This application claims the benefit of and priority to European Patent Application Serial No. 16186012.7 filed Aug. 26, 2016 and European Patent Application Serial No. 17165245.6, filed Apr. 6, 2017, both of which are incorporated herein by reference in their entireties.
The present invention relates to a vibration sensor having a predetermined low-frequency roll-off response curve and optionally a predetermined damping of a mechanical resonance frequency.
Most vibration sensors of today have a flat low-frequency response curve, i.e. the frequencies below the mechanical resonance frequency of typical vibrations sensors are not damped, acoustically or any other way. For various reasons, such as for example noise or overload reasons, it is advantageous to remove, or at least damp, the low frequencies. One often used approach is to remove or damp the low frequencies electronically using an electronic filter in for example the signal processing device. However, this approach is disadvantageous in that the mechanical system of the sensor or the input stage of the signal processing device might still be overloaded by precisely the low frequency signals that the electronic filter is intended to remove. Also, electronic filters take up valuable space on the ASIC, could cause distortion of the signal and cause thermal noise which may degrade the signal-to-noise ratio. Typical prior art solutions are discussed in CN 2727712 Y and US 2011/0179876 A1.
It may be seen as an object of embodiments of the present invention to provide a vibration sensor having a predetermined low-frequency response curve.
It may be seen as a further object of embodiments of the present invention to provide an arrangement where the predetermined low-frequency response curve of the vibration sensor is not provided by electronic means.
It may be seen as an even further object of embodiments of the present invention to provide a vibration sensor having a predetermined damping of a mechanical resonance frequency.
The above-mentioned objects are complied with by providing, in a first aspect, a vibration sensor comprising
1) a moveable mass being adapted to generate pressure variations in response to movements thereof,
2) a pressure transmitting arrangement for transmitting the generated pressure variations,
3) a pressure detection arrangement being adapted to detect the transmitted pressure variations, and provide an output signal in response to the detected transmitted pressure variations, and
4) a first acoustical opening defining a first acoustical impedance being acoustically connected to the pressure transmitting arrangement, the first acoustical impedance setting a predetermined low-frequency roll-off response of the vibration sensor.
Thus, according to the first aspect the present invention relates to a vibration sensor where pressure variations generated by movements of a moveable mass are detected by an appropriate pressure detection arrangement. The generated pressure variations may propagate across a pressure transmitting arrangement, which may be in the form of a pressure transmitting volume, before reaching the appropriate pressure detection arrangement. As explained later the vibration sensor may comprise a plurality of moveable masses, a plurality of pressure transmitting arrangements as well as a plurality of pressure detection arrangements.
In the present disclosure a predetermined low-frequency roll-off response should be taken to mean that the vibration sensor response below a predefined frequency may be damped in a predetermined manner. In case the input signal contains high level unwanted (noise) signals below the predefined frequency this sort of damping is advantageous in that traditional overload of the processing electronics, such as ASICs, may then be completely avoided. Alternatively, the predetermined low-frequency roll-off response may be provided by the first acoustical impedance and the processing electronics in combination.
It is advantageous that the predetermined low-frequency roll-off response may open up the possibility to increase the amplification of signals with a frequency above the predefined frequency, without possible overload of the processing electronics by noise signals.
The first acoustical impedance may set a predefined damping at selected frequencies by providing a low-frequency roll-off of the response curve. The frequency below which the response may start to roll off, the so-called −3 dB point, may be varied by varying the value of the first acoustical impedance, and may in principle be chosen arbitrary.
However, the −3 dB point may be in the frequency range of 50-2000 Hz, such as around 100 Hz, 200 Hz, 500 Hz or 1000 Hz.
The first acoustical impedance results in a rate at which the response curve rolls off of −6 dB/octave. Higher roll-off rates can be obtained by combining the acoustic roll-off of with other known filter/damping means, electronically, acoustically or in any other way, resulting in higher order filtering/damping.
The movable mass may be implemented in various ways, such as a solid structure. In order to be able to move in responds to vibrations the moveable mass may be suspended in a resilient suspension member. The following disclosure will reveal that the resilient suspension member may be implemented in various ways.
As indicated above the pressure transmitting arrangement may involve a pressure transmitting volume where pressure variations generated by the moveable mass is allowed to propagate in order to reach an appropriate pressure detection arrangement.
The first acoustical opening defining the first acoustical impedance may comprise a through-going opening having predetermined dimensions, said predetermined dimensions setting the first acoustical impedance. Generally, the larger the dimensions of the through-going opening the smaller the acoustical impedance.
The first acoustical impedance may be provided between the pressure transmitting arrangement and the exterior of the vibration sensor, i.e. an open and infinite volume. Alternatively or in combination therewith the first acoustical impedance may be provided across the pressure detection arrangement, such as between the pressure transmitting arrangement and a substantially closed volume. In this configuration the pressure transmitting arrangement may act as an acoustical front volume, whereas the substantially closed volume may act as an acoustical rear volume.
The vibration sensor of the present invention may further comprise a second acoustical opening defining a second acoustical impedance between the pressure transmitting arrangement and a substantially closed damping volume. The second acoustical impedance may, in combination with the moveable mass and substantially closed damping volume, set a predetermined damping of a mechanical resonance frequency of the vibration sensor.
Typically, the mechanical resonance frequency of the vibration sensor is a few kHz, such as between 1 kHz and 10 kHz, with peak levels up to several 10's of dB's, such as between 5 dB and 45 dB. The level of damping of the mechanical resonance frequency may range from a small damping up to complete damping of the peak, i.e. between 5 and 45 dB. The pressure transmitting arrangement and the substantially closed damping volume may be essentially oppositely arranged relative to the moveable mass, i.e. the moveable mass may, optionally in combination with a suspension member, separate the pressure transmitting arrangement and the damping volume. Thus, the suspension member and/or the moveable mass may define at least part of a boundary of the substantially closed damping volume.
The second acoustical impedance between the pressure transmitting arrangement and the damping volume may comprise a through-going opening in the moveable mass and/or in a suspension member suspending the moveable mass. The predetermined dimensions of said through-going opening may determine the second acoustical impedance. Again, the larger the dimensions of the through-going opening the smaller the acoustical impedance.
The pressure detection arrangement may comprise a pressure sensitive device adapted to detect the transmitted pressure variations. As stated previously the pressure sensitive device may form part of a microphone, such as an electret microphone or a MEMS microphone.
The suspension member and/or the moveable mass may, in combination with the pressure sensitive device, define at least part of a boundary of the pressure transmitting arrangement. Moreover, a primary direction of movement of the moveable mass and a direction of movement of at least part of the pressure sensitive device, such as a detecting membrane, may be substantially parallel to each other. Alternatively, a primary direction of movement of the moveable mass and a direction of movement of at least part of the pressure sensitive device, such as a detecting membrane, may be angled relative to each other.
The vibration sensor may further comprise one or more additional moveable masses being adapted to generate pressure variations in response to respective movements thereof, wherein the one or more additional moveable masses may be adapted to move in either different directions or in essentially the same direction. Thus, the vibration sensor may for example comprise three moveable masses having the primary directions of movement in either the same direction or in directions being angled relative to each other, such as in three directions being angled essentially 90 degrees relative to each other in order to be sensitive to 3D vibrations.
The moveable masses may be arranged such that they generate a combined pressure difference in one pressure transmitting arrangement, said pressure difference being detected by one pressure detecting arrangement. Alternatively, the moveable masses may generate pressure differences in a plurality of pressure transmitting arrangements being detected by a plurality of pressure detecting arrangements
In addition the moveable masses may be arranged, via their respective suspension arrangements, to provide linear and/or rotational movements in response to incoming vibrations.
The vibration sensor of the present invention may further comprise signal processing means, such as one or more ASICs, for processing the output signal from the pressure detection arrangement.
In a second aspect the present invention relates to a vibration sensor comprising
1) a pressure detecting arrangement adapted to detect generated pressure variations, and provide an output signal in response to the detected pressure variations, and
2) a pressure generating arrangement adapted to generate pressure variations in response to movements thereof
wherein the pressure generating arrangement is secured to an exterior surface portion of the pressure detecting arrangement.
Thus, according to the second aspect the present invention relates to a pressure generating arrangement that may be secured to an exterior surface portion of a pressure detecting arrangement. This exterior surface portion of the pressure detecting arrangement may preferably be the largest exterior surface of the pressure detecting arrangement. The reason for this being that the area of the active components of the pressure generating arrangement, such as a suspension member and a moveable mass, may then be maximized.
The pressure generating arrangement may comprise a suspension member and moveable mass secured thereto. The suspended moveable mass may generate pressure variations in response to movements of the vibration sensor. The pressure detecting arrangement may comprise a microphone unit comprising a microphone cartridge and a signal processing unit.
Thus, according to the second aspect the present invention relates to a vibration sensor where pressure variations generated by movements of a moveable mass are detected by an appropriate pressure detection arrangement, such as a microphone unit comprising a microphone cartridge and a signal processing unit. The generated pressure variations may propagate across a pressure transmitting arrangement, which may be in the form of a pressure transmitting volume or intermediate volume, before reaching the appropriate pressure detection arrangement.
In a preferred embodiment the microphone unit may comprise a stand-alone and self-contained MEMS microphone unit comprising a MEMS microphone cartridge and the signal processing unit. In the present context a stand-alone and self-contained MEMS microphone unit should be understood as a fully functional microphone unit. The MEMS cartridge of the microphone unit may comprise a read-out arrangement comprising a piezo, a biased plate capacitor or an electret plate capacitor.
Is it advantageous to use a stand-alone and self-contained MEMS microphone in that at least the following advantages are associated therewith: low development costs, low price of the MEMS microphone unit itself, easy to brand, reflowable, digital as well as analog variants, various sizes available (trade off with performance (sensitivity/noise) etc.
The stand-alone and self-contained MEMS microphone unit may comprise a first PCB to which first PCB the MEMS microphone cartridge and the signal processing unit are electrically connected. Moreover, the stand-alone and self-contained MEMS microphone unit may comprise a second PCB comprising a plurality of contact zones arranged thereon, said second PCB being oppositely arranged relative to the first PCB. Thus, the stand-alone and self-contained MEMS microphone unit may form a sandwich construction where the first and second PCBs may be the upper and lower surface, respectively.
An intermediate volume may exist between an outer surface of the first PCB of the MEMS microphone unit and a surface of the suspension member. This intermediate volume may be considered a pressure transmitting volume through which volume the generated pressure variations propagates the MEMS microphone unit. In order to allow generated pressure variations to enter the MEMS microphone unit and thereby reach the MEMS cartridge the first PCB may comprise a through-going opening being acoustically connected to the intermediate volume. The intermediate volume may be smaller than 5 mm3, such as smaller than 2 mm3, such as smaller than 1 mm3, such as smaller than 0.75 mm3, such as smaller than 0.5 mm3, such as smaller than 0.25 mm3, such as smaller than 0.1 mm3.
In order to provide sufficient pressure variations the area of the suspension member may be larger than 0.5 mm2, such as larger than 1 mm2, such as larger than 2 mm2, such as larger than 4 mm2, such as larger than 6 mm2, such as larger than 8 mm2, such as larger than 10 mm2. The mass of the moveable mass is larger than 0.004 mg, such as larger than 0.04 mg, such as larger than 0.4 mg, such as larger than 1 mg, such as larger than 2 mg, such as around 4 mg.
The present invention will now be described in further details with reference to the accompanying figures, wherein
While the invention is susceptible to various modifications and alternative forms specific embodiments have been shown by way of examples in the drawings and will be described in details herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
In its broadest aspect the present invention relates to a vibration sensor where pressure variations generated by one or more moveable masses are detected using appropriate detection means, such as one or more microphones. The microphones may in principle be of any suitable type, including electret or MEMS microphones.
Referring now to
Referring now to
In
In
In
Finally, in
In the various implementations depicted in
Turning now to
Turning now to
Still referring to
In the embodiments depicted in
In
Similar to
In order to provide a predetermined low-frequency roll-off response curve of the vibration sensor a first acoustical opening 714 is provided between the common pressure transmitting volume 709 and a substantially closed volume 715.
Second acoustical openings 712, 713 are provided between the common pressure transmitting volume 709 and the respective volumes 701, 702 which are acoustically separated by the wall 711. It should be noted that the wall 711 can optionally be omitted so that volumes 701 and 702 becomes a single volume, and second acoustical openings 712 and 713 act as a single acoustical opening. The second acoustical openings 712, 713 ensure a predetermined damping of the mechanical resonance frequency of the vibration sensor. A microphone 710 is provided in the common pressure transmitting volume 709.
Turning now to
Again, second acoustical openings 814, 815 are provided between the separated pressure transmitting volumes 812, 809 and the respective volumes 801, 802 which are acoustically separated by the wall 811. Similar to
In order to provide a predetermined low-frequency roll-off response curve of the vibration sensor first acoustical openings 816, 817 are provided between the separated pressure transmitting volumes 809, 812 and respective substantially closed volumes 818, 819. Separate microphones 810, 813 are provided in the respective pressure transmitting volumes 809, 812. It should be noted that the pressure transmitting volumes 809, 812 may optionally be combined into a single pressure transmitting volume. Similarly, the substantially closed volumes 818, 819 may be combined as well.
The second acoustical openings 814, 815 ensure a predetermined damping of the mechanical resonance frequency of the vibration sensor.
Similar to the vibration sensor depicted in
Generally and as previously addressed, the moveable masses may be suspended to perform rotational movements instead of, or in combination with, linear movements.
The MEMS microphone comprises a housing having a top PCB 902 and a bottom PCB 903 on which electrodes 916, 917 for electrically connecting the vibration sensor 900 are provided. The electrodes 916, 917 may be in the form of solder pads.
An acoustical opening 910 is provided in the top PCB 902. A wall portion 901 is provided between the top PCB 902 and the bottom PCB 903. Within the MEMS microphone a MEMS cartridge 911 comprising a membrane 912 and a front chamber 918 is provided. The MEMS microphone further comprises a back chamber 914 within which back chamber 914 a signal processor 913 and one or more via's 915 are provided. As addressed above a pressure variation generator is arranged on top of the MEMS microphone. As seen in
The housing 904 of the pressure variation generator can be made of any suitable material as long as it seals the inside completely. Preferably, a thin metal shield is applied. A small hole with a low-frequency roll off below 10 Hz may be allowed as such a small hole does not introduce acoustic noise.
The mass of the moveable mass 905 is preferable around 4 mg. It is estimated that the practical minimum mass would be around 0.004 mg as this would add +30 dB to the noise. Similarly, a mass of 0.04 mg would add +20 dB to the noise, and a mass of 0.4 mg would add +10 dB to the noise. Thus, the higher the mass of the moveable mass the lower is the effect of the thermal movement noise of the vibration sensor.
The area of the suspension member 906 and the moveable mass 905 should be as large as possible, and preferably larger than 0.5 mm2, such as larger than 1 mm2, such as larger than 2 mm2, such as larger than 4 mm2, such as larger than 6 mm2, such as larger than 8 mm2, such as larger than 10 mm2. A large area of the suspension member 906 and the moveable mass 905 is advantageous as this requires a smaller amplitude of the movement of the moveable mass 905 in order to reach certain volume displacement and thereby sensitivity.
As seen in
A compliant sealing 919 in the form of for example a foil, membrane or gel is preferably provided along the edges of the suspension member 906. Preferably, the compliant sealing should have a low stiffness and it should be able to withstand reflow temperatures.
Optionally the volume above the suspension member 906 of the pressure variation generator may be acoustically connected to the back volume 914 of the MEMS microphone. This acoustical connection (not shown) may be provided by for example a tube.
Referring to
An acoustical opening 1010 is provided in the PCB 1002. Within the MEMS microphone a MEMS cartridge 1006 comprising a membrane 1008 and a front chamber 1011 is provided. The MEMS microphone further comprises a back chamber 1009 within which back chamber 1009 a signal processor 1007 is provided. As addressed above a pressure variation generator is arranged on top of at least part of the MEMS microphone. As seen in
Similar to the embodiment shown in
In
An acoustical opening 1108 is provided in the PCB 1103. Within the MEMS microphone a MEMS cartridge 1110 comprising a membrane 1111 and a front chamber 1113 is provided. The MEMS microphone further comprises a back chamber 1112 within which back chamber 1112 a signal processor 1114 is provided. As seen in
Similar to the embodiments shown in
Number | Date | Country | Kind |
---|---|---|---|
16186012 | Aug 2016 | EP | regional |
17165245 | Apr 2017 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4607383 | Ingalls | Aug 1986 | A |
6788796 | Miles | Sep 2004 | B1 |
6831577 | Furst | Dec 2004 | B1 |
6853290 | Jorgensen | Feb 2005 | B2 |
6859542 | Johannsen | Feb 2005 | B2 |
6888408 | Furst | May 2005 | B2 |
6914992 | van Halteren | Jul 2005 | B1 |
6919519 | Ravnkilde | Jul 2005 | B2 |
6930259 | Jorgensen | Aug 2005 | B1 |
6943308 | Ravnkilde | Sep 2005 | B2 |
6974921 | Jorgensen | Dec 2005 | B2 |
7008271 | Jorgensen | Mar 2006 | B2 |
7012200 | Moller | Mar 2006 | B2 |
7062058 | Steeman | Jun 2006 | B2 |
7062063 | Hansen | Jun 2006 | B2 |
7072482 | Van Doom | Jul 2006 | B2 |
7088839 | Geschiere | Aug 2006 | B2 |
7110560 | Stenberg | Sep 2006 | B2 |
7136496 | van Halteren | Nov 2006 | B2 |
7142682 | Mullenbom | Nov 2006 | B2 |
7181035 | van Halteren | Feb 2007 | B2 |
7190803 | van Halteren | Mar 2007 | B2 |
7206428 | Geschiere | Apr 2007 | B2 |
7221767 | Mullenbom | May 2007 | B2 |
7221769 | Jorgensen | May 2007 | B1 |
7227968 | van Halteren | Jun 2007 | B2 |
7239714 | de Blok | Jul 2007 | B2 |
7245734 | Niederdraenk | Jul 2007 | B2 |
7254248 | Johannsen | Aug 2007 | B2 |
7286680 | Steeman | Oct 2007 | B2 |
7292700 | Engbert | Nov 2007 | B1 |
7292876 | Bosh | Nov 2007 | B2 |
7336794 | Furst | Feb 2008 | B2 |
7376240 | Hansen | May 2008 | B2 |
7403630 | Jorgensen | Jul 2008 | B2 |
7415121 | Mögelin | Aug 2008 | B2 |
7425196 | Jorgensen | Sep 2008 | B2 |
7460681 | Geschiere | Dec 2008 | B2 |
7466835 | Stenberg | Dec 2008 | B2 |
7492919 | Engbert | Feb 2009 | B2 |
7548626 | Stenberg | Jun 2009 | B2 |
7657048 | van Halteren | Feb 2010 | B2 |
7684575 | van Halteren | Mar 2010 | B2 |
7706561 | Wilmink | Apr 2010 | B2 |
7715583 | Van Halteren | May 2010 | B2 |
7728237 | Pedersen | Jun 2010 | B2 |
7809151 | Van Halteren | Oct 2010 | B2 |
7822218 | Van Halteren | Oct 2010 | B2 |
7899203 | Van Halteren | Mar 2011 | B2 |
7912240 | Madaffari | Mar 2011 | B2 |
7946890 | Bondo | May 2011 | B1 |
7953241 | Jorgensen | May 2011 | B2 |
7961899 | Van Halteren | Jun 2011 | B2 |
7970161 | van Halteren | Jun 2011 | B2 |
8098854 | van Halteren | Jan 2012 | B2 |
8101876 | Andreasen | Jan 2012 | B2 |
8103039 | van Halteren | Jan 2012 | B2 |
8160290 | Jorgensen | Apr 2012 | B2 |
8170249 | Halteren | May 2012 | B2 |
8189804 | Hruza | May 2012 | B2 |
8189820 | Wang | May 2012 | B2 |
8223996 | Beekman | Jul 2012 | B2 |
8233652 | Jorgensen | Jul 2012 | B2 |
8259963 | Stenberg | Sep 2012 | B2 |
8259976 | van Halteren | Sep 2012 | B2 |
8259977 | Jorgensen | Sep 2012 | B2 |
8280082 | van Halteren | Oct 2012 | B2 |
8284966 | Wilk | Oct 2012 | B2 |
8313336 | Bondo | Nov 2012 | B2 |
8315422 | van Halteren | Nov 2012 | B2 |
8331595 | van Halteren | Dec 2012 | B2 |
8369552 | Engbert | Feb 2013 | B2 |
8379899 | van Halteren | Feb 2013 | B2 |
8509468 | van Halteren | Aug 2013 | B2 |
8526651 | Lafort | Sep 2013 | B2 |
8526652 | Ambrose | Sep 2013 | B2 |
20030076970 | van Halteren | Apr 2003 | A1 |
20040249633 | Asseily | Dec 2004 | A1 |
20060227984 | Sinclair | Oct 2006 | A1 |
20100077863 | Miyoshi | Apr 2010 | A1 |
20100275675 | Seppa | Nov 2010 | A1 |
20110179876 | Kasai et al. | Jul 2011 | A1 |
20110182453 | van Hal | Jul 2011 | A1 |
20110189880 | Bondo | Aug 2011 | A1 |
20110299708 | Bondo | Dec 2011 | A1 |
20110299712 | Bondo | Dec 2011 | A1 |
20110311069 | Ambrose | Dec 2011 | A1 |
20120014548 | van Halteren | Jan 2012 | A1 |
20120027245 | van Halteren | Feb 2012 | A1 |
20120140966 | Mocking | Jun 2012 | A1 |
20120155683 | van Halteren | Jun 2012 | A1 |
20120155694 | Reeuwijk | Jun 2012 | A1 |
20120255805 | van Halteren | Oct 2012 | A1 |
20130028451 | de Roo | Jan 2013 | A1 |
20130136284 | van Hal | May 2013 | A1 |
20130142370 | Engbert | Jun 2013 | A1 |
20130163799 | Van Halteren | Jun 2013 | A1 |
20130195295 | van Halteren | Aug 2013 | A1 |
20150251898 | Vos | Sep 2015 | A1 |
20160003698 | Wiesbauer | Jan 2016 | A1 |
20160112808 | Geiger | Apr 2016 | A1 |
20170289703 | Bartl | Oct 2017 | A1 |
20180139543 | Clerici | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2727712 | Sep 2005 | CN |
1748287 | Jan 2007 | EP |
2320678 | May 2011 | EP |
2536169 | Dec 2012 | EP |
2451909 | Feb 2009 | GB |
2013-175847 | Sep 2013 | JP |
Entry |
---|
European Patent Office, Extended European Search Report for Application No. 17165245, dated Dec. 15, 2017 (3 pages). |
Extended European Search Report for Application No. 16186012, dated Feb. 23, 2017 (4 pages). |
Number | Date | Country | |
---|---|---|---|
20180058915 A1 | Mar 2018 | US |