The present invention relates to a vibration or acceleration sensor having a damped resonance peak. In particular, the present invention relates to a vibration or acceleration sensor applying a squeeze film damping arrangement for damping a resonance peak.
Damping arrangements relying on squeeze film damping have been applied in various technical areas over the years. For example squeeze film damping has been applied to damp unwanted vibrations in motors.
Within the field of vibration sensors damping of resonance peaks may be needed in order to prevent too high output signal levels at the resonance peak in that such output signal levels may overload the signal processing electronics.
It may be seen as an object of embodiments of the present invention to provide an arrangement for damping a resonance peak of a vibration or acceleration sensor.
It may be seen as a further object of embodiments of the present invention to provide a damping arrangement which does not influence the compliance of the vibration or acceleration sensor in a significant manner.
The above-mentioned objects are complied with by providing, in a first aspect, a vibration sensor comprising
Thus, the present invention relates to a sensor for detecting vibrations or acceleration. However, in the following reference will only be made to the detection of vibrations although the general principles underlying the present invention apply equally to the detection of accelerations.
The vibrations may be detected by bringing a moveable mass into movements/vibrations and detecting said movements/vibrations by appropriate detection means, such as appropriate electronic detection means.
The damping arrangement of the present invention is advantageous in that it does not influence the compliance of the vibration sensor in a significant manner. This advantage may be provided by ensuring that the applied damping substance is not limited in volume. Thus, the fact that the damping substance is not limited in volume facilitates that a squeeze film damping mechanism may take place without significantly influencing the compliance of the sensor. In the present context a change of the resonance frequency between 10 Hz and 150 Hz in case of a nominal resonance frequency between 2 kHz and 6 kHz will be acceptable. It should be noted however that the change of the resonance frequency may depend on the viscosity of the damping substance used.
The suspended moveable mass may be arranged to interact directly or indirectly with the damping substance in order to reduce a mechanical resonance peak of the vibration sensor. In the present disclosure direct interaction should be taken to mean that the suspended moveable mass is in direct contact with the damping substance. Indirect interaction should consequently be taken to mean that the suspended moveable mass is not in direct contact with the damping sub stance.
The damping substance may fill out at least part of the one or more gaps between the moveable mass and the suspension member. In particular, the damping substance may be arranged between an essentially plane surface of the suspended moveable mass and an essentially plane surface of the suspension member. Alternatively or in combination therewith, the damping substance may fill out at least part of one or more gaps formed by respective opposing surfaces of an essential static structure and the suspension member. The essentially static structure may involve a top limiter or any other substantially static frame structure of the sensor. Alternatively or in combination therewith, the damping substance may at least partly be arranged between an essential static structure and the suspended moveable mass.
The damping substance may form a single coherent volume, or it may be divided into a plurality of discrete portions being position at predetermined positions between the suspended moveable mass and for example the suspension member in order to obtain a predetermined damping of the resonance peak. Thus, it may be advantageous to divide the damping substance into a plurality of discrete portions and place these discrete portions at selected spots to get a predetermined damping. The plurality of discrete damping substance portions may involve dots of damping substance, essentially linear damping substance portions and/or curved damping substance portions. Alternatively or in combination therewith, the damping substance may form an enveloping structure, such as a rim-shaped structure, such as an essential circular structure, an essential elliptical structure, an essential rectangular structure and/or an essential quadratic structure. The damping substance may be positioned symmetrically around a static displacement node and/or a static displacement axis of the moveable mass.
In a second aspect the present invention relates to a vibration sensor comprising
In the second aspect the damping substance may fill out at least part of one or more gaps formed by respective opposing surfaces of the moveable mass and an essential static structure. The essentially static structure may involve a top limiter or any other substantially static frame structure of the sensor. Alternatively or in combination therewith the damping substance may fill out at least part of one or more gaps formed by respective opposing surfaces of the moveable mass and the suspension member. Alternatively or in combination therewith the damping substance may fill out at least part of one or more gaps formed by respective opposing surfaces of an essential static structure and the suspension member.
The plurality of discrete damping substance portions may form dots of damping substance, essentially linear damping substance portions and/or curved damping substance portions. The enveloping structure of the damping substance may forms a rim-shaped structure, such as an essential circular structure, an essential elliptical structure, an essential rectangular structure and/or an essential quadratic structure. The damping substance may be positioned symmetrically around a static displacement node and/or a static displacement axis of the moveable mass.
The damping arrangement of the first and second aspects may be adapted to damp the mechanical resonance peak at least in order to ease handling of an output signal of the appropriate detection means. If the resonance peak is too high the corresponding output signal of the appropriate detection means will also be high. High output signal increases the risk of overloading the electronic detection means.
To avoid overloading, the damping arrangement may be adapted to damp the mechanical resonance peak of the vibration sensor with at least 2 dB, such as at least 4 dB, such as at least 6 dB, such as at least 8 dB, such as at least 10 dB, such as at least 20 dB, such as at least 30 dB, such as at least 40 dB. Typically, a resonance peak of around 40 dB may be damped between 20 and 30 dB in order to reach a resonance peak between 10 and 20 dB. As previously addressed the damping arrangement does not influence the compliance of the vibration sensor in a significant manner.
The moveable mass may essentially be free to move whereas the suspension member may be in a relative fixed position relative to a vibration sensor frame or housing structure. The mass of the suspended moveable mass may be in the range of 0.8-26 mg, such as in the range of 1.6-13 mg, such as around 6.5 mg.
The damping substance may have a viscosity within the range between 1000 and 100000 cP, such as between 2000 and 80000 cP, such as between 3000 and 50000 cP, such as between 4000 and 40000 cP, such as between 5000 and 30000 cP, such as between 6000 and 20000 cP, such as around 10000 cP. A suitable candidate as a damping substance may comprise oil forming an oil layer in that oil is stable over time and it does not tend to evaporate. Moreover, oil comes with a wide range of viscosities. Other suitable candidates as damping substances may involve viscoelastic materials or gels, magnetic fluids etc.
The thickness of such a damping substance may be smaller than 1 mm, such as smaller than 800 μm, such as smaller than 600 μm, such as smaller than 500 μm such as smaller than 400 μm, such as smaller than 300 μm, such as smaller than 200 μm, such as smaller than 100 μm, such as smaller than 50 μm. Typically the thickness of the damping substance will be between 20 μm and 500 μm. The total amount of damping substance being applied may be below 1 mm3, such as below 0.5 mm3, such as below 0.1 mm3.
The damping substance may be a deformable/mouldable material. As addressed above the damping substance may comprise an oil forming an oil layer, and wherein the oil layer is kept in position by capillary forces only. Alternatively or in combination therewith the damping substance may comprise a viscoelastic material, such as a gel, and wherein the viscoelastic material is kept in position by capillary forces only.
The mechanical resonance frequency of the vibration sensor may in principle be arbitrary. However, the mechanical resonance frequency may typically be between 1 kHz and 10 kHz, such as between 2 kHz and 8 kHz, such as between 3 kHz and 5 kHz.
The suspension member may comprise one or more resilient members. To ensure proper damping of the resonance peak the suspension member should be essentially static relative to the moveable mass. To comply with this the resilient member may be secured to an essential static frame structure of the vibration sensor.
The resilient member may comprise a plurality of operationally connected spring elements, such as four spring elements being arranged in an X-shaped arrangement having a centre portion. The centre portion may be hard connected to the suspended moveable mass, whereas four discrete portions of damping substance may be provided between the moveable mass and each of the respective four spring elements.
The vibration sensor may further comprise an electronic read-out arrangement for generating an output single in response to detected vibrations. The electronic read-out arrangement may comprise an electrically charged layer in the form of an electret layer secured to the moveable mass. The electret layer and the moveable mass form a backplate in combination. The electronic read-out arrangement may further comprise a bottom electrode. The bottom electrode may also serve as a bottom limiter for limiting the movements of the moveable mass in one direction. Additionally, a top limiter may be provided for limiting the movements of the moveable mass in the opposite direction.
The vibration sensor may be implemented as a Micro Electro-Mechanical System (MEMS). In a MEMS implementation of the vibration sensor the electret layer may be replaced by a layer which is charged by a voltage source.
In a third aspect the present invention relates to portable device comprising a vibration sensor according to the first and/or second aspect.
In a fourth aspect the present invention relates to a vibration or acceleration sensor comprising
Thus, the present invention relates to a sensor for detecting vibrations or acceleration. However, in the following reference will only be made to the detection of vibrations although the general principles underlying the present invention apply equally to the detection of accelerations.
The vibrations may be detected by bringing a moveable mass into movements/vibrations and detecting said movements/vibrations by appropriate detection means, such as appropriate electronic detection means.
The damping arrangement of the present invention is advantageous in that it does not influence the compliance of the vibration sensor in a significant manner. This advantage may be provided by ensuring that the applied damping substance is not limited in volume. Thus, the fact that the damping substance is not limited in volume facilitates that a squeeze film damping mechanism may take place without significantly influencing the compliance of the sensor. In the present context a change of the resonance frequency between 10 Hz and 150 Hz in case of a nominal resonance frequency between 2 kHz and 6 kHz will be acceptable. It should be noted however that the change of the resonance frequency may depend on the viscosity of the damping substance used.
The suspended moveable mass may be arranged to interact directly or indirectly with the damping substance in order to reduce a mechanical resonance peak of the vibration sensor. In the present disclosure direct interaction should be taken to mean that the suspended moveable mass is in direct contact with the damping substance. Indirect interaction should consequently be taken to mean that the suspended moveable mass is not in direct contact with the damping sub stance.
The damping arrangement is adapted to damp the mechanical resonance peak at least in order to ease handling of an output signal of the appropriate detection means. If the resonance peak is too high the corresponding output signal of the appropriate detection means will also be high. High output signal increases the risk of overloading the electronic detection means. To avoid overloading, the damping arrangement may be adapted to damp the mechanical resonance peak of the vibration sensor with at least 2 dB, such as at least 4 dB, such as at least 6 dB, such as at least 8 dB, such as at least 10 dB, such as at least 20 dB, such as at least 30 dB, such as at least 40 dB. Typically, a resonance peak of around 40 dB may be damped between 20 and 30 dB in order to reach a resonance peak between 10 and 20 dB. As previously addressed the damping arrangement does not influence the compliance of the vibration sensor in a significant manner.
The moveable mass may essentially be free to move whereas the suspension member may be in a relative fixed position relative to a vibration sensor frame or housing structure. The mass of the suspended moveable mass may be in the range of 0.8-26 mg, such as in the range of 1.6-13 mg, such as around 6.5 mg.
The damping substance may be at least partly arranged between the suspended moveable mass and the suspension member. In particular, the damping substance may be arranged between an essentially plane surface of the suspended moveable mass and an essentially plane surface of the suspension member. Alternatively or in combination therewith, the damping substance may at least partly be arranged between a substantially fixed sensor element and the suspension member. The substantially fixed sensor element may involve a top limiter or any other substantially static frame structure of the sensor. Alternatively or in combination therewith, the damping substance may at least partly be arranged between a substantially fixed sensor element and the suspended moveable mass.
The damping substance may form a single coherent volume, or it may be divided into a plurality of discrete volumes being position at predetermined positions between the suspended moveable mass and for example the suspension member in order to obtain a predetermined damping of the resonance peak. Thus, it may be advantageous to divide the damping substance into a plurality of discrete volumes and place these discrete volumes at selected spots to get a predetermined damping.
The damping substance may have a viscosity within the range between 1000 and 100000 cP, such as between 2000 and 80000 cP, such as between 3000 and 50000 cP, such as between 4000 and 40000 cP, such as between 5000 and 30000 cP, such as between 6000 and 20000 cP, such as around 10000 cP. A suitable candidate as a damping substance may comprise oil forming an oil layer in that oil is stable over time and it does not tend to evaporate. Moreover, oil comes with a wide range of viscosities. Other suitable candidates as damping substances may involve viscoelastic materials or gels, magnetic fluids etc.
The thickness of such a damping substance may be smaller than 1 mm, such as smaller than 800 μm, such as smaller than 600 μm, such as smaller than 500 μm such as smaller than 400 μm, such as smaller than 300 μm, such as smaller than 200 μm, such as smaller than 100 μm, such as smaller than 50 μm. Typically the thickness of the damping substance will be between 20 μm and 500 μm. The total amount of damping substance being applied may be below 1 mm3, such as below 0.5 mm3, such as below 0.1 mm3.
A viscoelastic material or gel maintains its position as it cures to a substantially fixed shape while still being viscous. An oil layer may at least partly be kept in position by capillary forces. In fact the oil layer may be kept in position by capillary forces only. This is advantageous in that the outer boundaries of the damping substance then become flexible whereby the addition of stiffness to the overall system may be essentially avoided. The flexible outer boundaries of the damping substance imply that the damping substance is not limited in volume. As already addressed this facilitates a squeeze film damping mechanism of the moveable mass without significantly influencing the compliance of the sensor.
The mechanical resonance frequency of the vibration sensor may in principle be arbitrary. However, the mechanical resonance frequency may typically be between 1 kHz and 10 kHz, such as between 2 kHz and 8 kHz, such as between 3 kHz and 5 kHz.
The suspension member may comprise one or more resilient members. To ensure proper damping of the resonance peak the suspension member should be essentially static relative to the moveable mass. To comply with this the resilient member may be secured to an essential static frame structure of the vibration sensor.
The resilient member may comprise a plurality of operationally connected spring elements, such as four spring elements being arranged in an X-shaped arrangement having a centre portion. The centre portion may be hard connected to the suspended moveable mass, whereas four discrete volumes of damping substance may be provided between the moveable mass and each of the respective four spring elements.
The vibration sensor may further comprise an electronic read-out arrangement for generating an output single in response to detected vibrations. The electronic read-out arrangement may comprise an electrically charged layer in the form of an electret layer secured to the moveable mass. The electret layer and the moveable mass form a backplate in combination. The electronic read-out arrangement may further comprise a bottom electrode. The bottom electrode may also serve as a bottom limiter for limiting the movements of the moveable mass in one direction. Additionally, a top limiter may be provided for limiting the movements of the moveable mass in the opposite direction.
The vibration sensor may be implemented as a Micro Electro-Mechanical System (MEMS). In a MEMS implementation of the vibration sensor the electret layer may be replaced by a layer which is charged by a voltage source.
In a fifth aspect the present invention relates to a damping arrangement comprising a damping substance, wherein the damping substance is adapted to interact directly or indirectly with a suspended moveable mass of a vibration sensor in order to reduce a mechanical resonance peak of a vibration sensor.
The damping substance may be implemented as disclosed in connection with the first aspect of the present invention.
In a sixth aspect the present invention relates to a method for reducing a mechanical resonance peak of a vibration or acceleration sensor, the method comprising the step of providing a damping substance being adapted to interact directly or indirectly with a suspended moveable mass.
Again, the damping substance may be implemented as disclosed in connection with the first aspect of the present invention.
The present invention will now be described in further details with reference to the accompanying figures, wherein
While the invention is susceptible to various modifications and alternative forms specific embodiments have been shown by way of examples in the drawings and will be described in details herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
In its broadest aspect the present invention relates to a vibration or acceleration sensor having a damped resonance peak. In particular, the present invention relates to a vibration or acceleration sensor comprising an arrangement for damping the resonance frequency of the vibration or acceleration sensor without significantly influencing the compliance of the vibration sensor, i.e. without significantly influencing the sensitivity as well as the position of the resonance peak of the vibration or acceleration sensor.
Referring now to
The damping properties of the damping substance are given by the length, width and height of the volume of the damping substance as well as the properties of the damping substance itself. The damping substance may involve a fluid, such as oil or a viscoelastic material or gel, having a viscosity around 10000 cP. Other viscosities may be applicable as well.
Preferably, the damping substance is kept in position between the moveable mass 102 and the suspension member 101 by capillary forces only. In this way the outer boundaries of the damping substance are flexible whereby the addition of stiffness to the overall system can essentially be avoided. The flexible boundaries facilitate that the damping substance is not limited in volume.
The resonance peak of the vibration sensor typically falls within the range between 1 kHz and 10 kHz. However, other frequency ranges may also be applicable. Compared to an undamped resonance peak the damping substance is adapted to damp the resonance peak typically between around 20 and 30 dB.
The suspension member 101 can be implemented in various ways. In one embodiment the suspension member is implemented as four resilient members being connected in an X-shaped arrangement, cf.
Referring now to
Referring now to
The vibration sensor assembly 200 of
In the cross-sectional view of
The overall dimensions of the vibration sensor are typically a few millimetres in each direction (height, width and length). In fact, the elements shown in
Similar to
The embodiment shown in
The inventors have found that the suspension member may advantageously be formed so that the damping substance may be positioned at predetermined spots between the suspension member and the moveable mass.
Referring now to
Turning now to
Number | Date | Country | Kind |
---|---|---|---|
16172456 | Jun 2016 | EP | regional |
This application is a continuation of U.S. patent application Ser. No. 16/103,651, filed Aug. 14, 2018, now allowed, which is a continuation of U.S. patent application Ser. No. 15/611,411, filed Jun. 1, 2017, now U.S. Pat. No. 10,078,097, which claims the benefit of and priority to European Patent Application Serial No. 16172456.2, filed Jun. 1, 2016, both of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3483951 | Bonesho | Dec 1969 | A |
3728562 | Herson | Apr 1973 | A |
4969534 | Kolpe et al. | Nov 1990 | A |
5578800 | Kijima | Nov 1996 | A |
5885471 | Ruben | Mar 1999 | A |
5965249 | Sutton | Oct 1999 | A |
6788796 | Miles | Sep 2004 | B1 |
6831577 | Furst | Dec 2004 | B1 |
6853290 | Jorgensen | Feb 2005 | B2 |
6859542 | Johannsen | Feb 2005 | B2 |
6888408 | Furst | May 2005 | B2 |
6914992 | van Halteren | Jul 2005 | B1 |
6919519 | Ravnkilde | Jul 2005 | B2 |
6930259 | Jorgensen | Aug 2005 | B1 |
6943308 | Ravnkilde | Sep 2005 | B2 |
6974921 | Jorgensen | Dec 2005 | B2 |
7008271 | Jorgensen | Mar 2006 | B2 |
7012200 | Moller | Mar 2006 | B2 |
7062058 | Steeman | Jun 2006 | B2 |
7062063 | Hansen | Jun 2006 | B2 |
7072482 | Van Doorn | Jul 2006 | B2 |
7088839 | Geschiere | Aug 2006 | B2 |
7110560 | Stenberg | Sep 2006 | B2 |
7110565 | Engbert et al. | Sep 2006 | B1 |
7136496 | van Halteren | Nov 2006 | B2 |
7142682 | Mullenborn | Nov 2006 | B2 |
7181035 | van Halteren | Feb 2007 | B2 |
7190803 | van Halteren | Mar 2007 | B2 |
7190854 | Novotny | Mar 2007 | B1 |
7206428 | Geschiere | Apr 2007 | B2 |
7221767 | Mullenborn | May 2007 | B2 |
7221769 | Jorgensen | May 2007 | B1 |
7227968 | van Halteren | Jun 2007 | B2 |
7239714 | de Blok | Jul 2007 | B2 |
7245734 | Niederdraenk | Jul 2007 | B2 |
7254248 | Johannsen | Aug 2007 | B2 |
7286680 | Steeman | Oct 2007 | B2 |
7292700 | Engbert | Nov 2007 | B1 |
7292876 | Bosh | Nov 2007 | B2 |
7336794 | Furst | Feb 2008 | B2 |
7376240 | Hansen | May 2008 | B2 |
7403630 | Jorgensen | Jul 2008 | B2 |
7415121 | Mögelin | Aug 2008 | B2 |
7425196 | Jorgensen | Sep 2008 | B2 |
7460681 | Geschiere | Dec 2008 | B2 |
7466835 | Stenberg | Dec 2008 | B2 |
7492919 | Engbert | Feb 2009 | B2 |
7548626 | Stenberg | Jun 2009 | B2 |
7657048 | van Halteren | Feb 2010 | B2 |
7684575 | van Halteren | Mar 2010 | B2 |
7706561 | Wilmink | Apr 2010 | B2 |
7715583 | Van Halteren | May 2010 | B2 |
7728237 | Pedersen | Jun 2010 | B2 |
7809151 | Van Halteren | Oct 2010 | B2 |
7822218 | Van Halteren | Oct 2010 | B2 |
7899203 | Van Halteren | Mar 2011 | B2 |
7912240 | Madaffari | Mar 2011 | B2 |
7946890 | Bondo | May 2011 | B1 |
7953241 | Jorgensen | May 2011 | B2 |
7961899 | Van Halteren | Jun 2011 | B2 |
7970161 | van Halteren | Jun 2011 | B2 |
8050444 | Smith | Nov 2011 | B2 |
8098854 | van Halteren | Jan 2012 | B2 |
8101876 | Andreasen | Jan 2012 | B2 |
8103039 | van Halteren | Jan 2012 | B2 |
8160290 | Jorgensen | Apr 2012 | B2 |
8170249 | Halteren | May 2012 | B2 |
8189804 | Hruza | May 2012 | B2 |
8189820 | Wang | May 2012 | B2 |
8223996 | Beekman | Jul 2012 | B2 |
8233652 | Jorgensen | Jul 2012 | B2 |
8259963 | Stenberg | Sep 2012 | B2 |
8259976 | van Halteren | Sep 2012 | B2 |
8259977 | Jorgensen | Sep 2012 | B2 |
8280082 | van Halteren | Oct 2012 | B2 |
8284966 | Wilk | Oct 2012 | B2 |
8313336 | Bondo | Nov 2012 | B2 |
8315422 | van Halteren | Nov 2012 | B2 |
8331595 | van Halteren | Dec 2012 | B2 |
8359927 | Hooper et al. | Jan 2013 | B2 |
8369552 | Engbert | Feb 2013 | B2 |
8379899 | van Halteren | Feb 2013 | B2 |
8448326 | Sinclair | May 2013 | B2 |
8509468 | van Halteren | Aug 2013 | B2 |
8526651 | Lafort | Sep 2013 | B2 |
8526652 | Ambrose | Sep 2013 | B2 |
8905808 | Allemand | Dec 2014 | B2 |
20050097959 | Pike | May 2005 | A1 |
20060093167 | Mogelin | May 2006 | A1 |
20060227984 | Sinclair | Oct 2006 | A1 |
20070235501 | Heck | Oct 2007 | A1 |
20100172521 | Van Halteren | Jul 2010 | A1 |
20110182453 | van Hal | Jul 2011 | A1 |
20110189880 | Bondo | Aug 2011 | A1 |
20110299708 | Bondo | Dec 2011 | A1 |
20110299712 | Bondo | Dec 2011 | A1 |
20110311069 | Ambrose | Dec 2011 | A1 |
20120014548 | van Halteren | Jan 2012 | A1 |
20120027245 | van Halteren | Feb 2012 | A1 |
20120031185 | Classen | Feb 2012 | A1 |
20120140966 | Mocking | Jun 2012 | A1 |
20120155683 | van Halteren | Jun 2012 | A1 |
20120155694 | Reeuwijk | Jun 2012 | A1 |
20120168271 | Ryaboy | Jul 2012 | A1 |
20120255805 | van Halteren | Oct 2012 | A1 |
20130028451 | de Roo | Jan 2013 | A1 |
20130136284 | van Hal | May 2013 | A1 |
20130142370 | Engbert | Jun 2013 | A1 |
20130163799 | Van Halteren | Jun 2013 | A1 |
20130195295 | van Halteren | Aug 2013 | A1 |
20130199295 | Hoefer | Aug 2013 | A1 |
20130202134 | Afshar | Aug 2013 | A1 |
20140084396 | Jenkins et al. | Mar 2014 | A1 |
20140173863 | Van Hoven | Jun 2014 | A1 |
20150252799 | Roscher | Sep 2015 | A1 |
20160177828 | Snyder et al. | Jun 2016 | A1 |
20160277828 | Oh et al. | Sep 2016 | A1 |
20160291050 | Ehrenpfordt | Oct 2016 | A1 |
20160373871 | Ronig et al. | Dec 2016 | A1 |
20170089942 | Chen | Mar 2017 | A1 |
20170150771 | Huh | Jun 2017 | A1 |
20180014973 | Echeverri et al. | Jan 2018 | A1 |
20180213311 | Pahl | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
102013222966 | May 2015 | DE |
2000314442 | Nov 2000 | JP |
Entry |
---|
European Search Report for Application No. EP 16172456.2, dated Dec. 1, 2016 (3 pages). |
Partial European Search Report for Application No. EP 16207614, dated Jun. 14, 2017 (3 pages). |
Extended European Search Report for Application No. EP 17174014, dated Oct. 16, 2017 (4 pages). |
Number | Date | Country | |
---|---|---|---|
20200174033 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16103651 | Aug 2018 | US |
Child | 16781067 | US | |
Parent | 15611411 | Jun 2017 | US |
Child | 16103651 | US |