The present disclosure relates to a vial puck system for connecting to a vial for use in an automatic drug compounder.
Pharmaceutical compounding is the practice of creating a specific pharmaceutical product to fit the unique need of a patient. In practice, compounding is typically performed by a pharmacist, tech or a nurse who combines the appropriate ingredients using various tools. One common form of compounding comprises the combination of a powdered drug formulation with a specific diluent to create a suspended pharmaceutical composition. These types of compositions are commonly used in intravenous/parenteral medications. It is vital that the pharmaceuticals and diluents are maintained in a sterile state during the compounding process, and there exists a need for automating the process while maintaining the proper mixing characteristics (i.e., certain pharmaceuticals must be agitated in specific ways so that the pharmaceutical is properly mixed into solution but the solution is not frothed and air bubbles are not created). There exists a need for a compounding system that is easy to use, may be used frequently and efficiently, is reliable and reduces user error.
A vial puck configured for attachment to a vial containing a drug is provided. The vial puck includes various features for facilitating uniform control of vials of various sizes in an automatic compounder system.
In accordance with an embodiment, a vial puck is provided that includes a cylindrical central portion; a plurality of substantially perpendicular extensions that extend from a top of the cylindrical central portion; a substantially circular gear extending from the cylindrical central portion; a bottom extension extending from a bottom of the cylindrical central portion, the bottom extension having a vial recess configured to receive a vial containing a drug; and a sealing member disposed in the cylindrical central portion, where the sealing member is configured to provide a drip free seal for a needle assembly that passes through the central cylindrical portion, the circular gear, and the sealing member into the vial. In some embodiments, the central portion may have a shape other than a cylinder. For example, the central portion may have a polygonal, elliptical, irregular, or other cross-sectional shape.
In accordance with another embodiment, a method is provided that includes providing a vial puck on a vial containing a drug; providing the vial puck in a vial puck recess in a vial tray of a compounder system; rotating the vial tray to move the vial and vial puck to a first position; grasping the vial puck with vial calipers of the compounder system; lifting the vial puck and vial out of the vial tray with a vial lift coupled to the vial calipers; and lifting the vial puck and vial to compress a needle housing of the compounder system to expose a needle assembly and to extend the needle assembly through sealing members of the vial puck and the needle housing into the vial.
In accordance with another embodiment, a compounder system is provided that includes vial calipers coupled to a vial lift; a cartridge comprising a needle assembly and at least one controllable fluid pathway fluidly coupled to the needle assembly; a vial tray having at least one vial puck recess; and a vial puck, the vial puck including a lower portion configured to receive and secure a vial containing a drug; and an upper portion, the upper portion having a first portion configured to seat in the at least one vial puck recess; a second portion configured to be grasped by the vial calipers; and a sealing member configured to receive the needle assembly therethrough, where the vial lift is configured to move the vial that is grasped by the vial calipers toward the cartridge such that the needle assembly is provided through the sealing member to fluidly couple the at least one controllable fluid pathway to the vial via the needle assembly.
The accompanying drawings, which are included to provide further understanding and are incorporated in and constitute a part of this specification, illustrate disclosed embodiments and together with the description serve to explain the principles of the disclosed embodiments. In the drawings:
The detailed description set forth below describes various configurations of the subject technology and is not intended to represent the only configurations in which the subject technology may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the subject technology. Accordingly, dimensions may be provided in regard to certain aspects as non-limiting examples. However, it will be apparent to those skilled in the art that the subject technology may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring the concepts of the subject technology.
It is to be understood that the present disclosure includes examples of the subject technology and does not limit the scope of the appended claims. Various aspects of the subject technology will now be disclosed according to particular but non-limiting examples. Various embodiments described in the present disclosure may be carried out in different ways and variations, and in accordance with a desired application or implementation.
The present system comprises multiple features and technologies that in conjunction form a compounding system that can efficiently reconstitute pharmaceuticals in a sterile environment and deliver the compounded pharmaceutical to a delivery bag for use on a patient.
The carousel assembly 14 is mounted on the apparatus such that it can rotate to bring different cartridges 16 into alignment with the pump drive mechanism 20. The carousel 14 is typically enclosed within a housing 12 that can be opened in order to replace the carousel 14 with a new carousel 14 after removing a used one. As illustrated, the carousel 14 can contain up to 10 cartridges 16, allowing a particular carousel to be used up to 10 times. In this configuration, each carousel assembly can support, for example, 10 to 100 receiving containers, depending on the type of compounding to be performed. For example, for hazardous drug compounding, a carousel assembly can support compounding to ten receiving containers. In another example, for non-hazardous drug compounding such as antibiotic or pain medication compounding, a carousel assembly can support compounding to 100 receiving containers. The housing 12 also includes a star wheel 22 positioned underneath the carousel 14. The star wheel 22 rotates vials 18 of pharmaceuticals into position either in concert with, or separate from, the specific cartridges 16 on the carousel 14. The housing 12 may also include an opening 24 for loading the vials 18 into position on the star wheel 22.
Each one of the cartridges 16 in the carousel 14 is a disposable unit that includes multiple pathways for the diluent and vapor waste. Each cartridge 16 is a small, single disposable unit that may also include a “backpack” in which a tube for connection to the receiving container (e.g., an IV bag, a syringe, or an elastomeric bag) may be maintained. Each cartridge 16 also may include a pumping mechanism such as a piston pump for moving fluid and vapor through the cartridge 16 as well as a duel lumen needle in a housing that can pierce a vial puck 26 on top of a vial 18 once the vial 18 has been moved into position by the pump drive mechanism 20. For example, the needle may pierce the vial puck 26 via the compressive action of the vial puck 26, which is moved towards the needle. Each cartridge 16 also includes a plurality of ports designed to match up with the needles of a plurality of diluent manifolds. Each cartridge 16 also includes openings to receive mounting posts and a locking bayonet from the pump head assembly 28. Although a locking bayonet is described herein as an example, other locking mechanisms may be used to retrieve and lock a cartridge to the pump head (e.g., grippers, clamps, or the like may extend from the pump head). Each cartridge 16 also includes openings allowing valve actuators from the pump motor mechanism to interact with the valves on each cartridge 16.
Adjacent the housing 12 that holds the vials 18 and the carousel 14 is an apparatus 30 for holding at least one container 32, such as an IV bag 32 as shown in the figures. The IV bag 32 typically has two ports such as ports 34 and 36. For example, in one implementation, port 34 is an intake port 34 and port 36 is an outlet port 36. Although this implementation is sometimes discussed herein as an example, either of ports 34 and 36 may be implemented as an input and/or outlet port for container 32. For example, in another implementation, an inlet 34 for receiving a connector at the end of tubing 38 may be provided on the outlet port 36. In the embodiment shown, the IV bag 32 hangs from the holding apparatus 30, which, in one embodiment is a post with a hook as illustrated in
On the opposite side of the compounder 10 is an array of holding apparatuses 40 for holding multiple IV bags 32 or other containers. In the illustrated version of the compounder 10, five IV bags 42, 44 are pictured. Three of these bags 42 may contain diluents, such as saline, D5 W or sterile water, although any diluent known in the art may be utilized. An additional bag in the array may be an empty vapor waste bag 44 for collecting waste such as potentially hazardous or toxic vapor waste from the mixing process. An additional bag 44 may be a liquid waste bag. The liquid waste bag may be configured to receive non-toxic liquid waste such as saline from a receiving container. Liquid waste may be pumped to the waste bag via dedicated tubing using a mechanical pump. In operation, diluent lines and a vapor waste line from the corresponding containers 42 and 44 may each be connected to a cartridge 16 through a disposable manifold.
The compounding system 10 also includes a specialized vial puck 26 designed to attach to multiple types of vials 18. In operation, the vial puck 26 is placed on top of the vial 18 containing the drug in need of reconstitution. Once the vial puck 26 is in place, the vial 18 is loaded into the star wheel 22 of the compounder 10. Mating features on the vial puck 26 provide proper alignment both while the vial puck 26 is in the star wheel 22 and when the vial puck 26 is later rotated into position so that the compounder 10 can remove it from the star wheel 22 for further processing.
The pump drive mechanism 20 is illustrated in
Next to the rotation housing 46 is the motor mount 54, which is shown alone from various angles in
The compounder system also includes a diluent magazine (not shown) that mounts in a slot 60 located on the side of the pump drive mechanism. The diluent magazine may be a disposable piece configured to receive any number of individual diluent manifolds operable as diluent ports. The diluent manifolds (not shown) may be modular so they can easily and removably connect to each other, the magazine, and/or connect to the pump drive mechanism 20.
The final portion of the pump drive mechanism 20 is the pump head assembly 28. The pump head assembly 28 includes the vial grasping arms 76 (sometimes referred to herein as vial calipers or collectively as a vial grip), the vial lift 78, the pump cartridge grasp 80, the pump piston eccentric drive shaft 82 with arm 222, the valve actuation mechanisms 84, as well as the motors that allow the pump drive mechanism 20 to move forward and back and to rotate in order to mix the pharmaceutical in the vial 18 once the diluent has been added to it. The compounder 10 may also include an input screen 86 such as a touch screen 86 as shown in the figures to provide data entry by the user and notifications, instructions, and feedback to the user.
The operation of the compounder system 10 will now be generally described in the flowchart illustrated at
If desired, in the next step 100, a new carousel 14 may be loaded into a carousel mounting station such as a carousel hub of the compounder system. The carousel 14 may contain any number of disposable cartridges 16 arranged in a generally circular array. In the next step 110, a vial puck 26 is attached to the top of a vial 18 of a powdered or liquid pharmaceutical for reconstitution and the vial 18 is loaded into the star wheel 22 under the carousel 14 in the next step 112. Step 110 may include loading multiple vials 18 into multiple vial puck recesses in star wheel 22. After one or more vials are loaded into the star wheel, the vials are rotated into position to enable and initiate scanning of the vial label of each vial. In one embodiment, the user will be allowed to load vials into the star wheel until all vial slots are occupied with vials before the scanning is initiated. A sensor may be provided that detects the loading of each vial after which a next vial puck recess is rotated into the loading position for the user. Allowing the user to load all vials into the star wheel prior to scanning of the vial labels helps increase the efficiency of compounding. However, in other implementations, scanning of vial labels may be performed after each vial is loaded or after a subset of vials is loaded. Following these setup steps, the next step 114 is for a user to select the appropriate dosage on the input screen.
After the selection on the input screen 86, the compounder 10 begins operation 116. The star wheel 22 rotates the vial into alignment 118 with the vial grasping calipers 76 of the pump head assembly 28. The vial puck 26 includes, for example, gears that interface with gears coupled to a rotational motor that allow the vial 18 to rotate 120 so that a scanner (e.g., a bar code scanner or one or more cameras) can scan 122 a label on the vial 18. The scanner or camera (and associated processing circuitry) may determine a lot number and an expiration date for the vial. The lot number and expiration date may be compared with other information such as the current date and/or recall or other instructions associated with the lot number. Once the vial 18 is scanned and aligned, in the next step 124 the pump drive mechanism 20 moves forward into position to grip the vial 18 with the calipers 76. The forward movement also brings the mounting posts 130 and locking bayonet 128 on the front of the pump head assembly 28 into matching alignment with corresponding openings on a cartridge 16. In the next step 126, the cartridge 16 is locked in place on the pump head assembly 28 with the locking bayonet 128 and the calipers 76 grip 132 the vial puck 26 on the top of the vial 18. The calipers 76 then remove 132 the vial 18 from the star wheel 22 by moving backward, while at the same time pulling 134 the cartridge 16 off of the carousel 14.
In some embodiments, the cartridge 16 includes a backpack that includes a coiled tube. In this embodiment, in step 136 the pump drive mechanism 20 tilts the cartridge 16 toward the user to expose the end of the tube and prompts 138 the user to pull the tube out of the backpack and connect it to the receiving bag 32. In an alternative embodiment, the tube 38 is exposed on the side of the carousel 14 once the cartridge 16 is pulled away from the carousel 14. In another alternative embodiment, the tube 38 is automatically pushed out (e.g., out of the backpack) thus allowing the user to grab onto the connector located at the end of the tube and connect to the receiving container. The system prompts 138 the user to pull the tube out from the carousel 14 and connect it to the input 34 of the IV bag 32. Once the tube 38 is connected, in step 140 the user may notify the compounder 10 to continue the compounding process by interacting with the input screen 86.
At step 142, the vial 18 is pulled up towards the cartridge 16 so that one or more needles such as a coaxial dual lumen needle of the cartridge 16 pierce the top of the vial puck 26 and enter the interior of the vial 18. Although the example of
Diluent is pumped at step 144 into the vial 18 through the cartridge 16 and a first needle in the proper dosage. If necessary, a second or third diluent may be added to the vial 18 via a second or third diluent manifold attached to the cartridge 16. Simultaneously, vapor waste is pumped 144 out of the vial 18, through a second needle, through the cartridge 16 and the vapor waste manifold, and into the vapor waste bag 44. The valve actuators 84 on the pump head assembly 28 open and close the valves of the cartridge 16 in order to change the fluid flow paths as necessary during the process. Once the diluent is pumped into the vial 18, the pump drive mechanism 20 agitates the vial 18 in the next step 146 by rotating the vial lift 78 up to, for example 180 degrees such that the vial 18 is rotated between right-side-up and upside-down positions. The agitation process may be repeated for as long as necessary, depending on the type of pharmaceutical that is being reconstituted. Moreover, different agitation patterns may be used depending on the type of drugs being reconstituted. For example, for some drugs, rather than rotating by 180 degrees, a combination of forward-backward, and left-right motion of the pump head may be performed to generate a swirling agitation of the vial. A plurality of default agitation patterns for specific drugs or other medical fluids may be included in the drug library stored in (and/or accessible by) the compounder control circuitry. Once the agitation step is complete, the pump drive mechanism rotates the vial to an upside down position or other suitable position and holds it in place. In some embodiments, a fluid such as a diluent already in the receiving container 32 may be pumped (e.g., through the cartridge or via a separate path) into a liquid waste container to allow room in the receiving container for receiving the reconstituted medicine.
In the next step 148, the valve actuators 84 reorient the valves of the cartridge and the pumping mechanism of the cartridge 16 is activated to pump 150 the reconstituted drug into the receiving bag 32 through the attached tube. Once the drug is pumped into the receiving bag 32, in the next step 152 the pump drive mechanism 20 clears the tube 38 by either pumping filtered air or more diluent through the tube 38 into the receiving bag 32 after another valve adjustment to ensure that all of the reconstituted drug is provided to the receiving bag 32. In some scenarios, a syringe may be used as a receiving container 32. In scenarios in which a syringe is used as the receiving container 32, following delivery of the reconstituted drug to the syringe, a vacuum may be generated in tube 38 by pump drive mechanism 20 to remove any air or other vapors that may have been pushed into the syringe so that, when the syringe is removed from tube 38, the reconstituted drug is read for delivery to a patient and no air or other unwanted gasses are present in the syringe.
The system then prompts 154 the user to remove the tube 38 from the receiving container 32. The user may then insert the connector (e.g., a Texium® or SmartSite® connector) into its slot in the backpack or carousel and an optical sensor in the pump head may sense the presence of the connector and automatically retract the tube into either the carousel or the backpack. The tube is pulled back into either the carousel 14 or the backpack, depending on which type of system is in use. In the next step 156, the compounder 10 rotates the vial 18 back into alignment with the star wheel 22 and releases it. The used cartridge 16 may also be replaced on the carousel 14. The used cartridge may be released when a sensor in the pump drive determines that the tube has been replaced in the cartridge (e.g., by sensing the presence of a connector such as a Texium® connector at the end of the tube in the backpack of the cartridge through a window of the cartridge). The carousel 14 and/or star wheel 22 then may rotate 158 to a new unused cartridge 16 and/or a new unused vial 18 and the process may be replicated for a new drug. In some circumstances (e.g., multiple reconstitutions of the same drug), a single cartridge may be used more than once with more than one vial.
The cartridges 16 are designed to be disposable, allowing a user to utilize all the cartridges 16 in a given carousel 14 before replacing the carousel 14. After a cartridge 16 is used, the carousel 14 rotates to the next cartridge 16, and the system software updates to note that the cartridge 16 has been used, thus preventing cross-contamination from other reconstituted drugs. Each cartridge 16 is designed to contain all the necessary flow paths, valves, filters and pumps to reconstitute a drug with multiple diluents if necessary, pump the reconstituted drug into the receiving container, pump vapor waste out of the system into a waste container, and perform a final QS step in order to make sure that the proper amount of drug and diluent is present in the receiving container. This complete package is made possible by the specific and unique construction of the cartridge 16, its flow paths, and its valve construction.
An embodiment of a cartridge 16 is illustrated in
The frame 160 of the cartridge 16 also includes locating features that allow each cartridge 16 to be removably mounted to the pump head assembly 28. These features include, for example, three openings 198 to receive mounting posts 130 from the pump head assembly 28, and a keyhole 210 that allows a locking bayonet 128 to be inserted therein and turned to lock the cartridge 16 to the pump head assembly 28 for removal from the carousel 14. An outlet port extension 220 may be present in some embodiments. The piston pump 166 is mounted within a chamber with a rod 194 positioned within a silicone piston boot. Furthermore, the bezel 164 includes openings 228 in which the valves 190 of the sealing membrane are located and be accessed by the valve actuators 84. Moreover, the bezel 164 includes openings 230 that allow a fluid manifold to be connected to the diluent and vapor waste chambers in the cartridge 16. Bezel 164 may also include an opening that facilitates the detection of a connector (e.g., a Texium® or SmartSite® connector) when the user inserts the connector into the provided slot when compounding is complete. In operation, the needles of the fluid manifold enter through the openings 230 in the bezel 164 and pierce the sealing membrane to gain fluidic access to the diluent and vapor waste chambers defined in the cartridge 16 between the sealing membrane and the cartridge frame 160. Further details of various embodiments of the cartridge 16 will be discussed hereinafter.
Referring to
As shown in
A fluidics module 2504 may be provided that includes several container mounts 2506. Container mounts 2506 may be used for hanging diluent and waste containers and may include sensor circuitry for sensing when a container has been hung and/or sensing the weight of the container. In this way, the operation of compounder 10 can be monitored to ensure that the correct diluent contain has been scanned and hung in the correct location and that the waste is being provided in an expected amount to the appropriate waste container.
As shown in
Star wheel 22 (sometimes referred to herein as a vial tray) is shown in
Similarly, a lid may be provided for carousel 14 to prevent contamination of cartridges 16 loaded therein, and to prevent injury to an operator due to rotation of the carousel. A lid sensor (not shown) may also be provided to detect the position (e.g., an open position or a closed position) of the lid. Rotation of carousel 14 may be prevented if the lid is not detected in a closed position by the lid sensor.
Each vial 18 that is inserted may be detected using a sensor such as sensor 2652 (e.g., a load sensor or an optical sensor) when placed in a vial puck recess 2604. When detected, the inserted vial may be moved to a scanning position by rotating vial tray 22 and then the inserted vial 18 may be rotated within its position in vial tray 22 using a vial rotation motor 2602 to allow the vial label to be scanned.
A reverse perspective view of compounder 10 is shown in
As shown in
An exploded view of various components of compounder 10 is shown in
A vial tray and carousel drive assembly 2800 is also shown in which actuating door 2608 and a carousel hub 2814 can be seen. Carousel 14 may be placed onto carousel hub and rotated by vial tray and carousel drive assembly 2800 operating to rotate hub 2814 to move a selected cartridge in the carousel into position to be retrieved and operated by pump drive 20. Vial tray and carousel drive assembly 2800 may include separate drive assemblies for the vial tray and for the carousel such that vial tray 22 and carousel 14 may be rotated independently.
Before a vial 18 is loaded into the compounder 10, a mating system in the form of a vial puck 26 may be attached to the vial in order to provide various structures with which the compounder can secure, move, and identify each vial 18.
The vial puck 26 accomplishes multiple objectives. First, it can be attached to a vial in advance of loading the vial 18 into the vial tray 22 of the compounder 10 and maintain a seal so that the drug in need of reconstitution maintains its sterility and effectiveness. Next, the design of the vial puck 26 is such that it can be attached to multiple sized vials 18. In this way, vials of differing size can be placed into uniform vial slots in the vial tray. Another feature of the vial puck 26 is that it provides a geared surface to interact with a mechanism (e.g., one or more gears 2704 coupled to motor 2602, see
Vial puck 26 may be formed from, for example, an injection molded plastic and may have a generally circular shape to match the shape of the calipers 76 of the compounder 10 and of a corresponding vial slot in vial tray 22. An annular flange 422 surrounds the main body 412. The first gear 424 is made up of teeth 428 and disposed on the top surface 430 of the annular flange 422. Flange 422 may be sized and shaped such that the flange is supported by a corresponding circular surface of the vial tray when installed in the compounder. The flange may allow the vial puck to rest in the vial slot while being rotated, for example, for reading of a label on the vial. The teeth 428 are illustrated as triangular, but they can take any shape that can provide a gripping surface for the calipers 76, the star wheel 22 and/or the puck rotation mechanism (e.g., one or more gears 2704 coupled to motor 2602). The second gear 426 is disposed on the bottom surface 432 of the annular flange 422. The second gear 426 is made up of teeth 434 that are illustrated as triangular, but they can take any shape that can provide a gripping surface for the calipers 76, the star wheel 22 and/or the puck rotation mechanism.
The top surface 400 of the vial puck 26 includes an extension extending upwards from the top surface 400. The extension includes an opening 414 defined therein. The bottom surface 410 of the vial puck 26 includes at least one mating feature, illustrated in, for example,
A specialized first silicone tip 416 may be disposed in the opening 414 and substantially matches the shape of the opening 414 in order to create a vapor and liquid tight seal. The first silicone tip 416 creates a vapor and liquid tight seal between the first silicone tip 416 and the vial cap 436 due to a flange 452 that extends annularly from the main body 440 of the first silicone tip 416. When the vial puck 26 is attached to the vial cap 436, the flange is compressed between the underside 442 of the opening 414 and the top of the vial cap 436 when the attachment flanges 420 are snapped into place on the bottom surface 438 of the vial cap 436. This seal prevents any leakage during the filling and agitation processes of the compounder. The first silicone tip 416 has a passageway 446 defined therein to allow passage of the needles 316, 318 of a cartridge to enter the vial 18 after piercing the top surface 448 of the first silicone tip 416. The top surface 448 of the first silicone tip 416 is substantially flat and of a thickness to easily allow the needles 316, 318 to pierce it, but also to contract back to seal the vial 18 when the needles 316, 318 are removed.
Referring to
The second silicone tip 418 substantially matches the shape of the first silicone tip 416 that is attached to the vial puck 26. The function of the second silicone tip 418 is twofold. First, it acts as a safety mechanism to cover the end 444 of the needles 316, 318 before they are extended into the vial 18. Second, when the top surface 450 of the second silicone tip 418 is pressed against the top surface 448 of the first silicone tip 416, it creates a seal that allows the needles 316, 318 to pierce both the first 416 and the second 418 silicone tips without leakage of vapor or liquid. Furthermore, when the needle is removed from the vial 18, the two silicone tips 416, 418 have a squeegee or wiping effect on the needles 316, 318, which prevents dripping when the needles 316, 318 are removed. Second silicone tip 416 may be disposed in a needle housing of cartridge 16 within which the end of the needles is disposed when no vial puck is pressed against the needle housing to prevent injury to an operator handling the cartridge.
In operation, the vial puck 26 is attached to the vial cap 436 before insertion into the vial tray 22 of the compounder 10. The vial 18 is shown in the vial tray 22 in, for example,
Turning now to
In order to control the flow of gasses such as vapor waste and sterile air within the cartridge, cartridge 16 may be provided with gas flow control structures such as an air filter 3006 and one or more check valve discs 3004 that mount to frame 160 with a check valve cover 3002. Air filter 3006, check valve discs 3004, and check valve cover 3002 may cooperate to allow vapor waste to flow in only one direction from the vial to the waste port and to allow sterile (filtered) air to flow in only one direction from a vent adjacent the air filter to the vial.
As shown in
An opening 3204 is also shown in which a connector such as a Texium® connector can be stored, the connector coupled to tubing that runs from an outlet port of the cartridge through tube management structures of the backpack and to a receiving container to provide reconstituted drug from the vial to the receiving container. One or more protrusions 3206 may extend through a top surface of the backpack and may be retractable by deformation of structure 3200 to withdraw the protrusion 3206 from a recess in carousel 14 to release assembly 3203 from the carousel.
In the example of
When compressed together, seals 3008 and 3404 create a dry connection between the cartridge and the vial. The needle assembly can extend through seals 3008 and 3404 to form fluid and/or vapor paths between the cartridge and the vial for reconstitution and compounding operations. Seals 3008 and/or 3404 may be compressed (e.g., compressed by 10% radially) within their respective housings to cause a wiping effect on the needle assembly so that when the vial puck and vial are removed (e.g., lowered), the needle assembly is wiped by seals 3008 and 3404 and no liquid is left on the needle assembly or the outer surfaces of the seals.
Dual lumen needles 316 and 318 may be respectively provided with openings 8400 and 8402 that provide fluid access to central bores of the needles. Needle 316 may, for example, be a 24 gauge needle held in cartridge frame 160 by a high density polyethylene (HDPE) overmold 317A, the needle having an opening 8400 for venting the drug vial. Opening 8400 may be formed using a slot cut as shown to reduce coring of the sealing membranes as the needle is inserted and retracted. Needle 318 may, for example, be an 18 gauge needle held in cartridge frame 160 by a high density polyethylene (HDPE) overmold 317B, the needle having one or more openings 8402 for fluid flow into and/or out of the vial. Openings 8402 may include two drilled holes configured to reduce coring and to allow up to, for example, 60 mL/min of fluid flow.
In this way, during reconstitution operations, diluent may be provided into the vial via openings 8402 of needle 318 and vapor waste may be simultaneously extracted from the vial via opening 8400 in needle 316. During compounding operations, a reconstituted drug may be pulled from the vial via openings 8402 of needle 318 and sterile air may be provided into the vial via opening 8400 of needle 316.
A recess 4404 may be provided in cylindrical central portion 4400 into which the annular housing member 8404 of cartridge 16 may be extended so that sealing member 3008 of needle housing 168 may be compressed against sealing member 3404 disposed within central portion 4400. Recess 4404 may be provided with a geometry that guides the needle housing to properly position the needle assembly over sealing member 3404. Vial calipers 76 may contact a lower surface 4412 of protrusions 4402 to grasp the vial puck and vial for lifting of the vial out of the vial tray and into position for compounding operations. Calipers 76 may engage lower surface 4412 and upper surface 4413 of extensions 4402 in addition to central portion 4400 between extensions 4402 and gear 4405 to allow for stability during vial agitation including, for example, complete inversion of vial 18.
Gear 4405 may be configured to seat within one of vial puck recesses 2604 of vial tray 22. For example, gear 4405 may have a lower surface 4414 configured to rest against a corresponding surface of vial tray 22 in the vial puck recess 2604 when the vial puck and vial are inserted into the compounder system 10. Gear teeth 4407 may be arranged to engage with corresponding gear teeth on a corresponding gear 2704 coupled to a motor 2602 for rotating vial 18 for label imaging operations or other positioning operations for vial 18. Although the gear teeth 4407 are shown on an outer surface of puck 26, in another embodiment, the gear teeth could be alternatively formed within an interior recess in gear 4405 so that a corresponding gear could be lowered into the recess to engage the teeth for rotating the vial.
When vial 18 is rotated using gear 4405, the bottom surface 4414 of gear 4405 may remain in sliding contact with the surface of vial tray 22 to support and position the vial while the vial is rotated. Bottom extension 4408 may be shaped and configured to accommodate a vial of a particular size. Vial pucks 26 may be provided with a commonly sized set of protrusions 4402 and a commonly sized gear 4405 and bottom extensions 4408 of various sizes so that vials of various sizes can be placed into and manipulated by compounder system 10 in a uniform manner. As examples, vial pucks 26 may be provided that can attach to vials with widths of 13 mm, 20 mm, 28 mm, 32 mm, or sizes having volumes up to, for example, 100 mL.
Flanges 4410 may be provided within a vial recess 4411 in bottom extension 4408 that provide a one-way snap system for engaging vial 18 within bottom extension 4408 that allows for “easy” (e.g., below 10 lbs of force) vial insertion and relatively difficult removal (e.g., with above 30 lbs of force). When a vial is place within lower extension 4408, flanges 1140 may grip the underside of a vial cap 436 to hold the vial puck 26 in place on the vial 18. The vial attachment flanges 4408 are capable of biasing outwards in order to slide over the vial cap 436 and snap into place on the bottom surface of the vial cap 436. Sealing member 3404 may be an integrated dry disconnect membrane formed from, for example polyisoprene or similar materials that provide dry disconnection during use.
The top surface 4600 of the vial puck in recess 4404 may have a smooth geometry to facilitate easy swapping by an operator for simple disinfection of the surface. In one embodiment, lower extension 4408 and central portion 4400 may be ultrasonically welded together to sandwich membrane 3404 in place acting as hermetic seal. Gear 4405 and extensions 4402 may be integrally formed with central portion 4400 to form a top portion of vial puck 26. As shown in
Turning now to
As shown in
It should be appreciated that the examples described above in which the sealing member (e.g., sealing member 3404) of vial puck 26 is formed by a single sealing member is merely illustrative. In some embodiments, in order to provide an improved drip-free seal, the seal of each vial puck 26 may be formed by a plurality of sealing members. In one example, three sealing members may be provided to form a seal for vial puck 26.
As shown in
Outer sealing member 5200 may include a recess 5206 in a surface adjacent to intermediate sealing member 5202. Intermediate sealing member 5202 may also include a recess 5208 on an interior surface adjacent to inner sealing member 5204. Providing multiple sealing members such as the three sealing members (i.e., member 5200, member 5202, member 5204) may provide an enhanced wiping of needle 170 to provide an improved dry disconnect in comparison with implementations with a single sealing member. However, this is merely illustrative. In various embodiments, one, two, three, or more than three sealing members for each vial puck may be provided. Similarly, interstitial spaces formed from recesses 5206 and 5208 may further increase the efficiency of the wiping of needle 170, however, in various embodiments, sealing members may be provided with or without recesses 5208 and/or 5208.
The subject technology is illustrated, for example, according to various aspects described above. Various examples of these aspects are described as numbered concepts or clauses (1, 2, 3, etc.) for convenience. These concepts or clauses are provided as examples and do not limit the subject technology. It is noted that any of the dependent concepts may be combined in any combination with each other or one or more other independent concepts, to form an independent concept. The following is a non-limiting summary of some concepts presented herein:
Concept 1. A vial puck, comprising: a cylindrical central portion; a plurality of substantially perpendicular extensions that extend from a top of the cylindrical central portion; a substantially circular gear extending from the cylindrical central portion; a bottom extension extending from a bottom of the cylindrical central portion, the bottom extension having a vial recess configured to receive a vial containing a drug; and a sealing member disposed in the cylindrical central portion, wherein the sealing member is configured to provide a drip free seal for a needle assembly that passes through the central cylindrical portion, the circular gear, and the sealing member into the vial.
Concept 2. The vial puck of Concept 1 or any other Concept, further comprising a plurality of flanges on an interior surface of the vial recess that secure the vial in the vial recess.
Concept 3. The vial puck of Concept 2 or any other Concept, further comprising a cylindrical protrusion within the vial recess configured to press against a vial septum of the vial
Concept 4. The vial puck of Concept 3 or any other Concept, further comprising an additional cylindrical protrusion within the vial recess configured to stabilize the vial
Concept 5. The vial puck of Concept 1 or any other Concept, further comprising a cylindrical protrusion on the bottom extension that presses against the sealing member to form a seal
Concept 6. The vial puck of Concept 1 or any other Concept, wherein the cylindrical central portion compresses the sealing member radially
Concept 7. The vial puck of Concept 6, wherein the cylindrical central portion compresses the sealing member radially by approximately 10 percent
Concept 8. The vial puck of Concept 1 or any other Concept, wherein the sealing member is disposed in a recess in the cylindrical central portion and wherein the recess in the cylindrical central portion is configured to guide the needle assembly to the sealing member
Concept 9. The vial puck of Concept 8 or any other Concept, further comprising a first ramped surface on the gear and a second ramped surface on at least one of the perpendicular extensions, the first and second ramped surfaces configured to guide a vial grip of a compounder system to grip the cylindrical central portion and the perpendicular extensions
Concept 10. A method, comprising: providing a vial puck on a vial containing a drug; providing the vial puck in a vial puck recess in a vial tray of a compounder system; rotating the vial tray to move the vial and vial puck to a first position; grasping the vial puck with vial calipers of the compounder system; lifting the vial puck and vial out of the vial tray with a vial lift coupled to the vial calipers; and lifting the vial puck and vial to compress a needle housing of the compounder system to expose a needle assembly and to extend the needle assembly through sealing members of the vial puck and the needle housing into the vial
Concept 11. The method of Concept 10 or any other Concept, further comprising, before lifting the vial puck and vial out of the vial tray: rotating the vial tray to move the vial and vial puck to a second position; engaging a gear of the vial puck with a gear of the compounder system; and rotating the vial using the engaged gears of the vial puck and the compounder system
Concept 12. The method of Concept 11 or any other Concept, further comprising: providing a diluent into the vial via the needle assembly; while grasping the vial puck with the vial calipers, agitating the vial; and extracting a reconstituted drug from the vial via the needle assembly
Concept 13. The method of Concept 12 or any other Concept, further comprising, lowering the vial puck and vial, with the vial lift and vial calipers, to withdraw the needle assembly from the vial and from the sealing members
Concept 14. The method of Concept 13 or any other Concept, wherein the lowering comprises wiping the needle assembly with the sealing members
Concept 15. The method of Concept 14 or any other Concept, further comprising: replacing the vial and vial puck into the vial puck recess in the vial tray with the vial lift and vial calipers; rotating the vial tray; and grasping and lifting an additional vial puck and attached vial from the vial tray with the vial lift and vial calipers
Concept 16. The method of Concept 10 or any other Concept, wherein providing the vial puck on the vial containing the drug comprises inserting the vial into a vial recess in a lower extension of the vial puck and securing the vial within the vial recess using a plurality of flanges within the vial recess
Concept 17. The method of Concept 16 or any other Concept, wherein providing the vial puck on the vial containing the drug further comprises pressing at least one cylindrical protrusion in the vial recess onto a vial septum of the vial.
Concept 18. A compounder system, comprising: vial calipers coupled to a vial lift; a cartridge comprising a needle assembly and at least one controllable fluid pathway fluidly coupled to the needle assembly; a vial tray having at least one vial puck recess; and a vial puck, comprising: a lower portion configured to receive and secure a vial containing a drug; and an upper portion comprising: a first portion configured to seat in the at least one vial puck recess; a second portion configured to be grasped by the vial calipers; and a sealing member configured to receive the needle assembly therethrough, wherein the vial lift is configured to move the vial that is grasped by the vial calipers toward the cartridge such that the needle assembly is provided through the sealing member to fluidly couple the at least one controllable fluid pathway to the vial via the needle assembly.
Concept 19. The compounder system of Concept 18 or any other Concept, wherein the first portion comprises a gear and wherein the compounder system further comprises an additional gear configured to (a) engage the gear of the first portion and (b) rotate the vial while the vial puck is seated in the at least one vial puck recess.
Concept 20. The compounder system of Concept 18 or any other Concept, further comprising a pump head assembly configured to operate a piston and a valve of the cartridge to pump a fluid through the at least one controllable fluid pathway to or from the vial via the needle assembly.
The present disclosure is provided to enable any person skilled in the art to practice the various aspects described herein. The disclosure provides various examples of the subject technology, and the subject technology is not limited to these examples. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects.
One or more aspects or features of the subject matter described herein may be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. For example, infusion pump systems disclosed herein may include an electronic system with one or more processors embedded therein or coupled thereto. Such an electronic system may include various types of computer readable media and interfaces for various other types of computer readable media. Electronic system may include a bus, processing unit(s), a system memory, a read-only memory (ROM), a permanent storage device, an input device interface, an output device interface, and a network interface, for example.
Bus may collectively represent all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of electronic system of an infusion pump system. For instance, bus may communicatively connect processing unit(s) with ROM, system memory, and permanent storage device. From these various memory units, processing unit(s) may retrieve instructions to execute and data to process in order to execute various processes. The processing unit(s) can be a single processor or a multi-core processor in different implementations.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. Headings and subheadings, if any, are used for convenience only and do not limit the invention.
The word “exemplary” is used herein to mean “serving as an example or illustration.” Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. In one aspect, various alternative configurations and operations described herein may be considered to be at least equivalent.
As used herein, the phrase “at least one of” preceding a series of items, with the term “or” to separate any of the items, modifies the list as a whole, rather than each item of the list. The phrase “at least one of” does not require selection of at least one item; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrase “at least one of A, B, or C” may refer to: only A, only B, or only C; or any combination of A, B, and C.
A phrase such as an “aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. An aspect may provide one or more examples. A phrase such as an aspect may refer to one or more aspects and vice versa. A phrase such as an “embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology. A disclosure relating to an embodiment may apply to all embodiments, or one or more embodiments. An embodiment may provide one or more examples. A phrase such an embodiment may refer to one or more embodiments and vice versa. A phrase such as a “configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration may apply to all configurations, or one or more configurations. A configuration may provide one or more examples. A phrase such a configuration may refer to one or more configurations and vice versa.
In one aspect, unless otherwise stated, all measurements, values, ratings, positions, magnitudes, sizes, and other specifications that are set forth in this specification, including in the claims that follow, are approximate, not exact. In one aspect, they are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain.
It is understood that the specific order or hierarchy of steps, or operations in the processes or methods disclosed are illustrations of exemplary approaches. Based upon implementation preferences or scenarios, it is understood that the specific order or hierarchy of steps, operations or processes may be rearranged. Some of the steps, operations or processes may be performed simultaneously. In some implementation preferences or scenarios, certain operations may or may not be performed. Some or all of the steps, operations, or processes may be performed automatically, without the intervention of a user. The accompanying method claims present elements of the various steps, operations or processes in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.” Furthermore, to the extent that the term “include,” “have,” or the like is used, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
The Title, Background, Summary, Brief Description of the Drawings and Abstract of the disclosure are hereby incorporated into the disclosure and are provided as illustrative examples of the disclosure, not as restrictive descriptions. It is submitted with the understanding that they will not be used to limit the scope or meaning of the claims. In addition, in the Detailed Description, it can be seen that the description provides illustrative examples and the various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed subject matter requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed configuration or operation. The following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
The claims are not intended to be limited to the aspects described herein, but is to be accorded the full scope consistent with the language claims and to encompass all legal equivalents. Notwithstanding, none of the claims are intended to embrace subject matter that fails to satisfy the requirement of 35 U.S.C. § 101, 102, or 103, nor should they be interpreted in such a way.
This application is a divisional application of U.S. patent application Ser. No. 15/780,614, entitled “VIAL PUCK SYSTEM FOR AUTOMATIC DRUG COMPOUNDER,” filed on May 31, 2018, which issued on Oct. 20, 2020, as U.S. Pat. No. 10,806,673, which is the National Stage Entry under 35 U.S.C. 371 of International Patent Application PCT/US2016/062919, entitled “VIAL PUCK SYSTEM FOR AUTOMATIC DRUG COMPOUNDER,” filed on Nov. 18, 2016, which claims the benefit of U.S. Provisional Application No. 62/263,565, entitled “VIAL PUCK SYSTEM FOR AUTOMATIC DRUG COMPOUNDER,” filed on Dec. 4, 2015, the entirety of each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4233973 | Shukla | Nov 1980 | A |
4614515 | Tripp | Sep 1986 | A |
20120241042 | Strangis | Sep 2012 | A1 |
20130255831 | Shibasaki | Oct 2013 | A1 |
20150257974 | Demers | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
103998086 | Aug 2014 | CN |
204636988 | Sep 2015 | CN |
0155560 | Sep 1985 | EP |
S60210261 | Oct 1985 | JP |
2013244371 | Dec 2013 | JP |
2015167645 | Sep 2015 | JP |
2015528777 | Oct 2015 | JP |
1020130116871 | Oct 2013 | KR |
WO-2012109032 | Aug 2012 | WO |
WO-2015002011 | Feb 2017 | WO |
Entry |
---|
Chinese Office Action for Application No. 201680079189.5, dated Jun. 1, 2020, 27 pages. |
Chinese Office Action for Application No. 201680079189.5, dated Feb. 1, 2021, 6 pages including translation. |
Japanese Office Action for Application No. 2018-529058, dated Dec. 25, 2020, 9 pages including translation. |
Israel Office Action for Application No. 259554, dated Mar. 11, 2021, 5 pages including machine translation. |
Number | Date | Country | |
---|---|---|---|
20210015709 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62263565 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15780614 | US | |
Child | 17062226 | US |