This application claims the benefit of priority to Japanese Patent Application No. 2016-035598 filed on Feb. 26, 2016. The entire contents of this application are hereby incorporated herein by reference.
The present invention relates to a vibration motor.
Brushless vibration motors in the shape of a thin coin have often been used as silent notification devices in mobile communication apparatuses or the like, or for other purposes. In a vibration motor illustrated in FIG. 12 of JP-A 2004-357404, for example, a shaft support portion 11a is arranged to project upward from a central portion of a yoke bracket 111 to assume the shape of a burr, and an oil-impregnated sintered bearing 7 is housed in the shaft support portion 11a. An eccentric rotor R4 is rotatably attached to the oil-impregnated sintered bearing 7 through a shaft 22.
In the vibration motor described in JP-A 2004-357404, only a lower end portion of the shaft 22 is supported by the oil-impregnated sintered bearing 7, and an upper end portion of the shaft 22 is not supported. Therefore, a high bearing rigidity cannot be achieved, making it difficult to improve resistance against vibration and shock.
A vibration motor according to a preferred embodiment of the present invention includes a base portion arranged to extend perpendicularly to a central axis extending in a vertical direction; a cover portion arranged above the base portion, and fixed to an outer edge portion of the base portion; a lower bearing portion fixed to the base portion; an upper bearing portion fixed to the cover portion; a shaft arranged to extend along the central axis, and having a lower end portion and an upper end portion rotatably supported by the lower bearing portion and the upper bearing portion, respectively; a rotor holder attached to the shaft; a magnet portion including a plurality of magnetic poles, and attached to the rotor holder; an eccentric weight attached to the rotor holder; a circuit board arranged above the base portion; and a coil portion attached onto the circuit board, and arranged vertically opposite to the magnet portion with a space therebetween.
The above preferred embodiment of the present invention is able to achieve increased bearing rigidity.
The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
It is assumed herein that a vertical direction is defined as a direction in which a central axis J1 of a vibration motor 1 extends, and that an upper side and a lower side along the central axis J1 in
The vibration motor 1 is a brushless motor in the shape of a coin. The vibration motor 1 is used as, for example, a silent notification device in a mobile communication apparatus, such as a cellular phone. In other words, the vibration motor 1 is included in the mobile communication apparatus, for example.
The vibration motor 1 includes a cover portion 11 and the base portion 12. The cover portion 11 is substantially in the shape of a covered cylinder. The cover portion 11 includes a cover top portion 111 and a cover side wall portion 112. The cover top portion 111 is a top portion substantially in the shape of an annular plate and centered on the central axis J1. The cover side wall portion 112 is a substantially cylindrical side wall portion centered on the central axis J1. The cover side wall portion 112 is arranged to extend downward from an outer edge portion of the cover top portion 111. The base portion 12 is substantially in the shape of a plate. The base portion 12 is arranged to extend substantially perpendicularly to the central axis J1, which extends in the vertical direction.
The cover portion 11 is arranged above the base portion 12. The cover portion 11 is defined by a member separate from the base portion 12. The cover portion 11 is fixed to an outer edge portion of the base portion 12. The base portion 12 is arranged to close a lower opening of the cover portion 11. For example, an inside surface of a lower end portion of the cover portion 11 is arranged to be in contact with an outside surface of the base portion 12. The cover portion 11 is fixed to the base portion 12 through, for example, crimping. Note that the cover portion 11 and the base portion 12 may alternatively be fixed to each other through, for example, welding. Each of the cover portion 11 and the base portion 12 is made of a metal. The cover portion 11 is made of, for example, a magnetic material. The thickness of the base portion 12 is, for example, 0.8 mm or less. Note that the cover portion 11 and the base portion 12 may alternatively be defined by a single continuous monolithic member.
The vibration motor 1 further includes a circuit board 13, a coil portion 14, a shaft 15, the rotor holder 16, a magnet portion 17, the eccentric weight 18, an upper bearing portion 21, a lower bearing portion 22, a bearing housing portion 23, and a spacer 24. Each of the base portion 12, the circuit board 13, the coil portion 14, the upper bearing portion 21, the lower bearing portion 22, and the bearing housing portion 23 is included in the stationary portion. Each of the shaft 15, the rotor holder 16, the magnet portion 17, the eccentric weight 18, and the spacer 24 is included in the rotating portion. That is, the vibration motor 1 is a vibration motor of a rotating-shaft type. All the components of the stationary portion except for the base portion 12 and all the components of the rotating portion are covered with the cover portion 11 on the upper and lateral sides.
The base portion 12 includes a first plate 121 and a second plate 122. Each of the first and second plates 121 and 122 is substantially in the shape of a plate, and is arranged to extend substantially perpendicularly to the central axis J1. The second plate 122 is arranged on the first plate 121, and is fixed to the first plate 121. One of the first and second plates 121 and 122 is made of a magnetic metal, and the other one of the first and second plates 121 and 122 is made of a nonmagnetic metal. Hereinafter, it is assumed that the first plate 121 is made of a nonmagnetic metal, while the second plate 122 is made of a magnetic metal. The first plate 121 is made of, for example, an austenitic stainless steel. The second plate 122 is made of, for example, iron.
The first plate 121 includes a first plate body 311 and a first plate side portion 312. The first plate body 311 and the first plate side portion 312 are defined by a single continuous monolithic member. The first plate body 311 is a substantially disk-shaped portion centered on the central axis J1. The first plate body 311 is arranged under the cover portion 11. The first plate side portion 312 is a portion substantially in the shape of a rectangular plate in a plan view. The first plate side portion 312 is arranged to extend from the first plate body 311 substantially perpendicularly to the central axis J1 to project radially outward from the cover portion 11. An upper surface of the first plate side portion 312 is arranged at substantially the same level as that of an upper surface of the first plate body 311.
A base central through hole, which passes through the first plate 121 in the vertical direction, is defined in a central portion of the first plate body 311. The base central through hole is substantially in the shape of a circle with the central axis J1 as a center in a plan view. A base projecting portion 317, which is arranged to project upward from a circumference of the base central through hole, is defined in an upper surface of the first plate body 311. The base projecting portion 317 is, for example, a substantially cylindrical portion centered on the central axis J1. An inner circumferential surface of the base projecting portion 317 is a substantially cylindrical surface centered on the central axis J1.
An annular recessed portion 313 (hereinafter referred to as a “first plate recessed portion 313”) recessed downward is defined in the upper surface of the first plate body 311. In other words, the first plate 121 includes the first plate recessed portion 313 in an upper surface thereof. The first plate recessed portion 313 is defined by, for example, subjecting a substantially plate-shaped material which is a workpiece from which to manufacture the first plate 121 to press working. Defining the first plate recessed portion 313 by the press working leads to an increase in rigidity of the first plate 121 without an increase in weight of the first plate 121. This in turn leads to an increase in rigidity of the base portion 12 without an increase in weight of the base portion 12. An outer circumferential edge of the first plate recessed portion 313 is arranged in the vicinity of an outer edge portion of the first plate body 311.
A projecting outer edge portion 314, which is arranged to project upward relative to a bottom surface of the first plate recessed portion 313, is defined in the outer edge portion of the first plate body 311. In other words, the first plate 121 includes the projecting outer edge portion 314 arranged to project upward in an outer edge portion thereof. An upper surface of the projecting outer edge portion 314 is arranged at a level higher than that of an upper surface of the second plate 122. The projecting outer edge portion 314 is arranged to extend along an outer edge of the first plate body 311. In the preferred embodiment illustrated in
The second plate 122 is arranged to have substantially the same shape and size as those of the first plate recessed portion 313. The second plate 122 is arranged in the first plate recessed portion 313, and is fixed to the first plate 121. The second plate 122 may be only substantially in the same shape and size as those of the first plate recessed portion 313. For example, the second plate 122 may be slightly smaller than the first plate recessed portion 313, and a slight gap may be defined between a side surface of the second plate 122 fixed in the first plate recessed portion 313 and a side surface of the first plate recessed portion 313.
The upper surface of the second plate 122 is arranged at substantially the same level as that of a portion of the upper surface of the first plate 121 which lies adjacent to and along the first plate recessed portion 313. Specifically, the upper surface of the second plate 122 is arranged at substantially the same level as that of a portion of the upper surface of the first plate 121 which is radially inward of the first plate recessed portion 313 and radially outward of the base projecting portion 317. In addition, the upper surface of the second plate 122 is arranged at substantially the same level as that of the upper surface of the first plate side portion 312.
The second plate 122 includes a second plate support portion 321 and a plurality of second plate projecting portions 322. The second plate support portion 321 is a substantially annular portion centered on the central axis J1. Each of the second plate projecting portions 322 is arranged to project radially inward from the second plate support portion 321. The second plate support portion 321 and the second plate projecting portions 322 are defined by a single continuous monolithic member.
Each of the second plate projecting portions 322 is arranged to have the same shape. The circumferential width of each of the second plate projecting portions 322 is arranged to decrease in the radially inward direction. The second plate projecting portions 322 are arranged at substantially equal angular intervals in the circumferential direction. In the preferred embodiment illustrated in
The second plate projecting portions 322 are arranged at a position vertically opposed to the magnet portion 17, which will be described below. At this position, the second plate projecting portions 322, each of which is made of the magnetic metal, and portions of the first plate 121, which is made of the nonmagnetic metal, are arranged alternately at substantially equal angular intervals in the circumferential direction. The second plate support portion 321 is arranged radially outward of the position vertically opposed to the magnet portion 17.
The second plate support portion 321 includes through holes 323 each of which passes through the second plate 122 in the vertical direction. In other words, the second plate 122 includes the through holes 323, each of which is arranged radially outward of the magnet portion 17. The first plate 121 includes projection portions 316 each of which is arranged to project upward from the bottom surface of the first plate recessed portion 313. Each through hole 323 is, for example, substantially circular in a plan view. Each projection portion 316 is, for example, substantially columnar. Each projection portion 316 of the first plate 121 is fitted in a separate one of the through holes 323 of the second plate 122. In the preferred embodiment illustrated in
In the base portion 12, for example, each projection portion 316 of the first plate 121 and a portion of the second plate 122 which surrounds the corresponding through hole 323 are welded together to fix the second plate 122 to the first plate 121. In this case, a welding mark is defined at a boundary between each projection portion 316 of the first plate 121 and the corresponding through hole 323 of the second plate 122. Note that the first and second plates 121 and 122 may alternatively be welded together at a position other than the projection portions 316. Also note that the fixing of the second plate 122 to the first plate 121 may not necessarily be achieved by welding. For example, the second plate 122 may alternatively be fixed to the first plate 121 through an adhesive. Note that the concept of the term “adhesive” as used here includes a double-sided tape, glue, and so on. The same holds true in the following description as well.
The second plate 122 further includes extension portions 324. In the preferred embodiment illustrated in
When the base portion 12 is manufactured, the second workpiece 922 is first placed upon the first workpiece 921. At this time, each second plate 122 is arranged in the first plate recessed portion 313 of the corresponding first plate 121. The projection portions 316 of each first plate 121 are fitted into the through holes 323 of the corresponding second plate 122. The extension portions 324 of each second plate 122 are arranged in the cut portions 315 of the corresponding first plate 121. The second joining portions 924 are arranged on the first joining portions 923.
Next, each projection portion 316 of each first plate 121 and the portion of the corresponding second plate 122 which surrounds the corresponding through hole 323 are welded together to fix each second plate 122 to the corresponding first plate 121. Then, the first and second joining portions 923 and 924 are cut at the position of an outer edge of each first plate 121 and are removed, so that a plurality of base portions 12 are completed. The first and second joining portions 923 and 924 are cut at the position of a boundary between each extension portion 324 and the corresponding second joining portion 924 in the second workpiece 922.
Regarding the above-described method for manufacturing the base portion 12, it may be understood that both end portions of each second joining portion 924 are left as the extension portions 324 at the outer edge portions of the corresponding second plates 122. The plurality of second plates 122 included in the second workpiece 922 can be easily positioned with respect to the plurality of first plates 121 included in the first workpiece 921 by arranging both end portions of each second joining portion 924 of the second workpiece 922 in the corresponding cut portions 315 of the first workpiece 921. As a result, manufacture of the base portions 12 of a plurality of vibration motors 1 can be simplified.
Referring to
The first, second, and third terminals 131, 132, and 133 are arranged in a straight line on a portion of the circuit board 13 which lies on the first plate side portion 312. In the preferred embodiment illustrated in
A capacitor 137 is electrically connected to a first wiring pattern 134, which is a wiring pattern extending from the first terminal 131. The capacitor 137 is also electrically connected to a second wiring pattern 135, which is a wiring pattern extending from the second terminal 132. That is, the circuit board 13 includes the capacitor 137 electrically connected between the first and second terminals 131 and 132. Preferably, the circuit board 13 further includes a ferrite bead or beads 138 arranged on at least one of the first and second wiring patterns 134 and 135. In the preferred embodiment illustrated in
The coil portion 14 is attached onto the circuit board 13. In the preferred embodiment illustrated in
The coil portion 14 is electrically connected to the circuit board 13. Specifically, as illustrated in
The lower bearing portion 22 is tubular, and is centered on the central axis J1. The lower bearing portion 22 is, for example, substantially cylindrical, and is centered on the central axis J1. In this preferred embodiment, the lower bearing portion 22 is a plain bearing. Note that the lower bearing portion 22 may alternatively be a bearing of another type. The lower bearing portion 22 is made of, for example, a sintered metal. Preferably, the lower bearing portion 22 is impregnated with a lubricating oil. Note that the lower bearing portion 22 may alternatively be made of another material. The lower bearing portion 22 is fixed to the base portion 12. Specifically, the lower bearing portion 22 is arranged radially inside of the base projecting portion 317, and is fixed to the base projecting portion 317. The lower bearing portion 22 is fixed to the base projecting portion 317 through, for example, an adhesive.
The bearing housing portion 23 is in the shape of a covered tube, and is centered on the central axis J1. In other words, the bearing housing portion 23 includes a recessed portion that opens downwardly. The bearing housing portion 23 is, for example, substantially in the shape of a covered cylinder, and is centered on the central axis J1. The bearing housing portion 23 is defined by a member separate from both the base portion 12 and the cover portion 11. The bearing housing portion 23 is fixed to a central portion of the cover top portion 111, which is the top portion of the cover portion 11. For example, an upper end portion of the bearing housing portion 23 is press fitted from below into a through hole defined in the central portion of the top portion of the cover portion 11, so that the bearing housing portion 23 is fixed to the cover portion 11.
The upper bearing portion 21 is tubular, and is centered on the central axis J1. The upper bearing portion 21 is, for example, substantially cylindrical, and is centered on the central axis J1. The upper bearing portion 21 is a plain bearing. Note that the upper bearing portion 21 may alternatively be a bearing of another type. The upper bearing portion 21 is made of, for example, a sintered metal. Preferably, the upper bearing portion 21 is impregnated with a lubricating oil. Note that the upper bearing portion 21 may alternatively be made of another material. In the preferred embodiment illustrated in
The shaft 15 is a substantially columnar member centered on the central axis J1. The shaft 15 is arranged to extend along the central axis J1. The shaft 15 is made of, for example, a metal. Note that the shaft 15 may alternatively be made of another material. A lower end portion of the shaft 15 is arranged radially inside of the tubular lower bearing portion 22. An outside surface of the lower end portion of the shaft 15 is arranged radially opposite to an inside surface of the lower bearing portion 22. The lower end portion of the shaft 15 is rotatably supported by the lower bearing portion 22. In other words, the lower end portion of the shaft 15 is indirectly supported by the base portion 12 through the lower bearing portion 22.
An upper end portion of the shaft 15 is arranged radially inside of the tubular upper bearing portion 21. An outside surface of the upper end portion of the shaft 15 is arranged radially opposite to an inside surface of the upper bearing portion 21. The upper end portion of the shaft 15 is rotatably supported by the upper bearing portion 21. In other words, the upper end portion of the shaft 15 is indirectly supported by the cover portion 11 through the upper bearing portion 21 and the bearing housing portion 23. An upper end surface of the shaft 15 is arranged to be in vertical contact with a portion of the bearing housing portion 23 which closes the upper end portion of the upper bearing portion 21. The upper end surface of the shaft 15 is a convex surface which is convex upward.
The rotor holder 16 is a substantially annular member. The rotor holder 16 is arranged around the shaft 15. The rotor holder 16 is arranged to be capable of rotating about the central axis J1 together with the shaft 15. The rotor holder 16 includes an inner tubular portion 161, a holder body portion 162, and holder projecting portions 163. The inner tubular portion 161 is a substantially cylindrical portion centered on the central axis J1. The shaft 15 is arranged radially inside of the inner tubular portion 161. The inner tubular portion 161 is fixed to the shaft 15. The rotor holder 16 is thus attached to the shaft 15. An inside surface of the inner tubular portion 161 is arranged to be in contact with an outside surface of the shaft 15.
The holder body portion 162 is a portion substantially in the shape of an annular plate and arranged to extend radially outward from an upper end portion of the inner tubular portion 161. In other words, the holder body portion 162 is arranged to extend radially from the side of the shaft 15. Each holder projecting portion 163 is arranged to project upward from an outer edge portion of the holder body portion 162. In the preferred embodiment illustrated in
In a central portion of the holder body portion 162, a recessed portion which is recessed downward relative to a portion of the holder body portion 162 which surrounds the central portion is defined. The spacer 24 is arranged in this recessed portion. The spacer 24 is substantially annular, and is centered on the central axis J1. The spacer 24 is fixed to the shaft 15. The spacer 24 and the shaft 15 are fixed to each other by, for example, the shaft 15 being press fitted in the spacer 24. A lower surface of the spacer 24 is arranged to be in contact with the holder body portion 162. An upper surface of the spacer 24 is arranged to be in contact with a lower end of the upper bearing portion 21 and a lower end of the bearing housing portion 23. The spacer 24 is arranged to radially overlap with the magnet portion 17 and the eccentric weight 18.
The magnet portion 17 is a substantially annular member centered on the central axis J1. The magnet portion 17 is attached to the rotor holder 16. In detail, an upper surface of the magnet portion 17, which is substantially cylindrical, is attached to a lower surface of the holder body portion 162 of the rotor holder 16. The magnet portion 17 is arranged above the two coils 141 of the coil portion 14, and is arranged vertically opposite to the coil portion 14 with a space therebetween.
The cover top portion 111 is arranged above the magnet portion 17. The vertical distance between the magnet portion 17 and the cover top portion 111 is arranged to be shorter than the vertical distance between the magnet portion 17 and the base portion 12. This makes an attractive force acting in the vertical direction between the magnet portion 17 and the cover top portion 111 greater than an attractive force acting in the vertical direction between the magnet portion 17 and the base portion 12. As a result, an upward force acts on the magnet portion 17 to keep the upper end surface of the shaft 15 in contact with the portion of the bearing housing portion 23 which closes the upper end portion of the upper bearing portion 21. Note that the vertical distance between the magnet portion 17 and the cover top portion 111 refers to, for example, the vertical distance between a vertical magnetic center of the magnet portion 17 and a lower surface of the cover top portion 111, which is arranged vertically above the magnet portion 17. Also note that the vertical distance between the magnet portion 17 and the base portion 12 refers to, for example, the vertical distance between the aforementioned magnetic center of the magnet portion 17 and an upper surface of the base portion 12, which is arranged vertically below the magnet portion 17.
The eccentric weight 18 is a member substantially in the shape of a semicircle and centered on the central axis J1. In the preferred embodiment illustrated in
In the preferred embodiment illustrated in
In the vibration motor 1, an electric current is supplied to each coil 141 of the coil portion 14 through the circuit board 13 to generate a torque between the coil 141 and the magnet portion 17. The rotating portion, that is, a combination of the shaft 15, the rotor holder 16, the magnet portion 17, the eccentric weight 18, and the spacer 24, is thus caused to rotate about the central axis J1. Since the center of gravity of the eccentric weight 18 is radially away from the central axis J1 as described above, the rotation of the eccentric weight 18 causes vibrations. If the supply of the electric current to the coil portion 14 is stopped, the rotation of the rotating portion stops. When the rotation of the rotating portion stops, a plurality of magnetic poles of the magnet portion 17 stop at predetermined circumferential stop positions.
The magnet portion 17 includes a plurality of magnetic poles 171. The number of magnetic poles 171 is, for example, a multiple of two. In the preferred embodiment illustrated in
The number of second plate projecting portions 322 of the base portion 12 is preferably equal to or smaller than the number of magnetic poles 171. In the preferred embodiment illustrated in
Each of the second plate projecting portions 322 is arranged vertically opposite to the magnet portion 17. The circumferential width of a portion of each second plate projecting portion 322 which is opposed to the magnet portion 17 in the vertical direction is equal to or smaller than the circumferential width of each magnetic pole 171 of the magnet portion 17 at any radial position. In the preferred embodiment illustrated in
In the vibration motor 1, once the supply of the electric current to each coil 141 of the coil portion 14 is stopped, cogging torque generated between the second plate projecting portions 322, each of which is made of the magnetic metal, and the magnet portion 17 causes the rotating portion to stop with each of the magnetic poles 171 of the magnet portion 17 positioned over one of the second plate projecting portions 322. In detail, the rotating portion is caused to stop with the circumferential middle of each magnetic pole 171 positioned opposite to the circumferential middle of one of the second plate projecting portions 322 in the vertical direction. In the preferred embodiment illustrated in
In the vibration motor 1, the positional relationships between the second plate 122 and the coils 141 are set such that the circumferential middle of each second plate projecting portion 322 does not coincide with the circumferential middle of any coil 141 when viewed in the vertical direction. In the preferred embodiment illustrated in
In the vibration motor 1, the circumferential width of each second plate projecting portion 322 may be varied to adjust the magnitude of the aforementioned cogging torque. Specifically, the cogging torque increases as the circumferential width of the second plate projecting portion 322 increases, while the cogging torque decreases as the circumferential width of the second plate projecting portion 322 decreases. Moreover, the thickness of each second plate projecting portion 322 may be increased or decreased to increase or decrease the cogging torque.
As described above, the vibration motor 1 includes the cover portion 11, the base portion 12, the circuit board 13, the coil portion 14, the shaft 15, the rotor holder 16, the magnet portion 17, the eccentric weight 18, the upper bearing portion 21, and the lower bearing portion 22. The base portion 12 is arranged to extend perpendicularly to the central axis J1, which extends in the vertical direction. The cover portion 11 is arranged above the base portion 12, and is fixed to the outer edge portion of the base portion 12. The lower bearing portion 22 is fixed to the base portion 12. The upper bearing portion 21 is fixed to the cover portion 11. The shaft 15 is arranged to extend along the central axis J1. The lower end portion and the upper end portion of the shaft 15 are rotatably supported by the lower bearing portion 22 and the upper bearing portion 21, respectively. The rotor holder 16 is attached to the shaft 15. The magnet portion 17 includes the plurality of magnetic poles 171, and is attached to the rotor holder 16. The eccentric weight 18 is attached to the rotor holder 16. The circuit board 13 is arranged on the base portion 12. The coil portion 14 is attached onto the circuit board 13, and is arranged vertically opposite to the magnet portion 17 with the space therebetween.
As described above, in the vibration motor 1, the shaft 15 is rotatably supported by the upper and lower bearing portions 21 and 22, and accordingly, the substantial area of contact between the shaft and the bearing portion(s) while the vibration motor is running can be reduced when compared to the case of a vibration motor in which a bearing portion(s), a rotor holder, a magnet portion, an eccentric weight, and so on are rotatably attached to a fixed shaft. Thus, sliding resistance between the shaft 15 and the upper and lower bearing portions 21 and 22 while the vibration motor 1 is running can be reduced. This will make the vibration motor 1 more responsive. Therefore, the vibration motor 1 is particularly suitable for use as, for example, the silent notification device in the mobile communication apparatus, which is required to respond without a delay. Further, in the vibration motor 1, the upper and lower end portions of the shaft 15 are supported by the upper and lower bearing portions 21 and 22, respectively, and accordingly, greater bearing rigidity can be achieved than in the case where only one end portion of the shaft is supported by the bearing portion.
As described above, each of the upper and lower bearing portions 21 and 22 is tubular, and is arranged radially opposite to the outside surface of the shaft 15. In addition, the vibration motor 1 further includes the bearing housing portion 23, which is arranged to support the upper bearing portion 21. The bearing housing portion 23 is arranged to close the upper end portion of the upper bearing portion 21, and is arranged to be in vertical contact with the upper end surface of the shaft 15. This enables the vertical position of the rotating portion, including the shaft 15, to be easily maintained at a desired position. Moreover, in the case where an oil-impregnated bearing is used as the upper bearing portion 21, a lubricating oil can be easily held in the upper bearing portion 21 by the bearing housing portion 23. Further, since the bearing housing portion 23 is defined by a member separate from the cover portion 11, and is fixed to the cover portion 11, a structure that serves to support the upper bearing portion 21 can be manufactured easily. In the vibration motor 1, a bearing housing portion to close a lower end portion of the lower bearing portion 22 is not provided, and this leads to a reduction in sliding resistance at a lower end surface of the shaft 15, and reductions in the vertical and radial dimensions of the vibration motor 1.
Note that the bearing housing portion 23 may not necessarily be arranged to support the upper bearing portion 21, but may alternatively be, for example, fixed to the base portion to support the lower bearing portion 22. That is, the vibration motor 1 includes the bearing housing portion 23 arranged to support one of the upper and lower bearing portions and 22. In addition, the bearing housing portion 23 is arranged to close one vertical end portion of the above one of the upper and lower bearing portions 21 and 22, and to be in vertical contact with the corresponding end surface of the shaft 15. This enables the vertical position of the rotating portion, including the shaft 15, to be easily maintained at a desired position, as described above. Moreover, in the case where an oil-impregnated bearing is used as the above one of the upper and lower bearing portions 21 and 22, a lubricating oil can be easily held in the above one of the upper and lower bearing portions 21 and 22 by the bearing housing portion 23. Further, since the bearing housing portion 23 is defined by a member separate from both the cover portion 11 and the base portion 12, and is fixed to the base portion 12 or the cover portion 11, a structure that serves to support the above one of the upper and lower bearing portions 21 and 22 can be manufactured easily. In the vibration motor 1, a bearing housing portion to close an end portion of the other one of the upper and lower bearing portions and 22 is not provided, and this leads to a reduction in sliding resistance at an end surface of the shaft 15 on the side of the other one of the upper and lower bearing portions 21 and 22, and reductions in the vertical and radial dimensions of the vibration motor 1.
As described above, the cover portion 11 includes the cover top portion 111, which is made of the magnetic material and is arranged above the magnet portion 17, while the rotor holder 16 is made of the non-magnetic material. In the vibration motor 1, the attractive force acting in the vertical direction between the magnet portion 17 and the cover top portion 111 causes an upward force to act on the magnet portion 17, so that the vertical position of the rotating portion, including the magnet portion 17, can be easily maintained at a desired position. This helps to prevent the rotating portion from being displaced downward to cause the magnet portion 17 to make contact with the coil portion 14.
In the vibration motor 1, the vertical distance between the magnet portion 17 and the cover top portion 111 is arranged to be shorter than the vertical distance between the magnet portion 17 and the base portion 12. The attractive force acting in the vertical direction between the magnet portion 17 and the cover top portion 111 can thus be easily made greater than the attractive force acting in the vertical direction between the magnet portion 17 and the base portion 12. This enables the vertical position of the rotating portion, including the magnet portion 17, to be more easily maintained at the desired position.
As described above, the eccentric weight 18 and the upper bearing portion 21 are arranged to radially overlap with each other. This contributes to reducing the vertical dimension of the vibration motor 1.
In the vibration motor 1, the rotor holder 16 includes the holder body portion 162 and the holder projecting portions 163. The holder body portion 162 is arranged to extend radially from the side of the shaft 15. Each holder projecting portion 163 is arranged to project upward from the outer edge portion of the holder body portion 162. The side surface of the eccentric weight 18 is arranged to be in contact with the side surface of each holder projecting portion 163. This makes it easy to position the eccentric weight 18 when the eccentric weight 18 is attached to the rotor holder 16. In addition, the eccentric weight 18 can be easily fixed to each holder projecting portion 163 by welding the eccentric weight 18 to the holder projecting portion 163 from the upper side.
As described above, the upper end of each holder projecting portion 163 is arranged at a level lower than that of at least a portion of the upper portion of the eccentric weight 18. This makes it possible to weld an upper surface of each holder projecting portion 163 and the side surface of the eccentric weight 18, which contributes to eliminating or reducing the likelihood that a welding mark that results from this welding will protrude above an upper surface of the eccentric weight 18. As a result, the likelihood that the welding mark will make contact with the cover portion 11 or the like can be eliminated or reduced.
In the vibration motor 1, the coil portion 14 includes the two coils 141 arranged in one radial direction with the shaft 15 arranged therebetween. The two lead wires 147 extend from each coil 141 to one side in a radial direction different from the aforementioned one radial direction. This enables the connection terminals 139 for the two coils 141 to be arranged, on the circuit board 13, on one side of the straight line on which the two coils 141 are arranged. This makes it easy to connect the circuit board 13 with the coil portion 14.
As described above, the circuit board 13 includes the first, second, and third terminals 131, 132, and 133 and the capacitor 137. The first terminal 131 is electrically connected to the power supply. The second terminal 132 is earthed. The third terminal 133 is connected to the control apparatus. The first, second, and third terminals 131, 132, and 133 are arranged in a straight line. The capacitor 137 is electrically connected between the first and second terminals 131 and 132. This contributes to eliminating electrical noise of the vibration motor 1. In addition, the first and second terminals 131 and 132 are arranged adjacent to each other. This facilitates the arrangement of the capacitor 137 and the aforementioned electrical connection of the capacitor 137.
The circuit board 13 further includes the ferrite bead or beads 138 arranged on at least one of the first and second wiring patterns 134 and 135. Thus, high frequency noise can be eliminated from electric currents flowing in the first and second wiring patterns 134 and 135. This eliminates or reduces the likelihood that high frequency noise will cause a decrease in performance of an antenna of the mobile communication apparatus or the like, for example, even in the case where the vibration motor 1 is arranged in the vicinity of the antenna.
Note that the number of coils 141 included in the coil portion 14 of the vibration motor 1 is not limited to two, but may alternatively be one or more than two. A vibration motor 1 according to another preferred embodiment of the present invention, in which a coil portion 14 includes only one coil 141, will now be described below.
In the preferred embodiment illustrated in
The coil 141 is, for example, substantially in the shape of an oblong ring, elongated in one radial direction in a plan view. The coil 141 includes two long side portions 145 and two short side portions 146. Each of the two long side portions 145 is arranged to extend in the aforementioned one radial direction, which is a longitudinal direction of the coil 141, with the shaft 15 arranged between the two long side portions 145. The two short side portions 146 are portions in the shape of a semicircle and arranged to join both end portions of the two long side portions 145. Each of the two short side portions 146, which are radially outer end portions of the coil 141, is arranged above a second plate support portion 321 (not shown) of a base portion 12, and is arranged to overlap with the second plate support portion 321 when viewed in the vertical direction. In addition, each short side portion 146 is arranged radially outward of an outer circumferential edge of a magnet portion 17 (not shown). Note that each short side portion 146 may alternatively be arranged radially inward of the outer circumferential edge of the magnet portion 17 (not shown).
Each of two lead wires 147 extending from the one coil 141 is connected to a separate one of two connection terminals 139 on the circuit board 13. The two connection terminals 139 are arranged on the left side of the coil 141 in the figure. Therefore, each of the two lead wires 147 extends from the coil 141 to an opposite side of the coil 141 with respect to a first plate side portion 312. Because the two lead wires 147 are arranged to extend from the coil 141 to one side in a radial direction different from the aforementioned radial direction, which is the longitudinal direction of the coil 141, as described above, the circuit board 13 and the coil portion 14 can be easily connected to each other. For example, the two lead wires 147 are arranged to extend from the coil 141 to one side in a radial direction perpendicular to the aforementioned one radial direction. Each lead wire 147 is connected to the circuit board 13 through, for example, soldering. Note that each lead wire 147 may alternatively be connected to the circuit board 13 by a method other than soldering.
Note that the vibration motor 1 as described above may be modified in various manners.
In the vibration motor 1, the bearing housing portion and the cover portion 11 may alternatively be defined by a single continuous monolithic member. Also, in the vibration motor 1, the bearing housing portion 23, which is arranged to support the upper bearing portion 21, and another bearing housing portion 23, which is arranged to support the lower bearing portion 22, may alternatively be fixed to the cover portion 11 and the base portion 12, respectively.
The second plate projecting portions 322 may not necessarily be arranged to project radially inward from the second plate support portion 321, but may alternatively be arranged to project radially outward from the second plate support portion 321. For example, the second plate 122 may alternatively include a second plate support portion 321 having an outside diameter smaller than that of the second plate support portion 321 according to the above-described preferred embodiment, and a plurality of second plate projecting portions 322 arranged to project radially outward from the second plate support portion 321. That is, the second plate projecting portions 322 are arranged to project radially inward or radially outward from the second plate support portion 321.
The upper surface of the second plate 122 and the portion of the upper surface of the first plate 121 which lies adjacent to and along the first plate recessed portion 313 may be only substantially arranged at the same level. In other words, the level of the upper surface of the second plate 122 and the level of the portion of the upper surface of the first plate 121 which lies adjacent to and along the first plate recessed portion 313 may be exactly the same or may be slightly different as long as the difference is so small that the two levels can be regarded as substantially the same.
The upper surface of the first plate side portion 312 and the upper surface of the second plate 122 may be only substantially arranged at the same level. In other words, the level of the upper surface of the first plate side portion 312 and the level of the upper surface of the second plate 122 may be exactly the same or may be slightly different as long as the difference is so small that the two levels can be regarded as substantially the same.
The second plate 122 may not necessarily be arranged to have substantially the same shape and size as those of the first plate recessed portion 313 as long as the second plate 122 can be arranged in the first plate recessed portion 313.
The structure of the base portion 12 may be modified in various manners. For example, the first plate recessed portion 313 may be omitted from the first plate 121, with the second plate 122 fixed onto a flat upper surface of the first plate 121. Also, the base portion 12 may not necessarily be defined by the first and second plates 121 and 122 joined together, but may alternatively be defined by a single member. In this case, the base portion 12 may be made of a magnetic metal and include a through hole defined therein to prevent each magnetic pole 171 of the magnet portion 17 from being positioned at any dead point.
The vertical distance between the magnet portion 17 and the cover top portion 111 may alternatively be equal to or greater than the vertical distance between the magnet portion 17 and the base portion 12.
The base portion 12, the cover portion 11, the rotor holder 16, and other members may be made of various materials.
Attachment and fixing of the members of the vibration motor 1 may be achieved indirectly. For example, as long as the circuit board 13 is arranged above the base portion 12, another member may be arranged to intervene between the circuit board 13 and the base portion 12. Also, the coil portion 14 may be attached to the circuit board 13 with another member intervening therebetween. Each of the attachment of the magnet portion 17 to the rotor holder 16, the attachment of the eccentric weight 18 to the rotor holder 16, the fixing of the cover portion 11 to the base portion 12, and so on may also be achieved with an intervention of another member.
Features of the above-described preferred embodiments and the modifications thereof may be combined appropriately as long as no conflict arises.
Vibration motors according to preferred embodiments of the present invention may be used for various purposes. Vibration motors according to preferred embodiments of the present invention are preferably used as, for example, silent notification devices in mobile communication apparatuses, such as cellular phones.
Features of the above-described preferred embodiments and the modifications thereof may be combined appropriately as long as no conflict arises. While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2016-035598 | Feb 2016 | JP | national |