun 2013 | A1 |
20130178852 | Allen, IV | Jul 2013 | A1 |
20130185922 | Twomey | Jul 2013 | A1 |
20130190753 | Garrison | Jul 2013 | A1 |
20130190760 | Allen, IV | Jul 2013 | A1 |
20130197503 | Orszulak | Aug 2013 | A1 |
20130218198 | Larson | Aug 2013 | A1 |
20130226177 | Brandt | Aug 2013 | A1 |
20130226178 | Brandt | Aug 2013 | A1 |
20130232753 | Ackley | Sep 2013 | A1 |
20130238016 | Garrison | Sep 2013 | A1 |
20130245623 | Twomey | Sep 2013 | A1 |
20130253489 | Nau, Jr. et al. | Sep 2013 | A1 |
20130255063 | Hart et al. | Oct 2013 | A1 |
20130267948 | Kerr et al. | Oct 2013 | A1 |
20130267949 | Kerr | Oct 2013 | A1 |
20130270322 | Scheib et al. | Oct 2013 | A1 |
20130274736 | Garrison | Oct 2013 | A1 |
20130282010 | McKenna et al. | Oct 2013 | A1 |
20130289561 | Waaler et al. | Oct 2013 | A1 |
20130296848 | Allen, IV et al. | Nov 2013 | A1 |
20130296854 | Mueller | Nov 2013 | A1 |
20130296856 | Unger et al. | Nov 2013 | A1 |
20130296922 | Allen, IV et al. | Nov 2013 | A1 |
20130296923 | Twomey et al. | Nov 2013 | A1 |
20130304058 | Kendrick | Nov 2013 | A1 |
20130304059 | Allen, IV et al. | Nov 2013 | A1 |
20130304066 | Kerr et al. | Nov 2013 | A1 |
20130310832 | Kerr et al. | Nov 2013 | A1 |
20130325043 | Butcher | Dec 2013 | A1 |
20130325057 | Larson et al. | Dec 2013 | A1 |
20130331837 | Larson | Dec 2013 | A1 |
20130338666 | Bucciaglia et al. | Dec 2013 | A1 |
20130338693 | Kerr et al. | Dec 2013 | A1 |
20130345701 | Allen, IV et al. | Dec 2013 | A1 |
20130345706 | Garrison | Dec 2013 | A1 |
20130345735 | Mueller | Dec 2013 | A1 |
20140005663 | Heard et al. | Jan 2014 | A1 |
20140005666 | Moua et al. | Jan 2014 | A1 |
20140031821 | Garrison | Jan 2014 | A1 |
20140031860 | Stoddard | Jan 2014 | A1 |
20140046323 | Payne | Feb 2014 | A1 |
20140058385 | Wham | Feb 2014 | A1 |
20140066910 | Nau | Mar 2014 | A1 |
20140066911 | Nau | Mar 2014 | A1 |
20140074091 | Arya | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2 104 423 | Feb 1994 | CA |
2 520 413 | Mar 2007 | CA |
2 590 520 | Nov 2007 | CA |
201299462 | Sep 2009 | CN |
2415263 | Oct 1975 | DE |
2514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
3423356 | Jan 1986 | DE |
3612646 | Apr 1987 | DE |
3627221 | Feb 1988 | DE |
8712328 | Mar 1988 | DE |
0364216 | Apr 1990 | DE |
4303882 | Aug 1994 | DE |
19506363 | Aug 1994 | DE |
4403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
10031773 | Nov 2001 | DE |
19946527 | Dec 2001 | DE |
10045375 | Apr 2002 | DE |
20121161 | Apr 2002 | DE |
10 2004 026179 | Dec 2005 | DE |
20 2007 009318 | Aug 2007 | DE |
20 2007 009165 | Oct 2007 | DE |
20 2007 009317 | Oct 2007 | DE |
20 2007 016233 | Mar 2008 | DE |
19738457 | Jan 2009 | DE |
10 2008 018406 | Jul 2009 | DE |
623316 | May 1949 | EP |
0467501 | Jan 1992 | EP |
0509670 | Oct 1992 | EP |
0518230 | Dec 1992 | EP |
0541930 | May 1993 | EP |
0306123 | Aug 1993 | EP |
0572131 | Dec 1993 | EP |
0584787 | Mar 1994 | EP |
0589453 | Mar 1994 | EP |
0589555 | Mar 1994 | EP |
0623316 | Nov 1994 | EP |
0624348 | Nov 1994 | EP |
0640317 | Mar 1995 | EP |
0648475 | Apr 1995 | EP |
0650701 | May 1995 | EP |
0694290 | Mar 1996 | EP |
0717966 | Jun 1996 | EP |
0754437 | Mar 1997 | EP |
0517243 | Sep 1997 | EP |
0853922 | Jul 1998 | EP |
0875209 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0887046 | Jan 1999 | EP |
0888747 | Jan 1999 | EP |
0923907 | Jan 1999 | EP |
0913126 | May 1999 | EP |
0950378 | Oct 1999 | EP |
0986990 | Mar 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1025807 | Oct 2000 | EP |
1034746 | Oct 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1082944 | Mar 2001 | EP |
1159926 | Dec 2001 | EP |
1177771 | Feb 2002 | EP |
1278007 | Jan 2003 | EP |
1301135 | Apr 2003 | EP |
1330991 | Jul 2003 | EP |
1486177 | Jun 2004 | EP |
1472984 | Nov 2004 | EP |
0774232 | Jan 2005 | EP |
1527747 | May 2005 | EP |
1530952 | May 2005 | EP |
1532932 | May 2005 | EP |
1535581 | Jun 2005 | EP |
1281878 | Oct 2005 | EP |
1609430 | Dec 2005 | EP |
1201192 | Feb 2006 | EP |
1632192 | Mar 2006 | EP |
1186274 | Apr 2006 | EP |
1642543 | Apr 2006 | EP |
1645238 | Apr 2006 | EP |
1645240 | Apr 2006 | EP |
1649821 | Apr 2006 | EP |
1685806 | Aug 2006 | EP |
1707143 | Oct 2006 | EP |
1545360 | Mar 2007 | EP |
1767163 | Mar 2007 | EP |
1767164 | Mar 2007 | EP |
1769765 | Apr 2007 | EP |
1769766 | Apr 2007 | EP |
1772109 | Apr 2007 | EP |
1785097 | May 2007 | EP |
1785098 | May 2007 | EP |
1785101 | May 2007 | EP |
1787597 | May 2007 | EP |
1810625 | Jul 2007 | EP |
1810628 | Jul 2007 | EP |
1842500 | Oct 2007 | EP |
1878400 | Jan 2008 | EP |
1894535 | Mar 2008 | EP |
1929970 | Jun 2008 | EP |
1946715 | Jul 2008 | EP |
1958583 | Aug 2008 | EP |
1990019 | Nov 2008 | EP |
1994904 | Nov 2008 | EP |
1683496 | Dec 2008 | EP |
1997438 | Dec 2008 | EP |
1997439 | Dec 2008 | EP |
1527744 | Feb 2009 | EP |
2103268 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
2147649 | Jan 2010 | EP |
2153791 | Feb 2010 | EP |
2206474 | Jul 2010 | EP |
1920725 | Oct 2010 | EP |
2243439 | Oct 2010 | EP |
2294998 | Mar 2011 | EP |
2301467 | Mar 2011 | EP |
1628586 | Jul 2011 | EP |
1490585 | Nov 1977 | GB |
2214430 | Jun 1989 | GB |
2213416 | Aug 1989 | GB |
61-501068 | Sep 1984 | JP |
6-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
5-40112 | Feb 1993 | JP |
6-030945 | Feb 1994 | JP |
6-121797 | May 1994 | JP |
6-285078 | Oct 1994 | JP |
6-343644 | Dec 1994 | JP |
6-511401 | Dec 1994 | JP |
7-265328 | Oct 1995 | JP |
8-56955 | Mar 1996 | JP |
8-317936 | Mar 1996 | JP |
8-289895 | May 1996 | JP |
8-252263 | Oct 1996 | JP |
8-317934 | Dec 1996 | JP |
9-000538 | Jan 1997 | JP |
9-10223 | Jan 1997 | JP |
9-122138 | May 1997 | JP |
10-000195 | Jan 1998 | JP |
10-24051 | Jan 1998 | JP |
11-070124 | May 1998 | JP |
10-155798 | Jun 1998 | JP |
2000-102545 | Sep 1998 | JP |
11-47149 | Feb 1999 | JP |
11-47150 | Feb 1999 | JP |
11-169381 | Jun 1999 | JP |
11-192238 | Jul 1999 | JP |
11-244298 | Sep 1999 | JP |
2000-135222 | May 2000 | JP |
2000-342599 | Dec 2000 | JP |
2000-350732 | Dec 2000 | JP |
2001-8944 | Jan 2001 | JP |
2001-29355 | Feb 2001 | JP |
2001-29356 | Feb 2001 | JP |
2001-128990 | May 2001 | JP |
2001-190564 | Jul 2001 | JP |
2001-3400 | Nov 2001 | JP |
2002-528166 | Mar 2002 | JP |
2002-136525 | May 2002 | JP |
2003-116871 | Apr 2003 | JP |
2003-175052 | Jun 2003 | JP |
2003-245285 | Sep 2003 | JP |
2004-517668 | Jun 2004 | JP |
2004-528869 | Sep 2004 | JP |
2005-152663 | Jun 2005 | JP |
2005-253789 | Sep 2005 | JP |
2005-312807 | Oct 2005 | JP |
2006-015078 | Jan 2006 | JP |
2006-501939 | Jan 2006 | JP |
2006-095316 | Apr 2006 | JP |
2011-125195 | Jun 2011 | JP |
401367 | Nov 1974 | SU |
WO 8900757 | Jan 1989 | WO |
WO 9204873 | Apr 1992 | WO |
WO 9206642 | Apr 1992 | WO |
WO 9319681 | Oct 1993 | WO |
WO 9321845 | Nov 1993 | WO |
WO 9400059 | Jan 1994 | WO |
WO 9408524 | Apr 1994 | WO |
WO 9420025 | Sep 1994 | WO |
WO 9502369 | Jan 1995 | WO |
WO 9507662 | Mar 1995 | WO |
WO 9515124 | Jun 1995 | WO |
WO 9520360 | Aug 1995 | WO |
WO 9520921 | Aug 1995 | WO |
WO 9605776 | Feb 1996 | WO |
WO 9611635 | Apr 1996 | WO |
WO 9622056 | Jul 1996 | WO |
WO 9613218 | Sep 1996 | WO |
WO 9700646 | Jan 1997 | WO |
WO 9700647 | Jan 1997 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9718768 | May 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9814124 | Apr 1998 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9831290 | Jul 1998 | WO |
WO 9843264 | Oct 1998 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9903414 | Jan 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9923933 | May 1999 | WO |
WO 9923959 | May 1999 | WO |
WO 9925261 | May 1999 | WO |
WO 9940857 | Aug 1999 | WO |
WO 9940861 | Aug 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 9966850 | Dec 1999 | WO |
WO 0024322 | May 2000 | WO |
WO 0024330 | May 2000 | WO |
WO 0024331 | May 2000 | WO |
WO 0033753 | Jun 2000 | WO |
WO 0036986 | Jun 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO 0047124 | Aug 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0059392 | Oct 2000 | WO |
WO 0100114 | Jan 2001 | WO |
WO 0101847 | Jan 2001 | WO |
WO 0115614 | Mar 2001 | WO |
WO 0117448 | Mar 2001 | WO |
WO 0154604 | Aug 2001 | WO |
WO 0166025 | Sep 2001 | WO |
WO 0207627 | Jan 2002 | WO |
WO 0245589 | Jun 2002 | WO |
WO 02058544 | Aug 2002 | WO |
WO 02067798 | Sep 2002 | WO |
WO 02080783 | Oct 2002 | WO |
WO 02080784 | Oct 2002 | WO |
WO 02080785 | Oct 2002 | WO |
WO 02080786 | Oct 2002 | WO |
WO 02080793 | Oct 2002 | WO |
WO 02080794 | Oct 2002 | WO |
WO 02080795 | Oct 2002 | WO |
WO 02080796 | Oct 2002 | WO |
WO 02080797 | Oct 2002 | WO |
WO 02080798 | Oct 2002 | WO |
WO 02080799 | Oct 2002 | WO |
WO 02081170 | Oct 2002 | WO |
WO 02085218 | Oct 2002 | WO |
WO 02094746 | Nov 2002 | WO |
WO 03061500 | Jul 2003 | WO |
WO 03068046 | Aug 2003 | WO |
WO 03090630 | Nov 2003 | WO |
WO 03096880 | Nov 2003 | WO |
WO 03101311 | Dec 2003 | WO |
WO 2004028585 | Apr 2004 | WO |
WO 2004032776 | Apr 2004 | WO |
WO 2004032777 | Apr 2004 | WO |
WO 2004052221 | Jun 2004 | WO |
WO 2004073488 | Sep 2004 | WO |
WO 2004073490 | Sep 2004 | WO |
WO 2004073753 | Sep 2004 | WO |
WO 2004082495 | Sep 2004 | WO |
WO 2004083797 | Sep 2004 | WO |
WO 2004098383 | Nov 2004 | WO |
WO 2004103156 | Dec 2004 | WO |
WO 2005004734 | Jan 2005 | WO |
WO 2005004735 | Jan 2005 | WO |
WO 2005009255 | Feb 2005 | WO |
WO 2005011049 | Feb 2005 | WO |
WO 2005030071 | Apr 2005 | WO |
WO 2005048809 | Jun 2005 | WO |
WO 2005050151 | Jun 2005 | WO |
WO 2005110264 | Nov 2005 | WO |
WO 2006021269 | Mar 2006 | WO |
WO 2008008457 | Jan 2008 | WO |
WO 2008040483 | Apr 2008 | WO |
WO 2008045348 | Apr 2008 | WO |
WO 2008045350 | Apr 2008 | WO |
WO 2008112147 | Sep 2008 | WO |
WO 2009005850 | Jan 2009 | WO |
WO 2009032623 | Mar 2009 | WO |
WO 2009039179 | Mar 2009 | WO |
WO 2009039510 | Mar 2009 | WO |
WO 2009124097 | Oct 2009 | WO |
WO 2010104753 | Sep 2010 | WO |
WO 2011018154 | Feb 2011 | WO |
Entry |
---|
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Sremeich. |
U.S. Appl. No. 13/708,335, filed Dec. 7, 2012, Dumbauld. |
U.S. Appl. No. 13/731,674, filed Dec. 31, 2012, Siebrecht. |
U.S. Appl. No. 14/019,031, filed Sep. 5, 2013, Garrison. |
U.S. Appl. No. 14/019,094, filed Sep. 5, 2013, Garrison. |
U.S. Appl. No. 14/032,486, filed Sep. 20, 2013, Kendrick. |
U.S. Appl. No. 14/035,423, filed Sep. 24, 2013, Garrison. |
U.S. Appl. No. 14/037,772, filed Sep. 26, 2013, Frushour. |
U.S. Appl. No. 14/041,995, filed Sep. 30, 2013, Kendrick. |
U.S. Appl. No. 14/042,947, filed Oct. 1, 2013, Craig. |
U.S. Appl. No. 14/043,039, filed Oct. 1, 2013, Rusin. |
U.S. Appl. No. 14/043,322, filed Oct. 1, 2013, O'Neill. |
U.S. Appl. No. 14/047,474, filed Oct. 7, 2013, Mueller. |
U.S. Appl. No. 14/050,593, filed Oct. 10, 2013, Plaven. |
U.S. Appl. No. 14/052,827, filed Oct. 14, 2013, Nau. |
U.S. Appl. No. 14/052,856, filed Oct. 14, 2013, Latimer. |
U.S. Appl. No. 14/052,871, filed Oct. 14, 2013, Kappus. |
U.S. Appl. No. 14/054,173, filed Oct. 15, 2013, Payne. |
U.S. Appl. No. 14/054,573, filed Oct. 15, 2013, Harper. |
U.S. Appl. No. 14/064,310, filed Oct. 28, 2013, Reschke. |
U.S. Appl. No. 14/064,702, filed Oct. 28, 2013, Townsend. |
U.S. Appl. No. 14/065,644, filed Oct. 29, 2013, Reschke. |
U.S. Appl. No. 14/072,386, filed Nov. 5, 2014, Wham. |
U.S. Appl. No. 14/080,564, filed Nov. 14, 2013, Lawes. |
U.S. Appl. No. 14/080,581, filed Nov. 14, 2013, Kerr. |
U.S. Appl. No. 14/083,696, filed Nov. 19, 2013, Homer. |
U.S. Appl. No. 14/086,399, filed Nov. 21, 2013, Allen. |
U.S. Appl. No. 14/091,505, filed Nov. 27, 2013, Garrison. |
U.S. Appl. No. 14/091,521, filed Nov. 27, 2013, Garrison. |
U.S. Appl. No. 14/091,532, filed Nov. 27, 2013, Garrison. |
U.S. Appl. No. 14/098,953, filed Dec. 6, 2013, Cunningham. |
U.S. Appl. No. 14/100,237, filed Dec. 9, 2013, Reschke. |
U.S. Appl. No. 14/103,971, filed Dec. 12, 2013, Roy. |
U.S. Appl. No. 14/105,374, filed Dec. 13, 2013, Moua. |
U.S. Appl. No. 14/109,459, filed Dec. 17, 2013, Hoarau. |
U.S. Appl. No. 14/149,343, filed Jan. 7, 2014, Schmaltz. |
U.S. Appl. No. 14/152,618, filed Jan. 10, 2014, Artale. |
U.S. Appl. No. 14/152,690, filed Jan. 10, 2014, Hart. |
U.S. Appl. No. 14/153,346, filed Jan. 13, 2014, Collings. |
U.S. Appl. No. 14/162,192, filed Jan. 23, 2014, Garrison. |
U.S. Appl. No. 08/177,950, filed Oct. 23, 1998, Frazier. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps” , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview”. Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties At VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J.Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
Number | Date | Country | |
---|---|---|---|
20140058381 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
60105417 | Oct 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13652932 | Oct 2012 | US |
Child | 14072312 | US | |
Parent | 12057557 | Mar 2008 | US |
Child | 13652932 | US | |
Parent | 10626390 | Jul 2003 | US |
Child | 12057557 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10073761 | Feb 2002 | US |
Child | 10626390 | US | |
Parent | 09408944 | Sep 1999 | US |
Child | 10073761 | US |