VIRAL ATTENUATION AND VACCINE PRODUCTION

Abstract
The present invention is directed to the generation of attenuated viruses or viral transcripts for the production of vaccines by incorporating microRNA binding sites within the viral target sequence of the pathogen.
Description
REFERENCE TO SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled ALN168WOSEQLST.txt created on Jan. 16, 2013 which is 1,070,041 bytes in size. The information in electronic format of the sequence listing is incorporated herein by reference in its entirety.


FIELD OF THE INVENTION

The present invention is directed to the generation of attenuated viruses or viral transcripts for the production of vaccines.


BACKGROUND OF THE INVENTION

Herpes simplex virus type 1 (HSV-1; HHV1) and Herpes simplex virus type 2 (HSV-2; HHV2) are common human pathogens which cause a variety of clinical illnesses, including oral-facial infections, genital herpes, ocular infections, herpes encephalitis, and neonatal herpes.


The Herpes simplex virus has a rapid lytic replication cycle and the ability to invade sensory neurons where highly restricted gene expression occurs during a latent or nonpathologic state. Such latent infections are subject to reactivation whereby infectious virus can be recovered in peripheral tissue enervated by the latently infected neurons following a specific physiological stress. A major factor in the switch from lytic to latent infection and back involves changes in transcription patterns, mainly as a result of the interaction between viral promoters, the viral genome, and cellular transcriptional machinery. The ability to interfere with any of these pathways could prove useful in the development of vaccines against the family of viruses.


To this end, efforts to effectively attenuate the HSV virus have met with significant challenges. The Herpes genome is quite large and complex. The genome of the Herpes virus is a nuclear replicating, double-stranded DNA approximately 152,000 base pairs in length which circularizes upon infection and which encodes some 100-200 genes. These genes encode a variety of proteins involved in forming the capsid, tegument and envelope of the virus, as well as controlling the replication and infectivity of the virus. The HSV envelope alone contains at least 8 glycoproteins while the matrix or tegument which contacts both the envelope and the capsid contains at least 15-20 proteins. Consequently, approaches to design an effective vaccine against HSV have been unsuccessful to date.


The present invention solves the problem in the art through the use of engineered viral transcripts (in whole or in part) incorporating one or more microRNA (miRNA) target or binding sites.


SUMMARY OF THE INVENTION

Described herein are compositions and methods useful in the control, regulation, exploitation and study of viral transcripts, particularly those in the Herpesviridae family. Also described are compositions and methods for the diagnosis, prevention, amelioration and/or treatment of viral infections involving the replication status or activity of viruses, particularly Herpes viruses.


The present invention embraces, in one embodiment, a mutant HSV-1 strain comprising at least one miRNA site such as for example those listed in Table 3. The mutant HSV-1 strain may include one or more miRNA sites, is present in a translated or untranslated region of an HSV-1 gene encoded by the HSV-1 strain. In one embodiment, the untranslated region may be selected from the group consisting of the 3′UTR, the 5′ UTR, an intron, and an intragenic region. The miRNA sites may range in size from 17-25, or longer. They may also be subportions as small as 6 nucleotides in length. Where multiple miRNA sites are engineered into the viral target sequence, they may have the same or different sequences. There may be a plurality of miRNA sites, e.g., 2 or more, 3 or more or 5 or more. Further to the invention are methods of immunizing a subject with an HSV-1 antigen comprising contacting said subject with a composition comprising a mutant HSV-1 strain, mutant HSV-1 gene or mutant HSV-1 polynucleotide sequence, wherein the mutant strain, gene or polynucleotide sequence has been engineered to contain at least one miRNA site of Table 3. Administration may be more than once and may occur on an immunization or booster schedule. The composition administered as a vaccine may be formulated for systemic delivery and the formulation may comprise saline or include carriers and/or excipients. The vaccines may also be delivered with adjuvants such as lipids or lipid-like molecules.


The details of various embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description and the drawings, and from the claims.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic showing alternatives to engineering attenuated viruses by incorporating miRNA sites into the 5′UTR, CDS or 3′UTR of a viral transcript. Shown in FIG. 1A is the incorporation into the wild-type (wt) US1 gene of HSV-1 of mir-128, 135a and 183 sites to produce mutant (mt) sequences. Shown in FIG. 1B is the incorporation into the HSV-1 RL2 gene of mir-124 and mir-9 sites. In the figure, “nonessential” indicates that the first position of the miRNA-target pair is not essential for activity. “Silent” refers to a silent substitution, “Cons” means conservative replacement substitution; “Noncons” means nonconservative replacement substitution where “replacement” means changing the amino acid encoded by the codon containing that nucleotide.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to the design, generation, and production of useful vaccines through attenuation or modification of wild-type viral sequences in order to elicit from a patient or subject an immune response sufficient to ensure protection against an insult from the pathogen in the future. In presently doing so, viral attenuation is achieved through the utilization of microRNA (miRNA) sequences (including miRNA seeds), sites and signatures.


Specifically, it has been discovered that incorporation of one or more miRNA sequences, seeds or signatures into an HSV viral target sequence can lead to post-infection or host-supported viral attenuation. This occurs because the presence of the incorporated miRNA site within the viral sequence elicits binding by endogenous microRNAs present in the cells or tissue. This binding may interfere with critical replication pathways and results in an attenuated virus which, by definition, may now function as a vaccine. As used herein, the term “miRNA site” refers to a nucleotide sequence to which a microRNA binds or associates. It should be understood that “binding” may follow traditional Watson-Crick hybridization rules or may reflect any stable association of the microRNA with the viral target sequence at or adjacent to the miRNA site.


For example, a mutant HSV strain, which is engineered to contain one or more miRNA sites (a region of nucleic acid sequence to which a miRNA will bind) would, upon entering a cell, such as an epithelial cell, be susceptible to binding by any microRNAs present which recognize the engineered site. Upon binding, viral replication or other critical viral lifecycle processes would be compromised thereby reducing or eliminating the threat of viral infection but providing a sufficient trigger for the host organism to mount an immune response.


According to the present invention, the virus which is the target of the vaccine will be one that is capable of infecting eukaryotic cells, e.g., mammalian cells, avian cells, murine cells, human cells and the like. In various embodiments, the virus belongs to the Herpesviridae, Retroviridae, Reoviridae, Adenoviridae, Flaviviridae, Poxyiridae, Caliciviridae, Togaviridae, Coronaviridae, Rhabdoviridae, Filoviridae, Paramyxoviridae, Orthomyxoviridae, Bunyaviridae, Arenaviridae, Bornaviridae, Polyomaviridae, Papillomaviridae, Parvoviridae, Hepadnaviridae or Picornaviridae families.


In one embodiment, the virus is selected from Adenovirus, Cytomegalovirus (e.g., HCMV, HHV5), Epstein Barr virus (e.g., EBV, HHV4), Human Papilloma virus (HPV), MHV-68, Human Immunodeficiency Virus (HIV), Hepatitis A Virus (HAV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), Hepatitis E Virus (HEV), Rubella Virus, Mumps Virus, Measles Virus, Respiratory Syncytial Virus, Human T-cell Leukemia Virus, Lentivirus, Herpes Simplex Virus (e.g., Herpes Simplex 1 (HSV1, HHV1), Herpes Simplex 2 (HSV2, HHV2)), Varicella-Zoster Virus (e.g., HHV3), Human Herpesviruses 6A, 6B, and 7, Kaposi's Sarcoma-Associated Herpesvirus (e.g., KSHV, HHV8), Cercopithecine Herpesvirus, Hepatitis Delta Virus, Dengue Virus, Foot and Mouth Disease Virus, Polyomavirus (e.g., JC, BK), Poliovirus, Coxsackievirus, Echovirus, Rhinovirus, Vacciniavirus, Small Pox Virus, Influenza Virus, or Avian Influenza Virus.


In particular, the virus belongs to the Herpesviridae family and is selected from the alpha viruses (HHV1, HHV2 or HHV3), the beta viruses (HHV5, 6A, 6B or HHV7) or the gamma viruses (HHV8 or HHV4).


According to the present invention wild-type viral sequences are engineered to contain one or more miRNA sequences, sites or signatures thus producing a mutant viral sequence. A “viral sequence” or “viral target sequence” includes any polynucleotide (DNA or RNA or combination thereof) which is viral in origin. As used herein, “wild-type” means that state, status or type which is naturally found in nature. “Mutant (mt)” sequences are those which have been altered in some form whether by insertion, deletion, duplication, inversion or the like and which differ from the wild-type version of the sequence.


The wild-type viral target sequences to be engineered include genomic sequences (in whole or in part), gene sequences, or subregions or features of these sequences such as repeat regions, inverted regions, polyA tails, coding regions, promoters, 5′ or 3′ untranslated regions (UTRs), intronic regions, or any intervening viral sequence or subportion thereof.


Shown in Table 1 are representative examples of viral targets of the present invention. Listed in Table 2 are the 77 genes of the HSV-1 genome. Given are the nucleotide ranges of SEQ ID NO: 1 that define each of the genes. Where the range is preceded by the term “Complement” it is to be understood that the particular gene is encoded on the opposite strand of the dsDNA virus and hence the sequence represents the complement of the nucleotide range given. Also listed is a description of the type of protein encoded by each gene.













TABLE 1








Viral Transcript Reference




Virus Name
Sequence (genome)
SEQ ID









HSV-1
NC_001806.1
1



HSV-2
NC_001798.1
2





















TABLE 2








Nucleotide range of




HSV-1
NC_001806.1



Gene
(SEQ ID 1)
Protein Product



















1
RL1
513-1539
neurovirulence protein ICP34.5


2
RL2
2086-5698
Ubiquitin E3 ligase ICP0


3
UL1
9337-10948
Envelope glycoprotein L


4
UL2
9884-10948
Uracyl-DNA glycosylase


5
UL3
10957-11720
Nuclear protein UL3


6
UL4
Complement (11753-12422)
Nuclear protein UL4


7
UL5
Complement (11753-15131)
helicase-primase helicase subunit


8
UL6
15130-18040
Capsid portal protein


9
UL7
17135-18040
Tegument protein UL7


10
UL8
Complement (18210-20476)
helicase-primase subunit


11
UL9
Complement (18210-23259)
DNA replication origin-binding helicase


12
UL10
23204-24648
envelope glycoprotein M


13
UL11
Complement (24800-25501)
myristylated tegument protein


14
UL12
Complement (24800-27046)
deoxyribonuclease


15
UL13
Complement (24800-28691)
tegument serine/threonine protein kinase


16
UL14
Complement (24800-28915)
tegument protein UL14


17
UL15
28804-34825
DNA packaging terminase subunit 1


18
UL16
Complement (30173-31670)
tegument protein UL16


19
UL17
Complement (30173-33666)
DNA packaging tegument protein UL17


20
UL18
Complement (35023-36051)
Capsid triplex subunit 2


21
UL19
Complement (35023-40768)
Major capsid protein


22
UL20
Complement (35023-41488)
Envelope protein UL20


23
UL21
42074-43695
Tegument protein UL21


24
UL22
Complement (43824-46581)
Envelope glycoprotein H


25
UL23
Complement (46608-47911)
Thymidine kinase


26
UL24
47737-48744
Nuclear protein UL24


27
UL25
48813-52771
DNA packaging tegument protein UL25


28
UL26
50809-52771
Capsid maturation protease


29
UL26.5
51727-52771
Capsid scaffold protein


30
UL27
Complement (53058-56080)
Envelope glycoprotein B


31
UL28
Complement (53058-58320)
DNA packaging terminase subunit 2


32
UL29
Complement (58409-62053)
Single-stranded DNA-binding protein


33
UL30
62606-66553
DNA polymerase catalytic subunit


34
UL31
Complement (66377-67379)
Nuclear egress lamina protein


35
UL32
Complement (66377-69162)
DNA packaging protein UL32


36
UL33
69161-70943
DNA packaging protein UL33


37
UL34
69633-70943
Nuclear egress membrane protein


38
UL35
70566-70943
Small capsid protein


39
UL36
Complement (70983-80543)
Large tegument protein


40
UL37
Complement (80712-84084)
Tegument protein UL37


41
UL38
84531-86021
Capsid triplex subunit 1


42
UL39
86217-90988
Ribonucleotide reductase subunit 1


43
UL40
89773-90988
Ribonucleotide reductase subunit 2


44
UL41
Complement (91116-92740)
Tegument host shutoff protein


45
UL42
92920-94638
DNA polymerase processivity subunit


46
UL43
94748-96068
Envelope protein UL43


47
UL44
96168-98998
Envelope glycoprotein C


48
UL45
97953-98668
Membrane protein UL45


49
UL46
Complement (98726-100998)
Tegument protein VP11/12


50
UL47
Complement (98726-103116)
Tegument protein VP13/14


51
UL48
Complement (103537-105259)
Transactivating tegument protein VP16


52
UL49A
Complement (105462-106993)
Envelope glycoprotein N


53
UL49
Complement (105462-106391)
Tegument protein VP22


54
UL50
107010-108157
Deoxyuridine triphosphatase


55
UL51
Complement (108276-109011)
Tegument protein UL51


56
UL52
109048-113448
Helicase-primase primase subunit


57
UL53
112179-113448
Envelope glycoprotein K


58
UL54
113596-115282
Multifunctional expression regulator


59
UL55
115496-116103
Nuclear protein UL55


60
UL56
Complement (116196-116925)
membrane protein UL56


61
RL2
Complement (120673-124285)
Ubiquitin E3 ligase ICP0


62
RL1
Complement (124832-125858)
Neurovirulence protein ICP34.5


63
RS1
Complement (127170-131457)
Transcriptional regulator ICP4


64
US1
132098-133960
Regulator protein ICP22


65
US2
Complement (134023-135333)
Virion protein US2


66
US3
134934-137531
Serine/threonine protein kinase US3


67
US4
136702-137531
Envelope glycoprotein G


68
US5
137596-141048
Envelope glycoprotein J


69
US6
138309-141048
Envelope glycoprotein D


70
US7
139668-141048
Envelope glycoprotein I


71
US8
141139-143693
Envelope glycoprotein E


72
US8A
142744-143693
Membrane protein US8A


73
US9
143219-143693
Membrane protein US9


74
US10
Complement (144119-145194)
Virion protein US10


75
US11
Complement (144119-145490)
Tegument protein US11


76
US12
Complement (144119-146135)
TAP transporter inhibitor ICP47


77
RS1
146776-151063
Transcriptional regulator ICP4









Of the 77 genes in the HSV-1 genome, certain genes are more likely targets for attenuation. These include, the essential DNA replication HSV proteins: UL9, UL29, UL5, UL52, ULB, UL30, UL42; the immediate early genes: ICPO, ICP4, ICP27, ICP22; and the immune evasion genes: ICP47, and UL4.


Viral attenuation for the production of a vaccine may be achieved in one of several ways. For example, incorporation of one or more miRNA sites or signatures into a wild-type viral target sequence and then administration of the mutant viral strain may result in attenuation. As used herein “attenuation” means the process by which an infectious agent is altered in whole or part so that it becomes harmless or less virulent. An attenuated virus may serve as a vaccine. It is also understood that a portion, gene, or region of the viral target sequences comprising one or more miRNA sites described here may serve as a vaccine. A “vaccine” is any composition, compound or molecule that improves immunity to a particular disease. Vaccines of the present invention may be used to stimulate the production of antibodies and provide immunity against one or more diseases, viral and the like. In some cases, a vaccine resembles a disease-causing microorganism such as a virus, and is often made from weakened or killed forms of the virus, its toxins or one of its proteins. Vaccines of the present invention may be polynucleotides, polypeptides or combinations of both, e.g., chimeric molecules. They may be bound or associated with non-nucleic acid or non-protein moieties or conjugates. Vaccines of the present invention may comprise an entire viral genome which has been mutated by the addition of one miRNA site which shares some homology to the insertion point and they may also comprise the viral genome which has had inserted therein multiple sites. These multiple sites may be incorporated into one viral region or feature, e.g., a 3′UTR, or may be inserted across multiple features of the viral genome. Further, the present invention is not limited to the insertion or engineering of only one miRNA site (one miRNA sequences' complement) per viral target sequence. Multiple different miRNA may be used as the source of sites to be inserted. Likewise, the exact site sequence need not be used. Sites inserted may be 100% identical to the wild-type miRNA site. They may also be at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30% or at least 20% identical. It will be understood that the percent identity may be higher where shorter mature miRNA sites or miRNA seed sites are used.


Fusion molecules are also contemplated by the invention. Fusion of the viral genome, gene, or target sequence to one or more nucleic acids or proteins is contemplated. For research purposes, it will be useful to fuse one or more viral target sequences (whether wild type or mutant) to a reporter molecule such as luciferase. Dual reporters may also be used and may be fluorescent, colorimetric, etc.


In one embodiment the viral target sequence of the vaccine will be of Herpes virus origin. In one embodiment the viral target sequence will be derived from the HSV-1 genome (SEQ ID NO:1). Where the vaccines of the present invention are nucleic acid based, they will comprise at least one miRNA binding or target site.


The viral target sequence of the vaccines of the present invention may comprise the entire HSV genome with one or more added miRNA binding sites or may be a portion of the HSV genome. As used herein, an miRNA “binding site” refers to a sequence that may foster interaction of an miRNA and the sequence. This interaction need not be complete binding as that term is known in the art and may be less than 100 percent hybridization. A binding site may also be referred to as a “target site”. Mismatches as between the sequence of any endogenous miRNA and the binding or targeting site engineered into the viral target sequence is contemplated as part of the invention.


In one embodiment, the vaccine is an HSV mutant strain DNA polynucleotide which is 152,261 nucleotides in length and comprises one or more miRNA binding sites engineered into the wild type genome to produce the mutant strain.


In one embodiment the vaccine of the invention is between 100,000-200,000 nucleotides in length. The vaccine may be composed of only one of the genes of the virus which has incorporated or engineered therein, one or more miRNA binding sites. In this embodiment the vaccine sequence may be from 100 to 100,000, from 500 to 50,000, from 1,000 to 5,000 nucleotides in length. It is to be understood that where the virus is a double stranded virus (whether DNA or RNA), the lengths recited or listed ranges may refer to the number of base pairs present in the vaccine.


Mammalian genomes are predicted to encode at least 200 to 1000 distinct miRNAs, many of which are estimated to interact with 5-10 different mRNA transcripts. Accordingly, miRNAs are predicted to regulate most if not all genes. miRNAs are differentially expressed in various tissues, such that each tissue is characterized by a specific set of miRNAs. miRNAs have been shown to be important modulators of cellular pathways including growth and proliferation, apoptosis, and developmental timing.


In the context of the present invention, miRNA sequences, including their pre-, pri- and mature sequences, as well as miRNA seeds and signatures may be used to design miRNA sites which are added to wild type viral target sequences in order to produce the vaccine compositions of the present invention.


The miRNA sequences (including miRNA seeds, sites, signatures and/or precursors) which may be incorporated into the wild type viral target sequences may be from any known miRNA such as those taught in US Publication US2005/0261218 and US Publication US2005/0059005, the contents of which are incorporated herein by reference in their entirety.


The miRNA sites of the present invention may encompass “miRNA precursors” or “mature miRNA” or variants or “miRNA seeds”, or combinations thereof. A miRNA “seed” is that sequence with nucleotide identity at positions 2-8 of the mature miRNA. In one embodiment, a miRNA seed comprises positions 2-7 of the mature miRNA. In another embodiment, a miRNA seed may comprise 8 nucleotides (e.g., nucleotides 2-8 of the mature miRNA) having an adenine (A) at position 1. In another embodiment, a miRNA seed may comprise 7 nucleotides (e.g., nucleotides 2-7 of the mature miRNA) having an adenine (A) at position 1. See for example, Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P; Mol. Cell. 2007 Jul. 6; 27(1):91-105.


As used herein, the term “miRNA precursor” is used to encompass, without limitation, primary RNA transcripts, pri-miRNAs and pre-miRNAs. Examples of small non-coding RNAs include, but are not limited to, primary miRNA transcripts (also known as pri-pre-miRNAs, pri-mirs and pri-miRNAs, which range from around 70 nucleotides to about 450 nucleotides in length and often taking the form of a hairpin structure); pre-miRNAs (also known as pre-mirs and foldback miRNA precursors, which range from around 50 nucleotides to around 110 nucleotides in length); miRNAs (also known as microRNAs, Mirs, miRs, mirs, and mature miRNAs, and generally refer either to intermediate molecules around 17 to about 25 nucleotides in length, or to single-stranded miRNAs, which may comprise a bulged structure upon hybridization with a partially complementary target nucleic acid molecule); or mimics of pri-miRNAs, pre-miRNAs or miRNAs. Examples of each of these types of miRNA constructs is taught in, for example, US Publication US2005/0261218 to Esau et. al, the contents of which are incorporated herein by reference in its entirety.


In some embodiments, the pri-miRNAs which may be incorporated into viral target sequences to create a miRNA binding site are 70 to 450 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449 or 450 nucleobases in length, or any range therewithin.


In some embodiments, pri-miRNAs, which may be incorporated into viral target sequences to create a miRNA binding site are 110 to 430 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429 or 430 nucleobases in length, or any range therewithin.


In some embodiments, pri-miRNAs, which may be incorporated into viral target sequences to create a miRNA binding site are 110 to 280 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279 or 280 nucleobases in length, or any range therewithin.


In some embodiments, pre-miRNAs, which may be incorporated into viral target sequences to create a miRNA binding site are 50 to 110 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 70, 71 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 or 110 nucleobases in length, or any range therewithin.


In some embodiments, pre-miRNAs, which may be incorporated into viral target sequences to create a miRNA binding site are 60 to 80 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 nucleobases in length, or any range therewithin.


In some embodiments, miRNAs, which may be incorporated into viral target sequences to create a miRNA binding site are 15 to 49 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 or 49 nucleobases in length, or any range therewithin.


In some embodiments, miRNAs, which may be incorporated into viral target sequences to create a miRNA binding site are 17 to 25 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleobases in length, or any range therewithin.


miRNA of human origin are of particular use in the present invention. These microRNAs, as well as their reverse complements (or sites) are listed in Table 3 below.









TABLE 3








Homo sapiens miRNA














SEQ

SEQ




ID
REVERSE COMPLMENT
ID


miRNA Name
miRNA (5′-3′)
NO:
(miRNA site)
NO:














let-7a-2-3p
CUGUACAGCCUCCUAGC
3
GGAAAGCUAGGAGGCUG
4



UUUCC

UACAG






let-7a-3p
CUAUACAAUCUACUGUC
5
GAAAGACAGUAGAUUGU
6



UUUC

AUAG






let-7a-5p
UGAGGUAGUAGGUUGUA
7
AACUAUACAACCUACUAC
8



UAGUU

CUCA






let-7b-3p
CUAUACAACCUACUGCC
9
GGGAAGGCAGUAGGUUG
10



UUCCC

UAUAG






let-7b-5p
UGAGGUAGUAGGUUGUG
11
AACCACACAACCUACUAC
12



UGGUU

CUCA






let-7c
UGAGGUAGUAGGUUGUA
13
AACCAUACAACCUACUAC
14



UGGUU

CUCA






let-7d-3p
CUAUACGACCUGCUGCC
15
AGAAAGGCAGCAGGUCGU
16



UUUCU

AUAG






let-7d-5p
AGAGGUAGUAGGUUGCA
17
AACUAUGCAACCUACUAC
18



UAGUU

CUCU






let-7e-3p
CUAUACGGCCUCCUAGC
19
GGAAAGCUAGGAGGCCGU
20



UUUCC

AUAG






let-7e-5p
UGAGGUAGGAGGUUGUA
21
AACUAUACAACCUCCUAC
22



UAGUU

CUCA






let-7f-1-3p
CUAUACAAUCUAUUGCC
23
GGGAAGGCAAUAGAUUG
24



UUCCC

UAUAG






let-7f-2-3p
CUAUACAGUCUACUGUC
25
GGAAAGACAGUAGACUG
26



UUUCC

UAUAG






let-7f-5p
UGAGGUAGUAGAUUGUA
27
AACUAUACAAUCUACUAC
28



UAGUU

CUCA






let-7g-3p
CUGUACAGGCCACUGCC
29
GCAAGGCAGUGGCCUGUA
30



UUGC

CAG






let-7g-5p
UGAGGUAGUAGUUUGUA
31
AACUGUACAAACUACUAC
32



CAGUU

CUCA






let-7i-3p
CUGCGCAAGCUACUGCC
33
AGCAAGGCAGUAGCUUGC
34



UUGCU

GCAG






let-7i-5p
UGAGGUAGUAGUUUGUG
35
AACAGCACAAACUACUAC
36



CUGUU

CUCA






miR-1
UGGAAUGUAAAGAAGUA
37
AUACAUACUUCUUUACAU
38



UGUAU

UCCA






miR-100-3p
CAAGCUUGUAUCUAUAG
39
CAUACCUAUAGAUACAAG
40



GUAUG

CUUG






miR-100-5p
AACCCGUAGAUCCGAAC
41
CACAAGUUCGGAUCUACG
42



UUGUG

GGUU






miR-101-3p
UACAGUACUGUGAUAAC
43
UUCAGUUAUCACAGUACU
44



UGAA

GUA






miR-101-5p
CAGUUAUCACAGUGCUG
45
AGCAUCAGCACUGUGAUA
46



AUGCU

ACUG






miR-103a-2-5p
AGCUUCUUUACAGUGCU
47
CAAGGCAGCACUGUAAAG
48



GCCUUG

AAGCU






miR-103a-3p
AGCAGCAUUGUACAGGG
49
UCAUAGCCCUGUACAAUG
50



CUAUGA

CUGCU






miR-103b
UCAUAGCCCUGUACAAU
51
AGCAGCAUUGUACAGGGC
52



GCUGCU

UAUGA






miR-105-3p
ACGGAUGUUUGAGCAUG
53
UAGCACAUGCUCAAACAU
54



UGCUA

CCGU






miR-105-5p
UCAAAUGCUCAGACUCC
55
ACCACAGGAGUCUGAGCA
56



UGUGGU

UUUGA






miR-106a-3p
CUGCAAUGUAAGCACUU
57
GUAAGAAGUGCUUACAU
58



CUUAC

UGCAG






miR-106a-5p
AAAAGUGCUUACAGUGC
59
CUACCUGCACUGUAAGCA
60



AGGUAG

CUUUU






miR-106b-3p
CCGCACUGUGGGUACUU
61
GCAGCAAGUACCCACAGU
62



GCUGC

GCGG






miR-106b-5p
UAAAGUGCUGACAGUGC
63
AUCUGCACUGUCAGCACU
64



AGAU

UUA






miR-107
AGCAGCAUUGUACAGGG
65
UGAUAGCCCUGUACAAUG
66



CUAUCA

CUGCU






miR-10a-3p
CAAAUUCGUAUCUAGGG
67
UAUUCCCCUAGAUACGAA
68



GAAUA

UUUG






miR-10a-5p
UACCCUGUAGAUCCGAA
69
CACAAAUUCGGAUCUACA
70



UUUGUG

GGGUA






miR-10b-3p
ACAGAUUCGAUUCUAGG
71
AUUCCCCUAGAAUCGAAU
72



GGAAU

CUGU






miR-10b-5p
UACCCUGUAGAACCGAA
73
CACAAAUUCGGUUCUACA
74



UUUGUG

GGGUA






miR-1178
UUGCUCACUGUUCUUCC
75
CUAGGGAAGAACAGUGA
76



CUAG

GCAA






miR-1179
AAGCAUUCUUUCAUUGG
77
CCAACCAAUGAAAGAAUG
78



UUGG

CUU






miR-1180
UUUCCGGCUCGCGUGGG
79
ACACACCCACGCGAGCCG
80



UGUGU

GAAA






miR-1181
CCGUCGCCGCCACCCGA
81
CGGCUCGGGUGGCGGCGA
82



GCCG

CGG






miR-1182
GAGGGUCUUGGGAGGGA
83
GUCACAUCCCUCCCAAGA
84



UGUGAC

CCCUC






miR-1183
CACUGUAGGUGAUGGUG
85
UGCCCACUCUCACCAUCA
86



AGAGUGGGCA

CCUACAGUG






miR-1184
CCUGCAGCGACUUGAUG
87
GGAAGCCAUCAAGUCGCU
88



GCUUCC

GCAGG






miR-1185-1-3p
AUAUACAGGGGGAGACU
89
AUAAGAGUCUCCCCCUGU
90



CUUAU

AUAU






miR-1185-2-3p
AUAUACAGGGGGAGACU
91
AUGAGAGUCUCCCCCUGU
92



CUCAU

AUAU






miR-1185-5p
AGAGGAUACCCUUUGUA
93
AACAUACAAAGGGUAUCC
94



UGUU

UCU






miR-1193
GGGAUGGUAGACCGGUG
95
GCACGUCACCGGUCUACC
96



ACGUGC

AUCCC






miR-1197
UAGGACACAUGGUCUAC
97
AGAAGUAGACCAUGUGUC
98



UUCU

CUA






miR-1200
CUCCUGAGCCAUUCUGA
99
GAGGCUCAGAAUGGCUCA
100



GCCUC

GGAG






miR-1202
GUGCCAGCUGCAGUGGG
101
CUCCCCCACUGCAGCUGG
102



GGAG

CAC






miR-1203
CCCGGAGCCAGGAUGCA
103
GAGCUGCAUCCUGGCUCC
104



GCUC

GGG






miR-1204
UCGUGGCCUGGUCUCCA
105
AUAAUGGAGACCAGGCCA
106



UUAU

CGA






miR-1205
UCUGCAGGGUUUGCUUU
107
CUCAAAGCAAACCCUGCA
108



GAG

GA






miR-1206
UGUUCAUGUAGAUGUUU
109
GCUUAAACAUCUACAUGA
110



AAGC

ACA






miR-1207-3p
UCAGCUGGCCCUCAUUU
111
GAAAUGAGGGCCAGCUGA
112



C








miR-1207-5p
UGGCAGGGAGGCUGGGA
113
CCCCUCCCAGCCUCCCUG
114



GGGG

CCA






miR-1208
UCACUGUUCAGACAGGC
115
UCCGCCUGUCUGAACAGU
116



GGA

GA






miR-122-3p
AACGCCAUUAUCACACU
117
UAUUUAGUGUGAUAAUG
118



AAAUA

GCGUU






miR-122-5p
UGGAGUGUGACAAUGGU
119
CAAACACCAUUGUCACAC
120



GUUUG

UCCA






miR-1224-3p
CCCCACCUCCUCUCUCCU
121
CUGAGGAGAGAGGAGGU
122



CAG

GGGG






miR-1224-5p
GGAGGACUCGGGAGGU
123
CCACCUCCCGAGUCCUCA
124



GG

C






miR-1225-3p
UGAGCCCCUGUGCCGCC
125
CUGGGGGCGGCACAGGGG
126



CCCAG

CUCA






miR-1225-5p
GUGGGUACGGCCCAGUG
127
CCCCCCACUGGGCCGUAC
128



GGGGG

CCAC






miR-1226-3p
UCACCAGCCCUGUGUUC
129
CUAGGGAACACAGGGCUG
130



CCUAG

GUGA






miR-1226-5p
GUGAGGGCAUGCAGGCC
131
CCCCAUCCAGGCCUGCAU
132



UGGAUGGGG

GCCCUCAC






miR-1227
CGUGCCACCCUUUUCCC
133
CUGGGGAAAAGGGUGGC
134



CAG

ACG






miR-1228-3p
UCACACCUGCCUCGCCCC
135
GGGGGGCGAGGCAGGUG
136



CC

UGA






miR-1228-5p
GUGGGCGGGGGCAGGUG
137
CACACACCUGCCCCCGCC
138



UGUG

CAC






miR-1229
CUCUCACCACUGCCCUCC
139
CUGUGGGAGGGCAGUGG
140



CACAG

UGAGAG






miR-1231
GUGUCUGGGCGGACAGC
141
GCAGCUGUCCGCCCAGAC
142



UGC

AC






miR-1233
UGAGCCCUGUCCUCCCG
143
CUGCGGGAGGACAGGGCU
144



CAG

CA






miR-1234
UCGGCCUGACCACCCAC
145
GUGGGGUGGGUGGUCAG
146



CCCAC

GCCGA






miR-1236
CCUCUUCCCCUUGUCUC
147
CUGGAGAGACAAGGGGA
148



UCCAG

AGAGG






miR-1237
UCCUUCUGCUCCGUCCC
149
CUGGGGGACGGAGCAGAA
150



CCAG

GGA






miR-1238
CUUCCUCGUCUGUCUGC
151
GGGGCAGACAGACGAGGA
152



CCC

AG






miR-124-3p
UAAGGCACGCGGUGAAU
153
GGCAUUCACCGCGUGCCU
154



GCC

UA






miR-124-5p
CGUGUUCACAGCGGACC
155
AUCAAGGUCCGCUGUGAA
156



UUGAU

CACG






miR-1243
AACUGGAUCAAUUAUAG
157
CACUCCUAUAAUUGAUCC
158



GAGUG

AGUU






miR-1244
AAGUAGUUGGUUUGUAU
159
AACCAUCUCAUACAAACC
160



GAGAUGGUU

AACUACUU






miR-1245a
AAGUGAUCUAAAGGCCU
161
AUGUAGGCCUUUAGAUCA
162



ACAU

CUU






miR-1245b-3p
UCAGAUGAUCUAAAGGC
163
UAUAGGCCUUUAGAUCAU
164



CUAUA

CUGA






miR-1245b-5p
UAGGCCUUUAGAUCACU
165
UUUAAGUGAUCUAAAGG
166



UAAA

CCUA






miR-1246
AAUGGAUUUUUGGAGCA
167
CCUGCUCCAAAAAUCCAU
168



GG

U






miR-1247-3p
CCCCGGGAACGUCGAGA
169
GCUCCAGUCUCGACGUUC
170



CUGGAGC

CCGGGG






miR-1247-5p
ACCCGUCCCGUUCGUCC
171
UCCGGGGACGAACGGGAC
172



CCGGA

GGGU






miR-1248
ACCUUCUUGUAUAAGCA
173
UUUAGCACAGUGCUUAUA
174



CUGUGCUAAA

CAAGAAGGU






miR-1249
ACGCCCUUCCCCCCCUUC
175
UGAAGAAGGGGGGGAAG
176



UUCA

GGCGU






miR-1250
ACGGUGCUGGAUGUGGC
177
AAAGGCCACAUCCAGCAC
178



CUUU

CGU






miR-1251
ACUCUAGCUGCCAAAGG
179
AGCGCCUUUGGCAGCUAG
180



CGCU

AGU






miR-1252
AGAAGGAAAUUGAAUUC
181
UAAAUGAAUUCAAUUUCC
182



AUUUA

UUCU






miR-1253
AGAGAAGAAGAUCAGCC
183
UGCAGGCUGAUCUUCUUC
184



UGCA

UCU






miR-1254
AGCCUGGAAGCUGGAGC
185
ACUGCAGGCUCCAGCUUC
186



CUGCAGU

CAGGCU






miR-1255a
AGGAUGAGCAAAGAAAG
187
AAUCUACUUUCUUUGCUC
188



UAGAUU

AUCCU






miR-1255b-2-3p
AACCACUUUCUUUGCUC
189
UGGAUGAGCAAAGAAAG
190



AUCCA

UGGUU






miR-1255b-5p
CGGAUGAGCAAAGAAAG
191
AACCACUUUCUUUGCUCA
192



UGGUU

UCCG






miR-1256
AGGCAUUGACUUCUCAC
193
AGCUAGUGAGAAGUCAA
194



UAGCU

UGCCU






miR-1257
AGUGAAUGAUGGGUUCU
195
GGUCAGAACCCAUCAUUC
196



GACC

ACU






miR-1258
AGUUAGGAUUAGGUCGU
197
UUCCACGACCUAAUCCUA
198



GGAA

ACU






miR-125a-3p
ACAGGUGAGGUUCUUGG
199
GGCUCCCAAGAACCUCAC
200



GAGCC

CUGU






miR-125a-5p
UCCCUGAGACCCUUUAA
201
UCACAGGUUAAAGGGUCU
202



CCUGUGA

CAGGGA






miR-125b-1-3p
ACGGGUUAGGCUCUUGG
203
AGCUCCCAAGAGCCUAAC
204



GAGCU

CCGU






miR-125b-2-3p
UCACAAGUCAGGCUCUU
205
GUCCCAAGAGCCUGACUU
206



GGGAC

GUGA






miR-125b-5p
UCCCUGAGACCCUAACU
207
UCACAAGUUAGGGUCUCA
208



UGUGA

GGGA






miR-126-3p
UCGUACCGUGAGUAAUA
209
CGCAUUAUUACUCACGGU
210



AUGCG

ACGA






miR-126-5p
CAUUAUUACUUUUGGUA
211
CGCGUACCAAAAGUAAUA
212



CGCG

AUG






miR-1260a
AUCCCACCUCUGCCACC
213
UGGUGGCAGAGGUGGGA
214



A

U






miR-1260b
AUCCCACCACUGCCACC
215
AUGGUGGCAGUGGUGGG
216



AU

AU






miR-1261
AUGGAUAAGGCUUUGGC
217
AAGCCAAAGCCUUAUCCA
218



UU

U






miR-1262
AUGGGUGAAUUUGUAGA
219
AUCCUUCUACAAAUUCAC
220



AGGAU

CCAU






miR-1263
AUGGUACCCUGGCAUAC
221
ACUCAGUAUGCCAGGGUA
222



UGAGU

CCAU






miR-1264
CAAGUCUUAUUUGAGCA
223
AACAGGUGCUCAAAUAAG
224



CCUGUU

ACUUG






miR-1265
CAGGAUGUGGUCAAGUG
225
AACAACACUUGACCACAU
226



UUGUU

CCUG






miR-1266
CCUCAGGGCUGUAGAAC
227
AGCCCUGUUCUACAGCCC
228



AGGGCU

UGAGG






miR-1267
CCUGUUGAAGUGUAAUC
229
UGGGGAUUACACUUCAAC
230



CCCA

AGG






miR-1268a
CGGGCGUGGUGGUGGGG
231
CCCCCACCACCACGCCCG
232



G








miR-1268b
CGGGCGUGGUGGUGGGG
233
CACCCCCACCACCACGCC
234



GUG

CG






miR-1269a
CUGGACUGAGCCGUGCU
235
CCAGUAGCACGGCUCAGU
236



ACUGG

CCAG






miR-1269b
CUGGACUGAGCCAUGCU
237
CCAGUAGCAUGGCUCAGU
238



ACUGG

CCAG






miR-127-3p
UCGGAUCCGUCUGAGCU
239
AGCCAAGCUCAGACGGAU
240



UGGCU

CCGA






miR-127-5p
CUGAAGCUCAGAGGGCU
241
AUCAGAGCCCUCUGAGCU
242



CUGAU

UCAG






miR-1270
CUGGAGAUAUGGAAGAG
243
ACACAGCUCUUCCAUAUC
244



CUGUGU

UCCAG






miR-1271-3p
AGUGCCUGCUAUGUGCC
245
UGCCUGGCACAUAGCAGG
246



AGGCA

CACU






miR-1271-5p
CUUGGCACCUAGCAAGC
247
UGAGUGCUUGCUAGGUGC
248



ACUCA

CAAG






miR-1272
GAUGAUGAUGGCAGCAA
249
UUUCAGAAUUUGCUGCCA
250



AUUCUGAAA

UCAUCAUC






miR-1273a
GGGCGACAAAGCAAGAC
251
AAGAAAGAGUCUUGCUU
252



UCUUUCUU

UGUCGCCC






miR-1273c
GGCGACAAAACGAGACC
253
GACAGGGUCUCGUUUUGU
254



CUGUC

CGCC






miR-1273d
GAACCCAUGAGGUUGAG
255
ACUGCAGCCUCAACCUCA
256



GCUGCAGU

UGGGUUC






miR-1273e
UUGCUUGAACCCAGGAA
257
UCCACUUCCUGGGUUCAA
258



GUGGA

GCAA






miR-1273f
GGAGAUGGAGGUUGCAG
259
CACUGCAACCUCCAUCUC
260



UG

C






miR-1273g-3p
ACCACUGCACUCCAGCC
261
CUCAGGCUGGAGUGCAGU
262



UGAG

GGU






miR-1273g-5p
GGUGGUUGAGGCUGCAG
263
ACUUACUGCAGCCUCAAC
264



UAAGU

CACC






miR-1275
GUGGGGGAGAGGCUGUC
265
GACAGCCUCUCCCCCAC
266





miR-1276
UAAAGAGCCCUGUGGAG
267
UGUCUCCACAGGGCUCUU
268



ACA

UA






miR-1277-3p
UACGUAGAUAUAUAUGU
269
AAAAUACAUAUAUAUCU
270



AUUUU

ACGUA






miR-1277-5p
AAAUAUAUAUAUAUAUG
271
AUACGUACAUAUAUAUA
272



UACGUAU

UAUAUUU






miR-1278
UAGUACUGUGCAUAUCA
273
AUAGAUGAUAUGCACAG
274



UCUAU

UACUA






miR-1279
UCAUAUUGCUUCUUUCU
275
AGAAAGAAGCAAUAUGA
276





miR-128
UCACAGUGAACCGGUCU
277
AAAGAGACCGGUUCACUG
278



CUUU

UGA






miR-1280
UCCCACCGCUGCCACCC
279
GGGUGGCAGCGGUGGGA
280





miR-1281
UCGCCUCCUCCUCUCCC
281
GGGAGAGGAGGAGGCGA
282





miR-1282
UCGUUUGCCUUUUUCUG
283
AAGCAGAAAAAGGCAAAC
284



CUU

GA






miR-1283
UCUACAAAGGAAAGCGC
285
AGAAAGCGCUUUCCUUUG
286



UUUCU

UAGA






miR-1284
UCUAUACAGACCCUGGC
287
GAAAAGCCAGGGUCUGUA
288



UUUUC

UAGA






miR-1285-3p
UCUGGGCAACAAAGUGA
289
AGGUCUCACUUUGUUGCC
290



GACCU

CAGA






miR-1285-5p
GAUCUCACUUUGUUGCC
291
CCUGGGCAACAAAGUGAG
292



CAGG

AUC






miR-1286
UGCAGGACCAAGAUGAG
293
AGGGCUCAUCUUGGUCCU
294



CCCU

GCA






miR-1287
UGCUGGAUCAGUGGUUC
295
GACUCGAACCACUGAUCC
296



GAGUC

AGCA






miR-1288
UGGACUGCCCUGAUCUG
297
UCUCCAGAUCAGGGCAGU
298



GAGA

CCA






miR-1289
UGGAGUCCAGGAAUCUG
299
AAAAUGCAGAUUCCUGGA
300



CAUUUU

CUCCA






miR-129-1-3p
AAGCCCUUACCCCAAAA
301
AUACUUUUUGGGGUAAG
302



AGUAU

GGCUU






miR-129-2-3p
AAGCCCUUACCCCAAAA
303
AUGCUUUUUGGGGUAAG
304



AGCAU

GGCUU






miR-129-5p
CUUUUUGCGGUCUGGGC
305
GCAAGCCCAGACCGCAAA
306



UUGC

AAG






miR-1290
UGGAUUUUUGGAUCAGG
307
UCCCUGAUCCAAAAAUCC
308



GA

A






miR-1291
UGGCCCUGACUGAAGAC
309
ACUGCUGGUCUUCAGUCA
310



CAGCAGU

GGGCCA






miR-1292
UGGGAACGGGUUCCGGC
311
CAGCGUCUGCCGGAACCC
312



AGACGCUG

GUUCCCA






miR-1293
UGGGUGGUCUGGAGAUU
313
GCACAAAUCUCCAGACCA
314



UGUGC

CCCA






miR-1294
UGUGAGGUUGGCAUUGU
315
AGACAACAAUGCCAACCU
316



UGUCU

CACA






miR-1295a
UUAGGCCGCAGAUCUGG
317
UCACCCAGAUCUGCGGCC
318



GUGA

UAA






miR-1295b-3p
AAUAGGCCACGGAUCUG
319
UUGCCCAGAUCCGUGGCC
320



GGCAA

UAUU






miR-1295b-5p
CACCCAGAUCUGCGGCC
321
AUUAGGCCGCAGAUCUGG
322



UAAU

GUG






miR-1296
UUAGGGCCCUGGCUCCA
323
GGAGAUGGAGCCAGGGCC
324



UCUCC

CUAA






miR-1297
UUCAAGUAAUUCAGGUG
325
CACCUGAAUUACUUGAA
326





miR-1298
UUCAUUCGGCUGUCCAG
327
UACAUCUGGACAGCCGAA
328



AUGUA

UGAA






miR-1299
UUCUGGAAUUCUGUGUG
329
UCCCUCACACAGAAUUCC
330



AGGGA

AGAA






miR-1301
UUGCAGCUGCCUGGGAG
331
GAAGUCACUCCCAGGCAG
332



UGACUUC

CUGCAA






miR-1302
UUGGGACAUACUUAUGC
333
UUUAGCAUAAGUAUGUCC
334



UAAA

CAA






miR-1303
UUUAGAGACGGGGUCUU
335
AGAGCAAGACCCCGUCUC
336



GCUCU

UAAA






miR-1304-3p
UCUCACUGUAGCCUCGA
337
GGGGUUCGAGGCUACAGU
338



ACCCC

GAGA






miR-1304-5p
UUUGAGGCUACAGUGAG
339
CACAUCUCACUGUAGCCU
340



AUGUG

CAAA






miR-1305
UUUUCAACUCUAAUGGG
341
UCUCUCCCAUUAGAGUUG
342



AGAGA

AAAA






miR-1306-3p
ACGUUGGCUCUGGUGGU
343
CACCACCAGAGCCAACGU
344



G








miR-1306-5p
CCACCUCCCCUGCAAAC
345
UGGACGUUUGCAGGGGA
346



GUCCA

GGUGG






miR-1307-3p
ACUCGGCGUGGCGUCGG
347
CACGACCGACGCCACGCC
348



UCGUG

GAGU






miR-1307-5p
UCGACCGGACCUCGACC
349
AGCCGGUCGAGGUCCGGU
350



GGCU

CGA






miR-130a-3p
CAGUGCAAUGUUAAAAG
351
AUGCCCUUUUAACAUUGC
352



GGCAU

ACUG






miR-130a-5p
UUCACAUUGUGCUACUG
353
GCAGACAGUAGCACAAUG
354



UCUGC

UGAA






miR-130b-3p
CAGUGCAAUGAUGAAAG
355
AUGCCCUUUCAUCAUUGC
356



GGCAU

ACUG






miR-130b-5p
ACUCUUUCCCUGUUGCA
357
GUAGUGCAACAGGGAAA
358



CUAC

GAGU






miR-132-3p
UAACAGUCUACAGCCAU
359
CGACCAUGGCUGUAGACU
360



GGUCG

GUUA






miR-132-5p
ACCGUGGCUUUCGAUUG
361
AGUAACAAUCGAAAGCCA
362



UUACU

CGGU






miR-1321
CAGGGAGGUGAAUGUGA
363
AUCACAUUCACCUCCCUG
364



U








miR-1322
GAUGAUGCUGCUGAUGC
365
CAGCAUCAGCAGCAUCAU
366



UG

C






miR-1323
UCAAAACUGAGGGGCAU
367
AGAAAAUGCCCCUCAGUU
368



UUUCU

UUGA






miR-1324
CCAGACAGAAUUCUAUG
369
GAAAGUGCAUAGAAUUC
370



CACUUUC

UGUCUGG






miR-133a
UUUGGUCCCCUUCAACC
371
CAGCUGGUUGAAGGGGAC
372



AGCUG

CAAA






miR-133b
UUUGGUCCCCUUCAACC
373
UAGCUGGUUGAAGGGGA
374



AGCUA

CCAAA






miR-134
UGUGACUGGUUGACCAG
375
CCCCUCUGGUCAACCAGU
376



AGGGG

CACA






miR-1343
CUCCUGGGGCCCGCACU
377
GCGAGAGUGCGGGCCCCA
378



CUCGC

GGAG






miR-135a-3p
UAUAGGGAUUGGAGCCG
379
CGCCACGGCUCCAAUCCC
380



UGGCG

UAUA






miR-135a-5p
UAUGGCUUUUUAUUCCU
381
UCACAUAGGAAUAAAAA
382



AUGUGA

GCCAUA






miR-135b-3p
AUGUAGGGCUAAAAGCC
383
CCCAUGGCUUUUAGCCCU
384



AUGGG

ACAU






miR-135b-5p
UAUGGCUUUUCAUUCCU
385
UCACAUAGGAAUGAAAA
386



AUGUGA

GCCAUA






miR-136-3p
CAUCAUCGUCUCAAAUG
387
AGACUCAUUUGAGACGAU
388



AGUCU

GAUG






miR-136-5p
ACUCCAUUUGUUUUGAU
389
UCCAUCAUCAAAACAAAU
390



GAUGGA

GGAGU






miR-137
UUAUUGCUUAAGAAUAC
391
CUACGCGUAUUCUUAAGC
392



GCGUAG

AAUAA






miR-138-1-3p
GCUACUUCACAACACCA
393
GGCCCUGGUGUUGUGAAG
394



GGGCC

UAGC






miR-138-2-3p
GCUAUUUCACGACACCA
395
AACCCUGGUGUCGUGAAA
396



GGGUU

UAGC






miR-138-5p
AGCUGGUGUUGUGAAUC
397
CGGCCUGAUUCACAACAC
398



AGGCCG

CAGCU






miR-139-3p
GGAGACGCGGCCCUGUU
399
ACUCCAACAGGGCCGCGU
400



GGAGU

CUCC






miR-139-5p
UCUACAGUGCACGUGUC
401
CUGGAGACACGUGCACUG
402



UCCAG

UAGA






miR-140-3p
UACCACAGGGUAGAACC
403
CCGUGGUUCUACCCUGUG
404



ACGG

GUA






miR-140-5p
CAGUGGUUUUACCCUAU
405
CUACCAUAGGGUAAAACC
406



GGUAG

ACUG






miR-141-3p
UAACACUGUCUGGUAAA
407
CCAUCUUUACCAGACAGU
408



GAUGG

GUUA






miR-141-5p
CAUCUUCCAGUACAGUG
409
UCCAACACUGUACUGGAA
410



UUGGA

GAUG






miR-142-3p
UGUAGUGUUUCCUACUU
411
UCCAUAAAGUAGGAAACA
412



UAUGGA

CUACA






miR-142-5p
CAUAAAGUAGAAAGCAC
413
AGUAGUGCUUUCUACUUU
414



UACU

AUG






miR-143-3p
UGAGAUGAAGCACUGUA
415
GAGCUACAGUGCUUCAUC
416



GCUC

UCA






miR-143-5p
GGUGCAGUGCUGCAUCU
417
ACCAGAGAUGCAGCACUG
418



CUGGU

CACC






miR-144-3p
UACAGUAUAGAUGAUGU
419
AGUACAUCAUCUAUACUG
420



ACU

UA






miR-144-5p
GGAUAUCAUCAUAUACU
421
CUUACAGUAUAUGAUGA
422



GUAAG

UAUCC






miR-145-3p
GGAUUCCUGGAAAUACU
423
AGAACAGUAUUUCCAGGA
424



GUUCU

AUCC






miR-145-5p
GUCCAGUUUUCCCAGGA
425
AGGGAUUCCUGGGAAAAC
426



AUCCCU

UGGAC






miR-1468
CUCCGUUUGCCUGUUUC
427
CAGCGAAACAGGCAAACG
428



GCUG

GAG






miR-1469
CUCGGCGCGGGGCGCGG
429
GGAGCCCGCGCCCCGCGC
430



GCUCC

CGAG






miR-146a-3p
CCUCUGAAAUUCAGUUC
431
CUGAAGAACUGAAUUUCA
432



UUCAG

GAGG






miR-146a-5p
UGAGAACUGAAUUCCAU
433
AACCCAUGGAAUUCAGUU
434



GGGUU

CUCA






miR-146b-3p
UGCCCUGUGGACUCAGU
435
CCAGAACUGAGUCCACAG
436



UCUGG

GGCA






miR-146b-5p
UGAGAACUGAAUUCCAU
437
AGCCUAUGGAAUUCAGUU
438



AGGCU

CUCA






miR-1470
GCCCUCCGCCCGUGCACC
439
CGGGGUGCACGGGCGGAG
440



CCG

GGC






miR-1471
GCCCGCGUGUGGAGCCA
441
ACACCUGGCUCCACACGC
442



GGUGU

GGGC






miR-147a
GUGUGUGGAAAUGCUUC
443
GCAGAAGCAUUUCCACAC
444



UGC

AC






miR-147b
GUGUGCGGAAAUGCUUC
445
UAGCAGAAGCAUUUCCGC
446



UGCUA

ACAC






miR-148a-3p
UCAGUGCACUACAGAAC
447
ACAAAGUUCUGUAGUGCA
448



UUUGU

CUGA






miR-148a-5p
AAAGUUCUGAGACACUC
449
AGUCGGAGUGUCUCAGAA
450



CGUU

CUUU






miR-148b-3p
UCAGUGCAUCACAGAAC
451
ACAAAGUUCUGUGAUGCA
452



UUUGU

CUGA






miR-148b-5p
AAGUUCUGUUAUACACU
453
GCCUGAGUGUAUAACAGA
454



CAGGC

ACUU






miR-149-3p
AGGGAGGGACGGGGGCU
455
GCACAGCCCCCGUCCCUC
456



GUGC

CCU






miR-149-5p
UCUGGCUCCGUGUCUUC
457
GGGAGUGAAGACACGGA
458



ACUCCC

GCCAGA






miR-150-3p
CUGGUACAGGCCUGGGG
459
CUGUCCCCCAGGCCUGUA
460



GACAG

CCAG






miR-150-5p
UCUCCCAACCCUUGUAC
461
CACUGGUACAAGGGUUGG
462



CAGUG

GAGA






miR-151a-3p
CUAGACUGAAGCUCCUU
463
CCUCAAGGAGCUUCAGUC
464



GAGG

UAG






miR-151a-5p
UCGAGGAGCUCACAGUC
465
ACUAGACUGUGAGCUCCU
466



UAGU

CGA






miR-151b
UCGAGGAGCUCACAGUC
467
AGACUGUGAGCUCCUCGA
468



U








miR-152
UCAGUGCAUGACAGAAC
469
CCAAGUUCUGUCAUGCAC
470



UUGG

UGA






miR-153
UUGCAUAGUCACAAAAG
471
GAUCACUUUUGUGACUAU
472



UGAUC

GCAA






miR-1537
AAAACCGUCUAGUUACA
473
ACAACUGUAACUAGACGG
474



GUUGU

UUUU






miR-1538
CGGCCCGGGCUGCUGCU
475
AGGAACAGCAGCAGCCCG
476



GUUCCU

GGCCG






miR-1539
UCCUGCGCGUCCCAGAU
477
GGGCAUCUGGGACGCGCA
478



GCCC

GGA






miR-154-3p
AAUCAUACACGGUUGAC
479
AAUAGGUCAACCGUGUAU
480



CUAUU

GAUU






miR-154-5p
UAGGUUAUCCGUGUUGC
481
CGAAGGCAACACGGAUAA
482



CUUCG

CCUA






miR-155-3p
CUCCUACAUAUUAGCAU
483
UGUUAAUGCUAAUAUGU
484



UAACA

AGGAG






miR-155-5p
UUAAUGCUAAUCGUGAU
485
ACCCCUAUCACGAUUAGC
486



AGGGGU

AUUAA






miR-1587
UUGGGCUGGGCUGGGUU
487
CCCAACCCAGCCCAGCCC
488



GGG

AA






miR-15a-3p
CAGGCCAUAUUGUGCUG
489
UGAGGCAGCACAAUAUGG
490



CCUCA

CCUG






miR-15a-5p
UAGCAGCACAUAAUGGU
491
CACAAACCAUUAUGUGCU
492



UUGUG

GCUA






miR-15b-3p
CGAAUCAUUAUUUGCUG
493
UAGAGCAGCAAAUAAUG
494



CUCUA

AUUCG






miR-15b-5p
UAGCAGCACAUCAUGGU
495
UGUAAACCAUGAUGUGCU
496



UUACA

GCUA






miR-16-1-3p
CCAGUAUUAACUGUGCU
497
UCAGCAGCACAGUUAAUA
498



GCUGA

CUGG






miR-16-2-3p
CCAAUAUUACUGUGCUG
499
UAAAGCAGCACAGUAAUA
500



CUUUA

UUGG






miR-16-5p
UAGCAGCACGUAAAUAU
501
CGCCAAUAUUUACGUGCU
502



UGGCG

GCUA






miR-17-3p
ACUGCAGUGAAGGCACU
503
CUACAAGUGCCUUCACUG
504



UGUAG

CAGU






miR-17-5p
CAAAGUGCUUACAGUGC
505
CUACCUGCACUGUAAGCA
506



AGGUAG

CUUUG






miR-181a-2-3p
ACCACUGACCGUUGACU
507
GGUACAGUCAACGGUCAG
508



GUACC

UGGU






miR-181a-3p
ACCAUCGACCGUUGAUU
509
GGUACAAUCAACGGUCGA
510



GUACC

UGGU






miR-181a-5p
AACAUUCAACGCUGUCG
511
ACUCACCGACAGCGUUGA
512



GUGAGU

AUGUU






miR-181b-3p
CUCACUGAACAAUGAAU
513
UUGCAUUCAUUGUUCAGU
514



GCAA

GAG






miR-181b-5p
AACAUUCAUUGCUGUCG
515
ACCCACCGACAGCAAUGA
516



GUGGGU

AUGUU






miR-181c-3p
AACCAUCGACCGUUGAG
517
GUCCACUCAACGGUCGAU
518



UGGAC

GGUU






miR-181c-5p
AACAUUCAACCUGUCGG
519
ACUCACCGACAGGUUGAA
520



UGAGU

UGUU






miR-181d
AACAUUCAUUGUUGUCG
521
ACCCACCGACAACAAUGA
522



GUGGGU

AUGUU






miR-182-3p
UGGUUCUAGACUUGCCA
523
UAGUUGGCAAGUCUAGA
524



ACUA

ACCA






miR-182-5p
UUUGGCAAUGGUAGAAC
525
AGUGUGAGUUCUACCAUU
526



UCACACU

GCCAAA






miR-1825
UCCAGUGCCCUCCUCUC
527
GGAGAGGAGGGCACUGG
528



C

A






miR-1827
UGAGGCAGUAGAUUGAA
529
AUUCAAUCUACUGCCUCA
530



U








miR-183-3p
GUGAAUUACCGAAGGGC
531
UUAUGGCCCUUCGGUAAU
532



CAUAA

UCAC






miR-183-5p
UAUGGCACUGGUAGAAU
533
AGUGAAUUCUACCAGUGC
534



UCACU

CAUA






miR-184
UGGACGGAGAACUGAUA
535
ACCCUUAUCAGUUCUCCG
536



AGGGU

UCCA






miR-185-3p
AGGGGCUGGCUUUCCUC
537
GACCAGAGGAAAGCCAGC
538



UGGUC

CCCU






miR-185-5p
UGGAGAGAAAGGCAGUU
539
UCAGGAACUGCCUUUCUC
540



CCUGA

UCCA






miR-186-3p
GCCCAAAGGUGAAUUUU
541
CCCAAAAAAUUCACCUUU
542



UUGGG

GGGC






miR-186-5p
CAAAGAAUUCUCCUUUU
543
AGCCCAAAAGGAGAAUUC
544



GGGCU

UUUG






miR-187-3p
UCGUGUCUUGUGUUGCA
545
CCGGCUGCAACACAAGAC
546



GCCGG

ACGA






miR-187-5p
GGCUACAACACAGGACC
547
GCCCGGGUCCUGUGUUGU
548



CGGGC

AGCC






miR-188-3p
CUCCCACAUGCAGGGUU
549
UGCAAACCCUGCAUGUGG
550



UGCA

GAG






miR-188-5p
CAUCCCUUGCAUGGUGG
551
CCCUCCACCAUGCAAGGG
552



AGGG

AUG






miR-18a-3p
ACUGCCCUAAGUGCUCC
553
CCAGAAGGAGCACUUAGG
554



UUCUGG

GCAGU






miR-18a-5p
UAAGGUGCAUCUAGUGC
555
CUAUCUGCACUAGAUGCA
556



AGAUAG

CCUUA






miR-18b-3p
UGCCCUAAAUGCCCCUU
557
GCCAGAAGGGGCAUUUAG
558



CUGGC

GGCA






miR-18b-5p
UAAGGUGCAUCUAGUGC
559
CUAACUGCACUAGAUGCA
560



AGUUAG

CCUUA






miR-1908
CGGCGGGGACGGCGAUU
561
GACCAAUCGCCGUCCCCG
562



GGUC

CCG






miR-1909-3p
CGCAGGGGCCGGGUGCU
563
CGGUGAGCACCCGGCCCC
564



CACCG

UGCG






miR-1909-5p
UGAGUGCCGGUGCCUGC
565
CAGGGCAGGCACCGGCAC
566



CCUG

UCA






miR-190a
UGAUAUGUUUGAUAUAU
567
ACCUAAUAUAUCAAACAU
568



UAGGU

AUCA






miR-190b
UGAUAUGUUUGAUAUUG
569
AACCCAAUAUCAAACAUA
570



GGUU

UCA






miR-191-3p
GCUGCGCUUGGAUUUCG
571
GGGGACGAAAUCCAAGCG
572



UCCCC

CAGC






miR-191-5p
CAACGGAAUCCCAAAAG
573
CAGCUGCUUUUGGGAUUC
574



CAGCUG

CGUUG






miR-1910
CCAGUCCUGUGCCUGCC
575
AGGCGGCAGGCACAGGAC
576



GCCU

UGG






miR-1911-3p
CACCAGGCAUUGUGGUC
577
GGAGACCACAAUGCCUGG
578



UCC

UG






miR-1911-5p
UGAGUACCGCCAUGUCU
579
CCCAACAGACAUGGCGGU
580



GUUGGG

ACUCA






miR-1912
UACCCAGAGCAUGCAGU
581
UUCACACUGCAUGCUCUG
582



GUGAA

GGUA






miR-1913
UCUGCCCCCUCCGCUGC
583
UGGCAGCAGCGGAGGGGG
584



UGCCA

CAGA






miR-1914-3p
GGAGGGGUCCCGCACUG
585
CCUCCCAGUGCGGGACCC
586



GGAGG

CUCC






miR-1914-5p
CCCUGUGCCCGGCCCAC
587
CAGAAGUGGGCCGGGCAC
588



UUCUG

AGGG






miR-1915-3p
CCCCAGGGCGACGCGGC
589
CCCGCCGCGTCGCCCTGG
590



GGG

GG






miR-1915-5p
ACCUUGCCUUGCUGCCC
591
GGCCCGGGCAGCAAGGCA
592



GGGCC

AGGU






miR-192-3p
CUGCCAAUUCCAUAGGU
593
CUGUGACCUAUGGAAUUG
594



CACAG

GCAG






miR-192-5p
CUGACCUAUGAAUUGAC
595
GGCUGUCAAUUCAUAGGU
596



AGCC

CAG






miR-193a-3p
AACUGGCCUACAAAGUC
597
ACUGGGACUUUGUAGGCC
598



CCAGU

AGUU






miR-193a-5p
UGGGUCUUUGCGGGCGA
599
UCAUCUCGCCCGCAAAGA
600



GAUGA

CCCA






miR-193b-3p
AACUGGCCCUCAAAGUC
601
AGCGGGACUUUGAGGGCC
602



CCGCU

AGUU






miR-193b-5p
CGGGGUUUUGAGGGCGA
603
UCAUCUCGCCCUCAAAAC
604



GAUGA

CCCG






miR-194-3p
CCAGUGGGGCUGCUGUU
605
CAGAUAACAGCAGCCCCA
606



AUCUG

CUGG






miR-194-5p
UGUAACAGCAACUCCAU
607
UCCACAUGGAGUUGCUGU
608



GUGGA

UACA






miR-195-3p
CCAAUAUUGGCUGUGCU
609
GGAGCAGCACAGCCAAUA
610



GCUCC

UUGG






miR-195-5p
UAGCAGCACAGAAAUAU
611
GCCAAUAUUUCUGUGCUG
612



UGGC

CUA






miR-196a-3p
CGGCAACAAGAAACUGC
613
CUCAGGCAGUUUCUUGUU
614



CUGAG

GCCG






miR-196a-5p
UAGGUAGUUUCAUGUUG
615
CCCAACAACAUGAAACUA
616



UUGGG

CCUA






miR-196b-3p
UCGACAGCACGACACUG
617
GAAGGCAGUGUCGUGCUG
618



CCUUC

UCGA






miR-196b-5p
UAGGUAGUUUCCUGUUG
619
CCCAACAACAGGAAACUA
620



UUGGG

CCUA






miR-197-3p
UUCACCACCUUCUCCAC
621
GCUGGGUGGAGAAGGUG
622



CCAGC

GUGAA






miR-197-5p
CGGGUAGAGAGGGCAGU
623
CCUCCCACUGCCCUCUCU
624



GGGAGG

ACCCG






miR-1972
UCAGGCCAGGCACAGUG
625
UGAGCCACUGUGCCUGGC
626



GCUCA

CUGA






miR-1973
ACCGUGCAAAGGUAGCAA
627
UAUGCUACCUUUGCACGG
628



U

U






miR-1976
CCUCCUGCCCUCCUUGC
629
ACAGCAAGGAGGGCAGGA
630



UGU

GG






miR-198
GGUCCAGAGGGGAGAUA
631
GAACCUAUCUCCCCUCUG
632



GGUUC

GACC






miR-199a-3p
ACAGUAGUCUGCACAUU
633
UAACCAAUGUGCAGACUA
634



GGUUA

CUGU






miR-199a-5p
CCCAGUGUUCAGACUAC
635
GAACAGGUAGUCUGAACA
636



CUGUUC

CUGGG






miR-199b-3p
ACAGUAGUCUGCACAUU
637
UAACCAAUGUGCAGACUA
638



GGUUA

CUGU






miR-199b-5p
CCCAGUGUUUAGACUAU
639
GAACAGAUAGUCUAAACA
640



CUGUUC

CUGGG






miR-19a-3p
UGUGCAAAUCUAUGCAA
641
UCAGUUUUGCAUAGAUU
642



AACUGA

UGCACA






miR-19a-5p
AGUUUUGCAUAGUUGCA
643
UGUAGUGCAACUAUGCAA
644



CUACA

AACU






miR-19b-1-5p
AGUUUUGCAGGUUUGCA
645
GCUGGAUGCAAACCUGCA
646



UCCAGC

AAACU






miR-19b-2-5p
AGUUUUGCAGGUUUGCA
647
UGAAAUGCAAACCUGCAA
648



UUUCA

AACU






miR-19b-3p
UGUGCAAAUCCAUGCAA
649
UCAGUUUUGCAUGGAUU
650



AACUGA

UGCACA






miR-200a-3p
UAACACUGUCUGGUAAC
651
ACAUCGUUACCAGACAGU
652



GAUGU

GUUA






miR-200a-5p
CAUCUUACCGGACAGUG
653
UCCAGCACUGUCCGGUAA
654



CUGGA

GAUG






miR-200b-3p
UAAUACUGCCUGGUAAU
655
UCAUCAUUACCAGGCAGU
656



GAUGA

AUUA






miR-200b-5p
CAUCUUACUGGGCAGCA
657
UCCAAUGCUGCCCAGUAA
658



UUGGA

GAUG






miR-200c-3p
UAAUACUGCCGGGUAAU
659
UCCAUCAUUACCCGGCAG
660



GAUGGA

UAUUA






miR-200c-5p
CGUCUUACCCAGCAGUG
661
CCAAACACUGCUGGGUAA
662



UUUGG

GACG






miR-202-3p
AGAGGUAUAGGGCAUGG
663
UUCCCAUGCCCUAUACCU
664



GAA

CU






miR-202-5p
UUCCUAUGCAUAUACUU
665
CAAAGAAGUAUAUGCAU
666



CUUUG

AGGAA






miR-203
GUGAAAUGUUUAGGACC
667
CUAGUGGUCCUAAACAUU
668



ACUAG

UCAC






miR-204-3p
GCUGGGAAGGCAAAGGG
669
ACGUCCCUUUGCCUUCCC
670



ACGU

AGC






miR-204-5p
UUCCCUUUGUCAUCCUA
671
AGGCAUAGGAUGACAAA
672



UGCCU

GGGAA






miR-205-3p
GAUUUCAGUGGAGUGAA
673
GAACUUCACUCCACUGAA
674



GUUC

AUC






miR-205-5p
UCCUUCAUUCCACCGGA
675
CAGACUCCGGUGGAAUGA
676



GUCUG

AGGA






miR-2052
UGUUUUGAUAACAGUAA
677
ACAUUACUGUUAUCAAAA
678



UGU

CA






miR-2053
GUGUUAAUUAAACCUCU
679
GUAAAUAGAGGUUUAAU
680



AUUUAC

UAACAC






miR-2054
CUGUAAUAUAAAUUUAA
681
AAUAAAUUAAAUUUAUA
682



UUUAUU

UUACAG






miR-206
UGGAAUGUAAGGAAGUG
683
CCACACACUUCCUUACAU
684



UGUGG

UCCA






miR-208a
AUAAGACGAGCAAAAAG
685
ACAAGCUUUUUGCUCGUC
686



CUUGU

UUAU






miR-208b
AUAAGACGAACAAAAGG
687
ACAAACCUUUUGUUCGUC
688



UUUGU

UUAU






miR-20a-3p
ACUGCAUUAUGAGCACU
689
CUUUAAGUGCUCAUAAUG
690



UAAAG

CAGU






miR-20a-5p
UAAAGUGCUUAUAGUGC
691
CUACCUGCACUAUAAGCA
692



AGGUAG

CUUUA






miR-20b-3p
ACUGUAGUAUGGGCACU
693
CUGGAAGUGCCCAUACUA
694



UCCAG

CAGU






miR-20b-5p
CAAAGUGCUCAUAGUGC
695
CUACCUGCACUAUGAGCA
696



AGGUAG

CUUUG






miR-21-3p
CAACACCAGUCGAUGGG
697
ACAGCCCAUCGACUGGUG
698



CUGU

UUG






miR-21-5p
UAGCUUAUCAGACUGAU
699
UCAACAUCAGUCUGAUAA
700



GUUGA

GCUA






miR-210
CUGUGCGUGUGACAGCG
701
UCAGCCGCUGUCACACGC
702



GCUGA

ACAG






miR-211-3p
GCAGGGACAGCAAAGGG
703
GCACCCCUUUGCUGUCCC
704



GUGC

UGC






miR-211-5p
UUCCCUUUGUCAUCCUU
705
AGGCGAAGGAUGACAAA
706



CGCCU

GGGAA






miR-2110
UUGGGGAAACGGCCGCU
707
CACUCAGCGGCCGUUUCC
708



GAGUG

CCAA






miR-2113
AUUUGUGCUUGGCUCUG
709
GUGACAGAGCCAAGCACA
710



UCAC

AAU






miR-2114-3p
CGAGCCUCAAGCAAGGG
711
AAGUCCCUUGCUUGAGGC
712



ACUU

UCG






miR-2114-5p
UAGUCCCUUCCUUGAAG
713
GACCGCUUCAAGGAAGGG
714



CGGUC

ACUA






miR-2115-3p
CAUCAGAAUUCAUGGAG
715
CUAGCCUCCAUGAAUUCU
716



GCUAG

GAUG






miR-2115-5p
AGCUUCCAUGACUCCUG
717
UCCAUCAGGAGUCAUGGA
718



AUGGA

AGCU






miR-2116-3p
CCUCCCAUGCCAAGAAC
719
GGGAGUUCUUGGCAUGG
720



UCCC

GAGG






miR-2116-5p
GGUUCUUAGCAUAGGAG
721
AGACCUCCUAUGCUAAGA
722



GUCU

ACC






miR-2117
UGUUCUCUUUGCCAAGG
723
CUGUCCUUGGCAAAGAGA
724



ACAG

ACA






miR-212-3p
UAACAGUCUCCAGUCAC
725
GGCCGUGACUGGAGACUG
726



GGCC

UUA






miR-212-5p
ACCUUGGCUCUAGACUG
727
AGUAAGCAGUCUAGAGCC
728



CUUACU

AAGGU






miR-214-3p
ACAGCAGGCACAGACAG
729
ACUGCCUGUCUGUGCCUG
730



GCAGU

CUGU






miR-214-5p
UGCCUGUCUACACUUGC
731
GCACAGCAAGUGUAGACA
732



UGUGC

GGCA






miR-215
AUGACCUAUGAAUUGAC
733
GUCUGUCAAUUCAUAGGU
734



AGAC

CAU






miR-216a
UAAUCUCAGCUGGCAAC
735
UCACAGUUGCCAGCUGAG
736



UGUGA

AUUA






miR-216b
AAAUCUCUGCAGGCAAA
737
UCACAUUUGCCUGCAGAG
738



UGUGA

AUUU






miR-217
UACUGCAUCAGGAACUG
739
UCCAAUCAGUUCCUGAUG
740



AUUGGA

CAGUA






miR-218-1-3p
AUGGUUCCGUCAAGCAC
741
CCAUGGUGCUUGACGGAA
742



CAUGG

CCAU






miR-218-2-3p
CAUGGUUCUGUCAAGCA
743
CGCGGUGCUUGACAGAAC
744



CCGCG

CAUG






miR-218-5p
UUGUGCUUGAUCUAACC
745
ACAUGGUUAGAUCAAGCA
746



AUGU

CAA






miR-219-1-3p
AGAGUUGAGUCUGGACG
747
CGGGACGUCCAGACUCAA
748



UCCCG

CUCU






miR-219-2-3p
AGAAUUGUGGCUGGACA
749
ACAGAUGUCCAGCCACAA
750



UCUGU

UUCU






miR-219-5p
UGAUUGUCCAAACGCAA
751
AGAAUUGCGUUUGGACA
752



UUCU

AUCA






miR-22-3p
AAGCUGCCAGUUGAAGA
753
ACAGUUCUUCAACUGGCA
754



ACUGU

GCUU






miR-22-5p
AGUUCUUCAGUGGCAAG
755
UAAAGCUUGCCACUGAAG
756



CUUUA

AACU






miR-221-3p
AGCUACAUUGUCUGCUG
757
GAAACCCAGCAGACAAUG
758



GGUUUC

UAGCU






miR-221-5p
ACCUGGCAUACAAUGUA
759
AAAUCUACAUUGUAUGCC
760



GAUUU

AGGU






miR-222-3p
AGCUACAUCUGGCUACU
761
ACCCAGUAGCCAGAUGUA
762



GGGU

GCU






miR-222-5p
CUCAGUAGCCAGUGUAG
763
AGGAUCUACACUGGCUAC
764



AUCCU

UGAG






miR-223-3p
UGUCAGUUUGUCAAAUA
765
UGGGGUAUUUGACAAAC
766



CCCCA

UGACA






miR-223-5p
CGUGUAUUUGACAAGCU
767
AACUCAGCUUGUCAAAUA
768



GAGUU

CACG






miR-224-3p
AAAAUGGUGCCCUAGUG
769
UGUAGUCACUAGGGCACC
770



ACUACA

AUUUU






miR-224-5p
CAAGUCACUAGUGGUUC
771
AACGGAACCACUAGUGAC
772



CGUU

UUG






miR-2276
UCUGCAAGUGUCAGAGG
773
CCUCGCCUCUGACACUUG
774



CGAGG

CAGA






miR-2277-3p
UGACAGCGCCCUGCCUG
775
GAGCCAGGCAGGGCGCUG
776



GCUC

UCA






miR-2277-5p
AGCGCGGGCUGAGCGCU
777
GACUGGCAGCGCUCAGCC
778



GCCAGUC

CGCGCU






miR-2278
GAGAGCAGUGUGUGUUG
779
CCAGGCAACACACACUGC
780



CCUGG

UCUC






miR-2355-3p
AUUGUCCUUGCUGUUUG
781
AUCUCCAAACAGCAAGGA
782



GAGAU

CAAU






miR-2355-5p
AUCCCCAGAUACAAUGG
783
UUGUCCAUUGUAUCUGGG
784



ACAA

GAU






miR-2392
UAGGAUGGGGGUGAGAG
785
CACCUCUCACCCCCAUCC
786



GUG

UA






miR-23a-3p
AUCACAUUGCCAGGGAU
787
GGAAAUCCCUGGCAAUGU
788



UUCC

GAU






miR-23a-5p
GGGGUUCCUGGGGAUGG
789
AAAUCCCAUCCCCAGGAA
790



GAUUU

CCCC






miR-23b-3p
AUCACAUUGCCAGGGAU
791
GGUAAUCCCUGGCAAUGU
792



UACC

GAU






miR-23b-5p
UGGGUUCCUGGCAUGCU
793
AAAUCAGCAUGCCAGGAA
794



GAUUU

CCCA






miR-23c
AUCACAUUGCCAGUGAU
795
GGGUAAUCACUGGCAAUG
796



UACCC

UGAU






miR-24-1-5p
UGCCUACUGAGCUGAUA
797
ACUGAUAUCAGCUCAGUA
798



UCAGU

GGCA






miR-24-2-5p
UGCCUACUGAGCUGAAA
799
CUGUGUUUCAGCUCAGUA
800



CACAG

GGCA






miR-24-3p
UGGCUCAGUUCAGCAGG
801
CUGUUCCUGCUGAACUGA
802



AACAG

GCCA






miR-2467-3p
AGCAGAGGCAGAGAGGC
803
CCUGAGCCUCUCUGCCUC
804



UCAGG

UGCU






miR-2467-5p
UGAGGCUCUGUUAGCCU
805
GAGCCAAGGCUAACAGAG
806



UGGCUC

CCUCA






miR-25-3p
CAUUGCACUUGUCUCGG
807
UCAGACCGAGACAAGUGC
808



UCUGA

AAUG






miR-25-5p
AGGCGGAGACUUGGGCA
809
CAAUUGCCCAAGUCUCCG
810



AUUG

CCU






miR-2681-3p
UAUCAUGGAGUUGGUAA
811
GUGCUUUACCAACUCCAU
812



AGCAC

GAUA






miR-2681-5p
GUUUUACCACCUCCAGG
813
AGUCUCCUGGAGGUGGUA
814



AGACU

AAAC






miR-2682-3p
CGCCUCUUCAGCGCUGU
815
GGAAGACAGCGCUGAAGA
816



CUUCC

GGCG






miR-2682-5p
CAGGCAGUGACUGUUCA
817
GACGUCUGAACAGUCACU
818



GACGUC

GCCUG






miR-26a-1-3p
CCUAUUCUUGGUUACUU
819
CGUGCAAGUAACCAAGAA
820



GCACG

UAGG






miR-26a-2-3p
CCUAUUCUUGAUUACUU
821
GAAACAAGUAAUCAAGA
822



GUUUC

AUAGG






miR-26a-5p
UUCAAGUAAUCCAGGAU
823
AGCCUAUCCUGGAUUACU
824



AGGCU

UGAA






miR-26b-3p
CCUGUUCUCCAUUACUU
825
GAGCCAAGUAAUGGAGA
826



GGCUC

ACAGG






miR-26b-5p
UUCAAGUAAUUCAGGAU
827
ACCUAUCCUGAAUUACUU
828



AGGU

GAA






miR-27a-3p
UUCACAGUGGCUAAGUU
829
GCGGAACUUAGCCACUGU
830



CCGC

GAA






miR-27a-5p
AGGGCUUAGCUGCUUGU
831
UGCUCACAAGCAGCUAAG
832



GAGCA

CCCU






miR-27b-3p
UUCACAGUGGCUAAGUU
833
GCAGAACUUAGCCACUGU
834



CUGC

GAA






miR-27b-5p
AGAGCUUAGCUGAUUGG
835
GUUCACCAAUCAGCUAAG
836



UGAAC

CUCU






miR-28-3p
CACUAGAUUGUGAGCUC
837
UCCAGGAGCUCACAAUCU
838



CUGGA

AGUG






miR-28-5p
AAGGAGCUCACAGUCUA
839
CUCAAUAGACUGUGAGCU
840



UUGAG

CCUU






miR-2861
GGGGCCUGGCGGUGGGC
841
CCGCCCACCGCCAGGCCC
842



GG

C






miR-2909
GUUAGGGCCAACAUCUC
843
CCAAGAGAUGUUGGCCCU
844



UUGG

AAC






miR-296-3p
GAGGGUUGGGUGGAGGC
845
GGAGAGCCUCCACCCAAC
846



UCUCC

CCUC






miR-296-5p
AGGGCCCCCCCUCAAUC
847
ACAGGAUUGAGGGGGGG
848



CUGU

CCCU






miR-2964a-3p
AGAAUUGCGUUUGGACA
849
ACUGAUUGUCCAAACGCA
850



AUCAGU

AUUCU






miR-2964a-5p
AGAUGUCCAGCCACAAU
851
CGAGAAUUGUGGCUGGAC
852



UCUCG

AUCU






miR-297
AUGUAUGUGUGCAUGUG
853
CAUGCACAUGCACACAUA
854



CAUG

CAU






miR-298
AGCAGAAGCAGGGAGGU
855
UGGGAGAACCUCCCUGCU
856



UCUCCCA

UCUGCU






miR-299-3p
UAUGUGGGAUGGUAAAC
857
AAGCGGUUUACCAUCCCA
858



CGCUU

CAUA






miR-299-5p
UGGUUUACCGUCCCACA
859
AUGUAUGUGGGACGGUA
860



UACAU

AACCA






miR-29a-3p
UAGCACCAUCUGAAAUC
861
UAACCGAUUUCAGAUGGU
862



GGUUA

GCUA






miR-29a-5p
ACUGAUUUCUUUUGGUG
863
CUGAACACCAAAAGAAAU
864



UUCAG

CAGU






miR-29b-1-5p
GCUGGUUUCAUAUGGUG
865
UCUAAACCACCAUAUGAA
866



GUUUAGA

ACCAGC






miR-29b-2-5p
CUGGUUUCACAUGGUGG
867
CUAAGCCACCAUGUGAAA
868



CUUAG

CCAG






miR-29b-3p
UAGCACCAUUUGAAAUC
869
AACACUGAUUUCAAAUGG
870



AGUGUU

UGCUA






miR-29c-3p
UAGCACCAUUUGAAAUC
871
UAACCGAUUUCAAAUGGU
872



GGUUA

GCUA






miR-29c-5p
UGACCGAUUUCUCCUGG
873
GAACACCAGGAGAAAUCG
874



UGUUC

GUCA






miR-300
UAUACAAGGGCAGACUC
875
AGAGAGAGUCUGCCCUUG
876



UCUCU

UAUA






miR-301a-3p
CAGUGCAAUAGUAUUGU
877
GCUUUGACAAUACUAUUG
878



CAAAGC

CACUG






miR-301a-5p
GCUCUGACUUUAUUGCA
879
AGUAGUGCAAUAAAGUC
880



CUACU

AGAGC






miR-301b
CAGUGCAAUGAUAUUGU
881
GCUUUGACAAUAUCAUUG
882



CAAAGC

CACUG






miR-302a-3p
UAAGUGCUUCCAUGUUU
883
UCACCAAAACAUGGAAGC
884



UGGUGA

ACUUA






miR-302a-5p
ACUUAAACGUGGAUGUA
885
AGCAAGUACAUCCACGUU
886



CUUGCU

UAAGU






miR-302b-3p
UAAGUGCUUCCAUGUUU
887
CUACUAAAACAUGGAAGC
888



UAGUAG

ACUUA






miR-302b-5p
ACUUUAACAUGGAAGUG
889
GAAAGCACUUCCAUGUUA
890



CUUUC

AAGU






miR-302c-3p
UAAGUGCUUCCAUGUUU
891
CCACUGAAACAUGGAAGC
892



CAGUGG

ACUUA






miR-302c-5p
UUUAACAUGGGGGUACC
893
CAGCAGGUACCCCCAUGU
894



UGCUG

UAAA






miR-302d-3p
UAAGUGCUUCCAUGUUU
895
ACACUCAAACAUGGAAGC
896



GAGUGU

ACUUA






miR-302d-5p
ACUUUAACAUGGAGGCA
897
GCAAGUGCCUCCAUGUUA
898



CUUGC

AAGU






miR-302e
UAAGUGCUUCCAUGCUU
899
AAGCAUGGAAGCACUUA
900





miR-302f
UAAUUGCUUCCAUGUUU
901
AAACAUGGAAGCAAUUA
902





miR-3064-3p
UUGCCACACUGCAACAC
903
UGUAAGGUGUUGCAGUG
904



CUUACA

UGGCAA






miR-3064-5p
UCUGGCUGUUGUGGUGU
905
UUGCACACCACAACAGCC
906



GCAA

AGA






miR-3065-3p
UCAGCACCAGGAUAUUG
907
CUCCAACAAUAUCCUGGU
908



UUGGAG

GCUGA






miR-3065-5p
UCAACAAAAUCACUGAU
909
UCCAGCAUCAGUGAUUUU
910



GCUGGA

GUUGA






miR-3074-3p
GAUAUCAGCUCAGUAGG
911
CGGUGCCUACUGAGCUGA
912



CACCG

UAUC






miR-3074-5p
GUUCCUGCUGAACUGAG
913
CUGGCUCAGUUCAGCAGG
914



CCAG

AAC






miR-30a-3p
CUUUCAGUCGGAUGUUU
915
GCUGCAAACAUCCGACUG
916



GCAGC

AAAG






miR-30a-5p
UGUAAACAUCCUCGACU
917
CUUCCAGUCGAGGAUGUU
918



GGAAG

UACA






miR-30b-3p
CUGGGAGGUGGAUGUUU
919
GAAGUAAACAUCCACCUC
920



ACUUC

CCAG






miR-30b-5p
UGUAAACAUCCUACACU
921
AGCUGAGUGUAGGAUGU
922



CAGCU

UUACA






miR-30c-1-3p
CUGGGAGAGGGUUGUUU
923
GGAGUAAACAACCCUCUC
924



ACUCC

CCAG






miR-30c-2-3p
CUGGGAGAAGGCUGUUU
925
AGAGUAAACAGCCUUCUC
926



ACUCU

CCAG






miR-30c-5p
UGUAAACAUCCUACACU
927
GCUGAGAGUGUAGGAUG
928



CUCAGC

UUUACA






miR-30d-3p
CUUUCAGUCAGAUGUUU
929
GCAGCAAACAUCUGACUG
930



GCUGC

AAAG






miR-30d-5p
UGUAAACAUCCCCGACU
931
CUUCCAGUCGGGGAUGUU
932



GGAAG

UACA






miR-30e-3p
CUUUCAGUCGGAUGUUU
933
GCUGUAAACAUCCGACUG
934



ACAGC

AAAG






miR-30e-5p
UGUAAACAUCCUUGACU
935
CUUCCAGUCAAGGAUGUU
936



GGAAG

UACA






miR-31-3p
UGCUAUGCCAACAUAUU
937
AUGGCAAUAUGUUGGCA
938



GCCAU

UAGCA






miR-31-5p
AGGCAAGAUGCUGGCAU
939
AGCUAUGCCAGCAUCUUG
940



AGCU

CCU






miR-3115
AUAUGGGUUUACUAGUU
941
ACCAACUAGUAAACCCAU
942



GGU

AU






miR-3116
UGCCUGGAACAUAGUAG
943
AGUCCCUACUAUGUUCCA
944



GGACU

GGCA






miR-3117-3p
AUAGGACUCAUAUAGUG
945
CUGGCACUAUAUGAGUCC
946



CCAG

UAU






miR-3117-5p
AGACACUAUACGAGUCA
947
AUAUGACUCGUAUAGUG
948



UAU

UCU






miR-3118
UGUGACUGCAUUAUGAA
949
AGAAUUUUCAUAAUGCA
950



AAUUCU

GUCACA






miR-3119
UGGCUUUUAACUUUGAU
951
GCCAUCAAAGUUAAAAGC
952



GGC

CA






miR-3120-3p
CACAGCAAGUGUAGACA
953
UGCCUGUCUACACUUGCU
954



GGCA

GUG






miR-3120-5p
CCUGUCUGUGCCUGCUG
955
UGUACAGCAGGCACAGAC
956



UACA

AGG






miR-3121-3p
UAAAUAGAGUAGGCAAA
957
UGUCCUUUGCCUACUCUA
958



GGACA

UUUA






miR-3121-5p
UCCUUUGCCUAUUCUAU
959
CUUAAAUAGAAUAGGCA
960



UUAAG

AAGGA






miR-3122
GUUGGGACAAGAGGACG
961
AAGACCGUCCUCUUGUCC
962



GUCUU

CAAC






miR-3123
CAGAGAAUUGUUUAAUC
963
GAUUAAACAAUUCUCUG
964





miR-3124-3p
ACUUUCCUCACUCCCGU
965
ACUUCACGGGAGUGAGGA
966



GAAGU

AAGU






miR-3124-5p
UUCGCGGGCGAAGGCAA
967
GACUUUGCCUUCGCCCGC
968



AGUC

GAA






miR-3125
UAGAGGAAGCUGUGGAG
969
UCUCUCCACAGCUUCCUC
970



AGA

UA






miR-3126-3p
CAUCUGGCAUCCGUCAC
971
UCUGUGUGACGGAUGCCA
972



ACAGA

GAUG






miR-3126-5p
UGAGGGACAGAUGCCAG
973
UGCUUCUGGCAUCUGUCC
974



AAGCA

CUCA






miR-3127-3p
UCCCCUUCUGCAGGCCU
975
CCAGCAGGCCUGCAGAAG
976



GCUGG

GGGA






miR-3127-5p
AUCAGGGCUUGUGGAAU
977
CUUCCCAUUCCACAAGCC
978



GGGAAG

CUGAU






miR-3128
UCUGGCAAGUAAAAAAC
979
AUGAGAGUUUUUUACUU
980



UCUCAU

GCCAGA






miR-3129-3p
AAAGCCUAAUCUCUACACU
981
GCAGCAGUGUAGAGAUU
982



GCUGC

AGUUU






miR-3129-5p
GCAGUAGUGUAGAGAUU
983
AAACCAAUCUCUACACUA
984



GGUUU

CUGC






miR-3130-3p
GCUGCACCGGAGACUGG
985
UUACCCAGUCUCCGGUGC
986



GUAA

AGC






miR-3130-5p
UACCCAGUCUCCGGUGC
987
GGCUGCACCGGAGACUGG
988



AGCC

GUA






miR-3131
UCGAGGACUGGUGGAAG
989
AAGGCCCUUCCACCAGUC
990



GGCCUU

CUCGA






miR-3132
UGGGUAGAGAAGGAGCU
991
UCCUCUGAGCUCCUUCUC
992



CAGAGGA

UACCCA






miR-3133
UAAAGAACUCUUAAAAC
993
AUUGGGUUUUAAGAGUU
994



CCAAU

CUUUA






miR-3134
UGAUGGAUAAAAGACUA
995
AAUAUGUAGUCUUUUAU
996



CAUAUU

CCAUCA






miR-3135a
UGCCUAGGCUGAGACUG
997
CACUGCAGUCUCAGCCUA
998



CAGUG

GGCA






miR-3135b
GGCUGGAGCGAGUGCAG
999
CACCACUGCACUCGCUCC
1000



UGGUG

AGCC






miR-3136-3p
UGGCCCAACCUAUUCAG
1001
ACUAACUGAAUAGGUUG
1002



UUAGU

GGCCA






miR-3136-5p
CUGACUGAAUAGGUAGG
1003
AAUGACCCUACCUAUUCA
1004



GUCAUU

GUCAG






miR-3137
UCUGUAGCCUGGGAGCA
1005
ACCCCAUUGCUCCCAGGC
1006



AUGGGGU

UACAGA






miR-3138
UGUGGACAGUGAGGUAG
1007
ACUCCCUCUACCUCACUG
1008



AGGGAGU

UCCACA






miR-3139
UAGGAGCUCAACAGAUG
1009
AACAGGCAUCUGUUGAGC
1010



CCUGUU

UCCUA






miR-3140-3p
AGCUUUUGGGAAUUCAG
1011
ACUACCUGAAUUCCCAAA
1012



GUAGU

AGCU






miR-3140-5p
ACCUGAAUUACCAAAAG
1013
AAAGCUUUUGGUAAUUC
1014



CUUU

AGGU






miR-3141
GAGGGCGGGUGGAGGAG
1015
UCCUCCUCCACCCGCCCU
1016



GA

C






miR-3142
AAGGCCUUUCUGAACCU
1017
UCUGAAGGUUCAGAAAG
1018



UCAGA

GCCUU






miR-3143
AUAACAUUGUAAAGCGC
1019
CGAAAGAAGCGCUUUACA
1020



UUCUUUCG

AUGUUAU






miR-3144-3p
AUAUACCUGUUCGGUCU
1021
UAAAGAGACCGAACAGGU
1022



CUUUA

AUAU






miR-3144-5p
AGGGGACCAAAGAGAUA
1023
CUAUAUAUCUCUUUGGUC
1024



UAUAG

CCCU






miR-3145-3p
AGAUAUUUUGAGUGUUU
1025
CAAUUCCAAACACUCAAA
1026



GGAAUUG

AUAUCU






miR-3145-5p
AACUCCAAACACUCAAA
1027
UGAGUUUUGAGUGUUUG
1028



ACUCA

GAGUU






miR-3146
CAUGCUAGGAUAGAAAG
1029
CCAUUCUUUCUAUCCUAG
1030



AAUGG

CAUG






miR-3147
GGUUGGGCAGUGAGGAG
1031
UCACACCCUCCUCACUGC
1032



GGUGUGA

CCAACC






miR-3148
UGGAAAAAACUGGUGUG
1033
AAGCACACACCAGUUUUU
1034



UGCUU

UCCA






miR-3149
UUUGUAUGGAUAUGUGU
1035
AUACACACACAUAUCCAU
1036



GUGUAU

ACAAA






miR-3150a-3p
CUGGGGAGAUCCUCGAG
1037
CCAACCUCGAGGAUCUCC
1038



GUUGG

CCAG






miR-3150a-5p
CAACCUCGACGAUCUCC
1039
GCUGAGGAGAUCGUCGAG
1040



UCAGC

GUUG






miR-3150b-3p
UGAGGAGAUCGUCGAGG
1041
CCAACCUCGACGAUCUCC
1042



UUGG

UCA






miR-3150b-5p
CAACCUCGAGGAUCUCC
1043
GCUGGGGAGAUCCUCGAG
1044



CCAGC

GUUG






miR-3151
GGUGGGGCAAUGGGAUC
1045
ACCUGAUCCCAUUGCCCC
1046



AGGU

ACC






miR-3152-3p
UGUGUUAGAAUAGGGGC
1047
UUAUUGCCCCUAUUCUAA
1048



AAUAA

CACA






miR-3152-5p
AUUGCCUCUGUUCUAAC
1049
CUUGUGUUAGAACAGAG
1050



ACAAG

GCAAU






miR-3153
GGGGAAAGCGAGUAGGG
1051
AAAUGUCCCUACUCGCUU
1052



ACAUUU

UCCCC






miR-3154
CAGAAGGGGAGUUGGGA
1053
UCUGCUCCCAACUCCCCU
1054



GCAGA

UCUG






miR-3155a
CCAGGCUCUGCAGUGGG
1055
AGUUCCCACUGCAGAGCC
1056



AACU

UGG






miR-3155b
CCAGGCUCUGCAGUGGG
1057
UCCCACUGCAGAGCCUGG
1058



A








miR-3156-3p
CUCCCACUUCCAGAUCU
1059
AGAAAGAUCUGGAAGUG
1060



UUCU

GGAG






miR-3156-5p
AAAGAUCUGGAAGUGGG
1061
UGUCUCCCACUUCCAGAU
1062



AGACA

CUUU






miR-3157-3p
CUGCCCUAGUCUAGCUG
1063
AGCUUCAGCUAGACUAGG
1064



AAGCU

GCAG






miR-3157-5p
UUCAGCCAGGCUAGUGC
1065
AGACUGCACUAGCCUGGC
1066



AGUCU

UGAA






miR-3158-3p
AAGGGCUUCCUCUCUGC
1067
GUCCUGCAGAGAGGAAGC
1068



AGGAC

CCUU






miR-3158-5p
CCUGCAGAGAGGAAGCC
1069
GAAGGGCUUCCUCUCUGC
1070



CUUC

AGG






miR-3159
UAGGAUUACAAGUGUCG
1071
GUGGCCGACACUUGUAAU
1072



GCCAC

CCUA






miR-3160-3p
AGAGCUGAGACUAGAAA
1073
UGGGCUUUCUAGUCUCAG
1074



GCCCA

CUCU






miR-3160-5p
GGCUUUCUAGUCUCAGC
1075
GGAGAGCUGAGACUAGA
1076



UCUCC

AAGAC






miR-3161
CUGAUAAGAACAGAGGC
1077
AUCUGGGCCUCUGUUCUU
1078



CCAGAU

AUCAG






miR-3162-3p
UCCCUACCCCUCCACUCC
1079
UGGGGAGUGGAGGGGUA
1080



CCA

GGGA






miR-3162-5p
UUAGGGAGUAGAAGGGU
1081
CUCCCCACCCUUCUACUC
1082



GGGGAG

CCUAA






miR-3163
UAUAAAAUGAGGGCAGU
1083
GUCUUACUGCCCUCAUUU
1084



AAGAC

UAUA






miR-3164
UGUGACUUUAAGGGAAA
1085
CGCCAUUUCCCUUAAAGU
1086



UGGCG

CACA






miR-3165
AGGUGGAUGCAAUGUGA
1087
UGAGGUCACAUUGCAUCC
1088



CCUCA

ACCU






miR-3166
CGCAGACAAUGCCUACU
1089
UAGGCCAGUAGGCAUUGU
1090



GGCCUA

CUGCG






miR-3167
AGGAUUUCAGAAAUACU
1091
ACACCAGUAUUUCUGAAA
1092



GGUGU

UCCU






miR-3168
GAGUUCUACAGUCAGAC
1093
GUCUGACUGUAGAACUC
1094





miR-3169
UAGGACUGUGCUUGGCA
1095
CUAUGUGCCAAGCACAGU
1096



CAUAG

CCUA






miR-3170
CUGGGGUUCUGAGACAG
1097
ACUGUCUGUCUCAGAACC
1098



ACAGU

CCAG






miR-3171
AGAUGUAUGGAAUCUGU
1099
GAUAUAUACAGAUUCCAU
1100



AUAUAUC

ACAUCU






miR-3173-3p
AAAGGAGGAAAUAGGCA
1101
UGGCCUGCCUAUUUCCUC
1102



GGCCA

CUUU






miR-3173-5p
UGCCCUGCCUGUUUUCU
1103
AAAGGAGAAAACAGGCA
1104



CCUUU

GGGCA






miR-3174
UAGUGAGUUAGAGAUGC
1105
GGCUCUGCAUCUCUAACU
1106



AGAGCC

CACUA






miR-3175
CGGGGAGAGAACGCAGU
1107
ACGUCACUGCGUUCUCUC
1108



GACGU

CCCG






miR-3176
ACUGGCCUGGGACUACC
1109
CCGGUAGUCCCAGGCCAG
1110



GG

U






miR-3177-3p
UGCACGGCACUGGGGAC
1111
ACGUGUCCCCAGUGCCGU
1112



ACGU

GCA






miR-3177-5p
UGUGUACACACGUGCCA
1113
AGCGCCUGGCACGUGUGU
1114



GGCGCU

ACACA






miR-3178
GGGGCGCGGCCGGAUCG
1115
CGAUCCGGCCGCGCCCC
1116





miR-3179
AGAAGGGGUGAAAUUUA
1117
ACGUUUAAAUUUCACCCC
1118



AACGU

UUCU






miR-3180
UGGGGCGGAGCUUCCGG
1119
CUCCGGAAGCUCCGCCCC
1120



AG

A






miR-3180-3p
UGGGGCGGAGCUUCCGG
1121
GGCCUCCGGAAGCUCCGC
1122



AGGCC

CCCA






miR-3180-5p
CUUCCAGACGCUCCGCC
1123
CGACGUGGGGCGGAGCGU
1124



CCACGUCG

CUGGAAG






miR-3181
AUCGGGCCCUCGGCGCC
1125
CCGGCGCCGAGGGCCCGA
1126



GG

U






miR-3182
GCUUCUGUAGUGUAGUC
1127
GACUACACUACAGAAGC
1128





miR-3183
GCCUCUCUCGGAGUCGC
1129
UCCGAGCGACUCCGAGAG
1130



UCGGA

AGGC






miR-3184-3p
AAAGUCUCGCUCUCUGC
1131
UGAGGGGCAGAGAGCGA
1132



CCCUCA

GACUUU






miR-3184-5p
UGAGGGGCCUCAGACCG
1133
AAAAGCUCGGUCUGAGGC
1134



AGCUUUU

CCCUCA






miR-3185
AGAAGAAGGCGGUCGGU
1135
CCGCAGACCGACCGCCUU
1136



CUGCGG

CUUCU






miR-3186-3p
UCACGCGGAGAGAUGGC
1137
CAAAGCCAUCUCUCCGCG
1138



UUUG

UGA






miR-3186-5p
CAGGCGUCUGUCUACGU
1139
AAGCCACGUAGACAGACG
1140



GGCUU

CCUG






miR-3187-3p
UUGGCCAUGGGGCUGCG
1141
CCGCGCAGCCCCAUGGCC
1142



CGG

AA






miR-3187-5p
CCUGGGCAGCGUGUGGC
1143
CCUUCAGCCACACGCUGC
1144



UGAAGG

CCAGG






miR-3188
AGAGGCUUUGUGCGGAU
1145
CCCCGUAUCCGCACAAAG
1146



ACGGGG

CCUCU






miR-3189-3p
CCCUUGGGUCUGAUGGG
1147
CUACCCCAUCAGACCCAA
1148



GUAG

GGG






miR-3189-5p
UGCCCCAUCUGUGCCCU
1149
UCCUACCCAGGGCACAGA
1150



GGGUAGGA

UGGGGCA






miR-3190-3p
UGUGGAAGGUAGACGGC
1151
UCUCUGGCCGUCUACCUU
1152



CAGAGA

CCACA






miR-3190-5p
UCUGGCCAGCUACGUCC
1153
UGGGGACGUAGCUGGCCA
1154



CCA

GA






miR-3191-3p
UGGGGACGUAGCUGGCC
1155
CUGUCUGGCCAGCUACGU
1156



AGACAG

CCCCA






miR-3191-5p
CUCUCUGGCCGUCUACC
1157
UGGAAGGUAGACGGCCAG
1158



UUCCA

AGAG






miR-3192
UCUGGGAGGUUGUAGCA
1159
UUCCACUGCUACAACCUC
1160



GUGGAA

CCAGA






miR-3193
UCCUGCGUAGGAUCUGA
1161
ACUCCUCAGAUCCUACGC
1162



GGAGU

AGGA






miR-3194-3p
AGCUCUGCUGCUCACUG
1163
ACUGCCAGUGAGCAGCAG
1164



GCAGU

AGCU






miR-3194-5p
GGCCAGCCACCAGGAGG
1165
CAGCCCUCCUGGUGGCUG
1166



GCUG

GCC






miR-3195
CGCGCCGGGCCCGGGUU
1167
AACCCGGGCCCGGCGCG
1168





miR-3196
CGGGGCGGCAGGGGCCU
1169
GAGGCCCCUGCCGCCCCG
1170



C








miR-3197
GGAGGCGCAGGCUCGGA
1171
CGCCUUUCCGAGCCUGCG
1172



AAGGCG

CCUCC






miR-3198
GUGGAGUCCUGGGGAAU
1173
UCUCCAUUCCCCAGGACU
1174



GGAGA

CCAC






miR-3199
AGGGACUGCCUUAGGAG
1175
AACUUUCUCCUAAGGCAG
1176



AAAGUU

UCCCU






miR-32-3p
CAAUUUAGUGUGUGUGA
1177
AAAUAUCACACACACUAA
1178



UAUUU

AUUG






miR-32-5p
UAUUGCACAUUACUAAG
1179
UGCAACUUAGUAAUGUGC
1180



UUGCA

AAUA






miR-3200-3p
CACCUUGCGCUACUCAG
1181
CAGACCUGAGUAGCGCAA
1182



GUCUG

GGUG






miR-3200-5p
AAUCUGAGAAGGCGCAC
1183
ACCUUGUGCGCCUUCUCA
1184



AAGGU

GAUU






miR-3201
GGGAUAUGAAGAAAAAU
1185
AUUUUUCUUCAUAUCCC
1186





miR-3202
UGGAAGGGAGAAGAGCU
1187
AUUAAAGCUCUUCUCCCU
1188



UUAAU

UCCA






miR-320a
AAAAGCUGGGUUGAGAG
1189
UCGCCCUCUCAACCCAGC
1190



GGCGA

UUUU






miR-320b
AAAAGCUGGGUUGAGAG
1191
UCGCCCUCUCAACCCAGC
1192



GGCAA

UUUU






miR-320c
AAAAGCUGGGUUGAGAG
1193
ACCCUCUCAACCCAGCUU
1194



GGU

UU






miR-320d
AAAAGCUGGGUUGAGAG
1195
UCCUCUCAACCCAGCUUU
1196



GA

U






miR-320e
AAAGCUGGGUUGAGAAG
1197
CCUUCUCAACCCAGCUUU
1198



G








miR-323a-3p
CACAUUACACGGUCGAC
1199
AGAGGUCGACCGUGUAAU
1200



CUCU

GUG






miR-323a-5p
AGGUGGUCCGUGGCGCG
1201
GCGAACGCGCCACGGACC
1202



UUCGC

ACCU






miR-323b-3p
CCCAAUACACGGUCGAC
1203
AAGAGGUCGACCGUGUAU
1204



CUCUU

UGGG






miR-323b-5p
AGGUUGUCCGUGGUGAG
1205
UGCGAACUCACCACGGAC
1206



UUCGCA

AACCU






miR-324-3p
ACUGCCCCAGGUGCUGC
1207
CCAGCAGCACCUGGGGCA
1208



UGG

GU






miR-324-5p
CGCAUCCCCUAGGGCAU
1209
ACACCAAUGCCCUAGGGG
1210



UGGUGU

AUGCG






miR-325
CCUAGUAGGUGUCCAGU
1211
ACACUUACUGGACACCUA
1212



AAGUGU

CUAGG






miR-326
CCUCUGGGCCCUUCCUC
1213
CUGGAGGAAGGGCCCAGA
1214



CAG

GG






miR-328
CUGGCCCUCUCUGCCCU
1215
ACGGAAGGGCAGAGAGG
1216



UCCGU

GCCAG






miR-329
AACACACCUGGUUAACC
1217
AAAGAGGUUAACCAGGU
1218



UCUUU

GUGUU






miR-330-3p
GCAAAGCACACGGCCUG
1219
UCUCUGCAGGCCGUGUGC
1220



CAGAGA

UUUGC






miR-330-5p
UCUCUGGGCCUGUGUCU
1221
GCCUAAGACACAGGCCCA
1222



UAGGC

GAGA






miR-331-3p
GCCCCUGGGCCUAUCCU
1223
UUCUAGGAUAGGCCCAGG
1224



AGAA

GGC






miR-331-5p
CUAGGUAUGGUCCCAGG
1225
GGAUCCCUGGGACCAUAC
1226



GAUCC

CUAG






miR-335-3p
UUUUUCAUUAUUGCUCC
1227
GGUCAGGAGCAAUAAUG
1228



UGACC

AAAAA






miR-335-5p
UCAAGAGCAAUAACGAA
1229
ACAUUUUUCGUUAUUGCU
1230



AAAUGU

CUUGA






miR-337-3p
CUCCUAUAUGAUGCCUU
1231
GAAGAAAGGCAUCAUAU
1232



UCUUC

AGGAG






miR-337-5p
GAACGGCUUCAUACAGG
1233
AACUCCUGUAUGAAGCCG
1234



AGUU

UUC






miR-338-3p
UCCAGCAUCAGUGAUUU
1235
CAACAAAAUCACUGAUGC
1236



UGUUG

UGGA






miR-338-5p
AACAAUAUCCUGGUGCU
1237
CACUCAGCACCAGGAUAU
1238



GAGUG

UGUU






miR-339-3p
UGAGCGCCUCGACGACA
1239
CGGCUCUGUCGUCGAGGC
1240



GAGCCG

GCUCA






miR-339-5p
UCCCUGUCCUCCAGGAG
1241
CGUGAGCUCCUGGAGGAC
1242



CUCACG

AGGGA






miR-33a-3p
CAAUGUUUCCACAGUGC
1243
GUGAUGCACUGUGGAAAC
1244



AUCAC

AUUG






miR-33a-5p
GUGCAUUGUAGUUGCAU
1245
UGCAAUGCAACUACAAUG
1246



UGCA

CAC






miR-33b-3p
CAGUGCCUCGGCAGUGC
1247
GGGCUGCACUGCCGAGGC
1248



AGCCC

ACUG






miR-33b-5p
GUGCAUUGCUGUUGCAU
1249
GCAAUGCAACAGCAAUGC
1250



UGC

AC






miR-340-3p
UCCGUCUCAGUUACUUU
1251
GCUAUAAAGUAACUGAG
1252



AUAGC

ACGGA






miR-340-5p
UUAUAAAGCAAUGAGAC
1253
AAUCAGUCUCAUUGCUUU
1254



UGAUU

AUAA






miR-342-3p
UCUCACACAGAAAUCGC
1255
ACGGGUGCGAUUUCUGUG
1256



ACCCGU

UGAGA






miR-342-5p
AGGGGUGCUAUCUGUGA
1257
UCAAUCACAGAUAGCACC
1258



UUGA

CCU






miR-345-3p
GCCCUGAACGAGGGGUC
1259
CUCCAGACCCCUCGUUCA
1260



UGGAG

GGGC






miR-345-5p
GCUGACUCCUAGUCCAG
1261
GAGCCCUGGACUAGGAGU
1262



GGCUC

CAGC






miR-346
UGUCUGCCCGCAUGCCU
1263
AGAGGCAGGCAUGCGGGC
1264



GCCUCU

AGACA






miR-34a-3p
CAAUCAGCAAGUAUACU
1265
AGGGCAGUAUACUUGCUG
1266



GCCCU

AUUG






miR-34a-5p
UGGCAGUGUCUUAGCUG
1267
ACAACCAGCUAAGACACU
1268



GUUGU

GCCA






miR-34b-3p
CAAUCACUAACUCCACU
1269
AUGGCAGUGGAGUUAGU
1270



GCCAU

GAUUG






miR-34b-5p
UAGGCAGUGUCAUUAGC
1271
CAAUCAGCUAAUGACACU
1272



UGAUUG

GCCUA






miR-34c-3p
AAUCACUAACCACACGG
1273
CCUGGCCGUGUGGUUAGU
1274



CCAGG

GAUU






miR-34c-5p
AGGCAGUGUAGUUAGCU
1275
GCAAUCAGCUAACUACAC
1276



GAUUGC

UGCCU






miR-3529-3p
AACAACAAAAUCACUAG
1277
UGGAAGACUAGUGAUUU
1278



UCUUCCA

UGUUGUU






miR-3529-5p
AGGUAGACUGGGAUUUG
1279
AACAACAAAUCCCAGUCU
1280



UUGUU

ACCU






miR-3545-3p
UUGAACUGUUAAGAACC
1281
UCCAGUGGUUCUUAACAG
1282



ACUGGA

UUCAA






miR-3545-5p
UAGUGGUCCUAAACAUU
1283
UGUGAAAUGUUUAGGAC
1284



UCACA

CACUA






miR-3591-3p
CACCAUUGUCACAC
1285
GUGGAGUGUGACAAUGG
1286



UCCAC

UGUUU






miR-3591-5p
UUUAGUGUGAUAAUGGC
1287
UCAAACGCCAUUAUCACA
1288



GUUUGA

CUAAA






miR-3605-3p
CCUCCGUGUUACCUGUC
1289
CUAGAGGACAGGUAACAC
1290



CUCUAG

GGAGG






miR-3605-5p
UGAGGAUGGAUAGCAAG
1291
GGCUUCCUUGCUAUCCAU
1292



GAAGCC

CCUCA






miR-3606
UUAGUGAAGGCUAUUUU
1293
AAUUAAAAUAGCCUUCAC
1294



AAUU

UAA






miR-3607-3p
ACUGUAAACGCUUUCUG
1295
CAUCAGAAAGCGUUUACA
1296



AUG

GU






miR-3607-5p
GCAUGUGAUGAAGCAAA
1297
ACUGAUUUGCUUCAUCAC
1298



UCAGU

AUGC






miR-3609
CAAAGUGAUGAGUAAUA
1299
CAGCCAGUAUUACUCAUC
1300



CUGGCUG

ACUUUG






miR-361-3p
UCCCCCAGGUGUGAUUC
1301
AAAUCAGAAUCACACCUG
1302



UGAUUU

GGGGA






miR-361-5p
UUAUCAGAAUCUCCAGG
1303
GUACCCCUGGAGAUUCUG
1304



GGUAC

AUAA






miR-3610
GAAUCGGAAAGGAGGCG
1305
CGGCGCCUCCUUUCCGAU
1306



CCG

UC






miR-3611
UUGUGAAGAAAGAAAUU
1307
UAAGAAUUUCUUUCUUCA
1308



CUUA

CAA






miR-3612
AGGAGGCAUCUUGAGAA
1309
UCCAUUUCUCAAGAUGCC
1310



AUGGA

UCCU






miR-3613-3p
ACAAAAAAAAAAGCCCA
1311
GAAGGGUUGGGCUUUUU
1312



ACCCUUC

UUUUUGU






miR-3613-5p
UGUUGUACUUUUUUUUU
1313
GAACAAAAAAAAAAGUA
1314



UGUUC

CAACA






miR-3614-3p
UAGCCUUCAGAUCUUGG
1315
AAAACACCAAGAUCUGAA
1316



UGUUUU

GGCUA






miR-3614-5p
CCACUUGGAUCUGAAGG
1317
GGGCAGCCUUCAGAUCCA
1318



CUGCCC

AGUGG






miR-3615
UCUCUCGGCUCCUCGCG
1319
GAGCCGCGAGGAGCCGAG
1320



GCUC

AGA






miR-3616-3p
CGAGGGCAUUUCAUGAU
1321
GCCUGCAUCAUGAAAUGC
1322



GCAGGC

CCUCG






miR-3616-5p
AUGAAGUGCACUCAUGA
1323
ACAUAUCAUGAGUGCACU
1324



UAUGU

UCAU






miR-3617
AAAGACAUAGUUGCAAG
1325
CCCAUCUUGCAACUAUGU
1326



AUGGG

CUUU






miR-3618
UGUCUACAUUAAUGAAA
1327
GCUCUUUUCAUUAAUGUA
1328



AGAGC

GACA






miR-3619-3p
GGGACCAUCCUGCCUGC
1329
CCACAGCAGGCAGGAUGG
1330



UGUGG

UCCC






miR-3619-5p
UCAGCAGGCAGGCUGGU
1331
GCUGCACCAGCCUGCCUG
1332



GCAGC

CUGA






miR-362-3p
AACACACCUAUUCAAGG
1333
UGAAUCCUUGAAUAGGU
1334



AUUCA

GUGUU






miR-362-5p
AAUCCUUGGAACCUAGG
1335
ACUCACACCUAGGUUCCA
1336



UGUGAGU

AGGAUU






miR-3620
UCACCCUGCAUCCCGCA
1337
CUGGGUGCGGGAUGCAGG
1338



CCCAG

GUGA






miR-3621
CGCGGGUCGGGGUCUGC
1339
CCUGCAGACCCCGACCCG
1340



AGG

CG






miR-3622a-3p
UCACCUGACCUCCCAUG
1341
ACAGGCAUGGGAGGUCAG
1342



CCUGU

GUGA






miR-3622a-5p
CAGGCACGGGAGCUCAG
1343
CUCACCUGAGCUCCCGUG
1344



GUGAG

CCUG






miR-3622b-3p
UCACCUGAGCUCCCGUG
1345
CAGGCACGGGAGCUCAGG
1346



CCUG

UGA






miR-3622b-5p
AGGCAUGGGAGGUCAGG
1347
UCACCUGACCUCCCAUGC
1348



UGA

CU






miR-363-3p
AAUUGCACGGUAUCCAU
1349
UACAGAUGGAUACCGUGC
1350



CUGUA

AAUU






miR-363-5p
CGGGUGGAUCACGAUGC
1351
AAAUUGCAUCGUGAUCCA
1352



AAUUU

CCCG






miR-3646
AAAAUGAAAUGAGCCCA
1353
UGGGCUGGGCUCAUUUCA
1354



GCCCA

UUUU






miR-3648
AGCCGCGGGGAUCGCCG
1355
CCCUCGGCGAUCCCCGCG
1356



AGGG

GCU






miR-3649
AGGGACCUGAGUGUCUA
1357
CUUAGACACUCAGGUCCC
1358



AG

U






miR-3650
AGGUGUGUCUGUAGAGU
1359
GGACUCUACAGACACACC
1360



CC

U






miR-3651
CAUAGCCCGGUCGCUGG
1361
UCAUGUACCAGCGACCGG
1362



UACAUGA

GCUAUG






miR-3652
CGGCUGGAGGUGUGAGG
1363
UCCUCACACCUCCAGCCG
1364



A








miR-3653
CUAAGAAGUUGACUGAA
1365
CUUCAGUCAACUUCUUAG
1366



G








miR-3654
GACUGGACAAGCUGAGG
1367
UUCCUCAGCUUGUCCAGU
1368



AA

C






miR-3655
GCUUGUCGCUGCGGUGU
1369
AGCAACACCGCAGCGACA
1370



UGCU

AGC






miR-3656
GGCGGGUGCGGGGGUGG
1371
CCACCCCCGCACCCGCC
1372





miR-3657
UGUGUCCCAUUAUUGGU
1373
AAUCACCAAUAAUGGGAC
1374



GAUU

ACA






miR-3658
UUUAAGAAAACACCAUG
1375
AUCUCCAUGGUGUUUUCU
1376



GAGAU

UAAA






miR-3659
UGAGUGUUGUCUACGAG
1377
UGCCCUCGUAGACAACAC
1378



GGCA

UCA






miR-365a-3p
UAAUGCCCCUAAAAAUC
1379
AUAAGGAUUUUUAGGGG
1380



CUUAU

CAUUA






miR-365a-5p
AGGGACUUUUGGGGGCA
1381
CACAUCUGCCCCCAAAAG
1382



GAUGUG

UCCCU






miR-365b-3p
UAAUGCCCCUAAAAAUC
1383
AUAAGGAUUUUUAGGGG
1384



CUUAU

CAUUA






miR-365b-5p
AGGGACUUUCAGGGGCA
1385
ACAGCUGCCCCUGAAAGU
1386



GCUGU

CCCU






miR-3660
ACUGACAGGAGAGCAUU
1387
UCAAAAUGCUCUCCUGUC
1388



UUGA

AGU






miR-3661
UGACCUGGGACUCGGAC
1389
CAGCUGUCCGAGUCCCAG
1390



AGCUG

GUCA






miR-3662
GAAAAUGAUGAGUAGUG
1391
CAUCAGUCACUACUCAUC
1392



ACUGAUG

AUUUUC






miR-3663-3p
UGAGCACCACACAGGCC
1393
GCGCCCGGCCUGUGUGGU
1394



GGGCGC

GCUCA






miR-3663-5p
GCUGGUCUGCGUGGUGC
1395
CCGAGCACCACGCAGACC
1396



UCGG

AGC






miR-3664-3p
UCUCAGGAGUAAAGACA
1397
AACUCUGUCUUUACUCCU
1398



GAGUU

GAGA






miR-3664-5p
AACUCUGUCUUCACUCA
1399
ACUCAUGAGUGAAGACAG
1400



UGAGU

AGUU






miR-3665
AGCAGGUGCGGGGCGGC
1401
CGCCGCCCCGCACCUGCU
1402



G








miR-3666
CAGUGCAAGUGUAGAUG
1403
UCGGCAUCUACACUUGCA
1404



CCGA

CUG






miR-3667-3p
ACCUUCCUCUCCAUGGG
1405
AAAGACCCAUGGAGAGGA
1406



UCUUU

AGGU






miR-3667-5p
AAAGACCCAUUGAGGAG
1407
ACCUUCUCCUCAAUGGGU
1408



AAGGU

CUUU






miR-3668
AAUGUAGAGAUUGAUCA
1409
AUUUUGAUCAAUCUCUAC
1410



AAAU

AUU






miR-3669
ACGGAAUAUGUAUACGG
1411
UAUAUUCCGUAUACAUAU
1412



AAUAUA

UCCGU






miR-367-3p
AAUUGCACUUUAGCAAU
1413
UCACCAUUGCUAAAGUGC
1414



GGUGA

AAUU






miR-367-5p
ACUGUUGCUAAUAUGCA
1415
AGAGUUGCAUAUUAGCA
1416



ACUCU

ACAGU






miR-3670
AGAGCUCACAGCUGUCC
1417
UAGAGAAGGACAGCUGU
1418



UUCUCUA

GAGCUCU






miR-3671
AUCAAAUAAGGACUAGU
1419
UGCAGACUAGUCCUUAUU
1420



CUGCA

UGAU






miR-3672
AUGAGACUCAUGUAAAA
1421
AAGAUGUUUUACAUGAG
1422



CAUCUU

UCUCAU






miR-3673
AUGGAAUGUAUAUACGG
1423
UAUUCCGUAUAUACAUUC
1424



AAUA

CAU






miR-3674
AUUGUAGAACCUAAGAU
1425
GGCCAAUCUUAGGUUCUA
1426



UGGCC

CAAU






miR-3675-3p
CAUCUCUAAGGAACUCC
1427
UUGGGGGAGUUCCUUAG
1428



CCCAA

AGAUG






miR-3675-5p
UAUGGGGCUUCUGUAGA
1429
GAAAUCUCUACAGAAGCC
1430



GAUUUC

CCAUA






miR-3676-3p
CCGUGUUUCCCCCACGC
1431
AAAGCGUGGGGGAAACAC
1432



UUU

GG






miR-3676-5p
AGGAGAUCCUGGGUU
1433
AACCCAGGAUCUCCU
1434





miR-3677-3p
CUCGUGGGCUCUGGCCA
1435
GGCCGUGGCCAGAGCCCA
1436



CGGCC

CGAG






miR-3677-5p
CAGUGGCCAGAGCCCUG
1437
CACUGCAGGGCUCUGGCC
1438



CAGUG

ACUG






miR-3678-3p
CUGCAGAGUUUGUACGG
1439
CCGGUCCGUACAAACUCU
1440



ACCGG

GCAG






miR-3678-5p
UCCGUACAAACUCUGCU
1441
CACAGCAGAGUUUGUACG
1442



GUG

GA






miR-3679-3p
CUUCCCCCCAGUAAUCU
1443
GAUGAAGAUUACUGGGG
1444



UCAUC

GGAAG






miR-3679-5p
UGAGGAUAUGGCAGGGA
1445
UCCCCUUCCCUGCCAUAU
1446



AGGGGA

CCUCA






miR-3680-3p
UUUUGCAUGACCCUGGG
1447
CCUACUCCCAGGGUCAUG
1448



AGUAGG

CAAAA






miR-3680-5p
GACUCACUCACAGGAUU
1449
UGCACAAUCCUGUGAGUG
1450



GUGCA

AGUC






miR-3681-3p
ACACAGUGCUUCAUCCA
1451
AGUAGUGGAUGAAGCAC
1452



CUACU

UGUGU






miR-3681-5p
UAGUGGAUGAUGCACUC
1453
GCACAGAGUGCAUCAUCC
1454



UGUGC

ACUA






miR-3682-3p
UGAUGAUACAGGUGGAG
1455
CUACCUCCACCUGUAUCA
1456



GUAG

UCA






miR-3682-5p
CUACUUCUACCUGUGUU
1457
AUGAUAACACAGGUAGA
1458



AUCAU

AGUAG






miR-3683
UGCGACAUUGGAAGUAG
1459
UGAUACUACUUCCAAUGU
1460



UAUCA

CGCA






miR-3684
UUAGACCUAGUACACGU
1461
AAGGACGUGUACUAGGUC
1462



CCUU

UAA






miR-3685
UUUCCUACCCUACCUGA
1463
AGUCUUCAGGUAGGGUA
1464



AGACU

GGAAA






miR-3686
AUCUGUAAGAGAAAGUA
1465
UCAUUUACUUUCUCUUAC
1466



AAUGA

AGAU






miR-3687
CCCGGACAGGCGUUCGU
1467
ACGUCGCACGAACGCCUG
1468



GCGACGU

UCCGGG






miR-3688-3p
UAUGGAAAGACUUUGCC
1469
AGAGUGGCAAAGUCUUUC
1470



ACUCU

CAUA






miR-3688-5p
AGUGGCAAAGUCUUUCC
1471
AUAUGGAAAGACUUUGCC
1472



AUAU

ACU






miR-3689a-3p
CUGGGAGGUGUGAUAUC
1473
ACCACGAUAUCACACCUC
1474



GUGGU

CCAG






miR-3689a-5p
UGUGAUAUCAUGGUUCC
1475
UCCCAGGAACCAUGAUAU
1476



UGGGA

CACA






miR-3689b-3p
CUGGGAGGUGUGAUAUU
1477
ACCACAAUAUCACACCUC
1478



GUGGU

CCAG






miR-3689b-5p
UGUGAUAUCAUGGUUCC
1479
UCCCAGGAACCAUGAUAU
1480



UGGGA

CACA






miR-3689c
CUGGGAGGUGUGAUAUU
1481
ACCACAAUAUCACACCUC
1482



GUGGU

CCAG






miR-3689d
GGGAGGUGUGAUCUCAC
1483
CGAGUGUGAGAUCACACC
1484



ACUCG

UCCC






miR-3689e
UGUGAUAUCAUGGUUCC
1485
UCCCAGGAACCAUGAUAU
1486



UGGGA

CACA






miR-3689f
UGUGAUAUCGUGCUUCC
1487
UCCCAGGAAGCACGAUAU
1488



UGGGA

CACA






miR-369-3p
AAUAAUACAUGGUUGAU
1489
AAAGAUCAACCAUGUAUU
1490



CUUU

AUU






miR-369-5p
AGAUCGACCGUGUUAUA
1491
GCGAAUAUAACACGGUCG
1492



UUCGC

AUCU






miR-3690
ACCUGGACCCAGCGUAG
1493
CUUUGUCUACGCUGGGUC
1494



ACAAAG

CAGGU






miR-3691-3p
ACCAAGUCUGCGUCAUC
1495
GAGAGGAUGACGCAGACU
1496



CUCUC

UGGU






miR-3691-5p
AGUGGAUGAUGGAGACU
1497
GUACCGAGUCUCCAUCAU
1498



CGGUAC

CCACU






miR-3692-3p
GUUCCACACUGACACUG
1499
ACUUCUGCAGUGUCAGUG
1500



CAGAAGU

UGGAAC






miR-3692-5p
CCUGCUGGUCAGGAGUG
1501
CAGUAUCCACUCCUGACC
1502



GAUACUG

AGCAGG






miR-370
GCCUGCUGGGGUGGAAC
1503
ACCAGGUUCCACCCCAGC
1504



CUGGU

AGGC






miR-3713
GGUAUCCGUUUGGGGAU
1505
ACCAUCCCCAAACGGAUA
1506



GGU

CC






miR-3714
GAAGGCAGCAGUGCUCC
1507
ACAGGGGAGCACUGCUGC
1508



CCUGU

CUUC






miR-371a-3p
AAGUGCCGCCAUCUUUU
1509
ACACUCAAAAGAUGGCGG
1510



GAGUGU

CACUU






miR-371a-5p
ACUCAAACUGUGGGGGC
1511
AGUGCCCCCACAGUUUGA
1512



ACU

GU






miR-371b-3p
AAGUGCCCCCACAGUUU
1513
GCACUCAAACUGUGGGGG
1514



GAGUGC

CACUU






miR-371b-5p
ACUCAAAAGAUGGCGGC
1515
AAAGUGCCGCCAUCUUUU
1516



ACUUU

GAGU






miR-372
AAAGUGCUGCGACAUUU
1517
ACGCUCAAAUGUCGCAGC
1518



GAGCGU

ACUUU






miR-373-3p
GAAGUGCUUCGAUUUUG
1519
ACACCCCAAAAUCGAAGC
1520



GGGUGU

ACUUC






miR-373-5p
ACUCAAAAUGGGGGCGC
1521
GGAAAGCGCCCCCAUUUU
1522



UUUCC

GAGU






miR-374a-3p
CUUAUCAGAUUGUAUUG
1523
AAUUACAAUACAAUCUGA
1524



UAAUU

UAAG






miR-374a-5p
UUAUAAUACAACCUGAU
1525
CACUUAUCAGGUUGUAUU
1526



AAGUG

AUAA






miR-374b-3p
CUUAGCAGGUUGUAUUA
1527
AAUGAUAAUACAACCUGC
1528



UCAUU

UAAG






miR-374b-5p
AUAUAAUACAACCUGCU
1529
CACUUAGCAGGUUGUAUU
1530



AAGUG

AUAU






miR-374c-3p
CACUUAGCAGGUUGUAU
1531
AUAUAAUACAACCUGCUA
1532



UAUAU

AGUG






miR-374c-5p
AUAAUACAACCUGCUAA
1533
AGCACUUAGCAGGUUGUA
1534



GUGCU

UUAU






miR-375
UUUGUUCGUUCGGCUCG
1535
UCACGCGAGCCGAACGAA
1536



CGUGA

CAAA






miR-376a-3p
AUCAUAGAGGAAAAUCC
1537
ACGUGGAUUUUCCUCUAU
1538



ACGU

GAU






miR-376a-5p
GUAGAUUCUCCUUCUAU
1539
UACUCAUAGAAGGAGAA
1540



GAGUA

UCUAC






miR-376b
AUCAUAGAGGAAAAUCC
1541
AACAUGGAUUUUCCUCUA
1542



AUGUU

UGAU






miR-376c
AACAUAGAGGAAAUUCC
1543
ACGUGGAAUUUCCUCUAU
1544



ACGU

GUU






miR-377-3p
AUCACACAAAGGCAACU
1545
ACAAAAGUUGCCUUUGUG
1546



UUUGU

UGAU






miR-377-5p
AGAGGUUGCCCUUGGUG
1547
GAAUUCACCAAGGGCAAC
1548



AAUUC

CUCU






miR-378a-3p
ACUGGACUUGGAGUCAG
1549
CCUUCUGACUCCAAGUCC
1550



AAGG

AGU






miR-378a-5p
CUCCUGACUCCAGGUCC
1551
ACACAGGACCUGGAGUCA
1552



UGUGU

GGAG






miR-378b
ACUGGACUUGGAGGCAG
1553
UUCUGCCUCCAAGUCCAG
1554



AA

U






miR-378c
ACUGGACUUGGAGUCAG
1555
CCACUCUUCUGACUCCAA
1556



AAGAGUGG

GUCCAGU






miR-378d
ACUGGACUUGGAGUCAG
1557
UUUCUGACUCCAAGUCCA
1558



AAA

GU






miR-378e
ACUGGACUUGGAGUCAG
1559
UCCUGACUCCAAGUCCAG
1560



GA

U






miR-378f
ACUGGACUUGGAGCCAG
1561
CUUCUGGCUCCAAGUCCA
1562



AAG

GU






miR-378g
ACUGGGCUUGGAGUCAG
1563
CUUCUGACUCCAAGCCCA
1564



AAG

GU






miR-378h
ACUGGACUUGGUGUCAG
1565
CCAUCUGACACCAAGUCC
1566



AUGG

AGU






miR-378i
ACUGGACUAGGAGUCAG
1567
CCUUCUGACUCCUAGUCC
1568



AAGG

AGU






miR-379-3p
UAUGUAACAUGGUCCAC
1569
AGUUAGUGGACCAUGUU
1570



UAACU

ACAUA






miR-379-5p
UGGUAGACUAUGGAACG
1571
CCUACGUUCCAUAGUCUA
1572



UAGG

CCA






miR-380-3p
UAUGUAAUAUGGUCCAC
1573
AAGAUGUGGACCAUAUU
1574



AUCUU

ACAUA






miR-380-5p
UGGUUGACCAUAGAACA
1575
GCGCAUGUUCUAUGGUCA
1576



UGCGC

ACCA






miR-381
UAUACAAGGGCAAGCUC
1577
ACAGAGAGCUUGCCCUUG
1578



UCUGU

UAUA






miR-382-3p
AAUCAUUCACGGACAAC
1579
AAGUGUUGUCCGUGAAU
1580



ACUU

GAUU






miR-382-5p
GAAGUUGUUCGUGGUGG
1581
CGAAUCCACCACGAACAA
1582



AUUCG

CUUC






miR-383
AGAUCAGAAGGUGAUUG
1583
AGCCACAAUCACCUUCUG
1584



UGGCU

AUCU






miR-384
AUUCCUAGAAAUUGUUC
1585
UAUGAACAAUUUCUAGG
1586



AUA

AAU






miR-3907
AGGUGCUCCAGGCUGGC
1587
UGUGAGCCAGCCUGGAGC
1588



UCACA

ACCU






miR-3908
GAGCAAUGUAGGUAGAC
1589
AAACAGUCUACCUACAUU
1590



UGUUU

GCUC






miR-3909
UGUCCUCUAGGGCCUGC
1591
AGACUGCAGGCCCUAGAG
1592



AGUCU

GACA






miR-3910
AAAGGCAUAAAACCAAG
1593
UGUCUUGGUUUUAUGCCU
1594



ACA

UU






miR-3911
UGUGUGGAUCCUGGAGG
1595
UGCCUCCUCCAGGAUCCA
1596



AGGCA

CACA






miR-3912
UAACGCAUAAUAUGGAC
1597
ACAUGUCCAUAUUAUGCG
1598



AUGU

UUA






miR-3913-3p
AGACAUCAAGAUCAGUC
1599
UUUGGGACUGAUCUUGA
1600



CCAAA

UGUCU






miR-3913-5p
UUUGGGACUGAUCUUGA
1601
AGACAUCAAGAUCAGUCC
1602



UGUCU

CAAA






miR-3914
AAGGAACCAGAAAAUGA
1603
ACUUCUCAUUUUCUGGUU
1604



GAAGU

CCUU






miR-3915
UUGAGGAAAAGAUGGUC
1605
AAUAAGACCAUCUUUUCC
1606



UUAUU

UCAA






miR-3916
AAGAGGAAGAAAUGGCU
1607
CUGAGAACCAGCCAUUUC
1608



GGUUCUCAG

UUCCUCUU






miR-3917
GCUCGGACUGAGCAGGU
1609
CCCACCUGCUCAGUCCGA
1610



GGG

GC






miR-3918
ACAGGGCCGCAGAUGGA
1611
AGUCUCCAUCUGCGGCCC
1612



GACU

UGU






miR-3919
GCAGAGAACAAAGGACU
1613
ACUGAGUCCUUUGUUCUC
1614



CAGU

UGC






miR-3920
ACUGAUUAUCUUAACUC
1615
UCAGAGAGUUAAGAUAA
1616



UCUGA

UCAGU






miR-3921
UCUCUGAGUACCAUAUG
1617
ACAAGGCAUAUGGUACUC
1618



CCUUGU

AGAGA






miR-3922-3p
UCUGGCCUUGACUUGAC
1619
AAAGAGUCAAGUCAAGGC
1620



UCUUU

CAGA






miR-3922-5p
UCAAGGCCAGAGGUCCC
1621
UGCUGUGGGACCUCUGGC
1622



ACAGCA

CUUGA






miR-3923
AACUAGUAAUGUUGGAU
1623
CCCUAAUCCAACAUUACU
1624



UAGGG

AGUU






miR-3924
AUAUGUAUAUGUGACUG
1625
AGUAGCAGUCACAUAUAC
1626



CUACU

AUAU






miR-3925-3p
ACUCCAGUUUUAGUUCU
1627
CAAGAGAACUAAAACUGG
1628



CUUG

AGU






miR-3925-5p
AAGAGAACUGAAAGUGG
1629
AGGCUCCACUUUCAGUUC
1630



AGCCU

UCUU






miR-3926
UGGCCAAAAAGCAGGCA
1631
UCUCUGCCUGCUUUUUGG
1632



GAGA

CCA






miR-3927
CAGGUAGAUAUUUGAUA
1633
AUGCCUAUCAAAUAUCUA
1634



GGCAU

CCUG






miR-3928
GGAGGAACCUUGGAGCU
1635
GCCGAAGCUCCAAGGUUC
1636



UCGGC

CUCC






miR-3929
GAGGCUGAUGUGAGUAG
1637
AGUGGUCUACUCACAUCA
1638



ACCACU

GCCUC






miR-3934
UCAGGUGUGGAAACUGA
1639
CUGCCUCAGUUUCCACAC
1640



GGCAG

CUGA






miR-3935
UGUAGAUACGAGCACCA
1641
GUGGCUGGUGCUCGUAUC
1642



GCCAC

UACA






miR-3936
UAAGGGGUGUAUGGCAG
1643
UGCAUCUGCCAUACACCC
1644



AUGCA

CUUA






miR-3937
ACAGGCGGCUGUAGCAA
1645
CCCCCAUUGCUACAGCCG
1646



UGGGGG

CCUGU






miR-3938
AAUUCCCUUGUAGAUAA
1647
CCGGGUUAUCUACAAGGG
1648



CCCGG

AAUU






miR-3939
UACGCGCAGACCACAGG
1649
GACAUCCUGUGGUCUGCG
1650



AUGUC

CGUA






miR-3940-3p
CAGCCCGGAUCCCAGCC
1651
AAGUGGGCUGGGAUCCGG
1652



CACUU

GCUG






miR-3940-5p
GUGGGUUGGGGCGGGCU
1653
CAGAGCCCGCCCCAACCC
1654



CUG

AC






miR-3941
UUACACACAACUGAGGA
1655
UAUGAUCCUCAGUUGUGU
1656



UCAUA

GUAA






miR-3942-3p
UUUCAGAUAACAGUAUU
1657
AUGUAAUACUGUUAUCU
1658



ACAU

GAAA






miR-3942-5p
AAGCAAUACUGUUACCU
1659
AUUUCAGGUAACAGUAU
1660



GAAAU

UGCUU






miR-3943
UAGCCCCCAGGCUUCAC
1661
CGCCAAGUGAAGCCUGGG
1662



UUGGCG

GGCUA






miR-3944-3p
UUCGGGCUGGCCUGCUG
1663
CCGGAGCAGCAGGCCAGC
1664



CUCCGG

CCGAA






miR-3944-5p
UGUGCAGCAGGCCAACC
1665
UCUCGGUUGGCCUGCUGC
1666



GAGA

ACA






miR-3945
AGGGCAUAGGAGAGGGU
1667
AUAUCAACCCUCUCCUAU
1668



UGAUAU

GCCCU






miR-3960
GGCGGCGGCGGAGGCGG
1669
CCCCCGCCTCCGCCGCCGC
1670



GGG

C






miR-3972
CUGCCAGCCCCGUUCCA
1671
UGCCCUGGAACGGGGCUG
1672



GGGCA

GCAG






miR-3973
ACAAAGUACAGCAUUAG
1673
CUAAGGCUAAUGCUGUAC
1674



CCUUAG

UUUGU






miR-3974
AAAGGUCAUUGUAAGGU
1675
GCAUUAACCUUACAAUGA
1676



UAAUGC

CCUUU






miR-3975
UGAGGCUAAUGCACUAC
1677
GUGAAGUAGUGCAUUAG
1678



UUCAC

CCUCA






miR-3976
UAUAGAGAGCAGGAAGA
1679
ACAUUAAUCUUCCUGCUC
1680



UUAAUGU

UCUAUA






miR-3977
GUGCUUCAUCGUAAUUA
1681
UAAGGUUAAUUACGAUG
1682



ACCUUA

AAGCAC






miR-3978
GUGGAAAGCAUGCAUCC
1683
ACACCCUGGAUGCAUGCU
1684



AGGGUGU

UUCCAC






miR-409-3p
GAAUGUUGCUCGGUGAA
1685
AGGGGUUCACCGAGCAAC
1686



CCCCU

AUUC






miR-409-5p
AGGUUACCCGAGCAACU
1687
AUGCAAAGUUGCUCGGGU
1688



UUGCAU

AACCU






miR-410
AAUAUAACACAGAUGGC
1689
ACAGGCCAUCUGUGUUAU
1690



CUGU

AUU






miR-411-3p
UAUGUAACACGGUCCAC
1691
GGUUAGUGGACCGUGUU
1692



UAACC

ACAUA






miR-411-5p
UAGUAGACCGUAUAGCG
1693
CGUACGCUAUACGGUCUA
1694



UACG

CUA






miR-412
ACUUCACCUGGUCCACU
1695
ACGGCUAGUGGACCAGGU
1696



AGCCGU

GAAGU






miR-421
AUCAACAGACAUUAAUU
1697
GCGCCCAAUUAAUGUCUG
1698



GGGCGC

UUGAU






miR-422a
ACUGGACUUAGGGUCAG
1699
GCCUUCUGACCCUAAGUC
1700



AAGGC

CAGU






miR-423-3p
AGCUCGGUCUGAGGCCC
1701
ACUGAGGGGCCUCAGACC
1702



CUCAGU

GAGCU






miR-423-5p
UGAGGGGCAGAGAGCGA
1703
AAAGUCUCGCUCUCUGCC
1704



GACUUU

CCUCA






miR-424-3p
CAAAACGUGAGGCGCUG
1705
AUAGCAGCGCCUCACGUU
1706



CUAU

UUG






miR-424-5p
CAGCAGCAAUUCAUGUU
1707
UUCAAAACAUGAAUUGCU
1708



UUGAA

GCUG






miR-425-3p
AUCGGGAAUGUCGUGUC
1709
GGGCGGACACGACAUUCC
1710



CGCCC

CGAU






miR-425-5p
AAUGACACGAUCACUCC
1711
UCAACGGGAGUGAUCGUG
1712



CGUUGA

UCAUU






miR-4251
CCUGAGAAAAGGGCCAA
1713
UUGGCCCUUUUCUCAGG
1714





miR-4252
GGCCACUGAGUCAGCAC
1715
UGGUGCUGACUCAGUGGC




CA

C
1716





miR-4253
AGGGCAUGUCCAGGGGG
1717
ACCCCCUGGACAUGCCCU
1718



U








miR-4254
GCCUGGAGCUACUCCAC
1719
GAGAUGGUGGAGUAGCU
1720



CAUCUC

CCAGGC






miR-4255
CAGUGUUCAGAGAUGGA
1721
UCCAUCUCUGAACACUG
1722





miR-4256
AUCUGACCUGAUGAAGG
1723
ACCUUCAUCAGGUCAGAU
1724



U








miR-4257
CCAGAGGUGGGGACUGA
1725
CUCAGUCCCCACCUCUGG
1726



G








miR-4258
CCCCGCCACCGCCUUGG
1727
CCAAGGCGGUGGCGGGG
1728





miR-4259
CAGUUGGGUCUAGGGGU
1729
UCCUGACCCCUAGACCCA
1730



CAGGA

ACUG






miR-4260
CUUGGGGCAUGGAGUCC
1731
UGGGACUCCAUGCCCCAA
1732



CA

G






miR-4261
AGGAAACAGGGACCCA
1733
TGGGTCCCTGTTTCCT
1734





miR-4262
GACAUUCAGACUACCUG
1735
CAGGUAGUCUGAAUGUC
1736





miR-4263
AUUCUAAGUGCCUUGGC
1737
GGCCAAGGCACUUAGAAU
1738



C








miR-4264
ACUCAGUCAUGGUCAUU
1739
AAUGACCAUGACUGAGU
1740





miR-4265
CUGUGGGCUCAGCUCUG
1741
CCCAGAGCUGAGCCCACA
1742



GG

G






miR-4266
CUAGGAGGCCUUGGCC
1743
GGCCAAGGCCUCCUAG
1744





miR-4267
UCCAGCUCGGUGGCAC
1745
GUGCCACCGAGCUGGA
1746





miR-4268
GGCUCCUCCUCUCAGGA
1747
CACAUCCUGAGAGGAGGA
1748



UGUG

GCC






miR-4269
GCAGGCACAGACAGCCC
1749
GCCAGGGCUGUCUGUGCC
1750



UGGC

UGC






miR-4270
UCAGGGAGUCAGGGGAG
1751
GCCCUCCCCUGACUCCCU
1752



GGC

GA






miR-4271
GGGGGAAGAAAAGGUGG
1753
CCCCACCUUUUCUUCCCC
1754



GG

C






miR-4272
CAUUCAACUAGUGAUUG
1755
ACAAUCACUAGUUGAAUG
1756



U








miR-4273
GUGUUCUCUGAUGGACA
1757
CUGUCCAUCAGAGAACAC
1758



G








miR-4274
CAGCAGUCCCUCCCCCU
1759
CAGGGGGAGGGACUGCUG
1760



G








miR-4275
CCAAUUACCACUUCUUU
1761
AAAGAAGUGGUAAUUGG
1762





miR-4276
CUCAGUGACUCAUGUGC
1763
GCACAUGAGUCACUGAG
1764





miR-4277
GCAGUUCUGAGCACAGU
1765
GUGUACUGUGCUCAGAAC
1766



ACAC

UGC






miR-4278
CUAGGGGGUUUGCCCUU
1767
CAAGGGCAAACCCCCUAG
1768



G








miR-4279
CUCUCCUCCCGGCUUC
1769
GAAGCCGGGAGGAGAG
1770





miR-4280
GAGUGUAGUUCUGAGCA
1771
GCUCUGCUCAGAACUACA
1772



GAGC

CUC






miR-4281
GGGUCCCGGGGAGGGGG
1773
CCCCCCUCCCCGGGACCC
1774



G








miR-4282
UAAAAUUUGCAUCCAGG
1775
UCCUGGAUGCAAAUUUUA
1776



A








miR-4283
UGGGGCUCAGCGAGUUU
1777
AAACUCGCUGAGCCCCA
1778





miR-4284
GGGCUCACAUCACCCCA
1779
AUGGGGUGAUGUGAGCCC
1780



U








miR-4285
GCGGCGAGUCCGACUCA
1781
AUGAGUCGGACUCGCCGC
1782



U








miR-4286
ACCCCACUCCUGGUACC
1783
GGUACCAGGAGUGGGGU
1784





miR-4287
UCUCCCUUGAGGGCACU
1785
AAAGUGCCCUCAAGGGAG
1786



UU

A






miR-4288
UUGUCUGCUGAGUUUCC
1787
GGAAACUCAGCAGACAA
1788





miR-4289
GCAUUGUGCAGGGCUAU
1789
UGAUAGCCCUGCACAAUG
1790



CA

C






miR-429
UAAUACUGUCUGGUAAA
1791
ACGGUUUUACCAGACAGU
1792



ACCGU

AUUA






miR-4290
UGCCCUCCUUUCUUCCC
1793
GAGGGAAGAAAGGAGGG
1794



UC

CA






miR-4291
UUCAGCAGGAACAGCU
1795
AGCUGUUCCUGCUGAA
1796





miR-4292
CCCCUGGGCCGGCCUUG
1797
CCAAGGCCGGCCCAGGGG
1798



G








miR-4293
CAGCCUGACAGGAACAG
1799
CUGUUCCUGUCAGGCUG
1800





miR-4294
GGGAGUCUACAGCAGGG
1801
CCCUGCUGUAGACUCCC
1802





miR-4295
CAGUGCAAUGUUUUCCU
1803
AAGGAAAACAUUGCACUG
1804



U








miR-4296
AUGUGGGCUCAGGCUCA
1805
UGAGCCUGAGCCCACAU
1806





miR-4297
UGCCUUCCUGUCUGUG
1807
CACAGACAGGAAGGCA
1808





miR-4298
CUGGGACAGGAGGAGGA
1809
CUGCCUCCUCCUCCUGUC
1810



GGCAG

CCAG






miR-4299
GCUGGUGACAUGAGAGG
1811
GCCUCUCAUGUCACCAGC
1812



C








miR-4300
UGGGAGCUGGACUACUU
1813
GAAGUAGUCCAGCUCCCA
1814



C








miR-4301
UCCCACUACUUCACUUG
1815
UCACAAGUGAAGUAGUG
1816



UGA

GGA






miR-4302
CCAGUGUGGCUCAGCGA
1817
CUCGCUGAGCCACACUGG
1818



G








miR-4303
UUCUGAGCUGAGGACAG
1819
CUGUCCUCAGCUCAGAA
1820





miR-4304
CCGGCAUGUCCAGGGCA
1821
UGCCCUGGACAUGCCGG
1822





miR-4305
CCUAGACACCUCCAGUU
1823
GAACUGGAGGUGUCUAG
1824



C

G






miR-4306
UGGAGAGAAAGGCAGUA
1825
UACUGCCUUUCUCUCCA
1826





miR-4307
AAUGUUUUUUCCUGUUU
1827
GGAAACAGGAAAAAACA
1828



CC

UU






miR-4308
UCCCUGGAGUUUCUUCU
1829
AAGAAGAAACUCCAGGGA
1830



U








miR-4309
CUGGAGUCUAGGAUUCC
1831
UGGAAUCCUAGACUCCAG
1832



A








miR-431-3p
CAGGUCGUCUUGCAGGG
1833
AGAAGCCCUGCAAGACGA
1834



CUUCU

CCUG






miR-431-5p
UGUCUUGCAGGCCGUCA
1835
UGCAUGACGGCCUGCAAG
1836



UGCA

ACA






miR-4310
GCAGCAUUCAUGUCCC
1837
GGGACAUGAAUGCUGC
1838





miR-4311
GAAAGAGAGCUGAGUGU
1839
CACACUCAGCUCUCUUUC
1840



G








miR-4312
GCCUUGUUCCUGUCCC
1841
UGGGGACAGGAACAAGGC
1842



CA

C






miR-4313
AGCCCCCUGGCCCCAAA
1843
GGGUUUGGGGCCAGGGG
1844



CCC

GCU






miR-4314
CUCUGGGAAAUGGGACA
1845
CUGUCCCAUUUCCCAGAG
1846



G








miR-4315
CCGCUUUCUGAGCUGGA
1847
GUCCAGCUCAGAAAGCGG
1848



C








miR-4316
GGUGAGGCUAGCUGGUG
1849
CACCAGCUAGCCUCACC
1850





miR-4317
ACAUUGCCAGGGAGUUU
1851
AAACUCCCUGGCAAUGU
1852





miR-4318
CACUGUGGGUACAUGCU
1853
AGCAUGUACCCACAGUG
1854





miR-4319
UCCCUGAGCAAAGCCAC
1855
GUGGCUUUGCUCAGGGA
1856





miR-432-3p
CUGGAUGGCUCCUCCAU
1857
AGACAUGGAGGAGCCAUC
1858



GUCU

CAG






miR-432-5p
UCUUGGAGUAGGUCAUU
1859
CCACCCAAUGACCUACUC
1860



GGGUGG

CAAGA






miR-4320
GGGAUUCUGUAGCUUCC
1861
AGGAAGCUACAGAAUCCC
1862



U








miR-4321
UUAGCGGUGGACCGCCC
1863
CGCAGGGCGGUCCACCGC
1864



UGCG

UAA






miR-4322
CUGUGGGCUCAGCGCGU
1865
CCCCACGCGCUGAGCCCA
1866



GGGG

CAG






miR-4323
CAGCCCCACAGCCUCAG
1867
UCUGAGGCUGUGGGGCUG
1868



A








miR-4324
CCCUGAGACCCUAACCU
1869
UUAAGGUUAGGGUCUCA
1870



UAA

GGG






miR-4325
UUGCACUUGUCUCAGUG
1871
UCACUGAGACAAGUGCAA
1872



A








miR-4326
UGUUCCUCUGUCUCCCA
1873
GUCUGGGAGACAGAGGA
1874



GAC

ACA






miR-4327
GGCUUGCAUGGGGGACU
1875
CCAGUCCCCCAUGCAAGC
1876



GG

C






miR-4328
CCAGUUUUCCCAGGAUU
1877
AAUCCUGGGAAAACUGG
1878





miR-4329
CCUGAGACCCUAGUUCC
1879
GUGGAACUAGGGUCUCAG
1880



AC

G






miR-433
AUCAUGAUGGGCUCCUC
1881
ACACCGAGGAGCCCAUCA
1882



GGUGU

UGAU






miR-4330
CCUCAGAUCAGAGCCUU
1883
GCAAGGCUCUGAUCUGAG
1884



GC

G






miR-4417
GGUGGGCUUCCCGGAGG
1885
CCCUCCGGGAAGCCCACC
1886



G








miR-4418
CACUGCAGGACUCAGCA
1887
CUGCUGAGUCCUGCAGUG
1888



G








miR-4419a
UGAGGGAGGAGACUGCA
1889
UGCAGUCUCCUCCCUCA
1890





miR-4419b
GAGGCUGAAGGAAGAUG
1891
CCAUCUUCCUUCAGCCUC
1892



G








miR-4420
GUCACUGAUGUCUGUAG
1893
CUCAGCUACAGACAUCAG
1894



CUGAG

UGAC






miR-4421
ACCUGUCUGUGGAAAGG
1895
UAGCUCCUUUCCACAGAC
1896



AGCUA

AGGU






miR-4422
AAAAGCAUCAGGAAGUA
1897
UGGGUACUUCCUGAUGCU
1898



CCCA

UUU






miR-4423-3p
AUAGGCACCAAAAAGCA
1899
UUGUUGCUUUUUGGUGCC
1900



ACAA

UAU






miR-4423-5p
AGUUGCCUUUUUGUUCC
1901
GCAUGGGAACAAAAAGGC
1902



CAUGC

AACU






miR-4424
AGAGUUAACUCAAAAUG
1903
UAGUCCAUUUUGAGUUA
1904



GACUA

ACUCU






miR-4425
UGUUGGGAUUCAGCAGG
1905
AUGGUCCUGCUGAAUCCC
1906



ACCAU

AACA






miR-4426
GAAGAUGGACGUACUUU
1907
AAAGUACGUCCAUCUUC
1908





miR-4427
UCUGAAUAGAGUCUGAA
1909
ACUCUUCAGACUCUAUUC
1910



GAGU

AGA






miR-4428
CAAGGAGACGGGAACAU
1911
GCUCCAUGUUCCCGUCUC
1912



GGAGC

CUUG






miR-4429
AAAAGCUGGGCUGAGAG
1913
CGCCUCUCAGCCCAGCUU
1914



GCG

UU






miR-4430
AGGCUGGAGUGAGCGGA
1915
CUCCGCUCACUCCAGCCU
1916



G








miR-4431
GCGACUCUGAAAACUAG
1917
ACCUUCUAGUUUUCAGAG
1918



AAGGU

UCGC






miR-4432
AAAGACUCUGCAAGAUG
1919
AGGCAUCUUGCAGAGUCU
1920



CCU

UU






miR-4433-3p
ACAGGAGUGGGGGUGGG
1921
AUGUCCCACCCCCACUCC
1922



ACAU

UGU






miR-4433-5p
CGUCCCACCCCCCACUCC
1923
ACAGGAGUGGGGGGUGG
1924



UGU

GACG






miR-4434
AGGAGAAGUAAAGUAGA
1925
UUCUACUUUACUUCUCCU
1926



A








miR-4435
AUGGCCAGAGCUCACAC
1927
CCUCUGUGUGAGCUCUGG
1928



AGAGG

CCAU






miR-4436a
GCAGGACAGGCAGAAGU
1929
AUCCACUUCUGCCUGUCC
1930



GGAU

UGC






miR-4436b-3p
CAGGGCAGGAAGAAGUG
1931
UUGUCCACUUCUUCCUGC
1932



GACAA

CCUG






miR-4436b-5p
GUCCACUUCUGCCUGCC
1933
GGCAGGGCAGGCAGAAGU
1934



CUGCC

GGAC






miR-4437
UGGGCUCAGGGUACAAA
1935
AACCUUUGUACCCUGAGC
1936



GGUU

CCA






miR-4438
CACAGGCUUAGAAAAGA
1937
ACUGUCUUUUCUAAGCCU
1938



CAGU

GUG






miR-4439
GUGACUGAUACCUUGGA
1939
AUGCCUCCAAGGUAUCAG
1940



GGCAU

UCAC






miR-4440
UGUCGUGGGGCUUGCUG
1941
CAAGCCAGCAAGCCCCAC
1942



GCUUG

GACA






miR-4441
ACAGGGAGGAGAUUGUA
1943
UACAAUCUCCUCCCUGU
1944





miR-4442
GCCGGACAAGAGGGAGG
1945
CCTCCCTCTTGTCCGGC
1946





miR-4443
UUGGAGGCGUGGGUUUU
1947
AAAACCCACGCCUCCAA
1948





miR-4444
CUCGAGUUGGAAGAGGC
1949
CGCCUCUUCCAACUCGAG
1950



G








miR-4445-3p
CACGGCAAAAGAAACAA
1951
UGGAUUGUUUCUUUUGCC
1952



UCCA

GUG






miR-4445-5p
AGAUUGUUUCUUUUGCC
1953
UGCACGGCAAAAGAAACA
1954



GUGCA

AUCU






miR-4446-3p
CAGGGCUGGCAGUGACA
1955
ACCCAUGUCACUGCCAGC
1956



UGGGU

CCUG






miR-4446-5p
AUUUCCCUGCCAUUCCC
1957
GCCAAGGGAAUGGCAGGG
1958



UUGGC

AAAU






miR-4447
GGUGGGGGCUGUUGUUU
1959
AAACAACAGCCCCCACC
1960





miR-4448
GGCUCCUUGGUCUAGGG
1961
UACCCCUAGACCAAGGAG
1962



GUA

CC






miR-4449
CGUCCCGGGGCUGCGCG
1963
UGCCUCGCGCAGCCCCGG
1964



AGGCA

GACG






miR-4450
UGGGGAUUUGGAGAAGU
1965
UCACCACUUCUCCAAAUC
1966



GGUGA

CCCA






miR-4451
UGGUAGAGCUGAGGACA
1967
UGUCCUCAGCUCUACCA
1968





miR-4452
UUGAAUUCUUGGCCUUA
1969
AUCACUUAAGGCCAAGAA
1970



AGUGAU

UUCAA






miR-4453
GAGCUUGGUCUGUAGCG
1971
AACCGCUACAGACCAAGC
1972



GUU

UC






miR-4454
GGAUCCGAGUCACGGCA
1973
UGGUGCCGUGACUCGGAU
1974



CCA

CC






miR-4455
AGGGUGUGUGUGUUUUU
1975
AAAAACACACACACCCU
1976





miR-4456
CCUGGUGGCUUCCUUUU
1977
AAAAGGAAGCCACCAGG
1978





miR-4457
UCACAAGGUAUUGACUG
1979
UACGCCAGUCAAUACCUU
1980



GCGUA

GUGA






miR-4458
AGAGGUAGGUGUGGAAG
1981
UUCUUCCACACCUACCUC
1982



AA

U






miR-4459
CCAGGAGGCGGAGGAGG
1983
CUCCACCUCCUCCGCCUC
1984



UGGAG

CUGG






miR-4460
AUAGUGGUUGUGAAUUU
1985
AAGGUAAAUUCACAACCA
1986



ACCUU

CUAU






miR-4461
GAUUGAGACUAGUAGGG
1987
GCCUAGCCCUACUAGUCU
1988



CUAGGC

CAAUC






miR-4462
UGACACGGAGGGUGGCU
1989
UUCCCAAGCCACCCUCCG
1990



UGGGAA

UGUCA






miR-4463
GAGACUGGGGUGGGGCC
1991
GGCCCCACCCCAGUCUC
1992





miR-4464
AAGGUUUGGAUAGAUGC
1993
UAUUGCAUCUAUCCAAAC
1994



AAUA

CUU






miR-4465
CUCAAGUAGUCUGACCA
1995
UCCCCUGGUCAGACUACU
1996



GGGGA

UGAG






miR-4466
GGGUGCGGGCCGGCGGG
1997
CCCCGCCGGCCCGCACCC
1998



G








miR-4467
UGGCGGCGGUAGUUAUG
1999
AAGCCCAUAACUACCGCC
2000



GGCUU

GCCA






miR-4468
AGAGCAGAAGGAUGAGA
2001
AUCUCAUCCUUCUGCUCU
2002



U








miR-4469
GCUCCCUCUAGGGUCGC
2003
UCCGAGCGACCCUAGAGG
2004



UCGGA

GAGC






miR-4470
UGGCAAACGUGGAAGCC
2005
UCUCGGCUUCCACGUUUG
2006



GAGA

CCA






miR-4471
UGGGAACUUAGUAGAGG
2007
UUAAACCUCUACUAAGUU
2008



UUUAA

CCCA






miR-4472
GGUGGGGGGUGUUGUUU
2009
AAAACAACACCCCCCACC
2010



U








miR-4473
CUAGUGCUCUCCGUUAC
2011
UACUUGUAACGGAGAGCA
2012



AAGUA

CUAG






miR-4474-3p
UUGUGGCUGGUCAUGAG
2013
UUAGCCUCAUGACCAGCC
2014



GCUAA

ACAA






miR-4474-5p
UUAGUCUCAUGAUCAGA
2015
UGUGUCUGAUCAUGAGAC
2016



CACA

UAA






miR-4475
CAAGGGACCAAGCAUUC
2017
AUAAUGAAUGCUUGGUCC
2018



AUUAU

CUUG






miR-4476
CAGGAAGGAUUUAGGGA
2019
GCCUGUCCCUAAAUCCUU
2020



CAGGC

CCUG






miR-4477a
CUAUUAAGGACAUUUGU
2021
GAAUCACAAAUGUCCUUA
2022



GAUUC

AUAG






miR-4477b
AUUAAGGACAUUUGUGA
2023
AUCAAUCACAAAUGUCCU
2024



UUGAU

UAAU






miR-4478
GAGGCUGAGCUGAGGAG
2025
CUCCUCAGCUCAGCCUC
2026





miR-4479
CGCGCGGCCGUGCUCGG
2027
CUGCUCCGAGCACGGCCG
2028



AGCAG

CGCG






miR-448
UUGCAUAUGUAGGAUGU
2029
AUGGGACAUCCUACAUAU
2030



CCCAU

GCAA






miR-4480
AGCCAAGUGGAAGUUAC
2031
UAAAGUAACUUCCACUUG
2032



UUUA

GCU






miR-4481
GGAGUGGGCUGGUGGUU
2033
AACCACCAGCCCACUCC
2034





miR-4482-3p
UUUCUAUUUCUCAGUGG
2035
GAGCCCCACUGAGAAAUA
2036



GGCUC

GAAA






miR-4482-5p
AACCCAGUGGGCUAUGG
2037
CAUUUCCAUAGCCCACUG
2038



AAAUG

GGUU






miR-4483
GGGGUGGUCUGUUGUUG
2039
CAACAACAGACCACCCC
2040





miR-4484
AAAAGGCGGGAGAAGCC
2041
TGGGGCTTCTCCCGCCTTT
2042



CCA

T






miR-4485
UAACGGCCGCGGUACCC
2043
UUAGGGUACCGCGGCCGU
2044



UAA

UA






miR-4486
GCUGGGCGAGGCUGGCA
2045
UGCCAGCCUCGCCCAGC
2046





miR-4487
AGAGCUGGCUGAAGGGC
2047
CUGCCCUUCAGCCAGCUC
2048



AG

U






miR-4488
AGGGGGCGGGCUCCGGC
2049
CGCCGGAGCCCGCCCCCU
2050



G








miR-4489
UGGGGCUAGUGAUGCAG
2051
CGUCCUGCAUCACUAGCC
2052



GACG

CCA






miR-4490
UCUGGUAAGAGAUUUGG
2053
UAUGCCCAAAUCUCUUAC
2054



GCAUA

CAGA






miR-4491
AAUGUGGACUGGUGUGA
2055
UUUGGUCACACCAGUCCA
2056



CCAAA

CAUU






miR-4492
GGGGCUGGGCGCGCGCC
2057
GGCGCGCGCCCAGCCCC
2058





miR-4493
AGAAGGCCUUUCCAUCU
2059
ACAGAGAUGGAAAGGCCU
2060



CUGU

UCU






miR-4494
CCAGACUGUGGCUGACC
2061
CCUCUGGUCAGCCACAGU
2062



AGAGG

CUGG






miR-4495
AAUGUAAACAGGCUUUU
2063
AGCAAAAAGCCUGUUUAC
2064



UGCU

AUU






miR-4496
GAGGAAACUGAAGCUGA
2065
CCCUCUCAGCUUCAGUUU
2066



GAGGG

CCUC






miR-4497
CUCCGGGACGGCUGGGC
2067
GCCCAGCCGUCCCGGAG
2068





miR-4498
UGGGCUGGCAGGGCAAG
2069
CAGCACUUGCCCUGCCAG
2070



UGCUG

CCCA






miR-4499
AAGACUGAGAGGAGGGA
2071
UCCCUCCUCUCAGUCUU
2072





miR-449a
UGGCAGUGUAUUGUUAG
2073
ACCAGCUAACAAUACACU
2074



CUGGU

GCCA






miR-449b-3p
CAGCCACAACUACCCUG
2075
AGUGGCAGGGUAGUUGU
2076



CCACU

GGCUG






miR-449b-5p
AGGCAGUGUAUUGUUAG
2077
GCCAGCUAACAAUACACU
2078



CUGGC

GCCU






miR-449c-3p
UUGCUAGUUGCACUCCU
2079
ACAGAGAGGAGUGCAACU
2080



CUCUGU

AGCAA






miR-449c-5p
UAGGCAGUGUAUUGCUA
2081
ACAGCCGCUAGCAAUACA
2082



GCGGCUGU

CUGCCUA






miR-4500
UGAGGUAGUAGUUUCUU
2083
AAGAAACUACUACCUCA
2084





miR-4501
UAUGUGACCUCGGAUGA
2085
UGAUUCAUCCGAGGUCAC
2086



AUCA

AUA






miR-4502
GCUGAUGAUGAUGGUGC
2087
CUUCAGCACCAUCAUCAU
2088



UGAAG

CAGC






miR-4503
UUUAAGCAGGAAAUAGA
2089
UAAAUUCUAUUUCCUGCU
2090



AUUUA

UAAA






miR-4504
UGUGACAAUAGAGAUGA
2091
CAUGUUCAUCUCUAUUGU
2092



ACAUG

CACA






miR-4505
AGGCUGGGCUGGGACGG
2093
UCCGUCCCAGCCCAGCCU
2094



A








miR-4506
AAAUGGGUGGUCUGAGG
2095
UUGCCUCAGACCACCCAU
2096



CAA

UU






miR-4507
CUGGGUUGGGCUGGGCU
2097
CCCAGCCCAGCCCAACCC
2098



GGG

AG






miR-4508
GCGGGGCUGGGCGCGCG
2099
CGCGCGCCCAGCCCCGC
2100





miR-4509
ACUAAAGGAUAUAGAAG
2101
AAAACCUUCUAUAUCCUU
2102



GUUUU

UAGU






miR-450a-3p
AUUGGGGACAUUUUGCA
2103
AUGAAUGCAAAAUGUCCC
2104



UUCAU

CAAU






miR-450a-5p
UUUUGCGAUGUGUUCCU
2105
AUAUUAGGAACACAUCGC
2106



AAUAU

AAAA






miR-450b-3p
UUGGGAUCAUUUUGCAU
2107
UAUGGAUGCAAAAUGAU
2108



CCAUA

CCCAA






miR-450b-5p
UUUUGCAAUAUGUUCCU
2109
UAUUCAGGAACAUAUUGC
2110



GAAUA

AAAA






miR-4510
UGAGGGAGUAGGAUGUA
2111
AACCAUACAUCCUACUCC
2112



UGGUU

CUCA






miR-4511
GAAGAACUGUUGCAUUU
2113
AGGGCAAAUGCAACAGUU
2114



GCCCU

CUUC






miR-4512
CAGGGCCUCACUGUAUC
2115
UGGGCGAUACAGUGAGGC
2116



GCCCA

CCUG






miR-4513
AGACUGACGGCUGGAGG
2117
AUGGGCCUCCAGCCGUCA
2118



CCCAU

GUCU






miR-4514
ACAGGCAGGAUUGGGGA
2119
UUCCCCAAUCCUGCCUGU
2120



A








miR-4515
AGGACUGGACUCCCGGC
2121
GGGCUGCCGGGAGUCCAG
2122



AGCCC

UCCU






miR-4516
GGGAGAAGGGUCGGGGC
2123
GCCCCGACCCUUCUCCC
2124





miR-4517
AAAUAUGAUGAAACUCA
2125
CUCAGCUGUGAGUUUCAU
2126



CAGCUGAG

CAUAUUU






miR-4518
GCUCAGGGAUGAUAACU
2127
UCUCAGCACAGUUAUCAU
2128



GUGCUGAGA

CCCUGAGC






miR-4519
CAGCAGUGCGCAGGGCU
2129
CAGCCCUGCGCACUGCUG
2130



G








miR-451a
AAACCGUUACCAUUACU
2131
AACUCAGUAAUGGUAACG
2132



GAGUU

GUUU






miR-451b
UAGCAAGAGAACCAUUA
2133
AAUGGUAAUGGUUCUCU
2134



CCAUU

UGCUA






miR-452-3p
CUCAUCUGCAAAGAAGU
2135
CACUUACUUCUUUGCAGA
2136



AAGUG

UGAG






miR-452-5p
AACUGUUUGCAGAGGAA
2137
UCAGUUUCCUCUGCAAAC
2138



ACUGA

AGUU






miR-4520a-3p
UUGGACAGAAAACACGC
2139
UUCCUGCGUGUUUUCUGU
2140



AGGAA

CCAA






miR-4520a-5p
CCUGCGUGUUUUCUGUC
2141
UUGGACAGAAAACACGCA
2142



CAA

GG






miR-4520b-3p
UUUGGACAGAAAACACG
2143
ACCUGCGUGUUUUCUGUC
2144



CAGGU

CAAA






miR-4520b-5p
CCUGCGUGUUUUCUGUC
2145
UUGGACAGAAAACACGCA
2146



CAA

GG






miR-4521
GCUAAGGAAGUCCUGUG
2147
CUGAGCACAGGACUUCCU
2148



CUCAG

UAGC






miR-4522
UGACUCUGCCUGUAGGC
2149
ACCGGCCUACAGGCAGAG
2150



CGGU

UCA






miR-4523
GACCGAGAGGGCCUCGG
2151
ACAGCCGAGGCCCUCUCG
2152



CUGU

GUC






miR-4524a-3p
UGAGACAGGCUUAUGCU
2153
AUAGCAGCAUAAGCCUGU
2154



GCUAU

CUCA






miR-4524a-5p
AUAGCAGCAUGAACCUG
2155
UGAGACAGGUUCAUGCUG
2156



UCUCA

CUAU






miR-4524b-3p
GAGACAGGUUCAUGCUG
2157
UAGCAGCAUGAACCUGUC
2158



CUA

UC






miR-4524b-5p
AUAGCAGCAUAAGCCUG
2159
GAGACAGGCUUAUGCUGC
2160



UCUC

UAU






miR-4525
GGGGGGAUGUGCAUGCU
2161
AACCAGCAUGCACAUCCC
2162



GGUU

CCC






miR-4526
GCUGACAGCAGGGCUGG
2163
AGCGGCCAGCCCUGCUGU
2164



CCGCU

CAGC






miR-4527
UGGUCUGCAAAGAGAUG
2165
ACAGUCAUCUCUUUGCAG
2166



ACUGU

ACCA






miR-4528
UCAUUAUAUGUAUGAUC
2167
GUCCAGAUCAUACAUAUA
2168



UGGAC

AUGA






miR-4529-3p
AUUGGACUGCUGAUGGC
2169
ACGGGCCAUCAGCAGUCC
2170



CCGU

AAU






miR-4529-5p
AGGCCAUCAGCAGUCCA
2171
UUCAUUGGACUGCUGAUG
2172



AUGAA

GCCU






miR-4530
CCCAGCAGGACGGGAGC
2173
CGCTCCCGTCCTGCTGGG
2174



G








miR-4531
AUGGAGAAGGCUUCUGA
2175
UCAGAAGCCUUCUCCAU
2176





miR-4532
CCCCGGGGAGCCCGGCG
2177
CGCCGGGCTCCCCGGGG
2178





miR-4533
UGGAAGGAGGUUGCCGG
2179
AGCGUCCGGCAACCUCCU
2180



ACGCU

UCCA






miR-4534
GGAUGGAGGAGGGGUCU
2181
AGACCCCUCCUCCAUCC
2182





miR-4535
GUGGACCUGGCUGGGAC
2183
GUCCCAGCCAGGUCCAC
2184





miR-4536-3p
UCGUGCAUAUAUCUACC
2185
AUGUGGUAGAUAUAUGC
2186



ACAU

ACGA






miR-4536-5p
UGUGGUAGAUAUAUGCA
2187
AUCGUGCAUAUAUCUACC
2188



CGAU

ACA






miR-4537
UGAGCCGAGCUGAGCUU
2189
CAGCUAAGCUCAGCUCGG
2190



AGCUG

CUCA






miR-4538
GAGCUUGGAUGAGCUGG
2191
UCAGCCCAGCUCAUCCAA
2192



GCUGA

GCUC






miR-4539
GCUGAACUGGGCUGAGC
2193
GCCCAGCUCAGCCCAGUU
2194



UGGGC

CAGC






miR-454-3p
UAGUGCAAUAUUGCUUA
2195
ACCCUAUAAGCAAUAUUG
2196



UAGGGU

CACUA






miR-454-5p
ACCCUAUCAAUAUUGUC
2197
GCAGAGACAAUAUUGAU
2198



UCUGC

AGGGU






miR-4540
UUAGUCCUGCCUGUAGG
2199
UAAACCUACAGGCAGGAC
2200



UUUA

UAA






miR-455-3p
GCAGUCCAUGGGCAUAU
2201
GUGUAUAUGCCCAUGGAC
2202



ACAC

UGC






miR-455-5p
UAUGUGCCUUUGGACUA
2203
CGAUGUAGUCCAAAGGCA
2204



CAUCG

CAUA






miR-4632
UGCCGCCCUCUCGCUGC
2205
CUAGAGCAGCGAGAGGGC
2206



UCUAG

GGCA






miR-4633-3p
AGGAGCUAGCCAGGCAU
2207
UGCAUAUGCCUGGCUAGC
2208



AUGCA

UCCU






miR-4633-5p
AUAUGCCUGGCUAGCUC
2209
GAGGAGCUAGCCAGGCAU
2210



CUC

AU






miR-4634
CGGCGCGACCGGCCCGG
2211
CCCCGGGCCGGTCGCGCC
2212



GG

G






miR-4635
UCUUGAAGUCAGAACCC
2213
UUGCGGGUUCUGACUUCA
2214



GCAA

AGA






miR-4636
AACUCGUGUUCAAAGCC
2215
CUAAAGGCUUUGAACACG
2216



UUUAG

AGUU






miR-4637
UACUAACUGCAGAUUCA
2217
UCACUUGAAUCUGCAGUU
2218



AGUGA

AGUA






miR-4638-3p
CCUGGACACCGCUCAGC
2219
CGGCCGGCUGAGCGGUGU
2220



CGGCCG

CCAGG






miR-4638-5p
ACUCGGCUGCGGUGGAC
2221
ACUUGUCCACCGCAGCCG
2222



AAGU

AGU






miR-4639-3p
UCACUCUCACCUUGCUU
2223
GCAAAGCAAGGUGAGAG
2224



UGC

UGA






miR-4639-5p
UUGCUAAGUAGGCUGAG
2225
UCAAUCUCAGCCUACUUA
2226



AUUGA

GCAA






miR-4640-3p
CACCCCCUGUUUCCUGG
2227
GUGGGCCAGGAAACAGGG
2228



CCCAC

GGUG






miR-4640-5p
UGGGCCAGGGAGCAGCU
2229
CCCACCAGCUGCUCCCUG
2230



GGUGGG

GCCCA






miR-4641
UGCCCAUGCCAUACUUU
2231
UGAGGCAAAAGUAUGGC
2232



UGCCUCA

AUGGGCA






miR-4642
AUGGCAUCGUCCCCUGG
2233
AGCCACCAGGGGACGAUG
2234



UGGCU

CCAU






miR-4643
GACACAUGACCAUAAAU
2235
UUAGCAUUUAUGGUCAU
2236



GCUAA

GUGUC






miR-4644
UGGAGAGAGAAAAGAGA
2237
CUUCUGUCUCUUUUCUCU
2238



CAGAAG

CUCCA






miR-4645-3p
AGACAGUAGUUCUUGCC
2239
AACCAGGCAAGAACUACU
2240



UGGUU

GUCU






miR-4645-5p
ACCAGGCAAGAAAUAUU
2241
ACAAUAUUUCUUGCCUGG
2242



GU

U






miR-4646-3p
AUUGUCCCUCUCCCUUC
2243
CUGGGAAGGGAGAGGGA
2244



CCAG

CAAU






miR-4646-5p
ACUGGGAAGAGGAGCUG
2245
UCCCUCAGCUCCUCUUCC
2246



AGGGA

CAGU






miR-4647
GAAGAUGGUGCUGUGCU
2247
UUCCUCAGCACAGCACCA
2248



GAGGAA

UCUUC






miR-4648
UGUGGGACUGCAAAUGG
2249
CUCCCAUUUGCAGUCCCA
2250



GAG

CA






miR-4649-3p
UCUGAGGCCUGCCUCUC
2251
UGGGGAGAGGCAGGCCUC
2252



CCCA

AGA






miR-4649-5p
UGGGCGAGGGGUGGGCU
2253
CUCUGAGAGCCCACCCCU
2254



CUCAGAG

CGCCCA






miR-4650-3p
AGGUAGAAUGAGGCCUG
2255
AUGUCAGGCCUCAUUCUA
2256



ACAU

CCU






miR-4650-5p
UCAGGCCUCUUUCUACC
2257
AAGGUAGAAAGAGGCCU
2258



UU

GA






miR-4651
CGGGGUGGGUGAGGUCG
2259
GCCCGACCUCACCCACCC
2260



GGC

CG






miR-4652-3p
GUUCUGUUAACCCAUCC
2261
UGAGGGGAUGGGUUAAC
2262



CCUCA

AGAAC






miR-4652-5p
AGGGGACUGGUUAAUAG
2263
UAGUUCUAUUAACCAGUC
2264



AACUA

CCCU






miR-4653-3p
UGGAGUUAAGGGUUGCU
2265
UCUCCAAGCAACCCUUAA
2266



UGGAGA

CUCCA






miR-4653-5p
UCUCUGAGCAAGGCUUA
2267
GGUGUUAAGCCUUGCUCA
2268



ACACC

GAGA






miR-4654
UGUGGGAUCUGGAGGCA
2269
CCAGAUGCCUCCAGAUCC
2270



UCUGG

CACA






miR-4655-3p
ACCCUCGUCAGGUCCCC
2271
CCCCGGGGACCUGACGAG
2272



GGGG

GGU






miR-4655-5p
CACCGGGGAUGGCAGAG
2273
CGACCCUCUGCCAUCCCC
2274



GGUCG

GGUG






miR-4656
UGGGCUGAGGGCAGGAG
2275
ACAGGCCUCCUGCCCUCA
2276



GCCUGU

GCCCA






miR-4657
AAUGUGGAAGUGGUCUG
2277
AUGCCUCAGACCACUUCC
2278



AGGCAU

ACAUU






miR-4658
GUGAGUGUGGAUCCUGG
2279
AUUCCUCCAGGAUCCACA
2280



AGGAAU

CUCAC






miR-4659a-3p
UUUCUUCUUAGACAUGG
2281
CGUUGCCAUGUCUAAGAA
2282



CAACG

GAAA






miR-4659a-5p
CUGCCAUGUCUAAGAAG
2283
GUUUUCUUCUUAGACAUG
2284



AAAAC

GCAG






miR-4659b-3p
UUUCUUCUUAGACAUGG
2285
AGCUGCCAUGUCUAAGAA
2286



CAGCU

GAAA






miR-4659b-5p
UUGCCAUGUCUAAGAAG
2287
UUCUUCUUAGACAUGGCA
2288



AA

A






miR-466
AUACACAUACACGCAAC
2289
AUGUGUGUUGCGUGUAU
2290



ACACAU

GUGUAU






miR-4660
UGCAGCUCUGGUGGAAA
2291
CUCCAUUUUCCACCAGAG
2292



AUGGAG

CUGCA






miR-4661-3p
CAGGAUCCACAGAGCUA
2293
UGGACUAGCUCUGUGGAU
2294



GUCCA

CCUG






miR-4661-5p
AACUAGCUCUGUGGAUC
2295
GUCAGGAUCCACAGAGCU
2296



CUGAC

AGUU






miR-4662a-3p
AAAGAUAGACAAUUGGC
2297
AUUUAGCCAAUUGUCUAU
2298



UAAAU

CUUU






miR-4662a-5p
UUAGCCAAUUGUCCAUC
2299
CUAAAGAUGGACAAUUG
2300



UUUAG

GCUAA






miR-4662b
AAAGAUGGACAAUUGGC
2301
AUUUAGCCAAUUGUCCAU
2302



UAAAU

CUUU






miR-4663
AGCUGAGCUCCAUGGAC
2303
ACUGCACGUCCAUGGAGC
2304



GUGCAGU

UCAGCU






miR-4664-3p
CUUCCGGUCUGUGAGCC
2305
GACGGGGCUCACAGACCG
2306



CCGUC

GAAG






miR-4664-5p
UGGGGUGCCCACUCCGC
2307
AACUUGCGGAGUGGGCAC
2308



AAGUU

CCCA






miR-4665-3p
CUCGGCCGCGGCGCGUA
2309
GGCGGGGGCUACGCGCCG
2310



GCCCCCGCC

CGGCCGAG






miR-4665-5p
CUGGGGGACGCGUGAGC
2311
GCUCGCGCUCACGCGUCC
2312



GCGAGC

CCCAG






miR-4666a-3p
CAUACAAUCUGACAUGU
2313
AAAUACAUGUCAGAUUG
2314



AUUU

UAUG






miR-4666a-5p
AUACAUGUCAGAUUGUA
2315
GGCAUACAAUCUGACAUG
2316



UGCC

UAU






miR-4666b
UUGCAUGUCAGAUUGUA
2317
GGGAAUUACAAUCUGACA
2318



AUUCCC

UGCAA






miR-4667-3p
UCCCUCCUUCUGUCCCC
2319
CUGUGGGGACAGAAGGA
2320



ACAG

GGGA






miR-4667-5p
ACUGGGGAGCAGAAGGA
2321
GGUUCUCCUUCUGCUCCC
2322



GAACC

CAGU






miR-4668-3p
GAAAAUCCUUUUUGUUU
2323
CUGGAAAAACAAAAAGG
2324



UUCCAG

AUUUUC






miR-4668-5p
AGGGAAAAAAAAAAGGA
2325
GACAAAUCCUUUUUUUUU
2326



UUUGUC

UCCCU






miR-4669
UGUGUCCGGGAAGUGGA
2327
CCUCCUCCACUUCCCGGA
2328



GGAGG

CACA






miR-4670-3p
UGAAGUUACAUCAUGGU
2329
AAGCGACCAUGAUGUAAC
2330



CGCUU

UUCA






miR-4670-5p
AAGCGACCAUGAUGUAA
2331
UGAAGUUACAUCAUGGUC
2332



CUUCA

GCUU






miR-4671-3p
UUAGUGCAUAGUCUUUG
2333
AGACCAAAGACUAUGCAC
2334



GUCU

UAA






miR-4671-5p
ACCGAAGACUGUGCGCU
2335
AGAUUAGCGCACAGUCUU
2336



AAUCU

CGGU






miR-4672
UUACACAGCUGGACAGA
2337
UGCCUCUGUCCAGCUGUG
2338



GGCA

UAA






miR-4673
UCCAGGCAGGAGCCGGA
2339
UCCAGUCCGGCUCCUGCC
2340



CUGGA

UGGA






miR-4674
CUGGGCUCGGGACGCGC
2341
AGCCGCGCGUCCCGAGCC
2342



GGCU

CAG






miR-4675
GGGGCUGUGAUUGACCA
2343
CCUGCUGGUCAAUCACAG
2344



GCAGG

CCCC






miR-4676-3p
CACUGUUUCACCACUGG
2345
AAGAGCCAGUGGUGAAAC
2346



CUCUU

AGUG






miR-4676-5p
GAGCCAGUGGUGAGACA
2347
UCACUGUCUCACCACUGG
2348



GUGA

CUC






miR-4677-3p
UCUGUGAGACCAAAGAA
2349
AGUAGUUCUUUGGUCUCA
2350



CUACU

CAGA






miR-4677-5p
UUGUUCUUUGGUCUUUC
2351
UGGCUGAAAGACCAAAGA
2352



AGCCA

ACAA






miR-4678
AAGGUAUUGUUCAGACU
2353
UCAUAAGUCUGAACAAUA
2354



UAUGA

CCUU






miR-4679
UCUGUGAUAGAGAUUCU
2355
AGCAAAGAAUCUCUAUCA
2356



UUGCU

CAGA






miR-4680-3p
UCUGAAUUGUAAGAGUU
2357
UAACAACUCUUACAAUUC
2358



GUUA

AGA






miR-4680-5p
AGAACUCUUGCAGUCUU
2359
ACAUCUAAGACUGCAAGA
2360



AGAUGU

GUUCU






miR-4681
AACGGGAAUGCAGGCUG
2361
AGAUACAGCCUGCAUUCC
2362



UAUCU

CGUU






miR-4682
UCUGAGUUCCUGGAGCC
2363
AGACCAGGCUCCAGGAAC
2364



UGGUCU

UCAGA






miR-4683
UGGAGAUCCAGUGCUCG
2365
AUCGGGCGAGCACUGGAU
2366



CCCGAU

CUCCA






miR-4684-3p
UGUUGCAAGUCGGUGGA
2367
ACGUCUCCACCGACUUGC
2368



GACGU

AACA






miR-4684-5p
CUCUCUACUGACUUGCA
2369
UAUGUUGCAAGUCAGUA
2370



ACAUA

GAGAG






miR-4685-3p
UCUCCCUUCCUGCCCUG
2371
CUAGCCAGGGCAGGAAGG
2372



GCUAG

GAGA






miR-4685-5p
CCCAGGGCUUGGAGUGG
2373
AACCUUGCCCCACUCCAA
2374



GGCAAGGUU

GCCCUGGG






miR-4686
UAUCUGCUGGGCUUUCU
2375
AACACCAGAAAGCCCAGC
2376



GGUGUU

AGAUA






miR-4687-3p
UGGCUGUUGGAGGGGGC
2377
GCCUGCCCCCUCCAACAG
2378



AGGC

CCA






miR-4687-5p
CAGCCCUCCUCCCGCACC
2379
UUUGGGUGCGGGAGGAG
2380



CAAA

GGCUG






miR-4688
UAGGGGCAGCAGAGGAC
2381
CCCAGGUCCUCUGCUGCC
2382



CUGGG

CCUA






miR-4689
UUGAGGAGACAUGGUGG
2383
GGCCCCCACCAUGUCUCC
2384



GGGCC

UCAA






miR-4690-3p
GCAGCCCAGCUGAGGCC
2385
CAGAGGCCUCAGCUGGGC
2386



UCUG

UGC






miR-4690-5p
GAGCAGGCGAGGCUGGG
2387
UUCAGCCCAGCCUCGCCU
2388



CUGAA

GCUC






miR-4691-3p
CCAGCCACGGACUGAGA
2389
AUGCACUCUCAGUCCGUG
2390



GUGCAU

GCUGG






miR-4691-5p
GUCCUCCAGGCCAUGAG
2391
CCGCAGCUCAUGGCCUGG
2392



CUGCGG

AGGAC






miR-4692
UCAGGCAGUGUGGGUAU
2393
AUCUGAUACCCACACUGC
2394



CAGAU

CUGA






miR-4693-3p
UGAGAGUGGAAUUCACA
2395
AAAUACUGUGAAUUCCAC
2396



GUAUUU

UCUCA






miR-4693-5p
AUACUGUGAAUUUCACU
2397
UGUGACAGUGAAAUUCAC
2398



GUCACA

AGUAU






miR-4694-3p
CAAAUGGACAGGAUAAC
2399
AGGUGUUAUCCUGUCCAU
2400



ACCU

UUG






miR-4694-5p
AGGUGUUAUCCUAUCCA
2401
GCAAAUGGAUAGGAUAA
2402



UUUGC

CACCU






miR-4695-3p
UGAUCUCACCGCUGCCU
2403
GAAGGAGGCAGCGGUGA
2404



CCUUC

GAUCA






miR-4695-5p
CAGGAGGCAGUGGGCGA
2405
CCUGCUCGCCCACUGCCU
2406



GCAGG

CCUG






miR-4696
UGCAAGACGGAUACUGU
2407
AGAUGACAGUAUCCGUCU
2408



CAUCU

UGCA






miR-4697-3p
UGUCAGUGACUCCUGCC
2409
ACCAAGGGGCAGGAGUCA
2410



CCUUGGU

CUGACA






miR-4697-5p
AGGGGGCGCAGUCACUG
2411
CACGUCAGUGACUGCGCC
2412



ACGUG

CCCU






miR-4698
UCAAAAUGUAGAGGAAG
2413
UGGGGUCUUCCUCUACAU
2414



ACCCCA

UUUGA






miR-4699-3p
AAUUUACUCUGCAAUCU
2415
GGAGAAGAUUGCAGAGU
2416



UCUCC

AAAUU






miR-4699-5p
AGAAGAUUGCAGAGUAA
2417
GGAACUUACUCUGCAAUC
2418



GUUCC

UUCU






miR-4700-3p
CACAGGACUGACUCCUC
2419
CACUGGGGUGAGGAGUCA
2420



ACCCCAGUG

GUCCUGUG






miR-4700-5p
UCUGGGGAUGAGGACAG
2421
ACACACUGUCCUCAUCCC
2422



UGUGU

CAGA






miR-4701-3p
AUGGGUGAUGGGUGUGG
2423
ACACCACACCCAUCACCC
2424



UGU

AU






miR-4701-5p
UUGGCCACCACACCUAC
2425
AAGGGGUAGGUGUGGUG
2426



CCCUU

GCCAA






miR-4703-3p
UGUAGUUGUAUUGUAUU
2427
GUGGCAAUACAAUACAAC
2428



GCCAC

UACA






miR-4703-5p
UAGCAAUACAGUACAAA
2429
ACUAUAUUUGUACUGUA
2430



UAUAGU

UUGCUA






miR-4704-3p
UCAGUCACAUAUCUAGU
2431
UAGACACUAGAUAUGUG
2432



GUCUA

ACUGA






miR-4704-5p
GACACUAGGCAUGUGAG
2433
AAUCACUCACAUGCCUAG
2434



UGAUU

UGUC






miR-4705
UCAAUCACUUGGUAAUU
2435
ACAGCAAUUACCAAGUGA
2436



GCUGU

UUGA






miR-4706
AGCGGGGAGGAAGUGGG
2437
AAGCAGCGCCCACUUCCU
2438



CGCUGCUU

CCCCGCU






miR-4707-3p
AGCCCGCCCCAGCCGAG
2439
AGAACCUCGGCUGGGGCG
2440



GUUCU

GGCU






miR-4707-5p
GCCCCGGCGCGGGCGGG
2441
CCAGAACCCGCCCGCGCC
2442



UUCUGG

GGGGC






miR-4708-3p
AGCAAGGCGGCAUCUCU
2443
AUCAGAGAGAUGCCGCCU
2444



CUGAU

UGCU






miR-4708-5p
AGAGAUGCCGCCUUGCU
2445
AAGGAGCAAGGCGGCAUC
2446



CCUU

UCU






miR-4709-3p
UUGAAGAGGAGGUGCUC
2447
GCUACAGAGCACCUCCUC
2448



UGUAGC

UUCAA






miR-4709-5p
ACAACAGUGACUUGCUC
2449
UUGGAGAGCAAGUCACUG
2450



UCCAA

UUGU






miR-4710
GGGUGAGGGCAGGUGGU
2451
AACCACCUGCCCUCACCC
2452



U








miR-4711-3p
CGUGUCUUCUGGCUUGA
2453
AUCAAGCCAGAAGACACG
2454



U








miR-4711-5p
UGCAUCAGGCCAGAAGA
2455
CUCAUGUCUUCUGGCCUG
2456



CAUGAG

AUGCA






miR-4712-3p
AAUGAGAGACCUGUACU
2457
AUACAGUACAGGUCUCUC
2458



GUAU

AUU






miR-4712-5p
UCCAGUACAGGUCUCUC
2459
GAAAUGAGAGACCUGUAC
2460



AUUUC

UGGA






miR-4713-3p
UGGGAUCCAGACAGUGG
2461
UUCUCCCACUGUCUGGAU
2462



GAGAA

CCCA






miR-4713-5p
UUCUCCCACUACCAGGC
2463
UGGGAGCCUGGUAGUGG
2464



UCCCA

GAGAA






miR-4714-3p
CCAACCUAGGUGGUCAG
2465
CAACUCUGACCACCUAGG
2466



AGUUG

UUGG






miR-4714-5p
AACUCUGACCCCUUAGG
2467
AUCAACCUAAGGGGUCAG
2468



UUGAU

AGUU






miR-4715-3p
GUGCCACCUUAACUGCA
2469
AUUGGCUGCAGUUAAGG
2470



GCCAAU

UGGCAC






miR-4715-5p
AAGUUGGCUGCAGUUAA
2471
CCACCUUAACUGCAGCCA
2472



GGUGG

ACUU






miR-4716-3p
AAGGGGGAAGGAAACAU
2473
UCUCCAUGUUUCCUUCCC
2474



GGAGA

CCUU






miR-4716-5p
UCCAUGUUUCCUUCCCC
2475
AGAAGGGGGAAGGAAAC
2476



CUUCU

AUGGA






miR-4717-3p
ACACAUGGGUGGCUGUG
2477
AGGCCACAGCCACCCAUG
2478



GCCU

UGU






miR-4717-5p
UAGGCCACAGCCACCCA
2479
ACACAUGGGUGGCUGUGG
2480



UGUGU

CCUA






miR-4718
AGCUGUACCUGAAACCA
2481
UGCUUGGUUUCAGGUACA
2482



AGCA

GCU






miR-4719
UCACAAAUCUAUAAUAU
2483
CCUGCAUAUUAUAGAUUU
2484



GCAGG

GUGA






miR-4720-3p
UGCUUAAGUUGUACCAA
2485
AUACUUGGUACAACUUAA
2486



GUAU

GCA






miR-4720-5p
CCUGGCAUAUUUGGUAU
2487
AAGUUAUACCAAAUAUGC
2488



AACUU

CAGG






miR-4721
UGAGGGCUCCAGGUGAC
2489
CCACCGUCACCUGGAGCC
2490



GGUGG

CUCA






miR-4722-3p
ACCUGCCAGCACCUCCC
2491
CUGCAGGGAGGUGCUGGC
2492



UGCAG

AGGU






miR-4722-5p
GGCAGGAGGGCUGUGCC
2493
CAACCUGGCACAGCCCUC
2494



AGGUUG

CUGCC






miR-4723-3p
CCCUCUCUGGCUCCUCCC
2495
UUUGGGGAGGAGCCAGA
2496



CAAA

GAGGG






miR-4723-5p
UGGGGGAGCCAUGAGAU
2497
UGCUCUUAUCUCAUGGCU
2498



AAGAGCA

CCCCCA






miR-4724-3p
GUACCUUCUGGUUCAGC
2499
ACUAGCUGAACCAGAAGG
2500



UAGU

UAC






miR-4724-5p
AACUGAACCAGGAGUGA
2501
CGAAGCUCACUCCUGGUU
2502



GCUUCG

CAGUU






miR-4725-3p
UGGGGAAGGCGUCAGUG
2503
CCCGACACUGACGCCUUC
2504



UCGGG

CCCA






miR-4725-5p
AGACCCUGCAGCCUUCC
2505
GGUGGGAAGGCUGCAGG
2506



CACC

GUCU






miR-4726-3p
ACCCAGGUUCCCUCUGG
2507
UGCGGCCAGAGGGAACCU
2508



CCGCA

GGGU






miR-4726-5p
AGGGCCAGAGGAGCCUG
2509
CCACUCCAGGCUCCUCUG
2510



GAGUGG

GCCCU






miR-4727-3p
AUAGUGGGAAGCUGGCA
2511
GAAUCUGCCAGCUUCCCA
2512



GAUUC

CUAU






miR-4727-5p
AUCUGCCAGCUUCCACA
2513
CCACUGUGGAAGCUGGCA
2514



GUGG

GAU






miR-4728-3p
CAUGCUGACCUCCCUCC
2515
CUGGGGCAGGAGGGAGG
2516



UGCCCCAG

UCAGCAUG






miR-4728-5p
UGGGAGGGGAGAGGCAG
2517
UGCUUGCUGCCUCUCCCC
2518



CAAGCA

UCCCA






miR-4729
UCAUUUAUCUGUUGGGA
2519
UAGCUUCCCAACAGAUAA
2520



AGCUA

AUGA






miR-4730
CUGGCGGAGCCCAUUCC
2521
UGGCAUGGAAUGGGCUCC
2522



AUGCCA

GCCAG






miR-4731-3p
CACACAAGUGGCCCCCA
2523
AGUGUUGGGGGCCACUUG
2524



ACACU

UGUG






miR-4731-5p
UGCUGGGGGCCACAUGA
2525
CACACUCAUGUGGCCCCC
2526



GUGUG

AGCA






miR-4732-3p
GCCCUGACCUGUCCUGU
2527
CAGAACAGGACAGGUCAG
2528



UCUG

GGC






miR-4732-5p
UGUAGAGCAGGGAGCAG
2529
AGCUUCCUGCUCCCUGCU
2530



GAAGCU

CUACA






miR-4733-3p
CCACCAGGUCUAGCAUU
2531
AUCCCAAUGCUAGACCUG
2532



GGGAU

GUGG






miR-4733-5p
AAUCCCAAUGCUAGACC
2533
CACCGGGUCUAGCAUUGG
2534



CGGUG

GAUU






miR-4734
GCUGCGGGCUGCGGUCA
2535
CGCCCUGACCGCAGCCCG
2536



GGGCG

CAGC






miR-4735-3p
AAAGGUGCUCAAAUUAG
2537
AUGUCUAAUUUGAGCACC
2538



ACAU

UUU






miR-4735-5p
CCUAAUUUGAACACCUU
2539
UACCGAAGGUGUUCAAAU
2540



CGGUA

UAGG






miR-4736
AGGCAGGUUAUCUGGGC
2541
CAGCCCAGAUAACCUGCC
2542



UG

U






miR-4737
AUGCGAGGAUGCUGACA
2543
CACUGUCAGCAUCCUCGC
2544



GUG

AU






miR-4738-3p
UGAAACUGGAGCGCCUG
2545
UCCUCCAGGCGCUCCAGU
2546



GAGGA

UUCA






miR-4738-5p
ACCAGCGCGUUUUCAGU
2547
AUGAAACUGAAAACGCGC
2548



UUCAU

UGGU






miR-4739
AAGGGAGGAGGAGCGGA
2549
AGGGCCCCUCCGCUCCUC
2550



GGGGCCCU

CUCCCUU






miR-4740-3p
GCCCGAGAGGAUCCGUC
2551
GCAGGGACGGAUCCUCUC
2552



CCUGC

GGGC






miR-4740-5p
AGGACUGAUCCUCUCGG
2553
CCUGCCCGAGAGGAUCAG
2554



GCAGG

UCCU






miR-4741
CGGGCUGUCCGGAGGGG
2555
AGCCGACCCCUCCGGACA
2556



UCGGCU

GCCCG






miR-4742-3p
UCUGUAUUCUCCUUUGC
2557
CUGCAGGCAAAGGAGAAU
2558



CUGCAG

ACAGA






miR-4742-5p
UCAGGCAAAGGGAUAUU
2559
UCUGUAAAUAUCCCUUUG
2560



UACAGA

CCUGA






miR-4743
UGGCCGGAUGGGACAGG
2561
AUGCCUCCUGUCCCAUCC
2562



AGGCAU

GGCCA






miR-4744
UCUAAAGACUAGACUUC
2563
CAUAGCGAAGUCUAGUCU
2564



GCUAUG

UUAGA






miR-4745-3p
UGGCCCGGCGACGUCUC
2565
GACCGUGAGACGUCGCCG
2566



ACGGUC

GGCCA






miR-4745-5p
UGAGUGGGGCUCCCGGG
2567
CGCCGUCCCGGGAGCCCC
2568



ACGGCG

ACUCA






miR-4746-3p
AGCGGUGCUCCUGCGGG
2569
UCGGCCCGCAGGAGCACC
2570



CCGA

GCU






miR-4746-5p
CCGGUCCCAGGAGAACC
2571
UCUGCAGGUUCUCCUGGG
2572



UGCAGA

ACCGG






miR-4747-3p
AAGGCCCGGGCUUUCCU
2573
CUGGGAGGAAAGCCCGGG
2574



CCCAG

CCUU






miR-4747-5p
AGGGAAGGAGGCUUGGU
2575
CUAAGACCAAGCCUCCUU
2576



CUUAG

CCCU






miR-4748
GAGGUUUGGGGAGGAUU
2577
AGCAAAUCCUCCCCAAAC
2578



UGCU

CUC






miR-4749-3p
CGCCCCUCCUGCCCCCAC
2579
CUGUGGGGGCAGGAGGG
2580



AG

GCG






miR-4749-5p
UGCGGGGACAGGCCAGG
2581
GAUGCCCUGGCCUGUCCC
2582



GCAUC

CGCA






miR-4750
CUCGGGCGGAGGUGGUU
2583
CACUCAACCACCUCCGCC
2584



GAGUG

CGAG






miR-4751
AGAGGACCCGUAGCUGC
2585
CCUUCUAGCAGCUACGGG
2586



UAGAAGG

UCCUCU






miR-4752
UUGUGGAUCUCAAGGAU
2587
AGCACAUCCUUGAGAUCC
2588



GUGCU

ACAA






miR-4753-3p
UUCUCUUUCUUUAGCCU
2589
ACACAAGGCUAAAGAAAG
2590



UGUGU

AGAA






miR-4753-5p
CAAGGCCAAAGGAAGAG
2591
CTGTTCTCTTCCTTTGGCC
2592



AACAG

TTG






miR-4754
AUGCGGACCUGGGUUAG
2593
ACUCCGCUAACCCAGGUC
2594



CGGAGU

CGCAU






miR-4755-3p
AGCCAGGCUCUGAAGGG
2595
ACUUUCCCUUCAGAGCCU
2596



AAAGU

GGCU






miR-4755-5p
UUUCCCUUCAGAGCCUG
2597
AAAGCCAGGCUCUGAAGG
2598



GCUUU

GAAA






miR-4756-3p
CCAGAGAUGGUUGCCUU
2599
AUAGGAAGGCAACCAUCU
2600



CCUAU

CUGG






miR-4756-5p
CAGGGAGGCGCUCACUC
2601
AGCAGAGAGUGAGCGCCU
2602



UCUGCU

CCCUG






miR-4757-3p
CAUGACGUCACAGAGGC
2603
GCGAAGCCUCUGUGACGU
2604



UUCGC

CAUG






miR-4757-5p
AGGCCUCUGUGACGUCA
2605
ACACCGUGACGUCACAGA
2606



CGGUGU

GGCCU






miR-4758-3p
UGCCCCACCUGCUGACC
2607
GAGGGUGGUCAGCAGGU
2608



ACCCUC

GGGGCA






miR-4758-5p
GUGAGUGGGAGCCGGUG
2609
CAGCCCCACCGGCUCCCA
2610



GGGCUG

CUCAC






miR-4759
UAGGACUAGAUGUUGGA
2611
UAAUUCCAACAUCUAGUC
2612



AUUA

CUA






miR-4760-3p
AAAUUCAUGUUCAAUCU
2613
GGUUUAGAUUGAACAUG
2614



AAACC

AAUUU






miR-4760-5p
UUUAGAUUGAACAUGAA
2615
CUAACUUCAUGUUCAAUC
2616



GUUAG

UAAA






miR-4761-3p
GAGGGCAUGCGCACUUU
2617
GGACAAAGUGCGCAUGCC
2618



GUCC

CUC






miR-4761-5p
ACAAGGUGUGCAUGCCU
2619
GGUCAGGCAUGCACACCU
2620



GACC

UGU






miR-4762-3p
CUUCUGAUCAAGAUUUG
2621
CACCACAAAUCUUGAUCA
2622



UGGUG

GAAG






miR-4762-5p
CCAAAUCUUGAUCAGAA
2623
AGGCUUCUGAUCAAGAUU
2624



GCCU

UGG






miR-4763-3p
AGGCAGGGGCUGGUGCU
2625
CCCGCCCAGCACCAGCCC
2626



GGGCGGG

CUGCCU






miR-4763-5p
CGCCUGCCCAGCCCUCCU
2627
AGCAGGAGGGCUGGGCAG
2628



GCU

GCG






miR-4764-3p
UUAACUCCUUUCACACC
2629
CCAUGGGUGUGAAAGGA
2630



CAUGG

GUUAA






miR-4764-5p
UGGAUGUGGAAGGAGUU
2631
AGAUAACUCCUUCCACAU
2632



AUCU

CCA






miR-4765
UGAGUGAUUGAUAGCUA
2633
GAACAUAGCUAUCAAUCA
2634



UGUUC

CUCA






miR-4766-3p
AUAGCAAUUGCUCUUUU
2635
UUCCAAAAGAGCAAUUGC
2636



GGAA

UAU






miR-4766-5p
UCUGAAAGAGCAGUUGG
2637
AACACCAACUGCUCUUUC
2638



UGUU

AGA






miR-4767
CGCGGGCGCUCCUGGCC
2639
GGCGGCGGCCAGGAGCGC
2640



GCCGCC

CCGCG






miR-4768-3p
CCAGGAGAUCCAGAGAG
2641
AUUCUCUCUGGAUCUCCU
2642



AAU

GG






miR-4768-5p
AUUCUCUCUGGAUCCCA
2643
AUCCAUGGGAUCCAGAGA
2644



UGGAU

GAAU






miR-4769-3p
UCUGCCAUCCUCCCUCCC
2645
GUAGGGGAGGGAGGAUG
2646



CUAC

GCAGA






miR-4769-5p
GGUGGGAUGGAGAGAAG
2647
CUCAUACCUUCUCUCCAU
2648



GUAUGAG

CCCACC






miR-4770
UGAGAUGACACUGUAGC
2649
AGCUACAGUGUCAUCUCA
2650



U








miR-4771
AGCAGACUUGACCUACA
2651
UAAUUGUAGGUCAAGUC
2652



AUUA

UGCU






miR-4772-3p
CCUGCAACUUUGCCUGA
2653
UCUGAUCAGGCAAAGUUG
2654



UCAGA

CAGG






miR-4772-5p
UGAUCAGGCAAAAUUGC
2655
AGUCUGCAAUUUUGCCUG
2656



AGACU

AUCA






miR-4773
CAGAACAGGAGCAUAGA
2657
GCCUUUCUAUGCUCCUGU
2658



AAGGC

UCUG






miR-4774-3p
AUUGCCUAACAUGUGCC
2659
UUCUGGCACAUGUUAGGC
2660



AGAA

AAU






miR-4774-5p
UCUGGUAUGUAGUAGGU
2661
UUAUUACCUACUACAUAC
2662



AAUAA

CAGA






miR-4775
UUAAUUUUUUGUUUCGG
2663
AGUGACCGAAACAAAAAA
2664



UCACU

UUAA






miR-4776-3p
CUUGCCAUCCUGGUCCA
2665
AUGCAGUGGACCAGGAUG
2666



CUGCAU

GCAAG






miR-4776-5p
GUGGACCAGGAUGGCAA
2667
AGCCCUUGCCAUCCUGGU
2668



GGGCU

CCAC






miR-4777-3p
AUACCUCAUCUAGAAUG
2669
UACAGCAUUCUAGAUGAG
2670



CUGUA

GUAU






miR-4777-5p
UUCUAGAUGAGAGAUAU
2671
UAUAUAUAUCUCUCAUCU
2672



AUAUA

AGAA






miR-4778-3p
UCUUCUUCCUUUGCAGA
2673
UCAACUCUGCAAAGGAAG
2674



GUUGA

AAGA






miR-4778-5p
AAUUCUGUAAAGGAAGA
2675
CCUCUUCUUCCUUUACAG
2676



AGAGG

AAUU






miR-4779
UAGGAGGGAAUAGUAAA
2677
CUGCUUUUACUAUUCCCU
2678



AGCAG

CCUA






miR-4780
ACCCUUGAGCCUGAUCC
2679
GCUAGGGAUCAGGCUCAA
2680



CUAGC

GGGU






miR-4781-3p
AAUGUUGGAAUCCUCGC
2681
CUCUAGCGAGGAUUCCAA
2682



UAGAG

CAUU






miR-4781-5p
UAGCGGGGAUUCCAAUA
2683
CCAAUAUUGGAAUCCCCG
2684



UUGG

CUA






miR-4782-3p
UGAUUGUCUUCAUAUCU
2685
GUUCUAGAUAUGAAGAC
2686



AGAAC

AAUCA






miR-4782-5p
UUCUGGAUAUGAAGACA
2687
UUGAUUGUCUUCAUAUCC
2688



AUCAA

AGAA






miR-4783-3p
CCCCGGUGUUGGGGCGC
2689
GCAGACGCGCCCCAACAC
2690



GUCUGC

CGGGG






miR-4783-5p
GGCGCGCCCAGCUCCCG
2691
AGCCCGGGAGCUGGGCGC
2692



GGCU

GCC






miR-4784
UGAGGAGAUGCUGGGAC
2693
UCAGUCCCAGCAUCUCCU
2694



UGA

CA






miR-4785
AGAGUCGGCGACGCCGC
2695
GCUGGCGGCGUCGCCGAC
2696



CAGC

UCU






miR-4786-3p
UGAAGCCAGCUCUGGUC
2697
GCCCAGACCAGAGCUGGC
2698



UGGGC

UUCA






miR-4786-5p
UGAGACCAGGACUGGAU
2699
GGUGCAUCCAGUCCUGGU
2700



GCACC

CUCA






miR-4787-3p
GAUGCGCCGCCCACUGC
2701
GCGCGGGGCAGUGGGCGG
2702



CCCGCGC

CGCAUC






miR-4787-5p
GCGGGGGUGGCGGCGGC
2703
GGGAUGCCGCCGCCACCC
2704



AUCCC

CCGC






miR-4788
UUACGGACCAGCUAAGG
2705
GCCUCCCUUAGCUGGUCC
2706



GAGGC

GUAA






miR-4789-3p
CACACAUAGCAGGUGUA
2707
UAUAUACACCUGCUAUGU
2708



UAUA

GUG






miR-4789-5p
GUAUACACCUGAUAUGU
2709
CAUACACAUAUCAGGUGU
2710



GUAUG

AUAC






miR-4790-3p
UGAAUGGUAAAGCGAUG
2711
UGUGACAUCGCUUUACCA
2712



UCACA

UUCA






miR-4790-5p
AUCGCUUUACCAUUCAU
2713
AACAUGAAUGGUAAAGC
2714



GUU

GAU






miR-4791
UGGAUAUGAUGACUGAA
2715
UUUCAGUCAUCAUAUCCA
2716



A








miR-4792
CGGUGAGCGCUCGCUGG
2717
GCCAGCGAGCGCUCACCG
2718



C








miR-4793-3p
UCUGCACUGUGAGUUGG
2719
AGCCAGCCAACUCACAGU
2720



CUGGCU

GCAGA






miR-4793-5p
ACAUCCUGCUCCACAGG
2721
CCUCUGCCCUGUGGAGCA
2722



GCAGAGG

GGAUGU






miR-4794
UCUGGCUAUCUCACGAG
2723
ACAGUCUCGUGAGAUAGC
2724



ACUGU

CAGA






miR-4795-3p
AUAUUAUUAGCCACUUC
2725
AUCCAGAAGUGGCUAAUA
2726



UGGAU

AUAU






miR-4795-5p
AGAAGUGGCUAAUAAUA
2727
UCAAUAUUAUUAGCCACU
2728



UUGA

UCU






miR-4796-3p
UAAAGUGGCAGAGUAUA
2729
GUGUCUAUACUCUGCCAC
2730



GACAC

UUUA






miR-4796-5p
UGUCUAUACUCUGUCAC
2731
GUAAAGUGACAGAGUAU
2732



UUUAC

AGACA






miR-4797-3p
UCUCAGUAAGUGGCACU
2733
ACAGAGUGCCACUUACUG
2734



CUGU

AGA






miR-4797-5p
GACAGAGUGCCACUUAC
2735
UUCAGUAAGUGGCACUCU
2736



UGAA

GUC






miR-4798-3p
AACUCACGAAGUAUACC
2737
ACUUCGGUAUACUUCGUG
2738



GAAGU

AGUU






miR-4798-5p
UUCGGUAUACUUUGUGA
2739
CCAAUUCACAAAGUAUAC
2740



AUUGG

CGAA






miR-4799-3p
ACUGGCAUGCUGCAUUU
2741
UAUAUAAAUGCAGCAUGC
2742



AUAUA

CAGU






miR-4799-5p
AUCUAAAUGCAGCAUGC
2743
GACUGGCAUGCUGCAUUU
2744



CAGUC

AGAU






miR-4800-3p
CAUCCGUCCGUCUGUCC
2745
GUGGACAGACGGACGGAU
2746



AC

G






miR-4800-5p
AGUGGACCGAGGAAGGA
2747
UCCUUCCUUCCUCGGUCC
2748



AGGA

ACU






miR-4801
UACACAAGAAAACCAAG
2749
UGAGCCUUGGUUUUCUUG
2750



GCUCA

UGUA






miR-4802-3p
UACAUGGAUGGAAACCU
2751
GCUUGAAGGUUUCCAUCC
2752



UCAAGC

AUGUA






miR-4802-5p
UAUGGAGGUUCUAGACC
2753
AACAUGGUCUAGAACCUC
2754



AUGUU

CAUA






miR-4803
UAACAUAAUAGUGUGGA
2755
UCAAUCCACACUAUUAUG
2756



UUGA

UUA






miR-4804-3p
UGCUUAACCUUGCCCUC
2757
UUUCGAGGGCAAGGUUA
2758



GAAA

AGCA






miR-4804-5p
UUGGACGGUAAGGUUAA
2759
UUGCUUAACCUUACCGUC
2760



GCAA

CAA






miR-483-3p
UCACUCCUCUCCUCCCG
2761
AAGACGGGAGGAGAGGA
2762



UCUU

GUGA






miR-483-5p
AAGACGGGAGGAAAGAA
2763
CTCCCTTCTTTCCTCCCGT
2764



GGGAG

CTT






miR-484
UCAGGCUCAGUCCCCUC
2765
AUCGGGAGGGGACUGAGC
2766



CCGAU

CUGA






miR-485-3p
GUCAUACACGGCUCUCC
2767
AGAGAGGAGAGCCGUGU
2768



UCUCU

AUGAC






miR-485-5p
AGAGGCUGGCCGUGAUG
2769
GAAUUCAUCACGGCCAGC
2770



AAUUC

CUCU






miR-486-3p
CGGGGCAGCUCAGUACA
2771
AUCCUGUACUGAGCUGCC
2772



GGAU

CCG






miR-486-5p
UCCUGUACUGAGCUGCC
2773
CUCGGGGCAGCUCAGUAC
2774



CCGAG

AGGA






miR-487a
AAUCAUACAGGGACAUC
2775
AACUGGAUGUCCCUGUAU
2776



CAGUU

GAUU






miR-487b
AAUCGUACAGGGUCAUC
2777
AAGUGGAUGACCCUGUAC
2778



CACUU

GAUU






miR-488-3p
UUGAAAGGCUAUUUCUU
2779
GACCAAGAAAUAGCCUUU
2780



GGUC

CAA






miR-488-5p
CCCAGAUAAUGGCACUC
2781
UUGAGAGUGCCAUUAUCU
2782



UCAA

GGG






miR-489
GUGACAUCACAUAUACG
2783
GCUGCCGUAUAUGUGAUG
2784



GCAGC

UCAC






miR-490-3p
CAACCUGGAGGACUCCA
2785
CAGCAUGGAGUCCUCCAG
2786



UGCUG

GUUG






miR-490-5p
CCAUGGAUCUCCAGGUG
2787
ACCCACCUGGAGAUCCAU
2788



GGU

GG






miR-491-3p
CUUAUGCAAGAUUCCCU
2789
GUAGAAGGGAAUCUUGC
2790



UCUAC

AUAAG






miR-491-5p
AGUGGGGAACCCUUCCA
2791
CCUCAUGGAAGGGUUCCC
2792



UGAGG

CACU






miR-492
AGGACCUGCGGGACAAG
2793
AAGAAUCUUGUCCCGCAG
2794



AUUCUU

GUCCU






miR-493-3p
UGAAGGUCUACUGUGUG
2795
CCUGGCACACAGUAGACC
2796



CCAGG

UUCA






miR-493-5p
UUGUACAUGGUAGGCUU
2797
AAUGAAAGCCUACCAUGU
2798



UCAUU

ACAA






miR-494
UGAAACAUACACGGGAA
2799
GAGGUUUCCCGUGUAUGU
2800



ACCUC

UUCA






miR-495
AAACAAACAUGGUGCAC
2801
AAGAAGUGCACCAUGUUU
2802



UUCUU

GUUU






miR-496
UGAGUAUUACAUGGCCA
2803
GAGAUUGGCCAUGUAAU
2804



AUCUC

ACUCA






miR-497-3p
CAAACCACACUGUGGUG
2805
UCUAACACCACAGUGUGG
2806



UUAGA

UUUG






miR-497-5p
CAGCAGCACACUGUGGU
2807
ACAAACCACAGUGUGCUG
2808



UUGU

CUG






miR-498
UUUCAAGCCAGGGGGCG
2809
GAAAAACGCCCCCUGGCU
2810



UUUUUC

UGAAA






miR-4999-3p
UCACUACCUGACAAUAC
2811
ACUGUAUUGUCAGGUAG
2812



AGU

UGA






miR-4999-5p
UGCUGUAUUGUCAGGUA
2813
UCACUACCUGACAAUACA
2814



GUGA

GCA






miR-499a-3p
AACAUCACAGCAAGUCU
2815
AGCACAGACUUGCUGUGA
2816



GUGCU

UGUU






miR-499a-5p
UUAAGACUUGCAGUGAU
2817
AAACAUCACUGCAAGUCU
2818



GUUU

UAA






miR-499b-3p
AACAUCACUGCAAGUCU
2819
UGUUAAGACUUGCAGUG
2820



UAACA

AUGUU






miR-499b-5p
ACAGACUUGCUGUGAUG
2821
UGAACAUCACAGCAAGUC
2822



UUCA

UGU






miR-5000-3p
UCAGGACACUUCUGAAC
2823
UCCAAGUUCAGAAGUGUC
2824



UUGGA

CUGA






miR-5000-5p
CAGUUCAGAAGUGUUCC
2825
ACUCAGGAACACUUCUGA
2826



UGAGU

ACUG






miR-5001-3p
UUCUGCCUCUGUCCAGG
2827
AAGGACCUGGACAGAGGC
2828



UCCUU

AGAA






miR-5001-5p
AGGGCUGGACUCAGCGG
2829
AGCUCCGCCGCUGAGUCC
2830



CGGAGCU

AGCCCU






miR-5002-3p
UGACUGCCUCACUGACC
2831
AAGUGGUCAGUGAGGCA
2832



ACUU

GUCA






miR-5002-5p
AAUUUGGUUUCUGAGGC
2833
ACUAAGUGCCUCAGAAAC
2834



ACUUAGU

CAAAUU






miR-5003-3p
UACUUUUCUAGGUUGUU
2835
CCCCAACAACCUAGAAAA
2836



GGGG

GUA






miR-5003-5p
UCACAACAACCUUGCAG
2837
UCUACCCUGCAAGGUUGU
2838



GGUAGA

UGUGA






miR-5004-3p
CUUGGAUUUUCCUGGGC
2839
CUGAGGCCCAGGAAAAUC
2840



CUCAG

CAAG






miR-5004-5p
UGAGGACAGGGCAAAUU
2841
UCGUGAAUUUGCCCUGUC
2842



CACGA

CUCA






miR-5006-3p
UUUCCCUUUCCAUCCUG
2843
CUGCCAGGAUGGAAAGGG
2844



GCAG

AAA






miR-5006-5p
UUGCCAGGGCAGGAGGU
2845
UUCCACCUCCUGCCCUGG
2846



GGAA

CAA






miR-5007-3p
AUCAUAUGAACCAAACU
2847
AUUAGAGUUUGGUUCAU
2848



CUAAU

AUGAU






miR-5007-5p
UAGAGUCUGGCUGAUAU
2849
AAACCAUAUCAGCCAGAC
2850



GGUUU

UCUA






miR-5008-3p
CCUGUGCUCCCAGGGCC
2851
GCGAGGCCCUGGGAGCAC
2852



UCGC

AGG






miR-5008-5p
UGAGGCCCUUGGGGCAC
2853
CCACUGUGCCCCAAGGGC
2854



AGUGG

CUCA






miR-5009-3p
UCCUAAAUCUGAAAGUC
2855
UUUUGGACUUUCAGAUU
2856



CAAAA

UAGGA






miR-5009-5p
UUGGACUUUUUCAGAUU
2857
AUCCCCAAAUCUGAAAAA
2858



UGGGGAU

GUCCAA






miR-500a-3p
AUGCACCUGGGCAAGGA
2859
CAGAAUCCUUGCCCAGGU
2860



UUCUG

GCAU






miR-500a-5p
UAAUCCUUGCUACCUGG
2861
UCUCACCCAGGUAGCAAG
2862



GUGAGA

GAUUA






miR-500b
AAUCCUUGCUACCUGGG
2863
ACCCAGGUAGCAAGGAUU
2864



U








miR-501-3p
AAUGCACCCGGGCAAGG
2865
AGAAUCCUUGCCCGGGUG
2866



AUUCU

CAUU






miR-501-5p
AAUCCUUUGUCCCUGGG
2867
UCUCACCCAGGGACAAAG
2868



UGAGA

GAUU






miR-5010-3p
UUUUGUGUCUCCCAUUC
2869
CUGGGGAAUGGGAGACAC
2870



CCCAG

AAAA






miR-5010-5p
AGGGGGAUGGCAGAGCA
2871
AAUUUUGCUCUGCCAUCC
2872



AAAUU

CCCU






miR-5011-3p
GUGCAUGGCUGUAUAUA
2873
UGUUAUAUAUACAGCCAU
2874



UAACA

GCAC






miR-5011-5p
UAUAUAUACAGCCAUGC
2875
GAGUGCAUGGCUGUAUA
2876



ACUC

UAUA






miR-502-3p
AAUGCACCUGGGCAAGG
2877
UGAAUCCUUGCCCAGGUG
2878



AUUCA

CAUU






miR-502-5p
AUCCUUGCUAUCUGGGU
2879
UAGCACCCAGAUAGCAAG
2880



GCUA

GAU






miR-503
UAGCAGCGGGAACAGUU
2881
CUGCAGAACUGUUCCCGC
2882



CUGCAG

UGCUA






miR-504
AGACCCUGGUCUGCACU
2883
GAUAGAGUGCAGACCAGG
2884



CUAUC

GUCU






miR-5047
UUGCAGCUGCGGUUGUA
2885
ACCUUACAACCGCAGCUG
2886



AGGU

CAA






miR-505-3p
CGUCAACACUUGCUGGU
2887
AGGAAACCAGCAAGUGUU
2888



UUCCU

GACG






miR-505-5p
GGGAGCCAGGAAGUAUU
2889
ACAUCAAUACUUCCUGGC
2890



GAUGU

UCCC






miR-506-3p
UAAGGCACCCUUCUGAG
2891
UCUACUCAGAAGGGUGCC
2892



UAGA

UUA






miR-506-5p
UAUUCAGGAAGGUGUUA
2893
UUAAGUAACACCUUCCUG
2894



CUUAA

AAUA






miR-507
UUUUGCACCUUUUGGAG
2895
UUCACUCCAAAAGGUGCA
2896



UGAA

AAA






miR-508-3p
UGAUUGUAGCCUUUUGG
2897
UCUACUCCAAAAGGCUAC
2898



AGUAGA

AAUCA






miR-508-5p
UACUCCAGAGGGCGUCA
2899
CAUGAGUGACGCCCUCUG
2900



CUCAUG

GAGUA






miR-5087
GGGUUUGUAGCUUUGCU
2901
CAUGCCAGCAAAGCUACA
2902



GGCAUG

AACCC






miR-5088
CAGGGCUCAGGGAUUGG
2903
CUCCAUCCAAUCCCUGAG
2904



AUGGAG

CCCUG






miR-5089
GUGGGAUUUCUGAGUAG
2905
GAUGCUACUCAGAAAUCC
2906



CAUC

CAC






miR-509-3-5p
UACUGCAGACGUGGCAA
2907
CAUGAUUGCCACGUCUGC
2908



UCAUG

AGUA






miR-509-3p
UGAUUGGUACGUCUGUG
2909
CUACCCACAGACGUACCA
2910



GGUAG

AUCA






miR-509-5p
UACUGCAGACAGUGGCA
2911
UGAUUGCCACUGUCUGCA
2912



AUCA

GUA






miR-5090
CCGGGGCAGAUUGGUGU
2913
CACCCUACACCAAUCUGC
2914



AGGGUG

CCCGG






miR-5091
ACGGAGACGACAAGACU
2915
CAGCACAGUCUUGUCGUC
2916



GUGCUG

UCCGU






miR-5092
AAUCCACGCUGAGCUUG
2917
GAUGCCAAGCUCAGCGUG
2918



GCAUC

GAUU






miR-5093
AGGAAAUGAGGCUGGCU
2919
GCUCCUAGCCAGCCUCAU
2920



AGGAGC

UUCCU






miR-5094
AAUCAGUGAAUGCCUUG
2921
AGGUUCAAGGCAUUCACU
2922



AACCU

GAUU






miR-5095
UUACAGGCGUGAACCAC
2923
CGCGGUGGUUCACGCCUG
2924



CGCG

UAA






miR-5096
GUUUCACCAUGUUGGUC
2925
GCCUGACCAACAUGGUGA
2926



AGGC

AAC






miR-510
UACUCAGGAGAGUGGCA
2927
GUGAUUGCCACUCUCCUG
2928



AUCAC

AGUA






miR-5100
UUCAGAUCCCAGCGGUG
2929
AGAGGCACCGCUGGGAUC
2930



CCUCU

UGAA






miR-511
GUGUCUUUUGCUCUGCA
2931
UGACUGCAGAGCAAAAGA
2932



GUCA

CAC






miR-512-3p
AAGUGCUGUCAUAGCUG
2933
GACCUCAGCUAUGACAGC
2934



AGGUC

ACUU






miR-512-5p
CACUCAGCCUUGAGGGC
2935
GAAAGUGCCCUCAAGGCU
2936



ACUUUC

GAGUG






miR-513a-3p
UAAAUUUCACCUUUCUG
2937
CCUUCUCAGAAAGGUGAA
2938



AGAAGG

AUUUA






miR-513a-5p
UUCACAGGGAGGUGUCA
2939
AUGACACCUCCCUGUGAA
2940



U








miR-513b
UUCACAAGGAGGUGUCA
2941
AUAAAUGACACCUCCUUG
2942



UUUAU

UGAA






miR-513c-3p
UAAAUUUCACCUUUCUG
2943
UCUUCUCAGAAAGGUGAA
2944



AGAAGA

AUUUA






miR-513c-5p
UUCUCAAGGAGGUGUCG
2945
AUAAACGACACCUCCUUG
2946



UUUAU

AGAA






miR-514a-3p
AUUGACACUUCUGUGAG
2947
UCUACUCACAGAAGUGUC
2948



UAGA

AAU






miR-514a-5p
UACUCUGGAGAGUGACA
2949
CAUGAUUGUCACUCUCCA
2950



AUCAUG

GAGUA






miR-514b-3p
AUUGACACCUCUGUGAG
2951
UCCACUCACAGAGGUGUC
2952



UGGA

AAU






miR-514b-5p
UUCUCAAGAGGGAGGCA
2953
AUGAUUGCCUCCCUCUUG
2954



AUCAU

AGAA






miR-515-3p
GAGUGCCUUCUUUUGGA
2955
AACGCUCCAAAAGAAGGC
2956



GCGUU

ACUC






miR-515-5p
UUCUCCAAAAGAAAGCA
2957
CAGAAAGUGCUUUCUUUU
2958



CUUUCUG

GGAGAA






miR-516a-3p
UGCUUCCUUUCAGAGGG
2959
ACCCUCUGAAAGGAAGCA
2960



U








miR-516a-5p
UUCUCGAGGAAAGAAGC
2961
GAAAGUGCUUCUUUCCUC
2962



ACUUUC

GAGAA






miR-516b-3p
UGCUUCCUUUCAGAGGG
2963
ACCCUCUGAAAGGAAGCA
2964



U








miR-516b-5p
AUCUGGAGGUAAGAAGC
2965
AAAGUGCUUCUUACCUCC
2966



ACUUU

AGAU






miR-517-5p
CCUCUAGAUGGAAGCAC
2967
AGACAGUGCUUCCAUCUA
2968



UGUCU

GAGG






miR-517a-3p
AUCGUGCAUCCCUUUAG
2969
ACACUCUAAAGGGAUGCA
2970



AGUGU

CGAU






miR-517b-3p
AUCGUGCAUCCCUUUAG
2971
ACACUCUAAAGGGAUGCA
2972



AGUGU

CGAU






miR-517c-3p
AUCGUGCAUCCUUUUAG
2973
ACACUCUAAAAGGAUGCA
2974



AGUGU

CGAU






miR-5186
AGAGAUUGGUAGAAAUC
2975
ACCUGAUUUCUACCAAUC
2976



AGGU

UCU






miR-5187-3p
ACUGAAUCCUCUUUUCC
2977
CUGAGGAAAAGAGGAUU
2978



UCAG

CAGU






miR-5187-5p
UGGGAUGAGGGAUUGAA
2979
UCCACUUCAAUCCCUCAU
2980



GUGGA

CCCA






miR-5188
AAUCGGACCCAUUUAAA
2981
CUCCGGUUUAAAUGGGUC
2982



CCGGAG

CGAUU






miR-5189
UCUGGGCACAGGCGGAU
2983
CCUGUCCAUCCGCCUGUG
2984



GGACAGG

CCCAGA






miR-518a-3p
GAAAGCGCUUCCCUUUG
2985
UCCAGCAAAGGGAAGCGC
2986



CUGGA

UUUC






miR-518a-5p
CUGCAAAGGGAAGCCCU
2987
GAAAGGGCUUCCCUUUGC
2988



UUC

AG






miR-518b
CAAAGCGCUCCCCUUUA
2989
ACCUCUAAAGGGGAGCGC
2990



GAGGU

UUUG






miR-518c-3p
CAAAGCGCUUCUCUUUA
2991
ACACUCUAAAGAGAAGCG
2992



GAGUGU

CUUUG






miR-518c-5p
UCUCUGGAGGGAAGCAC
2993
CAGAAAGUGCUUCCCUCC
2994



UUUCUG

AGAGA






miR-518d-3p
CAAAGCGCUUCCCUUUG
2995
GCUCCAAAGGGAAGCGCU
2996



GAGC

UUG






miR-518d-5p
CUCUAGAGGGAAGCACU
2997
CAGAAAGUGCUUCCCUCU
2998



UUCUG

AGAG






miR-518e-3p
AAAGCGCUUCCCUUCAG
2999
CACUCUGAAGGGAAGCGC
3000



AGUG

UUU






miR-518e-5p
CUCUAGAGGGAAGCGCU
3001
CAGAAAGCGCUUCCCUCU
3002



UUCUG

AGAG






miR-518f-3p
GAAAGCGCUUCUCUUUA
3003
CCUCUAAAGAGAAGCGCU
3004



GAGG

UUC






miR-518f-5p
CUCUAGAGGGAAGCACU
3005
GAGAAAGUGCUUCCCUCU
3006



UUCUC

AGAG






miR-5190
CCAGUGACUGAGCUGGA
3007
UGGCUCCAGCUCAGUCAC
3008



GCCA

UGG






miR-5191
AGGAUAGGAAGAAUGAA
3009
AGCACUUCAUUCUUCCUA
3010



GUGCU

UCCU






miR-5192
AGGAGAGUGGAUUCCAG
3011
ACCACCUGGAAUCCACUC
3012



GUGGU

UCCU






miR-5193
UCCUCCUCUACCUCAUC
3013
ACUGGGAUGAGGUAGAG
3014



CCAGU

GAGGA






miR-5194
UGAGGGGUUUGGAAUGG
3015
CCAUCCCAUUCCAAACCC
3016



GAUGG

CUCA






miR-5195-3p
AUCCAGUUCUCUGAGGG
3017
AGCCCCCUCAGAGAACUG
3018



GGCU

GAU






miR-5195-5p
AACCCCUAAGGCAACUG
3019
CCAUCCAGUUGCCUUAGG
3020



GAUGG

GGUU






miR-5196-3p
UCAUCCUCGUCUCCCUC
3021
CUGGGAGGGAGACGAGG
3022



CCAG

AUGA






miR-5196-5p
AGGGAAGGGGACGAGGG
3023
CCCAACCCUCGUCCCCUU
3024



UUGGG

CCCU






miR-5197-3p
AAGAAGAGACUGAGUCA
3025
AUUCGAUGACUCAGUCUC
3026



UCGAAU

UUCUU






miR-5197-5p
CAAUGGCACAAACUCAU
3027
UCAAGAAUGAGUUUGUG
3028



UCUUGA

CCAUUG






miR-519a-3p
AAAGUGCAUCCUUUUAG
3029
ACUACUCUAAAAGGAUGCA
3030



AGUGU

CUUU






miR-519a-5p
CUCUAGAGGGAAGCGCU
3031
CAGAAAGCGCUUCCCUCU
3032



UUCUG

AGAG






miR-519b-3p
AAAGGCAUCCUUUUAG
3033
AACCUCUAAAAGGAUGCA
3034



AGGUU

CUUU






miR-519b-5p
CUCUAGAGGGAAGCGCU
3035
CAGAAAGCGCUUCCCUCU
3036



UUCUG

AGAG






miR-519c-3p
AAAGUGCAUCUUUUUAG
3037
AUCCUCUAAAAAGAUGCA
3038



AGGAU

CUUU






miR-519c-5p
CUCUAGAGGGAAGCGCU
3039
CAGAAAGCGCUUCCCUCU
3040



UUCUG

AGAG






miR-519d
CAAAGUGCCUCCCUUUA
3041
CACUCUAAAGGGAGGCAC
3042



GAGUG

UUUG






miR-519e-3p
AAGUGCCUCCUUUUAGA
3043
AACACUCUAAAAGGAGGC
3044



GUGUU

ACUU






miR-519e-5p
UUCUCCAAAAGGGAGCA
3045
GAAAGUGCUCCCUUUUGG
3046



CUUUC

AGAA






miR-520a-3p
AAAGUGCUUCCCUUUGG
3047
ACAGUCCAAAGGGAAGCA
3048



AGUGU

CUUU






miR-520a-5p
CUCCAGAGGGAAGUACU
3049
AGAAAGUACUUCCCUCUG
3050



UUCU

GAG






miR-520b
AAAGUGCUUCCUUUUAG
3051
CCCUCUAAAAGGAAGCAC
3052



AGGG

UUU






miR-520c-3p
AAAGUGCUUCCUUUUAG
3053
ACCCUCUAAAAGGAAGCA
3054



AGGGU

CUUU






miR-520c-5p
CUCUAGAGGGAAGCACU
3055
CAGAAAGUGCUUCCCUCU
3056



UUCUG

AGAG






miR-520d-3p
AAAGUGCUUCUCUUUGG
3057
ACCCACCAAAGAGAAGCA
3058



UGGGU

CUUU






miR-520d-5p
CUACAAAGGGAAGCCCU
3059
GAAAGGGCUUCCCUUUGU
3060



UUC

AG






miR-520e
AAAGUGCUUCCUUUUUG
3061
CCCUCAAAAAGGAAGCAC
3062



AGGG

UUU






miR-520f
AAGUGCUUCCUUUUAGA
3063
AACCCUCUAAAAGGAAGC
3064



GGGUU

ACUU






miR-520g
ACAAAGUGCUUCCCUUU
3065
ACACUCUAAAGGGAAGCA
3066



AGAGUGU

CUUUGU






miR-520h
ACAAAGUGCUUCCCUUU
3067
ACUCUAAAGGGAAGCACU
3068



AGAGU

UUGU






miR-521
AACGCACUUCCCUUUAG
3069
ACACUCUAAAGGGAAGUG
3070



AGUGU

CGUU






miR-522-3p
AAAAUGGUUCCCUUUAG
3071
ACACUCUAAAGGGAACCA
3072



AGUGU

UUUU






miR-522-5p
CUCUAGAGGGAAGCGCU
3073
CAGAAAGCGCUUCCCUCU
3074



UUCUG

AGAG






miR-523-3p
GAACGCGCUUCCCUAUA
3075
ACCCUCUAUAGGGAAGCG
3076



GAGGGU

CGUUC






miR-523-5p
CUCUAGAGGGAAGCGCU
3077
CAGAAAGCGCUUCCCUCU
3078



UUCUG

AGAG






miR-524-3p
GAAGGCGCUUCCCUUUG
3079
ACUCCAAAGGGAAGCGCC
3080



GAGU

UUC






miR-524-5p
CUACAAAGGGAAGCACU
3081
GAGAAAGUGCUUCCCUUU
3082



UUCUC

GUAG






miR-525-3p
GAAGGCGCUUCCCUUUA
3083
CGCUCUAAAGGGAAGCGC
3084



GAGCG

CUUC






miR-525-5p
CUCCAGAGGGAUGCACU
3085
AGAAAGUGCAUCCCUCUG
3086



UUCU

GAG






miR-526a
CUCUAGAGGGAAGCACU
3087
CAGAAAGUGCUUCCCUCU
3088



UUCUG

AGAG






miR-526b-3p
GAAAGUGCUUCCUUUUA
3089
GCCUCUAAAAGGAAGCAC
3090



GAGGC

UUUC






miR-526b-5p
CUCUUGAGGGAAGCACU
3091
ACAGAAAGUGCUUCCCUC
3092



UUCUGU

AAGAG






miR-527
CUGCAAAGGGAAGCCCU
3093
GAAAGGGCUUCCCUUUGC
3094



UUC

AG






miR-532-3p
CCUCCCACACCCAAGGC
3095
UGCAAGCCUUGGGUGUGG
3096



UUGCA

GAGG






miR-532-5p
CAUGCCUUGAGUGUAGG
3097
ACGGUCCUACACUCAAGG
3098



ACCGU

CAUG






miR-539-3p
AUCAUACAAGGACAAUU
3099
AAAGAAAUUGUCCUUGU
3100



UCUUU

AUGAU






miR-539-5p
GGAGAAAUUAUCCUUGG
3101
ACACACCAAGGAUAAUUU
3102



UGUGU

CUCC






miR-541-3p
UGGUGGGCACAGAAUCU
3103
AGUCCAGAUUCUGUGCCC
3104



GGACU

ACCA






miR-541-5p
AAAGGAUUCUGCUGUCG
3105
AGUGGGACCGACAGCAGA
3106



GUCCCACU

AUCCUUU






miR-542-3p
UGUGACAGAUUGAUAAC
3107
UUUCAGUUAUCAAUCUGU
3108



UGAAA

CACA






miR-542-5p
UCGGGGAUCAUCAUGUC
3109
UCUCGUGACAUGAUGAUC
3110



ACGAGA

CCCGA






miR-543
AAACAUUCGCGGUGCAC
3111
AAGAAGUGCACCGCGAAU
3112



UUCUU

GUUU






miR-544a
AUUCUGCAUUUUUAGCA
3113
GAACUUGCUAAAAAUGCA
3114



AGUUC

GAAU






miR-544b
ACCUGAGGUUGUGCAUU
3115
UUAGAAAUGCACAACCUC
3116



UCUAA

AGGU






miR-545-3p
UCAGCAAACAUUUAUUG
3117
GCACACAAUAAAUGUUUG
3118



UGUGC

CUGA






miR-545-5p
UCAGUAAAUGUUUAUUA
3119
UCAUCUAAUAAACAUUUA
3120



GAUGA

CUGA






miR-548a-3p
CAAAACUGGCAAUUACU
3121
GCAAAAGUAAUUGCCAGU
3122



UUUGC

UUUG






miR-548a-5p
AAAAGUAAUUGCGAGUU
3123
GGUAAAACUCGCAAUUAC
3124



UUACC

UUUU






miR-548aa
AAAAACCACAAUUACUU
3125
UGGUGCAAAAGUAAUUG
3126



UUGCACCA

UGGUUUUU






miR-548ab
AAAAGUAAUUGUGGAUU
3127
AGCAAAAUCCACAAUUAC
3128



UUGCU

UUUU






miR-548ac
CAAAAACCGGCAAUUAC
3129
CAAAAGUAAUUGCCGGUU
3130



UUUUG

UUUG






miR-548ad
GAAAACGACAAUGACUU
3131
UGCAAAAGUCAUUGUCGU
3132



UUGCA

UUUC






miR-548ae
CAAAAACUGCAAUUACU
3133
UGAAAGUAAUUGCAGUU
3134



UUCA

UUUG






miR-548ag
AAAGGUAAUUGUGGUUU
3135
GCAGAAACCACAAUUACC
3136



CUGC

UUU






miR-548ah-3p
CAAAAACUGCAGUUACU
3137
GCAAAAGUAACUGCAGUU
3138



UUUGC

UUUG






miR-548ah-5p
AAAAGUGAUUGCAGUGU
3139
CAAACACUGCAAUCACUU
3140



UUG

UU






miR-548ai
AAAGGUAAUUGCAGUUU
3141
GGGAAAAACUGCAAUUAC
3142



UUCCC

CUUU






miR-548aj-3p
UAAAAACUGCAAUUACU
3143
UAAAAGUAAUUGCAGUU
3144



UUUA

UUUA






miR-548aj-5p
UGCAAAAGUAAUUGCAG
3145
CAAAAACUGCAAUUACUU
3146



UUUUUG

UUGCA






miR-548ak
AAAAGUAACUGCGGUUU
3147
UCAAAAACCGCAGUUACU
3148



UUGA

UUU






miR-548al
AACGGCAAUGACUUUUG
3149
UGGUACAAAAGUCAUUGC
3150



UACCA

CGUU






miR-548am-3p
CAAAAACUGCAGUUACU
3151
ACAAAAGUAACUGCAGUU
3152



UUUGU

UUUG






miR-548am-5p
AAAAGUAAUUGCGGUUU
3153
GGCAAAAACCGCAAUUAC
3154



UUGCC

UUUU






miR-548an
AAAAGGCAUUGUGGUUU
3155
CAAAAACCACAAUGCCUU
3156



UUG

UU






miR-548ao-3p
AAAGACCGUGACUACUU
3157
UGCAAAAGUAGUCACGGU
3158



UUGCA

CUUU






miR-548ao-5p
AGAAGUAACUACGGUUU
3159
UGCAAAAACCGUAGUUAC
3160



UUGCA

UUCU






miR-548ap-3pu
AAAAACCACAAUUACUUu
3161
AAAAGUAAUUGUGGUUU
3162



UU

UU






miR-548ap-5puu
AAAAGUAAUUGCGGUCU
3163
AAAGACCGCAAUUACUUU
3164



UU

U






miR-548aq-3p
CAAAAACUGCAAUUACU
3165
GCAAAAGUAAUUGCAGU
3166



UUUGC

UUUUG






miR-548aq-5p
GAAAGUAAUUGCUGUUU
3167
GGCAAAAACAGCAAUUAC
3168



UUGCC

UUUC






miR-548ar-3p
UAAAACUGCAGUUAUUU
3169
GCAAAAAUAACUGCAGUU
3170



UUGC

UUA






miR-548ar-5p
AAAAGUAAUUGCAGUUU
3171
GCAAAAACUGCAAUUACU
3172



UUGC

UUU






miR-548as-3p
UAAAACCCACAAUUAUG
3173
ACAAACAUAAUUGUGGG
3174



UUUGU

UUUUA






miR-548as-5p
AAAAGUAAUUGCGGGUU
3175
GGCAAAACCCGCAAUUAC
3176



UUGCC

UUUU






miR-548at-3p
CAAAACCGCAGUAACUU
3177
ACAAAAGUUACUGCGGUU
3178



UUGU

UUG






miR-548at-5p
AAAAGUUAUUGCGGUUU
3179
AGCCAAAACCGCAAUAAC
3180



UGGCU

UUUU






miR-548au-3p
UGGCAGUUACUUUUGCA
3181
CUGGUGCAAAAGUAACUG
3182



CCAG

CCA






miR-548au-5p
AAAAGUAAUUGCGGUUU
3183
GCAAAAACCGCAAUUACU
3184



UUGC

UUU






miR-548av-3p
AAACUGCAGUUACUUU
3185
GCAAAAGUAACUGCAGUU
3186



UGC

UU






miR-548av-5p
AAAAGUACUUGCGGAUU
3187
AAAUCCGCAAGUACUUUU
3188



U








miR-548aw
GUGCAAAAGUCAUCACG
3189
AACCGUGAUGACUUUUGC
3190



GUU

AC






miR-548ax
AGAAGUAAUUGCGGUUU
3191
UGGCAAAACCGCAAUUAC
3192



UGCCA

UUCU






miR-548b-3p
CAAGAACCUCAGUUGCU
3193
ACAAAAGCAACUGAGGUU
3194



UUUGU

CUUG






miR-548b-5p
AAAAGUAAUUGUGGUUU
3195
GGCCAAAACCACAAUUAC
3196



UGGCC

UUUU






miR-548c-3p
CAAAAAUCUCAAUUACU
3197
GCAAAAGUAAUUGAGAU
3198



UUUGC

UUUUG






miR-548c-5p
AAAAGUAAUUGCGGUUU
3199
GGCAAAAACCGCAAUUAC
3200



UUGCC

UUUU






miR-548d-3p
CAAAAACCACAGUUUCU
3201
GCAAAAGAAACUGUGGU
3202



UUUGC

UUUUG






miR-548d-5p
AAAAGUAAUUGUGGUUU
3203
GGCAAAAACCACAAUUAC
3204



UUGCC

UUUU






miR-548e
AAAAACUGAGACUACUU
3205
UGCAAAAGUAGUCUCAGU
3206



UUGCA

UUUU






miR-548f
AAAAACUGUAAUUACUU
3207
AAAAGUAAUUACAGUUU
3208



UU

UU






miR-548g-3p
AAAACUGUAAUUACUUU
3209
GUACAAAAGUAAUUACA
3210



UGUAC

GUUUU






miR-548g-5p
UGCAAAAGUAAUUGCAG
3211
CAAAAACUGCAAUUACUU
3212



UUUUUG

UUGCA






miR-548h-3p
CAAAAACCGCAAUUACU
3213
UGCAAAAGUAAUUGCGG
3214



UUUGCA

UUUUUG






miR-548h-5p
AAAAGUAAUCGCGGUUU
3215
GACAAAAACCGCGAUUAC
3216



UUGUC

UUUU






miR-548i
AAAAGUAAUUGCGGAUU
3217
GGCAAAAUCCGCAAUUAC
3218



UUGCC

UUUU






miR-548j
AAAAGUAAUUGCGGUCU
3219
ACCAAAGACCGCAAUUAC
3220



UUGGU

UUUU






miR-548k
AAAAGUACUUGCGGAUU
3221
AGCAAAAUCCGCAAGUAC
3222



UUGCU

UUUU






miR-548l
AAAAGUAUUUGCGGGUU
3223
GACAAAACCCGCAAAUAC
3224



UUGUC

UUUU






miR-548m
CAAAGGUAUUUGUGGUU
3225
CAAAAACCACAAAUACCU
3226



UUUG

UUG






miR-548n
CAAAAGUAAUUGUGGAU
3227
ACAAAAUCCACAAUUACU
3228



UUUGU

UUUG






miR-548o-3p
CCAAAACUGCAGUUACU
3229
GCAAAAGUAACUGCAGUU
3230



UUUGC

UUGG






miR-548o-5p
AAAAGUAAUUGCGGUUU
3231
GGCAAAAACCGCAAUUAC
3232



UUGCC

UUUU






miR-548p
UAGCAAAAACUGCAGUU
3233
AAAGUAACUGCAGUUUU
3234



ACUUU

UGCUA






miR-548q
GCUGGUGCAAAAGUAAU
3235
CCGCCAUUACUUUUGCAC
3236



GGCGG

CAGC






miR-548s
AUGGCCAAAACUGCAGU
3237
AAAAUAACUGCAGUUUU
3238



UAUUUU

GGCCAU






miR-548t-3p
AAAAACCACAAUUACUU
3239
UGGUGCAAAAGUAAUUG
3240



UUGCACCA

UGGUUUUU






miR-548t-5p
CAAAAGUGAUCGUGGUU
3241
CAAAAACCACGAUCACUU
3242



UUUG

UUG






miR-548u
CAAAGACUGCAAUUACU
3243
CGCAAAAGUAAUUGCAGU
3244



UUUGCG

CUUUG






miR-548v
AGCUACAGUUACUUUUG
3245
UGGUGCAAAAGUAACUG
3246



CACCA

UAGCU






miR-548w
AAAAGUAACUGCGGUUU
3247
AGGCAAAAACCGCAGUUA
3248



UUGCCU

CUUUU






miR-548x-3p
UAAAAACUGCAAUUACU
3249
GAAAGUAAUUGCAGUUU
3250



UUC

UUA






miR-548x-5p
UGCAAAAGUAAUUGCAG
3251
CAAAAACUGCAAUUACUU
3252



UUUUUG

UUGCA






miR-548y
AAAAGUAAUCACUGUUU
3253
GGCAAAAACAGUGAUUAC
3254



UUGCC

UUUU






miR-548z
CAAAAACCGCAAUUACU
3255
UGCAAAAGUAAUUGCGG
3256



UUUGCA

UUUUUG






miR-549
UGACAACUAUGGAUGAG
3257
AGAGCUCAUCCAUAGUUG
3258



CUCU

UCA






miR-550a-3-5p
AGUGCCUGAGGGAGUAA
3259
CUCUUACUCCCUCAGGCA
3260



GAG

CU






miR-550a-3p
UGUCUUACUCCCUCAGG
3261
AUGUGCCUGAGGGAGUA
3262



CACAU

AGACA






miR-550a-5p
AGUGCCUGAGGGAGUAA
3263
GGGCUCUUACUCCCUCAG
3264



GAGCCC

GCACU






miR-550b-2-5p
AUGUGCCUGAGGGAGUA
3265
UGUCUUACUCCCUCAGGC
3266



AGACA

ACAU






miR-550b-3p
UCUUACUCCCUCAGGCA
3267
CAGUGCCUGAGGGAGUAA
3268



CUG

GA






miR-551a
GCGACCCACUCUUGGUU
3269
UGGAAACCAAGAGUGGG
3270



UCCA

UCGC






miR-551b-3p
GCGACCCAUACUUGGUU
3271
CUGAAACCAAGUAUGGGU
3272



UCAG

CGC






miR-551b-5p
GAAAUCAAGCGUGGGUG
3273
GGUCUCACCCACGCUUGA
3274



AGACC

UUUC






miR-552
AACAGGUGACUGGUUAG
3275
UUGUCUAACCAGUCACCU
3276



ACAA

GUU






miR-553
AAAACGGUGAGAUUUUG
3277
AAAACAAAAUCUCACCGU
3278



UUUU

UUU






miR-554
GCUAGUCCUGACUCAGC
3279
ACUGGCUGAGUCAGGACU
3280



CAGU

AGC






miR-555
AGGGUAAGCUGAACCUC
3281
AUCAGAGGUUCAGCUUAC
3282



UGAU

CCU






miR-556-3p
AUAUUACCAUUAGCUCA
3283
AAAGAUGAGCUAAUGGU
3284



UCUUU

AAUAU






miR-556-5p
GAUGAGCUCAUUGUAAU
3285
CUCAUAUUACAAUGAGCU
3286



AUGAG

CAUC






miR-557
GUUUGCACGGGUGGGCC
3287
AGACAAGGCCCACCCGUG
3288



UUGUCU

CAAAC






miR-5571-3p
GUCCUAGGAGGCUCCUC
3289
CAGAGGAGCCUCCUAGGA
3290



UG

C






miR-5571-5p
CAAUUCUCAAAGGAGCC
3291
GGGAGGCUCCUUUGAGAA
3292



UCCC

UUG






miR-5572
GUUGGGGUGCAGGGGUC
3293
AGCAGACCCCUGCACCCC
3294



UGCU

AAC






miR-5579-3p
UUAGCUUAAGGAGUACC
3295
GAUCUGGUACUCCUUAAG
3296



AGAUC

CUAA






miR-5579-5p
UAUGGUACUCCUUAAGC
3297
GUUAGCUUAAGGAGUACC
3298



UAAC

AUA






miR-558
UGAGCUGCUGUACCAAA
3299
AUUUUGGUACAGCAGCUC
3300



AU

A






miR-5580-3p
CACAUAUGAAGUGAGCC
3301
GUGCUGGCUCACUUCAUA
3302



AGCAC

UGUG






miR-5580-5p
UGCUGGCUCAUUUCAUA
3303
ACACAUAUGAAAUGAGCC
3304



UGUGU

AGCA






miR-5581-3p
UUCCAUGCCUCCUAGAA
3305
GGAACUUCUAGGAGGCAU
3306



GUUCC

GGAA






miR-5581-5p
AGCCUUCCAGGAGAAAU
3307
UCUCCAUUUCUCCUGGAA
3308



GGAGA

GGCU






miR-5582-3p
UAAAACUUUAAGUGUGC
3309
CCUAGGCACACUUAAAGU
3310



CUAGG

UUUA






miR-5582-5p
UAGGCACACUUAAAGUU
3311
GCUAUAACUUUAAGUGU
3312



AUAGC

GCCUA






miR-5583-3p
GAAUAUGGGUAUAUUAG
3313
CCAAACUAAUAUACCCAU
3314



UUUGG

AUUC






miR-5583-5p
AAACUAAUAUACCCAUA
3315
CAGAAUAUGGGUAUAUU
3316



UUCUG

AGUUU






miR-5584-3p
UAGUUCUUCCCUUUGCC
3317
AAUUGGGCAAAGGGAAG
3318



CAAUU

AACUA






miR-5584-5p
CAGGGAAAUGGGAAGAA
3319
UCUAGUUCUUCCCAUUUC
3320



CUAGA

CCUG






miR-5585-3p
CUGAAUAGCUGGGACUA
3321
ACCUGUAGUCCCAGCUAU
3322



CAGGU

UCAG






miR-5585-5p
UGAAGUACCAGCUACUC
3323
CUCUCGAGUAGCUGGUAC
3324



GAGAG

UUCA






miR-5586-3p
CAGAGUGACAAGCUGGU
3325
CUUUAACCAGCUUGUCAC
3326



UAAAG

UCUG






miR-5586-5p
UAUCCAGCUUGUUACUA
3327
GCAUAUAGUAACAAGCUG
3328



UAUGC

GAUA






miR-5587-3p
GCCCCGGGCAGUGUGAU
3329
GAUGAUCACACUGCCCGG
3330



CAUC

GGC






miR-5587-5p
AUGGUCACCUCCGGGAC
3331
AGUCCCGGAGGUGACCAU
3332



U








miR-5588-3p
AAGUCCCACUAAUGCCA
3333
GCUGGCAUUAGUGGGACU
3334



GC

U






miR-5588-5p
ACUGGCAUUAGUGGGAC
3335
AAAAGUCCCACUAAUGCC
3336



UUUU

AGU






miR-5589-3p
UGCACAUGGCAACCUAG
3337
UGGGAGCUAGGUUGCCAU
3338



CUCCCA

GUGCA






miR-5589-5p
GGCUGGGUGCUCUUGUG
3339
ACUGCACAAGAGCACCCA
3340



CAGU

GCC






miR-559
UAAAGUAAAUAUGCACC
3341
UUUUGGUGCAUAUUUAC
3342



AAAA

UUUA






miR-5590-3p
AAUAAAGUUCAUGUAUG
3343
UUGCCAUACAUGAACUUU
3344



GCAA

AUU






miR-5590-5p
UUGCCAUACAUAGACUU
3345
AAUAAAGUCUAUGUAUG
3346



UAUU

GCAA






miR-5591-3p
AUACCCAUAGCUUAGCU
3347
UGGGAGCUAAGCUAUGG
3348



CCCA

GUAU






miR-5591-5p
UGGGAGCUAAGCUAUGG
3349
AUACCCAUAGCUUAGCUC
3350



GUAU

CCA






miR-561-3p
CAAAGUUUAAGAUCCUU
3351
ACUUCAAGGAUCUUAAAC
3352



GAAGU

UUUG






miR-561-5p
AUCAAGGAUCUUAAACU
3353
GGCAAAGUUUAAGAUCCU
3354



UUGCC

UGAU






miR-562
AAAGUAGCUGUACCAUU
3355
GCAAAUGGUACAGCUACU
3356



UGC

UU






miR-563
AGGUUGACAUACGUUUC
3357
GGGAAACGUAUGUCAACC
3358



CC

U






miR-564
AGGCACGGUGUCAGCAG
3359
GCCUGCUGACACCGUGCC
3360



GC

U






miR-566
GGGCGCCUGUGAUCCCA
3361
GUUGGGAUCACAGGCGCC
3362



AC

C






miR-567
AGUAUGUUCUUCCAGGA
3363
GUUCUGUCCUGGAAGAAC
3364



CAGAAC

AUACU






miR-568
AUGUAUAAAUGUAUACA
3365
GUGUGUAUACAUUUAUA
3366



CAC

CAU






miR-5680
GAGAAAUGCUGGACUAA
3367
GCAGAUUAGUCCAGCAUU
3368



UCUGC

UCUC






miR-5681a
AGAAAGGGUGGCAAUAC
3369
AAGAGGUAUUGCCACCCU
3370



CUCUU

UUCU






miR-5681b
AGGUAUUGCCACCCUUU
3371
ACUAGAAAGGGUGGCAA
3372



CUAGU

UACCU






miR-5682
GUAGCACCUUGCAGGAU
3373
ACCUUAUCCUGCAAGGUG
3374



AAGGU

CUAC






miR-5683
UACAGAUGCAGAUUCUC
3375
GAAGUCAGAGAAUCUGCA
3376



UGACUUC

UCUGUA






miR-5684
AACUCUAGCCUGAGCAA
3377
CUGUUGCUCAGGCUAGAG
3378



CAG

UU






miR-5685
ACAGCCCAGCAGUUAUC
3379
CCCGUGAUAACUGCUGGG
3380



ACGGG

CUGU






miR-5686
UAUCGUAUCGUAUUGUA
3381
ACAAUACAAUACGAUACG
3382



UUGU

AUA






miR-5687
UUAGAACGUUUUAGGGU
3383
AUUUGACCCUAAAACGUU
3384



CAAAU

CUAA






miR-5688
UAACAAACACCUGUAAA
3385
GCUGUUUUACAGGUGUU
3386



ACAGC

UGUUA






miR-5689
AGCAUACACCUGUAGUC
3387
UCUAGGACUACAGGUGUA
3388



CUAGA

UGCU






miR-569
AGUUAAUGAAUCCUGGA
3389
ACUUUCCAGGAUUCAUUA
3390



AAGU

ACU






miR-5690
UCAGCUACUACCUCUAU
3391
CCUAAUAGAGGUAGUAGC
3392



UAGG

UGA






miR-5691
UUGCUCUGAGCUCCGAG
3393
GCUUUCUCGGAGCUCAGA
3394



AAAGC

GCAA






miR-5692a
CAAAUAAUACCACAGUG
3395
ACACCCACUGUGGUAUUA
3396



GGUGU

UUUG






miR-5692b
AAUAAUAUCACAGUAGG
3397
ACACCUACUGUGAUAUUA
3398



UGU

UU






miR-5692c
AAUAAUAUCACAGUAGG
3399
GUACACCUACUGUGAUAU
3400



UGUAC

UAUU






miR-5693
GCAGUGGCUCUGAAAUG
3401
GAGUUCAUUUCAGAGCCA
3402



AACUC

CUGC






miR-5694
CAGAUCAUGGGACUGUC
3403
CUGAGACAGUCCCAUGAU
3404



UCAG

CUG






miR-5695
ACUCCAAGAAGAAUCUA
3405
CUGUCUAGAUUCUUCUUG
3406



GACAG

GAGU






miR-5696
CUCAUUUAAGUAGUCUG
3407
GGCAUCAGACUACUUAAA
3408



AUGCC

UGAG






miR-5697
UCAAGUAGUUUCAUGAU
3409
CCUUUAUCAUGAAACUAC
3410



AAAGG

UUGA






miR-5698
UGGGGGAGUGCAGUGAU
3411
CCACAAUCACUGCACUCC
3412



UGUGG

CCCA






miR-5699
UCCUGUCUUUCCUUGUU
3413
GCUCCAACAAGGAAAGAC
3414



GGAGC

AGGA






miR-570-3p
CGAAAACAGCAAUUACC
3415
GCAAAGGUAAUUGCUGU
3416



UUUGC

UUUCG






miR-570-5p
AAAGGUAAUUGCAGUUU
3417
GGGAAAAACUGCAAUUAC
3418



UUCCC

CUUU






miR-5700
UAAUGCAUUAAAUUAUU
3419
CCUUCAAUAAUUUAAUGC
3420



GAAGG

AUUA






miR-5701
UUAUUGUCACGUUCUGA
3421
AAUCAGAACGUGACAAUA
3422



UU

A






miR-5702
UGAGUCAGCAACAUAUC
3423
CAUGGGAUAUGUUGCUG
3424



CCAUG

ACUCA






miR-5703
AGGAGAAGUCGGGAAGG
3425
ACCUUCCCGACUUCUCCU
3426



U








miR-5704
UUAGGCCAUCAUCCCAU
3427
GCAUAAUGGGAUGAUGG
3428



UAUGC

CCUAA






miR-5705
UGUUUCGGGGCUCAUGG
3429
CACAGGCCAUGAGCCCCG
3430



CCUGUG

AAACA






miR-5706
UUCUGGAUAACAUGCUG
3431
AGCUUCAGCAUGUUAUCC
3432



AAGCU

AGAA






miR-5707
ACGUUUGAAUGCUGUAC
3433
GCCUUGUACAGCAUUCAA
3434



AAGGC

ACGU






miR-5708
AUGAGCGACUGUGCCUG
3435
GGUCAGGCACAGUCGCUC
3436



ACC

AU






miR-571
UGAGUUGGCCAUCUGAG
3437
CUCACUCAGAUGGCCAAC
3438



UGAG

UCA






miR-572
GUCCGCUCGGCGGUGGC
3439
UGGGCCACCGCCGAGCGG
3440



CCA

AC






miR-573
CUGAAGUGAUGUGUAAC
3441
CUGAUCAGUUACACAUCA
3442



UGAUCAG

CUUCAG






miR-574-3p
CACGCUCAUGCACACAC
3443
UGUGGGUGUGUGCAUGA
3444



CCACA

GCGUG






miR-574-5p
UGAGUGUGUGUGUGUGA
3445
ACACACUCACACACACAC
3446



GUGUGU

ACUCA






miR-575
GAGCCAGUUGGACAGGA
3447
GCUCCUGUCCAACUGGCU
3448



GC

C






miR-576-3p
AAGAUGUGGAAAAAUUG
3449
GAUUCCAAUUUUUCCACA
3450



GAAUC

UCUU






miR-576-5p
AUUCUAAUUUCUCCACG
3451
AAAGACGUGGAGAAAUU
3452



UCUUU

AGAAU






miR-577
UAGAUAAAAUAUUGGUA
3453
CAGGUACCAAUAUUUUAU
3454



CCUG

CUA






miR-578
CUUCUUGUGCUCUAGGA
3455
ACAAUCCUAGAGCACAAG
3456



UUGU

AAG






miR-579
UUCAUUUGGUAUAAACC
3457
AAUCGCGGUUUAUACCAA
3458



GCGAUU

AUGAA






miR-580
UUGAGAAUGAUGAAUCA
3459
CCUAAUGAUUCAUCAUUC
3460



UUAGG

UCAA






miR-581
UCUUGUGUUCUCUAGAU
3461
ACUGAUCUAGAGAACACA
3462



CAGU

AGA






miR-582-3p
UAACUGGUUGAACAACU
3463
GGUUCAGUUGUUCAACCA
3464



GAACC

GUUA






miR-582-5p
UUACAGUUGUUCAACCA
3465
AGUAACUGGUUGAACAAC
3466



GUUACU

UGUAA






miR-583
CAAAGAGGAAGGUCCCA
3467
GUAAUGGGACCUUCCUCU
3468



UUAC

UUG






miR-584-3p
UCAGUUCCAGGCCAACC
3469
AGCCUGGUUGGCCUGGAA
3470



AGGCU

CUGA






miR-584-5p
UUAUGGUUUGCCUGGGA
3471
CUCAGUCCCAGGCAAACC
3472



CUGAG

AUAA






miR-585
UGGGCGUAUCUGUAUGC
3473
UAGCAUACAGAUACGCCC
3474



UA

A






miR-586
UAUGCAUUGUAUUUUUA
3475
GGACCUAAAAAUACAAUG
3476



GGUCC

CAUA






miR-587
UUUCCAUAGGUGAUGAG
3477
GUGACUCAUCACCUAUGG
3478



UCAC

AAA






miR-588
UUGGCCACAAUGGGUUA
3479
GUUCUAACCCAUUGUGGC
3480



GAAC

CAA






miR-589-3p
UCAGAACAAAUGCCGGU
3481
UCUGGGAACCGGCAUUUG
3482



UCCCAGA

UUCUGA






miR-589-5p
UGAGAACCACGUCUGCU
3483
CUCAGAGCAGACGUGGUU
3484



CUGAG

CUCA






miR-590-3p
UAAUUUUAUGUAUAAGC
3485
ACUAGCUUAUACAUAAAA
3486



UAGU

UUA






miR-590-5p
GAGCUUAUUCAUAAAAG
3487
CUGCACUUUUAUGAAUAA
3488



UGCAG

GCUC






miR-591
AGACCAUGGGUUCUCAU
3489
ACAAUGAGAACCCAUGGU
3490



UGU

CU






miR-592
UUGUGUCAAUAUGCGAU
3491
ACAUCAUCGCAUAUUGAC
3492



GAUGU

ACAA






miR-593-3p
UGUCUCUGCUGGGGUUU
3493
AGAAACCCCAGCAGAGAC
3494



CU

A






miR-593-5p
AGGCACCAGCCAGGCAU
3495
GCUGAGCAAUGCCUGGCU
3496



UGCUCAGC

GGUGCCU






miR-595
GAAGUGUGCCGUGGUGU
3497
AGACACACCACGGCACAC
3498



GUCU

UUC






miR-596
AAGCCUGCCCGGCUCCU
3499
CCCGAGGAGCCGGGCAGG
3500



CGGG

CUU






miR-597
UGUGUCACUCGAUGACC
3501
ACAGUGGUCAUCGAGUGA
3502



ACUGU

CACA






miR-598
UACGUCAUCGUUGUCAU
3503
UGACGAUGACAACGAUGA
3504



CGUCA

CGUA






miR-599
GUUGUGUCAGUUUAUCA
3505
GUUUGAUAAACUGACACA
3506



AAC

AC






miR-600
ACUUACAGACAAGAGCC
3507
GAGCAAGGCUCUUGUCUG
3508



UUGCUC

UAAGU






miR-601
UGGUCUAGGAUUGUUGG
3509
CUCCUCCAACAAUCCUAG
3510



AGGAG

ACCA






miR-602
GACACGGGCGACAGCUG
3511
GGGCCGCAGCUGUCGCCC
3512



CGGCCC

GUGUC






miR-603
CACACACUGCAAUUACU
3513
GCAAAAGUAAUUGCAGU
3514



UUUGC

GUGUG






miR-604
AGGCUGCGGAAUUCAGG
3515
GUCCUGAAUUCCGCAGCC
3516



AC

U






miR-605
UAAAUCCCAUGGUGCCU
3517
AGGAGAAGGCACCAUGGG
3518



UCUCCU

AUUUA






miR-606
AAACUACUGAAAAUCAA
3519
AUCUUUGAUUUUCAGUA
3520



AGAU

GUUU






miR-607
GUUCAAAUCCAGAUCUA
3521
GUUAUAGAUCUGGAUUU
3522



UAAC

GAAC






miR-608
AGGGGUGGUGUUGGGAC
3523
ACGGAGCUGUCCCAACAC
3524



AGCUCCGU

CACCCCU






miR-609
AGGGUGUUUCUCUCAUC
3525
AGAGAUGAGAGAAACACC
3526



UCU

CU






miR-610
UGAGCUAAAUGUGUGCU
3527
UCCCAGCACACAUUUAGC
3528



GGGA

UCA






miR-611
GCGAGGACCCCUCGGGG
3529
GUCAGACCCCGAGGGGUC
3530



UCUGAC

CUCGC






miR-612
GCUGGGCAGGGCUUCUG
3531
AAGGAGCUCAGAAGCCCU
3532



AGCUCCUU

GCCCAGC






miR-613
AGGAAUGUUCCUUCUUU
3533
GGCAAAGAAGGAACAUUC
3534



GCC

CU






miR-614
GAACGCCUGUUCUUGCC
3535
CCACCUGGCAAGAACAGG
3536



AGGUGG

CGUUC






miR-615-3p
UCCGAGCCUGGGUCUCC
3537
AAGAGGGAGACCCAGGCU
3538



CUCUU

CGGA






miR-615-5p
GGGGGUCCCCGGUGCUC
3539
GAUCCGAGCACCGGGGAC
3540



GGAUC

CCCC






miR-616-3p
AGUCAUUGGAGGGUUUG
3541
CUGCUCAAACCCUCCAAU
3542



AGCAG

GACU






miR-616-5p
ACUCAAAACCCUUCAGU
3543
AAGUCACUGAAGGGUUU
3544



GACUU

UGAGU






miR-617
AGACUUCCCAUUUGAAG
3545
GCCACCUUCAAAUGGGAA
3546



GUGGC

GUCU






miR-618
AAACUCUACUUGUCCUU
3547
ACUCAGAAGGACAAGUAG
3548



CUGAGU

AGUUU






miR-619
GACCUGGACAUGUUUGU
3549
ACUGGGCACAAACAUGUC
3550



GCCCAGU

CAGGUC






miR-620
AUGGAGAUAGAUAUAGA
3551
AUUUCUAUAUCUAUCUCC
3552



AAU

AU






miR-621
GGCUAGCAACAGCGCUU
3553
AGGUAAGCGCUGUUGCUA
3554



ACCU

GCC






miR-622
ACAGUCUGCUGAGGUUG
3555
GCUCCAACCUCAGCAGAC
3556



GAGC

UGU






miR-623
AUCCCUUGCAGGGGCUG
3557
ACCCAACAGCCCCUGCAA
3558



UUGGGU

GGGAU






miR-624-3p
CACAAGGUAUUGGUAUU
3559
AGGUAAUACCAAUACCUU
3560



ACCU

GUG






miR-624-5p
UAGUACCAGUACCUUGU
3561
UGAACACAAGGUACUGGU
3562



GUUCA

ACUA






miR-625-3p
GACUAUAGAACUUUCCC
3563
UGAGGGGGAAAGUUCUA
3564



CCUCA

UAGUC






miR-625-5p
AGGGGGAAAGUUCUAUA
3565
GGACUAUAGAACUUUCCC
3566



GUCC

CCU






miR-626
AGCUGUCUGAAAAUGUC
3567
AAGACAUUUUCAGACAGC
3568



UU

U






miR-627
GUGAGUCUCUAAGAAAA
3569
UCCUCUUUUCUUAGAGAC
3570



GAGGA

UCAC






miR-628-3p
UCUAGUAAGAGUGGCAG
3571
UCGACUGCCACUCUUACU
3572



UCGA

AGA






miR-628-5p
AUGCUGACAUAUUUACU
3573
CCUCUAGUAAAUAUGUCA
3574



AGAGG

GCAU






miR-629-3p
GUUCUCCCAACGUAAGC
3575
GCUGGGCUUACGUUGGGA
3576



CCAGC

GAAC






miR-629-5p
UGGGUUUACGUUGGGAG
3577
AGUUCUCCCAACGUAAAC
3578



AACU

CCA






miR-630
AGUAUUCUGUACCAGGG
3579
ACCUUCCCUGGUACAGAA
3580



AAGGU

UACU






miR-631
AGACCUGGCCCAGACCU
3581
GCUGAGGUCUGGGCCAGG
3582



CAGC

UCU






miR-632
GUGUCUGCUUCCUGUGG
3583
UCCCACAGGAAGCAGACA
3584



GA

C






miR-633
CUAAUAGUAUCUACCAC
3585
UUUAUUGUGGUAGAUAC
3586



AAUAAA

UAUUAG






miR-634
AACCAGCACCCCAACUU
3587
GUCCAAAGUUGGGGUGCU
3588



UGGAC

GGUU






miR-635
ACUUGGGCACUGAAACA
3589
GGACAUUGUUUCAGUGCC
3590



AUGUCC

CAAGU






miR-636
UGUGCUUGCUCGUCCCG
3591
UGCGGGCGGGACGAGCAA
3592



CCCGCA

GCACA






miR-637
ACUGGGGGCUUUCGGGC
3593
ACGCAGAGCCCGAAAGCC
3594



UCUGCGU

CCCAGU






miR-638
AGGGAUCGCGGGCGGGU
3595
AGGCCGCCACCCGCCCGC
3596



GGCGGCCU

GAUCCCU






miR-639
AUCGCUGCGGUUGCGAG
3597
ACAGCGCUCGCAACCGCA
3598



CGCUGU

GCGAU






miR-640
AUGAUCCAGGAACCUGC
3599
AGAGGCAGGUUCCUGGAU
3600



CUCU

CAU






miR-641
AAAGACAUAGGAUAGAG
3601
GAGGUGACUCUAUCCUAU
3602



UCACCUC

GUCUUU






miR-642a-3p
AGACACAUUUGGAGAGG
3603
GGUUCCCUCUCCAAAUGU
3604



GAACC

GUCU






miR-642a-5p
GUCCCUCUCCAAAUGUG
3605
CAAGACACAUUUGGAGAG
3606



UCUUG

GGAC






miR-642b-3p
AGACACAUUUGGAGAGG
3607
GGGUCCCUCUCCAAAUGU
3608



GACCC

GUCU






miR-642b-5p
GGUUCCCUCUCCAAAUG
3609
AGACACAUUUGGAGAGG
3610



UGUCU

GAACC






miR-643
ACUUGUAUGCUAGCUCA
3611
CUACCUGAGCUAGCAUAC
3612



GGUAG

AAGU






miR-644a
AGUGUGGCUUUCUUAGA
3613
GCUCUAAGAAAGCCACAC
3614



GC

U






miR-644b-3p
UUCAUUUGCCUCCCAGC
3615
UGUAGGCUGGGAGGCAA
3616



CUACA

AUGAA






miR-644b-5p
UGGGCUAAGGGAGAUGA
3617
UACCCAAUCAUCUCCCUU
3618



UUGGGUA

AGCCCA






miR-645
UCUAGGCUGGUACUGCU
3619
UCAGCAGUACCAGCCUAG
3620



GA

A






miR-646
AAGCAGCUGCCUCUGAG
3621
GCCUCAGAGGCAGCUGCU
3622



GC

U






miR-647
GUGGCUGCACUCACUUC
3623
GAAGGAAGUGAGUGCAG
3624



CUUC

CCAC






miR-648
AAGUGUGCAGGGCACUG
3625
ACCAGUGCCCUGCACACU
3626



GU

U






miR-649
AAACCUGUGUUGUUCAA
3627
GACUCUUGAACAACACAG
3628



GAGUC

GUUU






miR-650
AGGAGGCAGCGCUCUCA
3629
GUCCUGAGAGCGCUGCCU
3630



GGAC

CCU






miR-651
UUUAGGAUAAGCUUGAC
3631
CAAAAGUCAAGCUUAUCC
3632



UUUUG

UAAA






miR-652-3p
AAUGGCGCCACUAGGGU
3633
CACAACCCUAGUGGCGCC
3634



UGUG

AUU






miR-652-5p
CAACCCUAGGAGAGGGU
3635
UGAAUGGCACCCUCUCCU
3636



GCCAUUCA

AGGGUUG






miR-653
GUGUUGAAACAAUCUCU
3637
CAGUAGAGAUUGUUUCA
3638



ACUG

ACAC






miR-654-3p
UAUGUCUGCUGACCAUC
3639
AAGGUGAUGGUCAGCAG
3640



ACCUU

ACAUA






miR-654-5p
UGGUGGGCCGCAGAACA
3641
GCACAUGUUCUGCGGCCC
3642



UGUGC

ACCA






miR-655
AUAAUACAUGGUUAACC
3643
AAAGAGGUUAACCAUGU
3644



UCUUU

AUUAU






miR-656
AAUAUUAUACAGUCAAC
3645
AGAGGUUGACUGUAUAA
3646



CUCU

UAUU






miR-657
GGCAGGUUCUCACCCUC
3647
CCUAGAGAGGGUGAGAAC
3648



UCUAGG

CUGCC






miR-658
GGCGGAGGGAAGUAGGU
3649
ACCAACGGACCUACUUCC
3650



CCGUUGGU

CUCCGCC






miR-659-3p
CUUGGUUCAGGGAGGGU
3651
UGGGGACCCUCCCUGAAC
3652



CCCCA

CAAG






miR-659-5p
AGGACCUUCCCUGAACC
3653
UCCUUGGUUCAGGGAAGG
3654



AAGGA

UCCU






miR-660-3p
ACCUCCUGUGUGCAUGG
3655
UAAUCCAUGCACACAGGA
3656



AUUA

GGU






miR-660-5p
UACCCAUUGCAUAUCGG
3657
CAACUCCGAUAUGCAAUG
3658



AGUUG

GGUA






miR-661
UGCCUGGGUCUCUGGCC
3659
ACGCGCAGGCCAGAGACC
3660



UGCGCGU

CAGGCA






miR-662
UCCCACGUUGUGGCCCA
3661
CUGCUGGGCCACAACGUG
3662



GCAG

GGA






miR-663a
AGGCGGGGCGCCGCGGG
3663
GCGGTCCCGCGGCGCCCC
3664



ACCGC

GCCT






miR-663b
GGUGGCCCGGCCGUGCC
3665
CCUCAGGCACGGCCGGGC
3666



UGAGG

CACC






miR-664-3p
UAUUCAUUUAUCCCCAG
3667
UGUAGGCUGGGGAUAAA
3668



CCUACA

UGAAUA






miR-664-5p
ACUGGCUAGGGAAAAUG
3669
AUCCAAUCAUUUUCCCUA
3670



AUUGGAU

GCCAGU






miR-665
ACCAGGAGGCUGAGGCC
3671
AGGGGCCUCAGCCUCCUG
3672



CCU

GU






miR-668
UGUCACUCGGCUCGGCC
3673
GUAGUGGGCCGAGCCGAG
3674



CACUAC

UGACA






miR-670
GUCCCUGAGUGUAUGUG
3675
CACCACAUACACUCAGGG
3676



GUG

AC






miR-671-3p
UCCGGUUCUCAGGGCUC
3677
GGUGGAGCCCUGAGAACC
3678



CACC

GGA






miR-671-5p
AGGAAGCCCUGGAGGGG
3679
CUCCAGCCCCUCCAGGGC
3680



CUGGAG

UUCCU






miR-675-3p
CUGUAUGCCCUCACCGC
3681
UGAGCGGUGAGGGCAUAC
3682



UCA

AG






miR-675-5p
UGGUGCGGAGAGGGCCC
3683
CACUGUGGGCCCUCUCCG
3684



ACAGUG

CACCA






miR-676-3p
CUGUCCUAAGGUUGUUG
3685
AACUCAACAACCUUAGGA
3686



AGUU

CAG






miR-676-5p
UCUUCAACCUCAGGACU
3687
UGCAAGUCCUGAGGUUGA
3688



UGCA

AGA






miR-7-1-3p
CAACAAAUCACAGUCUG
3689
UAUGGCAGACUGUGAUU
3690



CCAUA

UGUUG






miR-7-2-3p
CAACAAAUCCCAGUCUA
3691
UUAGGUAGACUGGGAUU
3692



CCUAA

UGUUG






miR-7-5p
UGGAAGACUAGUGAUUU
3693
ACAACAAAAUCACUAGUC
3694



UGUUGU

UUCCA






miR-708-3p
CAACUAGACUGUGAGCU
3695
CUAGAAGCUCACAGUCUA
3696



UCUAG

GUUG






miR-708-5p
AAGGAGCUUACAAUCUA
3697
CCCAGCUAGAUUGUAAGC
3698



GCUGGG

UCCUU






miR-711
GGGACCCAGGGAGAGAC
3699
CUUACGUCUCUCCCUGGG
3700



GUAAG

UCCC






miR-718
CUUCCGCCCCGCCGGGC
3701
CGACGCCCGGCGGGGCGG
3702



GUCG

AAG






miR-720
UCUCGCUGGGGCCUCCA
3703
UGGAGGCCCCAGCGAGA
3704





miR-744-3p
CUGUUGCCACUAACCUC
3705
AGGUUGAGGUUAGUGGC
3706



AACCU

AACAG






miR-744-5p
UGCGGGGCUAGGGCUAA
3707
UGCUGUUAGCCCUAGCCC
3708



CAGCA

CGCA






miR-758
UUUGUGACCUGGUCCAC
3709
GGUUAGUGGACCAGGUCA
3710



UAACC

CAAA






miR-759
GCAGAGUGCAAACAAUU
3711
GUCAAAAUUGUUUGCACU
3712



UUGAC

CUGC






miR-760
CGGCUCUGGGUCUGUGG
3713
UCCCCACAGACCCAGAGC
3714



GGA

CG






miR-761
GCAGCAGGGUGAAACUG
3715
UGUGUCAGUUUCACCCUG
3716



ACACA

CUGC






miR-762
GGGGCUGGGGCCGGGGC
3717
GCUCGGCCCCGGCCCCAG
3718



CGAGC

CCCC






miR-764
GCAGGUGCUCACUUGUC
3719
AGGAGGACAAGUGAGCAC
3720



CUCCU

CUGC






miR-765
UGGAGGAGAAGGAAGGU
3721
CAUCACCUUCCUUCUCCU
3722



GAUG

CCA






miR-766-3p
ACUCCAGCCCCACAGCC
3723
GCUGAGGCUGUGGGGCUG
3724



UCAGC

GAGU






miR-766-5p
AGGAGGAAUUGGUGCUG
3725
AAGACCAGCACCAAUUCC
3726



GUCUU

UCCU






miR-767-3p
UCUGCUCAUACCCCAUG
3727
AGAAACCAUGGGGUAUG
3728



GUUUCU

AGCAGA






miR-767-5p
UGCACCAUGGUUGUCUG
3729
CAUGCUCAGACAACCAUG
3730



AGCAUG

GUGCA






miR-769-3p
CUGGGAUCUCCGGGGUC
3731
AACCAAGACCCCGGAGAU
3732



UUGGUU

CCCAG






miR-769-5p
UGAGACCUCUGGGUUCU
3733
AGCUCAGAACCCAGAGGU
3734



GAGCU

CUCA






miR-770-5p
UCCAGUACCACGUGUCA
3735
UGGCCCUGACACGUGGUA
3736



GGGCCA

CUGGA






miR-802
CAGUAACAAAGAUUCAU
3737
ACAAGGAUGAAUCUUUG
3738



CCUUGU

UUACUG






miR-873-3p
GGAGACUGAUGAGUUCC
3739
UCCCGGGAACUCAUCAGU
3740



CGGGA

CUCC






miR-873-5p
GCAGGAACUUGUGAGUC
3741
AGGAGACUCACAAGUUCC
3742



UCCU

UGC






miR-874
CUGCCCUGGCCCGAGGG
3743
UCGGUCCCUCGGGCCAGG
3744



ACCGA

GCAG






miR-875-3p
CCUGGAAACACUGAGGU
3745
CACAACCUCAGUGUUUCC
3746



UGUG

AGG






miR-875-5p
UAUACCUCAGUUUUAUC
3747
CACCUGAUAAAACUGAGG
3748



AGGUG

UAUA






miR-876-3p
UGGUGGUUUACAAAGUA
3749
UGAAUUACUUUGUAAACC
3750



AUUCA

ACCA






miR-876-5p
UGGAUUUCUUUGUGAAU
3751
UGGUGAUUCACAAAGAA
3752



CACCA

AUCCA






miR-877-3p
UCCUCUUCUCCCUCCUCC
3753
CUGGGAGGAGGGAGAAG
3754



CAG

AGGA






miR-877-5p
GUAGAGGAGAUGGCGCA
3755
CCCUGCGCCAUCUCCUCU
3756



GGG

AC






miR-885-3p
AGGCAGCGGGGUGUAGU
3757
UAUCCACUACACCCCGCU
3758



GGAUA

GCCU






miR-885-5p
UCCAUUACACUACCCUG
3759
AGAGGCAGGGUAGUGUA
3760



CCUCU

AUGGA






miR-887
GUGAACGGGCGCCAUCC
3761
CCUCGGGAUGGCGCCCGU
3762



CGAGG

UCAC






miR-888-3p
GACUGACACCUCUUUGG
3763
UUCACCCAAAGAGGUGUC
3764



GUGAA

AGUC






miR-888-5p
UACUCAAAAAGCUGUCA
3765
UGACUGACAGCUUUUUGA
3766



GUCA

GUA






miR-889
UUAAUAUCGGACAACCA
3767
ACAAUGGUUGUCCGAUAU
3768



UUGU

UAA






miR-890
UACUUGGAAAGGCAUCA
3769
CAACUGAUGCCUUUCCAA
3770



GUUG

GUA






miR-891a
UGCAACGAACCUGAGCC
3771
UCAGUGGCUCAGGUUCGU
3772



ACUGA

UGCA






miR-891b
UGCAACUUACCUGAGUC
3773
UCAAUGACUCAGGUAAGU
3774



AUUGA

UGCA






miR-892a
CACUGUGUCCUUUCUGC
3775
CUACGCAGAAAGGACACA
3776



GUAG

GUG






miR-892b
CACUGGCUCCUUUCUGG
3777
UCUACCCAGAAAGGAGCC
3778



GUAGA

AGUG






miR-9-3p
AUAAAGCUAGAUAACCG
3779
ACUUUCGGUUAUCUAGCU
3780



AAAGU

UUAU






miR-9-5p
UCUUUGGUUAUCUAGCU
3781
UCAUACAGCUAGAUAACC
3782



GUAUGA

AAAGA






miR-920
GGGGAGCUGUGGAAGCA
3783
UACUGCUUCCACAGCUCC
3784



GUA

CC






miR-921
CUAGUGAGGGACAGAAC
3785
GAAUCCUGGUUCUGUCCC
3786



CAGGAUUC

UCACUAG






miR-922
GCAGCAGAGAAUAGGAC
3787
GACGUAGUCCUAUUCUCU
3788



UACGUC

GCUGC






miR-924
AGAGUCUUGUGAUGUCU
3789
GCAAGACAUCACAAGACU
3790



UGC

CU






miR-92a-1-5p
AGGUUGGGAUCGGUUGC
3791
AGCAUUGCAACCGAUCCC
3792



AAUGCU

AACCU






miR-92a-2-5p
GGGUGGGGAUUUGUUGC
3793
GUAAUGCAACAAAUCCCC
3794



AUUAC

ACCC






miR-92a-3p
UAUUGCACUUGUCCCGG
3795
ACAGGCCGGGACAAGUGC
3796



CCUGU

AAUA






miR-92b-3p
UAUUGCACUCGUCCCGG
3797
GGAGGCCGGGACGAGUGC
3798



CCUCC

AAUA






miR-92b-5p
AGGGACGGGACGCGGUG
3799
CACUGCACCGCGUCCCGU
3800



CAGUG

CCCU






miR-93-3p
ACUGCUGAGCUAGCACU
3801
CGGGAAGUGCUAGCUCAG
3802



UCCCG

CAGU






miR-93-5p
CAAAGUGCUGUUCGUGC
3803
CUACCUGCACGAACAGCA
3804



AGGUAG

CUUUG






miR-933
UGUGCGCAGGGAGACCU
3805
GGGAGAGGUCUCCCUGCG
3806



CUCCC

CACA






miR-934
UGUCUACUACUGGAGAC
3807
CCAGUGUCUCCAGUAGUA
3808



ACUGG

GACA






miR-935
CCAGUUACCGCUUCCGC
3809
GCGGUAGCGGAAGCGGUA
3810



UACCGC

ACUGG






miR-936
ACAGUAGAGGGAGGAAU
3811
CUGCGAUUCCUCCCUCUA
3812



CGCAG

CUGU






miR-937
AUCCGCGCUCUGACUCU
3813
GGCAGAGAGUCAGAGCGC
3814



CUGCC

GGAU






miR-938
UGCCCUUAAAGGUGAAC
3815
ACUGGGUUCACCUUUAAG
3816



CCAGU

GGCA






miR-939
UGGGGAGCUGAGGCUCU
3817
CACCCCCAGAGCCUCAGC
3818



GGGGGUG

UCCCCA






miR-940
AAGGCAGGGCCCCCGCU
3819
GGGGAGCGGGGGCCCUGC
3820



CCCC

CUU






miR-941
CACCCGGCUGUGUGCAC
3821
GCACAUGUGCACACAGCC
3822



AUGUGC

GGGUG






miR-942
UCUUCUCUGUUUUGGCC
3823
CACAUGGCCAAAACAGAG
3824



AUGUG

AAGA






miR-943
CUGACUGUUGCCGUCCU
3825
CUGGAGGACGGCAACAGU
3826



CCAG

CAG






miR-944
AAAUUAUUGUACAUCGG
3827
CUCAUCCGAUGUACAAUA
3828



AUGAG

AUUU






miR-95
UUCAACGGGUAUUUAUU
3829
UGCUCAAUAAAUACCCGU
3830



GAGCA

UGAA






miR-96-3p
AAUCAUGUGCAGUGCCA
3831
CAUAUUGGCACUGCACAU
3832



AUAUG

GAUU






miR-96-5p
UUUGGCACUAGCACAUU
3833
AGCAAAAAUGUGCUAGU
3834



UUUGCU

GCCAAA






miR-98
UGAGGUAGUAAGUUGUA
3835
AACAAUACAACUUACUAC
3836



UUGUU

CUCA






miR-99a-3p
CAAGCUCGCUUCUAUGG
3837
CAGACCCAUAGAAGCGAG
3838



GUCUG

CUUG






miR-99a-5p
AACCCGUAGAUCCGAUC
3839
CACAAGAUCGGAUCUACG
3840



UUGUG

GGUU






miR-99b-3p
CAAGCUCGUGUCUGUGG
3841
CGGACCCACAGACACGAG
3842



GUCCG

CUUG






miR-99b-5p
CACCCGUAGAACCGACC
3843
CGCAAGGUCGGUUCUACG
3844



UUGCG

GGUG









In some embodiments, miRNA seeds, which may be incorporated into viral target sequences to create a miRNA binding site are 2-8 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 2, 3, 4, 5, 6, 7 or 8 nucleobases in length, or any range therewithin.


miRNA binding sites may be engineered into a viral sequence based on tissue specificity. For example, sites may be created to encourage or facilitate the binding of miRNA found in neuronal cells or epithelial cells. Table 4 lists the sequence of miRNA found to be expressed in the brain. Sequences which comprise all or a portion of the reverse complement of these miRNA may be engineered into a viral target sequence to produce a vaccine of the present invention.









TABLE 4







miRNA in the brain











SEQ

SEQ


5′ to 3′ miRNA sequence
ID
Reverse Complement (miRNA site)
ID





AAGUUUCUCUGAAUGUGUAGA
3845
UCUACACAUUCAGAGAAACUU
3846





AAUAUACAGGGGGAGACUCUUAU
3847
AUAAGAGUCUCCCCCUGUAUAUU
3848





AAUCAUUCACGGACAACACUUU
3849
AAAGUGUUGUCCGUGAAUGAUU
3850





AAUCUGAGAAGGCGCACAAGGUU
3851
AAACCUUGUGCGCCUUCUCAGAU
3852


U

U






AAUGUGUAGCAAAAGACAGA
3853
UCUGUCUUUUGCUACACAUU
3854





AAUGUGUAGCAAAAGACAGAAU
3855
AUUCUGUCUUUUGCUACACAUU
3856





ACCUUGGCUCUAGACUGCUUACU
3857
AGUAAGCAGUCUAGAGCCAAGGU
3858





ACUGGACUUGGAGUCAGAAG
3859
CUUCUGACUCCAAGUCCAGU
3860





AGAGGUUUUCUGGGUUUCUGUUU
3861
AAACAGAAACCCAGAAAACCUCU
3862





AGGCAUUAGAUUCUCAUUAGGA
3863
UCCUAAUGAGAAUCUAAUGCCU
3864





AGGGACUUUUGGGGGCAGAUGUG
3865
ACACAUCUGCCCCCAAAAGUCCC
3866


U

U






AGUUGGUCCGAGUGUUGUGGGUU
3867
AAUAACCCACAACACUCGGACCA
3868


AUU

ACU






AUAGGACUCAUAUAGUGCCA
3869
UGGCACUAUAUGAGUCCUAU
3870





AUAUACAGGGGGAGACUCUUAU
3871
AUAAGAGUCUCCCCCUGUAUAU
3872





AUCAUACAAGGACAAUUUCUUU
3873
AAAGAAAUUGUCCUUGUAUGAU
3874





AUCCCCAGAUACAAUGGACAAU
3875
AUUGUCCAUUGUAUCUGGGGAU
3876





CAACAAAUCACAGCCGGCCUCA
3877
UGAGGCCGGCUGUGAUUUGUUG
3878





CAGGCAGUGACUGUUCAGACGUC
3879
GACGUCUGAACAGUCACUGCCUG
3880





CCCCCCACUGCUAAAUUUGACUG
3881
AAGCCAGUCAAAUUUAGCAGUGG
3882


GCUU

GGGG






CUGUGGUUCCUGUAUGAAGACA
3883
UGUCUUCAUACAGGAACCACAG
3884





GAGAGAUCAGAGGCGCAGAGU
3885
ACUCUGCGCCUCUGAUCUCUC
3886





GCAUUGGUGGUUCAGUGGUAGAA
3887
GAAUUCUACCACUGAACCACCAA
3888


UUC

UGC






GCGUUGGUGGUAUAGUGG
3889
CCACUAUACCACCAACGC
3890





GCUCUGACUUUAUUGCACUACU
3891
AGUAGUGCAAUAAAGUCAGAGC
3892





GGAGACUGAUGAGUUCCCGGGA
3893
UCCCGGGAACUCAUCAGUCUCC
3894





GGAGGAACCUUGGAGCUUCGGCA
3895
UGCCGAAGCUCCAAGGUUCCUCC
3896





GGGGGCCGAUACACUGUACGAGA
3897
UCUCGUACAGUGUAUCGGCCCCC
3898





GUAAUGGUUAGCACUCUGG
3899
CCAGAGUGCUAACCAUUAC
3900





GUCUCUGUGGCGCAAUCGGU
3901
ACCGAUUGCGCCACAGAGAC
3902





UGAGUCUGUAAGAAAAGAGGAG
3903
CUCCUCUUUUCUUACAGACUCA
3904





UGGGCUGUAGUGCGCUAUGCC
3905
GGCAUAGCGCACUACAGCCCA
3906





UGGGCUGUAGUGCGCUAUGCCGA
3907
AUCGGCAUAGCGCACUACAGCCC
3908


U

A






UGGUCGACCAGUUGGAAAGUAAU
3909
AUUACUUUCCAACUGGUCGACCA
3910





UGGUCGACCAGUUGGAAAGUAAU
3911
AUUACUUUCCAACUGGUCGACCA
3912





UGUAGGGAUGGAAGCCAUGA
3913
UCAUGGCUUCCAUCCCUACA
3914





UGUAGGGAUGGAAGCCAUGAAA
3915
UUUCAUGGCUUCCAUCCCUACA
3916









In one embodiment the presence of the virus in cells or tissues may be determined by looking for a “signature” of the virus. This signature may then inform the location of the virus and hence inform the selection of a miRNA binding site of an endogenous miRNA known to be expressed in that cellular location. The cellular environment in which a virus is present or has been present may be identified by its miRNA signature such as is described in US Publication 2011/0151430 to Kowalik and Stadler, the contents of which are incorporated herein by reference in its entirety. In a further embodiment of this aspect, the miRNAs may include any of the miRNAs of the eukaryotic miRNome.


According to the present invention, miRNA which are present in certain cells, tissues or environments may provide the sequence upon which to base the incorporated miRNA site engineered into the viral target sequences of the invention. Certain miRNA are known to be found in particular tissues or cells and representative examples are listed in Table 5.









TABLE 5





miRNA expression location

















Dendritic Cells



let-7i



miR-142-3p



miR-146a



miR-148



miR-155



miR-221



miR-222



miRNA in Brain



mir-128



mir-219



mir-124a



mir-9



mir-135



mir-153



mir-183



miRNA in retinal epithelial cells



let-7b



let-7a



mir-125b



mir-24



mir-320



mir-23b



let-7e



let-7d



mir-23a



let-7c










Antibiotics

The present invention may also be exploited to produce vaccines against bacterial infections. To this end, bacterial genomes, genes or sequences may be engineered to contain one or more miRNA sites. In one embodiment, targeted bacteria include both Gram negative and Gram positive bacteria. Examples of Gram positive bacteria include, but are not limited to Pasteurella species, Staphylococci species, and Streptococcus species. Examples of Gram negative bacteria include, but are not limited to, Escherichia coli, Pseudomonas species, and Salmonella species. Specific examples of infectious bacteria include but are not limited to: Helicobacter pyloris, Borrelia burgdorferi, Legionella pneumophilia, Mycobacteria spp. (e.g., M. tuberculosis, M. avium, M. intracellulare, M. kansasii, M. gordonae, M. leprae), Staphylococcus aureus, Neisseria gonorrhoeae, Neisseria meningitidis, Listeria monocytogenes, Streptococcus pyogenes (Group A Streptococcus), Streptococcus agalactiae (Group B Streptococcus), Streptococcus (viridans group), Streptococcus faecalis, Streptococcus bovis, Streptococcus (anaerobic spp.), Streptococcus pneumoniae, pathogenic Campylobacter spp., Enterococcus spp., Haemophilus influenzae (Hemophilus influenza B, and Hemophilus influenza non-typable), Bacillus anthracis, Corynebacterium diphtheriae, Corynebacterium spp., Erysipelothrix rhusiopathiae, Clostridium perfringens, Clostridium tetani, Enterobacter aerogenes, Klebsiella pneumoniae, Pasturella multocida, Bacteroides spp., Fusobacterium nucleatum, Streptobacillus moniliformis, Treponema pallidum, Treponema pertenue, Leptospira, Rickettsia, Actinomyces israelii, meningococcus, pertussis, pneumococcus, shigella, tetanus, Vibrio cholerae, yersinia, Pseudomonas species, Clostridia species, Salmonella typhi, Shigella dysenteriae, Yersinia pestis, Brucella species, Legionella pneumophila, Rickettsiae, Chlamydia, Clostridium perfringens, Clostridium botulinum, Staphylococcus aureus, Pseudomonas aeruginosa, Cryptosporidium parvum, Streptococcus pneumoniae, and Bordetella pertussis.


Amino Acid Based Vaccines

The vaccines of the present invention may also be polypeptide based molecules. In this embodiment, miRNA sites may be engineered into polynucleotides that encode one or more proteins from the pathogen. It is also within the scope of the invention for amino acid based vaccines to comprise one or more encoded proteins of the virus strain whereby no miRNA binding site is present. In this embodiment, replication would be a priori compromised as not all of the genes for replication would be present.


Chimeric nucleic acid/amino acid molecules are also contemplated such that the miRNA site is bound or linked to the polypeptide based vaccine. These molecules may be “peptides,” “polypeptides,” or “proteins.”


While it is known in the art that these terms imply relative size, these terms as used herein should not be considered limiting with respect to the size of the various polypeptide based molecules referred to herein and which are encompassed within this invention.


The terms “amino acid” and “amino acids” refer to all naturally occurring L-alpha-amino acids. The amino acids are identified by either the one-letter or three-letter designations as follows: aspartic acid (Asp:D), isoleucine (Ile:I), threonine (Thr:T), leucine (Leu:L), serine (Ser:S), tyrosine (Tyr:Y), glutamic acid (Glu:E), phenylalanine (Phe:F), proline (Pro:P), histidine (His:H), glycine (Gly:G), lysine (Lys:K), alanine (Ala:A), arginine (Arg:R), cysteine (Cys:C), tryptophan (Trp:W), valine (Val:V), glutamine (Gln:Q) methionine (Met:M), asparagines (Asn:N), where the amino acid is listed first followed parenthetically by the three and one letter codes, respectively.


The amino acid sequences of the vaccines of the invention may comprise naturally occurring amino acids and as such may be considered to be proteins, peptides, polypeptides, or fragments thereof. Alternatively, the vaccines may comprise both naturally and non-naturally occurring amino acids.


The term “amino acid sequence variant” refers to molecules with some differences in their amino acid sequences as compared to a native sequence. The amino acid sequence variants may possess substitutions, deletions, and/or insertions at certain positions within the amino acid sequence. Ordinarily, variants will possess at least about 70% homology to a native sequence, and preferably, they will be at least about 80%, more preferably at least about 90% homologous to a native sequence.


“Homology” as it applies to amino acid sequences is defined as the percentage of residues in the candidate amino acid sequence that are identical with the residues in the amino acid sequence of a second sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. It is understood that homology depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation.


By “homologs” as it applies to amino acid sequences is meant the corresponding sequence of other species having substantial identity to a second sequence of a second species.


“Analogs” is meant to include polypeptide variants which differ by one or more amino acid alterations, e.g., substitutions, additions or deletions of amino acid residues that still maintain the properties of the parent polypeptide.


The term “derivative” is used synonymously with the term “variant” and refers to a molecule that has been modified or changed in any way relative to a reference molecule or starting molecule.


The present invention contemplates several types of vaccines which are amino acid based including variants and derivatives. These include substitutional, insertional, deletion and covalent variants and derivatives. As such, included within the scope of this invention are polypeptide based molecules containing substitutions, insertions and/or additions, deletions and covalently modifications. For example, sequence tags or amino acids, such as one or more lysines, can be added to the peptide sequences of the invention (e.g., at the N-terminal or C-terminal ends). Sequence tags can be used for peptide purification or localization. Lysines can be used to increase peptide solubility or to allow for biotinylation. Alternatively, amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences. Certain amino acids (e.g., C-terminal or N-terminal residues) may alternatively be deleted depending on the use of the sequence, as for example, expression of the sequence as part of a larger sequence which is soluble, or linked to a solid support.


“Substitutional variants” when referring to proteins are those that have at least one amino acid residue in a native or starting sequence removed and a different amino acid inserted in its place at the same position. The substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule.


As used herein the term “conservative amino acid substitution” refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine and leucine for another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine. Additionally, the substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions. Examples of non-conservative substitutions include the substitution of a non-polar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.


“Insertional variants” when referring to proteins are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in a native or starting sequence. “Immediately adjacent” to an amino acid means connected to either the alpha-carboxy or alpha-amino functional group of the amino acid.


“Deletional variants” when referring to proteins are those with one or more amino acids in the native or starting amino acid sequence removed. Ordinarily, deletional variants will have one or more amino acids deleted in a particular region of the molecule.


“Covalent derivatives” when referring to proteins include modifications of a native or starting protein with an organic proteinaceous or non-proteinaceous derivatizing agent, and post-translational modifications. Covalent modifications are traditionally introduced by reacting targeted amino acid residues of the protein with an organic derivatizing agent that is capable of reacting with selected side-chains or terminal residues, or by harnessing mechanisms of post-translational modifications that function in selected recombinant host cells. The resultant covalent derivatives are useful in programs directed at identifying residues important for biological activity, for immunoassays, or for the preparation of anti-protein antibodies for immunoaffinity purification of the recombinant glycoprotein. Such modifications are within the ordinary skill in the art and are performed without undue experimentation.


Certain post-translational modifications are the result of the action of recombinant host cells on the expressed polypeptide. Glutaminyl and asparaginyl residues are frequently post-translationally deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues may be present in the proteins used in accordance with the present invention.


Other post-translational modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the .alpha.-amino groups of lysine, arginine, and histidine side chains (T. E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983).


Covalent derivatives specifically include fusion molecules in which proteins of the invention are covalently bonded to a non-proteinaceous polymer. The non-proteinaceous polymer ordinarily is a hydrophilic synthetic polymer, i.e. a polymer not otherwise found in nature. However, polymers which exist in nature and are produced by recombinant or in vitro methods are useful, as are polymers which are isolated from nature. Hydrophilic polyvinyl polymers fall within the scope of this invention, e.g. polyvinylalcohol and polyvinylpyrrolidone. Particularly useful are polyvinylalkylene ethers such a polyethylene glycol, polypropylene glycol. The proteins may be linked to various non-proteinaceous polymers, such as polyethylene glycol, polypropylene glycol or polyoxyalkylenes, in the manner set forth in U.S. Pat. No. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.


“Features” when referring to proteins are defined as distinct amino acid sequence-based components of a molecule. Features of the proteins of the present invention include surface manifestations, local conformational shape, folds, loops, half-loops, domains, half-domains, sites, termini or any combination thereof.


As used herein when referring to proteins the term “surface manifestation” refers to a polypeptide based component of a protein appearing on an outermost surface.


As used herein when referring to proteins the term “local conformational shape” means a polypeptide based structural manifestation of a protein which is located within a definable space of the protein.


As used herein when referring to proteins the term “fold” means the resultant conformation of an amino acid sequence upon energy minimization. A fold may occur at the secondary or tertiary level of the folding process. Examples of secondary level folds include beta sheets and alpha helices. Examples of tertiary folds include domains and regions formed due to aggregation or separation of energetic forces. Regions formed in this way include hydrophobic and hydrophilic pockets, and the like.


As used herein the term “turn” as it relates to protein conformation means a bend which alters the direction of the backbone of a peptide or polypeptide and may involve one, two, three or more amino acid residues.


As used herein when referring to proteins the term “loop” refers to a structural feature of a peptide or polypeptide which reverses the direction of the backbone of a peptide or polypeptide and comprises four or more amino acid residues. Oliva et al. have identified at least 5 classes of protein loops (J. Mol. Biol 266 (4): 814-830; 1997).


As used herein when referring to proteins the term “half-loop” refers to a portion of an identified loop having at least half the number of amino acid resides as the loop from which it is derived. It is understood that loops may not always contain an even number of amino acid residues. Therefore, in those cases where a loop contains or is identified to comprise an odd number of amino acids, a half-loop of the odd-numbered loop will comprise the whole number portion or next whole number portion of the loop (number of amino acids of the loop/2+/-0.5 amino acids). For example, a loop identified as a 7 amino acid loop could produce half-loops of 3 amino acids or 4 amino acids (7/2=3.5+/-0.5 being 3 or 4).


As used herein when referring to proteins the term “domain” refers to a motif of a polypeptide having one or more identifiable structural or functional characteristics or properties (e.g., binding capacity, serving as a site for protein-protein interactions.


As used herein when referring to proteins the term “half-domain” means portion of an identified domain having at least half the number of amino acid resides as the domain from which it is derived. It is understood that domains may not always contain an even number of amino acid residues. Therefore, in those cases where a domain contains or is identified to comprise an odd number of amino acids, a half-domain of the odd-numbered domain will comprise the whole number portion or next whole number portion of the domain (number of amino acids of the domain/2+/-0.5 amino acids). For example, a domain identified as a 7 amino acid domain could produce half-domains of 3 amino acids or 4 amino acids (7/2=3.5+/−0.5 being 3 or 4). It is also understood that sub-domains may be identified within domains or half-domains, these subdomains possessing less than all of the structural or functional properties identified in the domains or half domains from which they were derived. It is also understood that the amino acids that comprise any of the domain types herein need not be contiguous along the backbone of the polypeptide (i.e., nonadjacent amino acids may fold structurally to produce a domain, half-domain or subdomain).


As used herein when referring to proteins the terms “site” as it pertains to amino acid based embodiments is used synonymous with “amino acid residue” and “amino acid side chain.” A site represents a position within a peptide or polypeptide that may be modified, manipulated, altered, derivatized or varied within the polypeptide based molecules of the present invention.


As used herein the terms “termini or terminus” when referring to proteins refers to an extremity of a peptide or polypeptide. Such extremity is not limited only to the first or final site of the peptide or polypeptide but may include additional amino acids in the terminal regions. The polypeptide based molecules of the present invention may be characterized as having both an N-terminus (terminated by an amino acid with a free amino group (NH2)) and a C-terminus (terminated by an amino acid with a free carboxyl group (COOH)). Proteins of the invention are in some cases made up of multiple polypeptide chains brought together by disulfide bonds or by non-covalent forces (multimers, oligomers). These sorts of proteins will have multiple N- and C-termini. Alternatively, the termini of the polypeptides may be modified such that they begin or end, as the case may be, with a non-polypeptide based moiety such as an organic conjugate.


Once any of the features have been identified or defined as a component of a molecule of the invention, any of several manipulations and/or modifications of these features may be performed by moving, swapping, inverting, deleting, randomizing or duplicating. Furthermore, it is understood that manipulation of features may result in the same outcome as a modification to the molecules of the invention. For example, a manipulation which involved deleting a domain would result in the alteration of the length of a molecule just as modification of a nucleic acid to encode less than a full length molecule would.


Modifications and manipulations can be accomplished by methods known in the art such as site directed mutagenesis. The resulting modified molecules may then be tested for activity using in vitro or in vivo assays such as those described herein or any other suitable screening assay known in the art.


Delivery of Vaccines

The delivery of a vaccine to a subject in need thereof can be achieved in a number of different ways. In vivo delivery can be performed directly by administering a composition comprising a vaccine to a subject. Alternatively, delivery can be performed indirectly by administering one or more vectors that encode and direct the expression of the vaccine. These alternatives are discussed further below.


“Introducing into a cell,” when referring to a vaccine, means facilitating or effecting uptake or absorption into the cell, as is understood by those skilled in the art. Absorption or uptake of a vaccine can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. The meaning of this term is not limited to cells in vitro; a vaccine may also be “introduced into a cell,” wherein the cell is part of a living organism. In such an instance, introduction into the cell will include the delivery to the organism. For example, for in vivo delivery, vaccines can be injected into a tissue site or administered systemically or intranasally. It is also contemplated by the inventors that introduction into cells or tissues may effected ex vivo, in situ and in ovo. In the case of transplants or within the field of stem cell technologies, it is contemplated that “introduction into a cell” will embrace the introduction to cells of any lineage or state, whether presently stem cells or which are intended to produce stem cells or progenitors or precursors thereof, as well as tissues, explants, organs and even organ systems.


Direct Delivery

In general, any method of delivering a nucleic acid molecule can be adapted for use with a vaccine (see e.g., Akhtar S, and Julian R L. (1992) Trends Cell. Biol. 2(5):139-144 and WO94/02595, which are incorporated herein by reference in their entireties). However, there are three factors that are important to consider in order to successfully deliver a vaccine molecule in vivo: (a) biological stability of the delivered molecule, (2) preventing non-specific effects, and (3) accumulation of the delivered molecule in the target tissue. The non-specific effects of a vaccine can be minimized by local administration, for example by direct injection or implantation into a tissue (as a non-limiting example, a tumor) or topically administering the preparation.


For administering a vaccine systemically for the treatment of a disease, the vaccine can be modified or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the molecule by endo- and exo-nucleases (in the case of nucleic acid based vaccines) in vivo. Modification of the RNA component of a vaccine or the pharmaceutical carrier can also permit targeting of the vaccine composition to the target tissue and avoid undesirable off-target effects. Vaccines modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. In like fashion, the vaccines of the present invention may be conjugated to one or more aptamers.


In an alternative embodiment, the vaccine can be delivered using drug delivery systems such as a nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of a vaccine molecule (when negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of a vaccine by the cell. Cationic lipids, dendrimers, or polymers can either be bound to a vaccine, or induced to form a vesicle or micelle that encases a vaccine. The formation of vesicles or micelles further prevents degradation of the vaccine when administered systemically. Methods for making and administering cationic-vaccine complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, DR., et al (2003) J. Mol. Biol. 327:761-766; Verma, UN., et al (2003) Clin. Cancer Res. 9:1291-1300; Arnold, A S et al (2007) J. Hypertens. 25:197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of vaccines include DOTAP (Sorensen, DR., et al (2003), supra; Verma, U N., et al (2003), supra), Oligofectamine, “solid nucleic acid lipid particles” (Zimmermann, T S., et al (2006) Nature 441:111-114), cardiolipin (Chien, P Y., et al (2005) Cancer Gene Ther. 12:321-328; Pal, A., et al (2005) Int J. Oncol. 26:1087-1091), polyethyleneimine (Bonnet M E., et al (2008) Pharm. Res. Aug 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3:472-487), and polyamidoamines (Tomalia, D A., et al (2007) Biochem. Soc. Trans. 35:61-67; Yoo, H., et al (1999) Pharm. Res. 16:1799-1804). In some embodiments, a vaccine forms a complex with cyclodextrin for systemic administration.


Vector Encoded Vaccines

In another aspect, vaccines can be expressed from transcription units inserted into DNA or RNA vectors. Expression can be transient (on the order of hours to weeks) or sustained (weeks to months or longer), depending upon the specific construct used and the target tissue or cell type. These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., Proc. Natl. Acad. Sci. USA (1995) 92:1292).


Expression vectors are generally DNA plasmids or viral vectors. Expression vectors compatible with eukaryotic cells, preferably those compatible with vertebrate cells, can be used to produce recombinant constructs for the expression of a vaccine as described herein. Eukaryotic cell expression vectors are well known in the art and are available from a number of commercial sources. Typically, such vectors are provided containing convenient restriction sites for insertion of the desired nucleic acid segment.


Delivery of vaccine expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allows for introduction into a desired target cell.


Vaccine expression plasmids can be transfected into target cells as a complex with cationic lipid carriers (e.g., Oligofectamine) or non-cationic lipid-based carriers (e.g., Transit-TKO™). Successful introduction of vectors into host cells can be monitored using various known methods. For example, transient transfection can be signaled with a reporter, such as a fluorescent marker, such as Green Fluorescent Protein (GFP). Stable transfection of cells ex vivo can be ensured using markers that provide the transfected cell with resistance to specific environmental factors (e.g., antibiotics and drugs), such as hygromycin B resistance.


Viral vector systems which can be utilized with the methods and compositions described herein include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors; (e) SV 40 vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g. canary pox or fowl pox; and (j) a helper-dependent or gutless adenovirus. Replication-defective viruses can also be advantageous. Different vectors will or will not become incorporated into the cells' genome. The constructs can include viral sequences for transfection, if desired. Alternatively, the construct may be incorporated into vectors capable of episomal replication, e.g EPV and EBV vectors. Constructs for the recombinant expression of a vaccine will generally require regulatory elements, e.g., promoters, enhancers, etc., to ensure the expression of the vaccine in target cells. Other aspects to consider for vectors and constructs are further described below.


Vectors useful for the delivery of a vaccine may include regulatory elements (promoter, enhancer, etc.) sufficient for expression of the vaccine in the desired target cell or tissue. The regulatory elements can be chosen to provide either constitutive or regulated/inducible expression.


Expression of the vaccine can be precisely regulated, for example, by using an inducible regulatory sequence that is sensitive to certain physiological regulators, e.g., circulating glucose levels, or hormones (Docherty et al., 1994, FASEB J. 8:20-24). Such inducible expression systems, suitable for the control of expression in cells or in mammals include, for example, regulation by ecdysone, by estrogen, progesterone, tetracycline, chemical inducers of dimerization, and isopropyl-beta-D1-thiogalactopyranoside (IPTG). A person skilled in the art would be able to choose the appropriate regulatory/promoter sequence based on the intended use of the transgene.


In a specific embodiment, viral vectors that contain nucleic acid sequences encoding a vaccine can be used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding a vaccine are cloned into one or more vectors, which facilitates delivery of the nucleic acid into a cell, tissue or patient. More detail about retroviral vectors can be found, for example, in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdr1 gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy.


In one embodiment, the vaccines of the present invention may be delivered via a bacterial delivery approach as disclosed in PCT Publication WO/2008/156702, the contents of which are incorporated herein in its entirety.


Adenoviruses are also contemplated for use in delivery of nucleic acid based vaccines. Adenoviruses are especially attractive vehicles, e.g., for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys.


A suitable AV vector for expressing a vaccine featured in the invention, a method for constructing the recombinant AV vector, and a method for delivering the vector into target cells, are described in Xia H et al. (2002), Nat. Biotech. 20: 1006-1010. Use of Adeno-associated virus (AAV) vectors is also contemplated (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 (1993); U.S. Pat. No. 5,436,146).


In one embodiment, the vaccine can be expressed as two separate, complementary single-stranded RNA molecules from a recombinant AAV vector having, for example, either the U6 or H1 RNA promoters, or the cytomegalovirus (CMV) promoter. Suitable AAV vectors for expressing the vaccines featured in the invention, methods for constructing the recombinant AV vector, and methods for delivering the vectors into target cells are described in Samulski R et al. (1987), J. Virol. 61: 3096-3101; Fisher K J et al. (1996), J. Virol, 70: 520-532; Samulski R et al. (1989), J. Virol. 63: 3822-3826; U.S. Pat. No. 5,252,479; U.S. Pat. No. 5,139,941; International Patent Application No. WO 94/13788; and International Patent Application No. WO 93/24641, the entire disclosures of which are herein incorporated by reference.


Another preferred viral vector is a pox virus such as a vaccinia virus, for example an attenuated vaccinia such as Modified Virus Ankara (MVA) or NYVAC, an avipox such as fowl pox or canary pox.


The tropism of viral vectors can be modified by pseudotyping the vectors with envelope proteins or other surface antigens from other viruses, or by substituting different viral capsid proteins, as appropriate. For example, lentiviral vectors can be pseudotyped with surface proteins from vesicular stomatitis virus (VSV), rabies, Ebola, Mokola, and the like. AAV vectors can be made to target different cells by engineering the vectors to express different capsid protein serotypes; see, e.g., Rabinowitz J E et al. (2002), J Virol 76:791-801, the entire disclosure of which is herein incorporated by reference.


The pharmaceutical preparation of a vector can include the vector in an acceptable diluent or can include a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.


Formulations

In one embodiment, a vaccine featured in the invention is fully encapsulated in a lipid formulation, e.g., to form a SPLP, pSPLP, SNALP, or other nucleic acid-lipid particle. As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle, including SPLP. SNALPs are described, e.g., in U.S. Patent Application Publication Nos. 20060240093, 20070135372, and in International Application No. WO 2009082817. These applications are incorporated herein by reference in their entirety. In one embodiment, lipids and/or lipid-containing compositions or formulations described herein are used as adjuvants when delivered with the vaccines of the present invention. As used herein, an “adjuvant” is any agent that modifies the effect of another agent. In the present case, the lipids or lipid-based formulations may function to alter the effect of the vaccine on the subject, e.g., improving the immune response elicited.


As used herein, the term “SPLP” refers to a nucleic acid-lipid particle comprising plasmid DNA encapsulated within a lipid vesicle. SNALPs and SPLPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). SNALPs and SPLPs are extremely useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). SPLPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in PCT Publication No. WO 00/03683. The particles of the present invention typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles of the present invention are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; and PCT Publication No. WO 96/40964, each of which is incorporated herein by reference in its entirety.


In one embodiment, the lipid to drug ratio (mass/mass ratio) (e.g., lipid to vaccine ratio) will be in the range of from about 1:1 to about 50:1, from about 1:1 to about 25:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1.


The cationic lipid may be, for example, N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP), N-(1-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), N,N-dimethyl-2,3-dioleyloxy)propylamine (DODMA), 1,2-DiLinoleyloxy-N,N-dimethylaminopropane (DLinDMA),1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLenDMA), 1,2-Dilinoleylcarbamoyloxy-3-dimethylaminopropane (DLin-C-DAP), 1,2-Dilinoleyoxy-3-(dimethylamino)acetoxypropane (DLin-DAC), 1,2-Dilinoleyoxy-3-morpholinopropane (DLin-MA), 1,2-Dilinoleoyl-3-dimethylaminopropane (DLinDAP), 1,2-Dilinoleylthio-3-dimethylaminopropane (DLin-S-DMA), 1-Linoleoyl-2-linoleyloxy-3-dimethylaminopropane (DLin-2-DMAP), 1,2-Dilinoleyloxy-3-trimethylaminopropane chloride salt (DLin-TMA.Cl), 1,2-Dilinoleoyl-3-trimethylaminopropane chloride salt (DLin-TAP.Cl), 1,2-Dilinoleyloxy-3-(N-methylpiperazino)propane (DLin-MPZ), or 3-(N,N-Dilinoleylamino)-1,2-propanediol (DLinAP), 3-(N,N-Dioleylamino)-1,2-propanedio (DOAP), 1,2-Dilinoleyloxo-3-(2-N,N-dimethylamino)ethoxypropane (DLin-EG-DMA),1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA), 2,2-Dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA) or analogs thereof, (3aR,5s,6aS)—N,N-dimethyl-2,2-di((9Z,12Z)-octadeca-9,12-dienyl)tetrahydro-3aH-cyclopenta[d][1,3]dioxol-5-amine (ALN100), (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino)butanoate (MC3), 1,1′-(2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperazin-1-yl)ethylazanediyl)didodecan-2-ol (Tech G1), or a mixture thereof. The cationic lipid may comprise from about 20 mol % to about 50 mol % or about 40 mol % of the total lipid present in the particle.


In another embodiment, the compound 2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane can be used to prepare lipid nanoparticles. Synthesis of 2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane is described in U.S. provisional patent application No. 61/107,998 filed on Oct. 23, 2008, which is herein incorporated by reference.


In one embodiment, the particle includes 40% 2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane:10% DSPC:40% Cholesterol:10% PEG-C-DOMG (mole percent) with a particle size of 63.0±20 nm.


The non-cationic lipid may be an anionic lipid or a neutral lipid including, but not limited to, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE),16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), cholesterol, or a mixture thereof. The non-cationic lipid may be from about 5 mol % to about 90 mol %, about 10 mol %, or about 58 mol % if cholesterol is included, of the total lipid present in the particle.


The conjugated lipid that inhibits aggregation of particles may be, for example, a polyethyleneglycol (PEG)-lipid including, without limitation, a PEG-diacylglycerol (DAG), a PEG-dialkyloxypropyl (DAA), a PEG-phospholipid, a PEG-ceramide (Cer), or a mixture thereof. The PEG-DAA conjugate may be, for example, a PEG-dilauryloxypropyl (Ci2), a PEG-dimyristyloxypropyl (Ci4), a PEG-dipalmityloxypropyl (Ci6), or a PEG-distearyloxypropyl (C]8). The conjugated lipid that prevents aggregation of particles may be from 0 mol % to about 20 mol % or about 2 mol % of the total lipid present in the particle.


In some embodiments, the nucleic acid-lipid particle further includes cholesterol at, e.g., about 10 mol % to about 60 mol % or about 48 mol % of the total lipid present in the particle.


In one embodiment, the lipidoid ND98•4HCl (MW 1487) (see U.S. patent application Ser. No. 12/056,230, filed Mar. 26, 2008, which is herein incorporated by reference), Cholesterol (Sigma-Aldrich), and PEG-Ceramide C16 (Avanti Polar Lipids) can be used to prepare nanoparticles (i.e., LNP01 particles). Stock solutions of each in ethanol can be prepared as follows: ND98, 133 mg/ml; Cholesterol, 25 mg/ml, PEG-Ceramide C16, 100 mg/ml. The ND98, Cholesterol, and PEG-Ceramide C16 stock solutions can then be combined in a, e.g., 42:48:10 molar ratio. Depending on the desired particle size distribution, the resultant nanoparticle mixture can be extruded through a polycarbonate membrane (e.g., 100 nm cut-off) using, for example, a thermobarrel extruder, such as Lipex Extruder (Northern Lipids, Inc). In some cases, the extrusion step can be omitted. Ethanol removal and simultaneous buffer exchange can be accomplished by, for example, dialysis or tangential flow filtration. Buffer can be exchanged with, for example, phosphate buffered saline (PBS) at about pH 7, e.g., about pH 6.9, about pH 7.0, about pH 7.1, about pH 7.2, about pH 7.3, or about pH 7.4. LNP01 formulations are described, e.g., in International Application Publication No. WO 2008/042973, which is hereby incorporated by reference. Additional exemplary lipid formulations are shown in Table 6.









TABLE 6







Lipid Nanoparticle formulations











cationic lipid/non-cationic




lipid/cholesterol/PEG-lipid conjugate




Lipid:nucleic acid (e.g., nucleic acid or



Cationic Lipid
vaccine) ratio













SNALP
l,2-Dilinolenyloxy-N,N-
DLinDMA/DPPC/Cholesterol/PEG-cDMA



dimethylaminopropane
(57.1/7.1/34.4/1.4)



(DLinDMA)
lipid:vaccine ~7:1


S-XTC
2,2-Dilinoleyl-4-
XTC/DPPC/Cholesterol/PEG-cDMA



dimethylaminoethyl-[1,3]-
57.1/7.1/34.4/1.4



dioxolane (XTC)
lipid:vaccine ~7:1


LNP05
2,2-Dilinoleyl-4-
XTC/DSPC/Cholesterol/PEG-DMG



dimethylaminoethyl-[1,3]-
57.5/7.5/31.5/3.5



dioxolane (XTC)
lipid:vaccine ~6:1


LNP06
2,2-Dilinoleyl-4-
XTC/DSPC/Cholesterol/PEG-DMG



dimethylaminoethyl-[1,3]-
57.5/7.5/31.5/3.5



dioxolane (XTC)
lipid:vaccine ~11:1


LNP07
2,2-Dilinoleyl-4-
XTC/DSPC/Cholesterol/PEG-DMG



dimethylaminoethyl-[1,3]-
60/7.5/31/1.5,



dioxolane (XTC)
lipid:vaccine ~6:1


LNP08
2,2-Dilinoleyl-4-
XTC/DSPC/Cholesterol/PEG-DMG



dimethylaminoethyl-[1,3]-
60/7.5/31/1.5,



dioxolane (XTC)
lipid:vaccine ~11:1


LNP09
2,2-Dilinoleyl-4-
XTC/DSPC/Cholesterol/PEG-DMG



dimethylaminoethyl-[1,3]-
50/10/38.5/1.5



dioxolane (XTC)
Lipid:vaccine 10:1


LNP10
(3aR,5s,6aS)-N,N-
ALN100/DSPC/Cholesterol/PEG-DMG



dimethyl-2,2-di((9Z,12Z)-
50/10/38.5/1.5



octadeca-9,12-
Lipid:vaccine 10:1



dienyl)tetrahydro-3aH-



cyclopenta[d][1,3]dioxol-



5-amine (ALN100)


LNP11
(6Z,9Z,28Z,31Z)-
MC-3/DSPC/Cholesterol/PEG-DMG



heptatriaconta-6,9,28,31-
50/10/38.5/1.5



tetraen-19-yl 4-
Lipid:vaccine 10:1



(dimethylamino)butanoate



(MC3)


LNP12
1,1′-(2-(4-(2-((2-(bis(2-
C12-200/DSPC/Cholesterol/PEG-DMG



hydroxydodecyl)amino)ethyl)(2-
50/10/38.5/1.5



hydroxydodecyl)amino)ethyl)
Lipid:vaccine 10:1



piperazin-1-



yl)ethylazanediyl)didodecan-



2-ol (C12-200)


LNP13
XTC
XTC/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:vaccine: 33:1


LNP14
MC3
MC3/DSPC/Chol/PEG-DMG




40/15/40/5




Lipid:vaccine: 11:1


LNP15
MC3
MC3/DSPC/Chol/PEG-DSG/GalNAc-PEG-DSG




50/10/35/4.5/0.5




Lipid:vaccine: 11:1


LNP16
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:vaccine: 7:1


LNP17
MC3
MC3/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:vaccine: 10:1


LNP18
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:vaccine: 12:1


LNP19
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/35/5




Lipid:vaccine: 8:1


LNP20
MC3
MC3/DSPC/Chol/PEG-DPG




50/10/38.5/1.5




Lipid:vaccine: 10:1


LNP21
C12-200
C12-200/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:vaccine: 7:1


LNP22
XTC
XTC/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:vaccine: 10:1









DSPC: distearoylphosphatidylcholine


DPPC: dipalmitoylphosphatidylcholine


PEG-DMG: PEG-didimyristoyl glycerol (C14-PEG, or PEG-C14) (PEG with avg mol wt of 2000)


PEG-DSG: PEG-distyryl glycerol (C18-PEG, or PEG-C18) (PEG with avg mol wt of 2000)


PEG-cDMA: PEG-carbamoyl-1,2-dimyristyloxypropylamine (PEG with avg mol wt of 2000)


SNALP (1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA)) comprising formulations are described in International Publication No. WO2009/127060, filed Apr. 15, 2009, which is hereby incorporated by reference in its entirety.


XTC comprising formulations are described, e.g., in U.S. Provisional Ser. No. 61/239,686, filed Sep. 3, 2009 as well as PCT/US10/22614 filed Jan. 29, 2010 each of which is hereby incorporated by reference in its entirety. Further XTC formulations useful in the present invention are disclosed in PCT/US08/088,588 filed 31 Dec. 2008 and PCT/US08/88587 filed 31 Dec. 2008 and PCT/US09/041,442 filed 22 Apr. 2009 and PCT/US09/061,897 filed 23 Oct. 2009 and PCT/US10/38224 filed Jun. 10, 2010, each of which is hereby incorporated by reference in its entirety.


MC3 comprising formulations are described, e.g., in U.S. Provisional Ser. No. 61/244,834, filed Sep. 22, 2009, and U.S. Provisional Ser. No. 61/185,800, filed Jun. 10, 2009, and PCT/US09/63933 filed Nov. 10, 2009 and PCT/US09/63927 filed 10 Nov. 2009 and PCT/US09/63931 filed 10 Nov. 2009 and PCT/US09/63897 filed 10 Nov. 2009, each of which are hereby incorporated by reference in its entirety.


ALNY-100 comprising formulations are described, e.g., International patent application number PCT/US09/63933, filed on Nov. 10, 2009, which is hereby incorporated by reference in its entirety.


C12-200 comprising formulations are described in U.S. Provisional Ser. No. 61/175,770, filed May 5, 2009, as well as PCT/US10/33777 which are hereby incorporated by reference in its entirety.


Transfection reagents useful in the present invention are disclosed in U.S. provisional 61/267,419 filed Dec. 7, 2009, which is hereby incorporated by reference in its entirety.


Formulations for targeting immune cells useful in the present invention are disclosed in PCT/US10/033,747 filed May 5, 2010, which is hereby incorporated by reference in its entirety.


Pyrrolidine cationic lipids useful in the formulations of the present invention are disclosed in U.S. Ser. No. 12/123,922 filed May 20, 2008 which is hereby incorporated by reference in its entirety.


In one embodiment, the reagent that facilitates targeting construct uptake used herein comprises a cationic lipid as described in e.g., U.S. Application Ser. No. 61/267,419, filed 7 Dec. 2009, and U.S. Application Ser. No. 61/334,398, filed 13 May 2010. In various embodiments, the composition described herein comprises a cationic lipid selected from the group consisting of: “Lipid H”, “Lipid K”; “Lipid L”, “Lipid M”; “Lipid P”; or “Lipid R”, whose formulas are indicated as follows:




embedded image


Also contemplated herein are various formulations of the lipids described above, such as, e.g., K8, P8 and L8 which refer to formulations comprising Lipid K, P, and L, respectively. Some exemplary lipid formulations for use with the methods and compositions described herein are found in Table 7.









TABLE 7







Example lipid formulations











Formulation
Cationic Lipid
Cationic Lipid
DOPE
Cholesterol


Number
Number
Mol %
%
%





1
200 (Lipid H)
48.08
51.92



2
200 (Lipid H)
47.94
47.06
5


3
201 (Lipid K)
45.56
54.44



4 (K8)
201 (Lipid K)
47.94
47.06
5


5 (L8)
202 (Lipid L)
47.94
47.06
5


6

203 (Lipid M)

53.01
44.49
2.5


7

203 (Lipid M)

47.94
47.06
5


8 (P8)
204 (Lipid P)
47.94
47.06
5


9
205 (Lipid R)
47.94
47.06
5









In another embodiment, the composition described herein further comprises a lipid formulation comprising a lipid selected from the group consisting of Lipid H, Lipid K, Lipid L, Lipid M, Lipid P, and Lipid R, and further comprises a neutral lipid and a sterol. In particular embodiments, the lipid formulation comprises between approximately 25 mol %-100 mol % of the lipid. In another embodiment, the lipid formulation comprises between 0 mol %-50 mol % cholesterol. In still another embodiment, the lipid formulation comprises between 30 mol %-65 mol % of a neutral lipid. In particular embodiments, the lipid formulation comprises the relative mol % of the components as listed in Table 8 as follows:









TABLE 8







Example lipid formulae












Series
Lipid (Mol %)
DOPE
Chol
















1
45.56
54.44
0



2
48.08
51.92
0



3
50.60
49.40
0



4
53.10
46.90
0



5
52.73
37.27
10



6
52.92
42.08
5



7
53.01
44.49
2.5



8
47.94
47.06
5










Other Particles

In vivo delivery can also be by a beta-glucan delivery system, such as those described in U.S. Pat. Nos. 5,032,401 and 5,607,677, and U.S. Publication No. 2005/0281781, which are hereby incorporated by reference in their entirety. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection.


In one embodiment, core-shell nanoparticles may be used for delivery to cells, tissues or organ systems. Such core-shell nanoparticles are described by Siegwart (Siegwart, et al., Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery, PNAS, PNAS Early edition, Jul. 22, 2011; the contents of which are incorporated herein in their entirety) and comprise a cationic core to facilitate vaccine complexation, with variation in the nature of the protonizable amine, and a shell with variation in polymer length and chemical properties. Block copolymers created by reacting epoxide groups with amines and possessing poly(oligo(ethylene oxide) methacrylate) (POEOMA) with different lengths of the PEO side chain, may increase blood circulation time due to the PEO shell of the resulting nanoparticle. Anionic, cationic, zwitterionic, and hydrophobic blocks may also be used as shells.


Liposomal Formulations

There are many organized surfactant structures that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.


Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.


In order to traverse intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.


Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.


Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes and as the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.


Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.


Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis.


Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).


Liposomes which are pH-sensitive or negatively charged entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).


One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.


Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g., as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P.Pharma. Sci., 1994, 4, 6, 466).


Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765).


Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987, 507, 64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).


Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull. Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2C1215G, that contains a PEG moiety. Illum et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Pat. Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Pat. Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Pat. No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Pat. No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEG-modified ceramide lipids are described in WO 96/10391 (Choi et al). U.S. Pat. No. 5,540,935 (Miyazaki et al.) and U.S. Pat. No. 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.


Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g., they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.


Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.


If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.


If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.


If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.


The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


Compositions and formulations for parenteral, intraparenchymal (into the brain), intrathecal, intraventricular or intrahepatic administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.


Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations of vaccines. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids. Particularly preferred are formulations that target the liver when treating hepatic disorders such as hepatic carcinoma.


The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.


The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


Emulsions

The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 um in diameter (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y. Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).


A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.


Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.


The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of ease of formulation, as well as efficacy from an absorption and bioavailability standpoint (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.


In one embodiment of the present invention, the compositions of vaccines are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).


The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.


Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DA0750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.


Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile vaccine drugs, or peptides. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of nucleic acid based vaccines from the gastrointestinal tract, as well as improve the local cellular uptake.


Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the vaccines and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories—surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.


Penetration Enhancers

In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of vaccines to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.


Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.


Surfactants: In connection with the present invention, surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of vaccines through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).


Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C1-20 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (see e.g., Touitou, E., et al. Enhancement in Drug Delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).


Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the term “bile salts” includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Suitable bile salts include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).


Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of vaccines through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Suitable chelating agents include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines)(see e.g., Katdare, A. et al., Excipient development for pharmaceutical, biotechnology, and drug delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).


Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of vaccines through the alimentary mucosa (see e.g., Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class of penetration enhancers include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).


Agents that enhance uptake of vaccines at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of nucleic acids. Examples of commercially available transfection reagents include, for example Lipofectamine™ (Invitrogen; Carlsbad, Calif.), Lipofectamine 2000™ (Invitrogen; Carlsbad, Calif.), 293Fectin™ (Invitrogen; Carlsbad, Calif.), Cellfectin™ (Invitrogen; Carlsbad, Calif.), DMRIE-C™ (Invitrogen; Carlsbad, Calif.), FreeStyle™ MAX (Invitrogen; Carlsbad, Calif.), Lipofectamine™ 2000 CD (Invitrogen; Carlsbad, Calif.), Lipofectamine™ (Invitrogen; Carlsbad, Calif.), RNAiMAX (Invitrogen; Carlsbad, Calif.), Oligofectamine™ (Invitrogen; Carlsbad, Calif.), Optifect™ (Invitrogen; Carlsbad, Calif.), X-tremeGENE Q2 Transfection Reagent (Roche; Grenzacherstrasse, Switzerland), DOTAP Liposomal Transfection Reagent (Grenzacherstrasse, Switzerland), DOSPER Liposomal Transfection Reagent (Grenzacherstrasse, Switzerland), or Fugene (Grenzacherstrasse, Switzerland), Transfectam® Reagent (Promega; Madison, Wis.), TransFast™ Transfection Reagent (Promega; Madison, Wis.), Tfx™-20 Reagent (Promega; Madison, Wis.), Tfx™-50 Reagent (Promega; Madison, Wis.), DreamFect™ (OZ Biosciences; Marseille, France), EcoTransfect (OZ Biosciences; Marseille, France), TransPassa D1 Transfection Reagent (New England Biolabs; Ipswich, Mass., USA), LyoVec™/LipoGen™ (Invivogen; San Diego, Calif., USA), PerFectin Transfection Reagent (Genlantis; San Diego, Calif., USA), NeuroPORTER Transfection Reagent (Genlantis; San Diego, Calif., USA), GenePORTER Transfection reagent (Genlantis; San Diego, Calif., USA), GenePORTER 2 Transfection reagent (Genlantis; San Diego, Calif., USA), Cytofectin Transfection Reagent (Genlantis; San Diego, Calif., USA), BaculoPORTER Transfection Reagent (Genlantis; San Diego, Calif., USA), TroganPORTER™ transfection Reagent (Genlantis; San Diego, Calif., USA), RiboFect (Bioline; Taunton, Mass., USA), PlasFect (Bioline; Taunton, Mass., USA), UniFECTOR (B-Bridge International; Mountain View, Calif., USA), SureFECTOR (B-Bridge International; Mountain View, Calif., USA), or HiFect™ (B-Bridge International, Mountain View, Calif., USA), among others.


Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.


Carriers

Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, “carrier compound” or “carrier” can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor.


Excipients

In contrast to a carrier compound, a “pharmaceutical carrier” or “excipient” is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc).


Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with vaccines which are nucleic acids can be used.


Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Other Components

The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.


Aqueous suspensions may contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


In addition to their administration, as discussed above, the vaccines featured in the invention can be administered in combination with other known agents effective in treatment of pathological processes. In any event, the administering physician can adjust the amount and timing of administration on the basis of results observed using standard measures of efficacy known in the art or described herein.


Further, toxicity and therapeutic efficacy of compounds of the invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are preferred.


The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of compositions featured in the invention lies generally within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods featured in the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range of the compound or, when appropriate, of the polypeptide product of a target sequence (e.g., achieving a decreased concentration of the polypeptide) that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


Patient Populations

According to the present invention, the vaccines described herein may be used prophylactically or to treat or ameliorate disease. In one embodiment the vaccine composition is administered to an asymptomatic carrier of a disease (virus) to prevent the spread to others. In another embodiment the vaccine composition is administered prophylactically. In one embodiment the vaccine composition is administered after infection but before viral shedding. In this embodiment, infection can be determined by evaluating the pathogens miRNA signature or other means of detecting the presence of the pathogen (e.g., virus or viral sequences). In one embodiment, the vaccine composition is administered after viral shedding has begun and the subject is symptomatic. In another embodiment, the vaccine composition is administered days, weeks or months after an outbreak. In one embodiment, the vaccine composition is administered to non-infected individuals to prevent their future infection by the pathogen.


In one embodiment, the invention provides pharmaceutical compositions containing a vaccine composition, as described herein, and a pharmaceutically acceptable carrier. Such pharmaceutical compositions are formulated based on the mode of delivery. One example is compositions that are formulated for systemic administration via parenteral delivery, e.g., by intravenous (IV) delivery. Another example is compositions that are formulated for direct delivery into the brain parenchyma, e.g., by infusion into the brain, such as by continuous pump infusion.


The pharmaceutical compositions featured herein are administered in dosages sufficient to trigger an immune response. In general, a suitable dose will be in the range of 0.01 to 200.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 to 50 mg per kilogram body weight per day. For example, the vaccine can be administered at 0.05 mg/kg, 0.5 mg/kg, 1 mg/kg, 1.5 mg/kg, 2 mg/kg, 3 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 40 mg/kg, or 50 mg/kg per single dose. The pharmaceutical composition may be administered once daily or it may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation. In that case, the vaccine contained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage. The dosage unit can also be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release over a several day period. Sustained release formulations are well known in the art and are particularly useful for delivery of agents at a particular site, such as could be used with the agents of the present invention. In this embodiment, the dosage unit contains a corresponding multiple of the daily dose.


The effect of a single dose can be long lasting, such that subsequent doses are administered at not more than 3, 4, or 5 day intervals, or at not more than 1, 2, 3, or 4 week intervals. It is also understood that the compositions of the present invention may be administered on a monthly, yearly, or long-term repeated schedule as is typical with immunization or “booster” schedules. To this end the compositions may be administered every 6 months, every year, every 2 years, every 5 years or every 10 years, or more.


The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments. Estimates of effective dosages and in vivo half-lives for the individual vaccine composition encompassed by the invention can be made using conventional methodologies or on the basis of in vivo testing using an appropriate animal model.


Kits

Any of the compositions described herein may be comprised in a kit. The kit may further include reagents or instructions for creating or synthesizing the vaccines. It may also include one or more buffers, such as a nuclease buffer, transcription buffer, or a hybridization buffer, compounds for preparing the DNA template or a dsRNA, and components for isolating the resultant template, target sequence or vaccine. Other kits of the invention may include components for making a nucleic acid array and thus, may include, for example, a solid support.


The components of the kits may be packaged either in aqueous media or in lyophilized form. The container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which a component may be placed, and preferably, suitably aliquoted. Where there are more than one component in the kit (labeling reagent and label may be packaged together), the kit also will generally contain a second, third or other additional container into which the additional components may be separately placed. However, various combinations of components may be comprised in a vial. The kits of the present invention also will typically include a means for containing the vaccine, e.g., nucleic acids, and any other reagent containers in close confinement for commercial sale. Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.


When the components of the kit are provided in one and/or more liquid solutions, the liquid solution is an aqueous solution, with a sterile aqueous solution being particularly preferred. However, the components of the kit may be provided as dried powder(s). When reagents and/or components are provided as a dry powder, the powder can be reconstituted by the addition of a suitable solvent. It is envisioned that the solvent may also be provided in another container means. In some embodiments, labeling dyes are provided as a dried power. It is contemplated that 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1000 micrograms or at least or at most those amounts of dried dye are provided in kits of the invention. The dye may then be resuspended in any suitable solvent, such as DMSO.


The container means will generally include at least one vial, test tube, flask, bottle, syringe and/or other container means, into which the vaccine, e.g., nucleic acid formulations are placed, preferably, suitably allocated. The kits may also comprise a second container means for containing a sterile, pharmaceutically acceptable buffer and/or other diluent.


The kits of the present invention may also typically include a means for containing the vials in close confinement for commercial sale, such as, e.g., injection and/or blow-molded plastic containers into which the desired vials are retained.


Kits may also include components that facilitate isolation of a DNA template. It may also include components that preserve or maintain the nucleic acids or that protect against their degradation. Such components may be RNAse-free or protect against RNAses, such as RNase inhibitors. Such kits generally will comprise, in suitable means, distinct containers for each individual reagent or solution.


A kit can include instructions for employing the kit components as well the use of any other reagent not included in the kit. Instructions may include variations that can be implemented.


EXAMPLES
Example 1
Viral Attenuation Reporter System

A dual luciferase reporter system was designed to assess the efficacy of the vaccines of the present invention. In this system, attenuation is determined by monitoring luminescence of the firefly luciferase normalized to the luminescence of the renilla luciferase. Each viral gene of interest, containing one or more miRNA target sites (or mutant versions as controls), are cloned upstream of firefly luciferase gene. Constructs are expressed in a variety of mammalian cell lines and luciferase activity is measured. Successful attenuation is measured as a decrease in luciferase activity as compared to cells that are not expressing the relevant miRNA.


Example 2
Plaque Assay

Screening of the modified viruses may be performed by a plaque assay. When partial or complete viral genomes are modified by insertion of one or more miRNA target sites, modified viruses are screened via a plaque assay. A cell line susceptible to lytic infection is plated as a lawn. Viral supernatants generated from cells infected with modified genomes are added to the lawns at known dilutions. After incubation, cells are fixed, stained, and lytic plaques formed in the lawn are counted for back calculation of the sample's viral titer. Typically, the cell line used in the assay is a mammalian cell line, such as a rodent, non-human primate (e.g., monkey), or human cell line. Cell lines used in the invention may include Vero, MRC-5, BHK, CEM, and LL-1 cells. Relevant cell types for HSV viral replication include, but are not limited to, epithelial cells, and monocyte/dendritic cells.


A model viral genome with a modification for ease of measuring viral titer may also be employed. For instance, a viral genome encoding a GFP-fusion protein that would be packaged with the virus may serve as a beacon for measurement. Viral count may be tied to the total fluorescence measured in the supernatant via fluorimeter or spectrophotometer. Additionally, viral fluorescence of a sample may be obtained by capture of viruses on a fixed substrate such as a well in a plate or latex bead to assist with measuring. Captured viruses' fluorescence may be measured using flow cytometry or other similar methods. Viral titers could be calculated comparing a standard curve of the GFP-containing viral strain whose fluorescence in supernatants has been correlated with the plaque assay.


Example 3
Design of miRNA Binding Sites within HSV Genes

miRNA binding sites were engineered into either the US1 (FIG. 1A) or RL2 (FIG. 1B) genes.


Candidate HSV1 gene mRNA sequences, including US1, US10, US11, US12, RL2, and UL54, were individually aligned in the plus/minus orientation with each of the human mature miR-128, miR-219, miR-124a, miR-9, miR-135, miR-153, and miR-183 sequences via pairwise BLASTN (http://blast.ncbi.nlm.nih.gov/). Candidate mRNA /miRNA pairs that had high-scoring matches including the miRNA seed region were saved, and re-aligned manually. Next, candidate mutations were introduced to the miRNA sequence to maximize target mRNA/miRNA complementarity while minimizing alteration of target gene function (FIG. 1). Watson-Crick pairs were favored over non-canonical (“wobble”) G:U pairs. For target gene 5′- and 3′-UTR regions, all nucleotides (at each position) were considered equally functional, so engineering perfect mRNA/miRNA complementarity was straightforward. For target gene coding sequences (“CDS”), candidate mutations that minimized alteration of the encoded protein were favored: Silent mutations that do not alter the encoded amino acid, over Conservative mutations that cause an amino acid to be replaced with another amino acid bearing very similar side-chain physicochemical characteristics (e.g. Small AND Polar, Polar AND Positive, Hydrophobic AND Aromatic), over Semiconservative mutations that cause an amino acid to be replaced with another amino acid bearing similar side-chain physical characteristics (e.g. Small, Polar, Hydrophobic). Radical replacements and nonsense mutations were not considered, on the grounds that they would be maximally disruptive to target gene (protein) function.


Example 4
Detection and Quantitation of HSV

Total viral particles in the supernatant of cultures of infected cells is quantified by measuring the concentration of viral genomic DNA by qPCR. At the desired time point, infected cell supernatants are removed from the 96 well tissue culture plates. Viral DNA is isolated from 50u1 of the supernatant using Magmax Viral RNA Isolation Kit (Applied Biosystems, AM-1836) following the protocol as per kit instructions. Real time PCR (qPCR) is performed using 3-4 ul of obtained cDNA using a Roche LightCycler 480. Reagents used for this reaction include: Roche LightCycler PCR Master Mix and pathogen detection primer/probe kit from Primer Design Ltd for HSV 1 or 2 (Path-HSV1-std) or (Path-HSV2-std), respectively. Standard curves are generated for each qPCR reaction using the corresponding HSV strain standard obtained with the primer/probe kit from Primer Design Ltd. Six 1:10 dilutions of the standard are used to generate the standard curve from which the viral genome numbers were quantified.


Extraction of HSV DNA is performed generally by the methods of Namvar, et al. (J Clin Microbiol. 2005 May; 43(5): 2058-2064). Briefly, DNA is extracted in a Magnapure LC robot (Roche Diagnostics, Mannheim, Germany) using the Magnapure DNA Isolation Kit according to the manufacturer's instructions. The input and output volumes are set to 200 μl and 100 μl, respectively. Freeze-thawing of the sample may be used as an alternative method for DNA preparation. In these cases 10 μl of the thawed sample is used in PCR without further procedures.

Claims
  • 1. A mutant HSV-1 strain comprising at least one miRNA site.
  • 2. The mutant HSV-1 strain of claim 1, wherein the miRNA site is present in an untranslated region of an HSV-1 gene encoded by the HSV-1 strain.
  • 3. The mutant HSV-1 strain of claim 2, wherein the untranslated region is selected from the group consisting of the 3′UTR, the 5′ UTR, an intron, and an intragenic region.
  • 4. The mutant HSV-1 strain of claim 3, wherein the at least one miRNA site is selected from the miRNA sites of Table 3.
  • 5. The mutant HSV-1 strain of claim 4, wherein the miRNA site is 17-25 nucleotides in length.
  • 6. The mutant HSV-1 strain of claim 5, further comprising a second miRNA site.
  • 7. The mutant HSV-1 strain of claim 6, wherein said second miRNA site has the same nucleotide sequence as the at least one miRNA site.
  • 8. The mutant HSV-1 strain of claim 6, wherein said second miRNA site is different from the at least one miRNA site.
  • 9. The mutant HSV-1 strain of claim 6 further comprising three or more miRNA sites.
  • 10. The mutant HSV-1 strain of claim 1, wherein the miRNA site is present in a coding region of an HSV-1 gene encoded by the HSV-1 strain.
  • 11. The mutant HSV-1 strain of claim 10, wherein the gene comprising the miRNA site is inactivated, thereby producing an attenuated HSV-1 virus.
  • 12. A vaccine comprising the mutant HSV-1 strain of claim 1.
  • 13. A method of immunizing a subject with an HSV-1 antigen comprising contacting said subject with a composition comprising a mutant HSV-1 strain, mutant HSV-1 gene or mutant HSV-1 polynucleotide sequence, wherein the mutant strain, gene or polynucleotide sequence has been engineered to contain at least one miRNA site of Table 3.
  • 14. The method of claim 13, wherein the subject is contacted more than once.
  • 15. The method of claim 14, wherein the subject is contacted yearly, every 2 years or every 5 years.
  • 16. The method of claim 13, wherein composition is formulated for systemic delivery.
  • 17. The method of claim 16, wherein systemic delivery is by intravenous or intramuscular administration.
  • 18. The method of claim 13, wherein the composition further comprises one or more adjuvants.
  • 19. The method of claim 18, wherein the adjuvant is a lipid or lipid-based agent.
  • 20. The method of claim 19, wherein the lipid is a cationic lipid.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/588,309, filed Jan. 19, 2012 entitled “VIRAL ATTENUATION AND VACCINE PRODUCTION”, the contents of which is incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2013/021704 1/16/2013 WO 00 7/18/2014
Provisional Applications (1)
Number Date Country
61588309 Jan 2012 US