The present invention relates to imaging systems or vision systems for vehicles.
Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.
The present invention provides a vision system or imaging system for a vehicle that utilizes one or more cameras to capture images exterior of the vehicle, and provides the communication/data signals, including camera data or image data that is processed and, responsive to such image processing, detects an object at or near the vehicle and in the path of travel of the vehicle, such as when the vehicle is backing up. The present invention transfers the intelligence from the camera to an image displaying device or image display or cluster, central display or head unit (later referred as head unit or HU) or to a mobile device wired or wireless connected or attached to- or plugged into the head unit (as an app). The data transfer rate can be enhanced by LVDS having raw data transmitted as described in U.S. Pat. No. 7,979,536, which is hereby incorporated herein by reference in its entirety. Optionally, the users may be served with dump rear cameras, with DAS software functions, running independent and remote from the camera, but not in another control device. Thus, a business model may be provided that sells an app, not the hardware, to the end users or consumers.
According to an aspect of the present invention, a vision system for a vehicle includes at least one camera or image sensor disposed at a vehicle and having a field of view exterior of the vehicle, and a display device operable to display images for viewing by a driver of the vehicle. The camera provides almost raw image data to a display device and has a control channel for a data line, and wherein a graphic engine or image processing runs as a routine at the display device.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
A driver assist system and/or vision system and/or object detection system and/or alert system may operate to capture images exterior of the vehicle and process the captured image data to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The object detection may utilize detection and analysis of moving vectors representative of objects detected in the field of view of the vehicle camera, in order to determine which detected objects are objects of interest to the driver of the vehicle, such as when the driver of the vehicle undertakes a reversing maneuver.
Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes one or more imaging sensors or cameras (such as a rearward facing imaging sensor or camera 14a and/or a forwardly facing camera 14b at the front (or at the windshield) of the vehicle, and/or a sidewardly/rearwardly facing camera 14c, 14b at the sides of the vehicle), which capture images exterior of the vehicle, with the cameras having a lens for focusing images at or onto an imaging array or imaging plane of the camera (
Vehicle vision systems typically use sophisticated image processing algorithms. For example, either the algorithm runs on a hardware which is integrated to a vision camera or the algorithm runs on an external control device collecting and processing the incoming camera raw data, and then sends a processed image data stream to a display device, cluster or head unit. Vehicle displays vehicle vision systems may be provided at multi-media head units (such as by utilizing aspects of the mirror assemblies described in U.S. Pat. No. 7,937,667, which is hereby incorporated herein by reference in its entirety), and may process several input sources, such that processing power is adapted accordingly. Optionally, a system may visualize and control the apps running on a mobile infotainment device or mobile phone which is connected to or in communication with the head unit, either wirelessly (near field communication, BLUETOOTH®, and the like) or plugged in. It is known to control the app interactively and depending on the driving situation.
The present invention provides a system that delocates the computing load from the camera or separate image control to the head unit or conjuncted or connected mobile device which typically come with high processing performance and are embedded into the display or head unit environment anyway. The system may utilize aspects of the systems described in U.S. Pat. No. 7,697,027 and/or U.S. patent application Ser. No. 13/377,673, filed Dec. 12, 2011, now U.S. Pat. No. 9,036,026, which are hereby incorporated herein by reference in their entireties.
Vision system camera electronics are preferably developed to cost efficient. Due to lower development costs, vision camera systems are typically uniformed as much as possible to lower the number of variants. Also, the complexity is preferably reduced or limited or held as low as possible. Every electronic part that is integrated into cameras produces heat and takes precious space. Simplifying and standardizing of cameras and their interfaces enables use of modern embedding methods, which reduces system costs and enables the shrinking of the camera, which provide customer benefits.
A different or alternative approach is to eliminate dedicated vision system control devices by transferring its functions (intelligence) either into the (smart) cameras or by transferring its functions to the end devices as like the head unit, the (display) cluster, or other display device. By that also the IOs and controls (such as, for example, invasive assistant systems) may be transferred/placed on those devices.
For reducing the cabling costs, there is the trend to use busses/data backbones onto several sensing and actuator devices attached. Some systems may be able to request data direct from another device on the backbone without interaction of the main unit (head unit). This requires at least bus interfaces on some or all nodes and maybe also processors and may require a sophisticated state and priority handling across the devices.
Vehicle development cycles are typically quite long compared to the rush changing infotainment industry. Because of this, infotainment and vehicle driver assistant and safety systems (DAS) outdate quite rapidly. The appearance and functionality is often already a step behind after-market systems when a vehicle inherent or vehicle-based system enters the market. To counter these circumstances, it would be desirable to vehicle manufacturers to keep (DAS) systems up to date.
The present invention provides an economized vehicle vision system architecture that reduces the cost and complexity of the vehicle camera and vision system.
(1) For lowering the number of variants of different car vision camera systems, the inventive solution is to not implement the electronics in a camera or a separate image processing device and may transfer the graphic engine to the head up unit. By avoiding this, the camera electronics can be reduced to the main functionalities for image capturing and own supply power control. Preferably, a simple data transfer interface finds use to send the camera's (raw) data to the head unit (or other image giving/processing end device). On the head unit or other image giving/processing end device the graphic engine (or the image processing) is processed. Other image giving/processing devices may comprise a mirror display within or outside of the passenger compartment, such as a mirror display at the top center region (such as a video mirror utilizing aspects of the displays described in U.S. Pat. Nos. 7,855,755 and/or 7,777,611, which are hereby incorporated herein by reference in their entireties). There it may be sufficient to place image processing tasks, and the hardware and software, when it comes to comparably low sophisticated light balancing, distortion and stitching tasks, may be fed by comparably low performance rear and side cameras. The early state of the art was to capture images and send it over data lines to a display, typically via an analog signal such as an NTSC signal or the like. This was done without controlling or loop controlling the camera. The solution of the present invention also incorporates a control line running from the head unit to the camera. A loop controlling of the camera and the graphic engine (or the image processing) is realized by that. The controlling is necessary for light and color balancing (such as described in PCT Application No. PCT/US2012/063520, filed Nov. 5, 2012, and published on May 16, 2013 as International Publication No. WO 2013/070539, which is hereby incorporated herein by reference in its entirety) and gain control. Also, the gamma correction may be controlled by the back channel. Other control commands may by for sleep/wake up/idle, low high resolution switching, reduced area selection, compression control or triggering a data dump of intrinsic calibration data (such as described in U.S. Pat. No. 7,979,536, which is hereby incorporated herein by reference in its entirety).
(2) Optionally, a continuative idea of the solution of the present invention is to realize the image data stream from the camera to the head unit (or other end device) on a data encoder chip, preferably by a Low Voltage Differential Signal (LVDS) or Ethernet interface, preferably using a mono coaxial cable and Ethernet encoder chips (in the camera and in the head unit). The Data stream would be mono-directional (such as by utilizing aspects of U.S. provisional application 61/537,279, filed Sep. 21, 2011, which is hereby incorporated herein by reference in its entirety).
(3) Optionally, a further continuative idea is that the control line (HU—Cam) may be realized by a CAN/LIN/other car bus interface or just by a single signal line/wire.
(4) Optionally, and as an alternative to (3), above, the control signal may be transferred via the data encoder chip, preferably by LVDS/Ethernet (data line from (2), above) so the interfaces and data stream are bi-directional.
(5) As solution for the graphic engine (or the image processing) (from (1), above) running on the head unit for a mono or multi camera system, processing the camera control, image dewarp, enhancing, adding overlays, DAS functionality and the like, the software could be running on a hardware added to the head unit.
(6) A continuative idea from (5), above, is to have the head unit connected to a phone or communication device and to one or more cameras (see
(7) As a continuative idea to (6), above, the image processing software is running primarily on the head unit. The image processing software becomes updated from a remote source or device by transferring a data container containing an updated version of the image processing software. The container is a frame which is made individually for each vehicle communication environment. The content is preferably vehicle type and manufacturer independent, so the content may be substantially standardized to keep the variety low. Preferably, the communication device enables an app to carry the container.
The container may also be transported by an audio (voice) channel, SMS, MMS, DSRC, near field communication, via a pier to pier protocol and/or the like (see
(8) In cases where the hardware set up allows bidirectional communication between the head unit and the camera(s) and a phone or communication or between the communication device and the camera(s) directly, there is a continuative idea to (7), above, which may update the camera(s) image processing software by remote transferring data containers via the communication channels mentioned in (7) or by a common bus, or by an OEM service interface within a data container, from the communication device over the head unit to the camera. This may occur at once or step by step. There may be a part of the image processing software at the head unit, and this may be updated as well with the same or a different data container, at the same or another time (see
(9) An addition solution to (7) and (8), above, is to have data security protocols in place making sure no data in the head unit, camera(s) or communication device or conjuncted system's software becomes overwritten or corrupted by wrong versions or by draft versions, or unauthorized versions, or by incomplete data sets or incompatible data sets, or by pirated versions or data sets, or virulent data sets, and/or the like. This task may also be managed by the data container's functionality.
(10a) The data of (9) preferably have been authorized by an application provider or distributor, the camera or image system software provider or distributer or the according OEM in compliance to the local or worldwide legal or OEM's safety standards and testing procedures for safety relevant software and non-safety relevant software, whichever may apply for the particular application.
(10b) As an additional or alternative solution, the image processing may be done in part on the mobile device or cellular phone or smart phone and in part on the head unit or other display device and/or in part in a dedicated image processing unit (see
As an additional aspect to the inventive solution, one of the systems described above may supplement or substitute the vehicle inherent rear camera's image input by an attached (aftermarket) non vehicle inherent camera image. An exemplary use case is shown in
(11) Optionally, the system may use layer based models in the communication architecture between head units, actuators, sensors, communication devices, image processing and/or driver assistant devices, and mobile phones, and may use such layer based models in the driver assistant and safety vision system's cameras this might be new (see
(12) The present invention provides for DAS systems to establish a virtual communication layer, which expands over several devices having the same layer structure, and is connected via the communication hardware physically. The application communication layer communicates via virtual communication layer to other applications which are located on the same or other devices in a manner as if all applications would be on the local device (see
(13) Using the layer model from (12), above, a continuative idea is to transport data containers (from 7) from one device to the other.
(14) The virtual communication layer may have security tasks as well for doing that.
(15) Over these layers (from (12), above) there may become image data, camera control, parameters from sensors and other devices, driver assistant controls exchanged.
(16) Optionally, and as an alternative to (5), above, the graphic engine (or the image processing) of a mono or multi camera car vision system could be part of the head unit's software in full extend or partially, so a routine which preferably is served in real time may be provided. The processing performance and architecture of the head unit and peripheral interfaces has to be chosen or selected accordingly.
(17) Optionally, and as an alternative solution to (5) and (16), above, the head unit may be conjuncted to or connected to or in communication with a mobile device, such as, for example, a mobile infotainment device or a mobile phone. The graphic engine (or the image processing) may be running as an ‘app’ (application) on the mobile device and processing camera images which are not taken by the mobile phone's cameras but preferably taken or captured by a fixed mounted car vision camera or cameras, a wireless or wired aftermarket camera or cameras or a USB camera or cameras plugged into any USB port that is part of the car integrated bus architecture or other car based plug in bus.
(18) Optionally, and as an additional feature to (17), above, the app used in the mobile device is certified by according certification boards of governmental organs or (mobile device) companies and/or OEMs.
(19) Optionally, and as an additional feature to (17) or (18), above, the vision system's additional functions (value added) may be provided separate to the camera with the software installed on the head unit or on the app conjuncted to the head unit or from a cloud server or the like.
(20) Optionally, and as an additional solution to (19), above, the software (SW) or app may additionally compute additional parameters, and may consider or take into account various parameters, such as the steering angle of the vehicle or the like. This might be used for processing graphical steering aid overlays to a rear cameras displayed images while backing up the vehicle or for other driver assistant systems overlays.
(21) Optionally, and as an additional solution to (19) or (20), above, the SW (app) may additionally compute or process more than one camera, and also other driver assistant system sources like ultrasound sensors, Radar sensors, infrared or visual cameras, Lidar or Laser sensors.
(22) Optionally, and as an additional solution to (19) to (21), above, the app may not just visualize driver assistant functions, but may also control driving interventions or active warnings, such as haptic alerts or the like, such as, for example, steering wheel vibrations or foot pedal vibrations or the like.
(23) Optionally, and as an additional solution to (19) to (22), above, the app may be adaptable for being updated, debugged, licensed, remote controlled, purchased, sold on ‘app-stores’ or the like, leased, time limited tried, reimbursed when given back, transferred, and/or the like. Also, the camera or vision system calibration may be running on the app or as an app.
(24) Optionally, and as a consecutive solution to (4), above, the LVDS/Ethernet (or other bus) driver chip may share one device with the imager. Thus, the present invention may provide a nearly monolytic assembly.
(25) Optionally, and as a consecutive solution to (24), above, and instead of having a lens holder as a separate component, the optics of the camera or imager may be incorporated to the compact, monolytic design of the imager device. The lens assembly or optics may comprise one lens or lens optic or optical element, or a plurality of lenses or lens optics, such as many small ones. So called wafer level cameras are state of the art in automotive applications but also incorporating the bus driver is new to such automotive camera applications.
(26) Optionally, any kind of automotive camera including wafer level cameras from (25) above may comprise a tunable liquid (micro-) lens capable to adapt the focal length of the lens. Optionally, the viewing direction may also be tunable by a microelectronic mechanical (MEM) or other mechanical element, either by turning the camera or a mirror that the camera has in its optical path. Such an assembly may be capable to focus on specific details or objects of interest within the field of view to enhance the performance of the object detection of the driver assistant system. Instead of using wide angle cameras (such as like fish eye lens cameras and the like), a focus tunable camera with a generally longer focus band may be used. The full area may be detectable by ‘scanning’ through all of the extensions of the mechanics' displacement angles. By that the same area as that provided by a fisheye lens may be covered but with the ability to perceive the area much better and evenly. The focus point to objects in the area or field of view may be a degree to determine or at least to estimate the distance between the focused object and the camera's imager (as like the eye of a chameleon does). For example, an exterior viewing camera with a relatively narrow field of view (for example, a horizontal field of view of about 40 degrees) can be mechanically moved rapidly so that its field of view scans or senses or rasters across a wider field of view (for example, a horizontal field of view of about 200 degrees). If this mechanical motion of the principal viewing direction of the subject camera is executed fast enough (for example, if an entire scan can be executed in about 30 ms or lower, video captured by the rastering camera, as displayed to the driver on an in-cabin video screen, will be usable to that driver as the rate of movement of the rastering camera exceeds the rate at which the eye perceives.
Also, if the focus of the camera can be varied, this can be used to estimate or determine distance to an object, such as discussed below. For illustrative purposes, assume that the focus-variable lens has a five meter focal point/length and assume that a person is standing 10 meters away from the subject lens/camera. The image of the person as captured by that camera will be out of focus. Then, as the focal point/length is progressively increased to six meters, then seven meters and then eight meters and then nine meters, the person ten meters away from the camera remains out of focus and comes into focus only when the variable-focus lens is set to have an about ten meter focal point/length. Thus, the distance from the camera can be determined or estimated based on varying the focal point/length of the lens and determining when the imaged object comes into focus in the captured images.
The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described above and shown in
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, an array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data. For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or PCT Application No. PCT/US2010/047256, filed Aug. 31, 2010 and published Mar. 10, 2011 as International Publication No. WO 2011/028686 and/or International Publication No. WO 2010/099416, published Sep. 2, 2010, and/or PCT Application No. PCT/US10/25545, filed Feb. 26, 2010 and published Sep. 2, 2010 as International Publication No. WO 2010/099416, and/or PCT Application No. PCT/US2012/048800, filed Jul. 30, 2012, and published on Feb. 7, 2013 as International Publication No. WO 2013019707, and/or PCT Application No. PCT/US2012/048110, filed Jul. 25, 2012, and published Jan. 31, 2013 as International Publication No. WO 2013016409, and/or PCT Application No. PCT/CA2012/000378, filed Apr. 25, 2012, and published on Nov. 1, 2012 as International Publication No. WO 2012145822, and/or PCT Application No. PCT/US2012/056014, filed Sep. 19, 2012, and published on Mar. 28, 2013 as International Publication No. WO 2013043661, and/or PCT Application No. PCT/US12/57007, filed Sep. 25, 2012, and published on Apr. 4, 2013 as International Publication No. WO 2013/048994, and/or PCT Application No. PCT/US2012/061548, filed Oct. 24, 2012, and published May 2, 2013 as International Publication No. WO 2013063014, and/or PCT Application No. PCT/US2012/062906, filed Nov. 1, 2012, and published May 10, 2013 as International Publication No. WO 2013067083, and/or PCT Application No. PCT/US2012/063520, filed Nov. 5, 2012, and published May 16, 2013 as International Publication No. WO 2013070539, and/or PCT Application No. PCT/US2012/064980, filed Nov. 14, 2012, and published May 23, 2013 as International Publication No. WO 2013074604, and/or U.S. patent application Ser. No. 13/660,306, filed Oct. 25, 2012, now U.S. Pat. No. 9,146,898; Ser. No. 13/653,577, filed Oct. 17, 2012, now U.S. Pat. No. 9,174,574; and/or Ser. No. 13/534,657, filed Jun. 27, 2012, and published on Jan. 3, 2013 as U.S. Patent Publication No. US-2013-0002873, and/or U.S. provisional applications, Ser. No. 61/710,924, filed Oct. 8, 2012; Ser. No. 61/696,416, filed Sep. 4, 2012; Ser. No. 61/682,995, filed Aug. 14, 2012; Ser. No. 61/682,486, filed Aug. 13, 2012; Ser. No. 61/680,883, filed Aug. 8, 2012; Ser. No. 61/678,375, filed Aug. 1, 2012; Ser. No. 61/676,405, filed Jul. 27, 2012; Ser. No. 61/666,146, filed Jun. 29, 2012; Ser. No. 61/653,665, filed May 31, 2012; Ser. No. 61/653,664, filed May 31, 2012; Ser. No. 61/648,744, filed May 18, 2012; Ser. No. 61/624,507, filed Apr. 16, 2012; Ser. No. 61/616,126, filed Mar. 27, 2012; Ser. No. 61/615,410, filed Mar. 26, 2012; Ser. No. 61/613,651, filed Mar. 21, 2012; Ser. No. 61/607,229, filed Mar. 6, 2012; Ser. No. 61/602,878, filed Feb. 24, 2012; Ser. No. 61/602,876, filed Feb. 24, 2012; Ser. No. 61/600,205, filed Feb. 17, 2012; Ser. No. 61/588,833, filed Jan. 20, 2012; Ser. No. 61/583,381, filed Jan. 5, 2012; Ser. No. 61/570,017, filed Dec. 13, 2011; Ser. No. 61/568,791, filed Dec. 9, 2011; Ser. No. 61/567,446, filed Dec. 6, 2011; and/or Ser. No. 61/567,150, filed Dec. 6, 2011, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in PCT Application No. PCT/US10/038477, filed Jun. 14, 2010, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, now U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.
The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and 6,824,281, and/or International Publication No. WO 2010/099416, published Sep. 2, 2010, and/or PCT Application No. PCT/US10/47256, filed Aug. 31, 2010 and published Mar. 10, 2011 as International Publication No. WO 2011/028686, and/or U.S. patent application Ser. No. 12/508,840, filed Jul. 24, 2009, and published Jan. 28, 2010 as U.S. Pat. Publication No. US 2010-0020170, and/or PCT Application No. PCT/US2012/048110, filed Jul. 25, 2012, and published Jan. 31, 2013 as International Publication No. WO 2013016409, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012, and published Jan. 3, 2013 as U.S. Patent Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. patent application Ser. No. 12/091,359, filed Apr. 24, 2008 and published Oct. 1, 2009 as U.S. Publication No. US-2009-0244361, and/or Ser. No. 13/260,400, filed Sep. 26, 2011, now U.S. Pat. Nos. 8,542,451, and/or 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606 and/or 7,720,580, and/or U.S. patent application Ser. No. 10/534,632, filed May 11, 2005, now U.S. Pat. No. 7,965,336; and/or PCT Application No. PCT/US2008/076022, filed Sep. 11, 2008 and published Mar. 19, 2009 as International Publication No. WO 2009/036176, and/or PCT Application No. PCT/US2008/078700, filed Oct. 3, 2008 and published Apr. 9, 2009 as International Publication No. WO 2009/046268, which are all hereby incorporated herein by reference in their entireties.
The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, and/or U.S. patent application Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.
Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451 and/or 7,480,149; and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, and/or Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.
Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in PCT Application No. PCT/US2011/056295, filed Oct. 14, 2011 and published Apr. 19, 2012 as International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).
Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in PCT Application No. PCT/US10/25545, filed Feb. 26, 2010 and published on Sep. 2, 2010 as International Publication No. WO 2010/099416, and/or PCT Application No. PCT/US10/47256, filed Aug. 31, 2010 and published Mar. 10, 2011 as International Publication No. WO 2011/028686, and/or PCT Application No. PCT/US2011/062834, filed Dec. 1, 2011 and published Jun. 7, 2012 as International Publication No. WO 2012/075250, and/or PCT Application No. PCT/US2012/048993, filed Jul. 31, 2012, and published Feb. 7, 2013 as International Publication No. WO 2013019795, and/or PCT Application No. PCT/US11/62755, filed Dec. 1, 2011 and published Jun. 7, 2012 as International Publication No. WO 2012-075250, and/or PCT Application No. PCT/CA2012/000378, filed Apr. 25, 2012, and published Nov. 1, 2012 as International Publication No. WO 2012145822, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, and/or U.S. provisional applications, Ser. No. 61/615,410, filed Mar. 26, 2012; Ser. No. 61/588,833, filed Jan. 20, 2012; Ser. No. 61/570,017, filed Dec. 13, 2011; and/or Ser. No. 61/568,791, filed Dec. 9, 2011, which are hereby incorporated herein by reference in their entireties.
Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. patent application Ser. No. 12/091,525, filed Apr. 25, 2008, now U.S. Pat. No. 7,855,755; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008; and/or Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.
Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and 6,124,886, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.
Changes and modifications to the specifically described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law.
The present application is a continuation of U.S. patent application Ser. No. 14/359,341, filed May 20, 2014, now U.S. Pat. No. 10,071,687, which is a 371 national phase filing of PCT Application No. PCT/US2012/066571, filed Nov. 27, 2012, which claims the filing benefit of U.S. provisional applications, Ser. No. 61/650,667, filed May 23, 2012; Ser. No. 61/605,409, filed Mar. 1, 2012; Ser. No. 61/579,682, filed Dec. 23, 2011; Ser. No. 61/565,713, filed Dec. 1, 2011; and Ser. No. 61/563,965, filed Nov. 28, 2011, which are hereby incorporated herein by reference in their entireties, and U.S. patent application Ser. No. 14/359,341 is a continuation-in-part of PCT/US2012/066570, filed Nov. 27, 2012, which claims the filing benefit of U.S. provisional applications, Ser. No. 61/605,409, filed Mar. 1, 2012, and Ser. No. 61/563,965, filed Nov. 28, 2011.
Number | Name | Date | Kind |
---|---|---|---|
4443769 | Aschwanden et al. | Apr 1984 | A |
4485398 | Chapin, Jr. et al. | Nov 1984 | A |
4720790 | Miki et al. | Jan 1988 | A |
4967319 | Seko | Oct 1990 | A |
4970653 | Kenue | Nov 1990 | A |
4987357 | Masaki | Jan 1991 | A |
4991054 | Walters | Feb 1991 | A |
5001558 | Burley et al. | Mar 1991 | A |
5003288 | Wilhelm | Mar 1991 | A |
5012082 | Watanabe | Apr 1991 | A |
5016977 | Baude et al. | May 1991 | A |
5027001 | Torbert | Jun 1991 | A |
5027200 | Petrossian et al. | Jun 1991 | A |
5044706 | Chen | Sep 1991 | A |
5055668 | French | Oct 1991 | A |
5059877 | Teder | Oct 1991 | A |
5064274 | Alten | Nov 1991 | A |
5072154 | Chen | Dec 1991 | A |
5086253 | Lawler | Feb 1992 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5097362 | Lynas | Mar 1992 | A |
5121200 | Choi | Jun 1992 | A |
5124549 | Michaels et al. | Jun 1992 | A |
5130709 | Toyama et al. | Jul 1992 | A |
5168378 | Black | Dec 1992 | A |
5170374 | Shimohigashi et al. | Dec 1992 | A |
5172235 | Wilm et al. | Dec 1992 | A |
5177606 | Koshizawa | Jan 1993 | A |
5177685 | Davis et al. | Jan 1993 | A |
5182502 | Slotkowski et al. | Jan 1993 | A |
5184956 | Langlais et al. | Feb 1993 | A |
5189561 | Hong | Feb 1993 | A |
5193000 | Lipton et al. | Mar 1993 | A |
5193029 | Schofield et al. | Mar 1993 | A |
5204778 | Bechtel | Apr 1993 | A |
5208701 | Maeda | May 1993 | A |
5208750 | Kurami et al. | May 1993 | A |
5214408 | Asayama | May 1993 | A |
5243524 | Ishida et al. | Sep 1993 | A |
5245422 | Borcherts et al. | Sep 1993 | A |
5255442 | Schierbeek et al. | Oct 1993 | A |
5276389 | Levers | Jan 1994 | A |
5285060 | Larson et al. | Feb 1994 | A |
5289182 | Brillard et al. | Feb 1994 | A |
5289321 | Secor | Feb 1994 | A |
5305012 | Faris | Apr 1994 | A |
5307136 | Saneyoshi | Apr 1994 | A |
5309137 | Kajiwara | May 1994 | A |
5313072 | Vachss | May 1994 | A |
5325096 | Pakett | Jun 1994 | A |
5325386 | Jewell et al. | Jun 1994 | A |
5329206 | Slotkowski et al. | Jul 1994 | A |
5331312 | Kudoh | Jul 1994 | A |
5336980 | Levers | Aug 1994 | A |
5341437 | Nakayama | Aug 1994 | A |
5351044 | Mathur et al. | Sep 1994 | A |
5355118 | Fukuhara | Oct 1994 | A |
5374852 | Parkes | Dec 1994 | A |
5386285 | Asayama | Jan 1995 | A |
5394333 | Kao | Feb 1995 | A |
5406395 | Wilson et al. | Apr 1995 | A |
5408346 | Trissel et al. | Apr 1995 | A |
5410346 | Saneyoshi et al. | Apr 1995 | A |
5414257 | Stanton | May 1995 | A |
5414461 | Kishi | May 1995 | A |
5416313 | Larson et al. | May 1995 | A |
5416318 | Hegyi | May 1995 | A |
5416478 | Morinaga | May 1995 | A |
5424952 | Asayama | Jun 1995 | A |
5426294 | Kobayashi et al. | Jun 1995 | A |
5430431 | Nelson | Jul 1995 | A |
5434407 | Bauer et al. | Jul 1995 | A |
5440428 | Klegg et al. | Aug 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5451822 | Bechtel et al. | Sep 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5461357 | Yoshioka et al. | Oct 1995 | A |
5461361 | Moore | Oct 1995 | A |
5469298 | Suman et al. | Nov 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5475494 | Nishida et al. | Dec 1995 | A |
5497306 | Pastrick | Mar 1996 | A |
5498866 | Bendicks et al. | Mar 1996 | A |
5500766 | Stonecypher | Mar 1996 | A |
5510983 | Lino | Apr 1996 | A |
5515448 | Nishitani | May 1996 | A |
5521633 | Nakajima et al. | May 1996 | A |
5528698 | Kamei | Jun 1996 | A |
5529138 | Shaw et al. | Jun 1996 | A |
5530240 | Larson et al. | Jun 1996 | A |
5530420 | Tsuchiya et al. | Jun 1996 | A |
5535144 | Kise | Jul 1996 | A |
5535314 | Alves et al. | Jul 1996 | A |
5537003 | Bechtel et al. | Jul 1996 | A |
5539397 | Asanuma et al. | Jul 1996 | A |
5541590 | Nishio | Jul 1996 | A |
5550677 | Schofield et al. | Aug 1996 | A |
5555555 | Sato et al. | Sep 1996 | A |
5568027 | Teder | Oct 1996 | A |
5574443 | Hsieh | Nov 1996 | A |
5581464 | Woll et al. | Dec 1996 | A |
5594222 | Caldwell | Jan 1997 | A |
5610756 | Lynam et al. | Mar 1997 | A |
5614788 | Mullins | Mar 1997 | A |
5619370 | Guinosso | Apr 1997 | A |
5632092 | Blank et al. | May 1997 | A |
5634709 | Iwama | Jun 1997 | A |
5642299 | Hardin et al. | Jun 1997 | A |
5648835 | Uzawa | Jul 1997 | A |
5650944 | Kise | Jul 1997 | A |
5660454 | Mod et al. | Aug 1997 | A |
5661303 | Teder | Aug 1997 | A |
5666028 | Bechtel et al. | Sep 1997 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5677851 | Kingdon et al. | Oct 1997 | A |
5699044 | Van Lente et al. | Dec 1997 | A |
5724316 | Brunts | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5737226 | Olson et al. | Apr 1998 | A |
5757949 | Kinoshita et al. | May 1998 | A |
5760826 | Nayar | Jun 1998 | A |
5760828 | Cortes | Jun 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5760962 | Schofield et al. | Jun 1998 | A |
5761094 | Olson et al. | Jun 1998 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5765118 | Fukatani | Jun 1998 | A |
5781437 | Wiemer et al. | Jul 1998 | A |
5786772 | Schofield et al. | Jul 1998 | A |
5790403 | Nakayama | Aug 1998 | A |
5790973 | Blaker | Aug 1998 | A |
5793308 | Rosinski et al. | Aug 1998 | A |
5793420 | Schmidt | Aug 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5835255 | Miles | Nov 1998 | A |
5837994 | Stam et al. | Nov 1998 | A |
5844505 | Van Ryzin | Dec 1998 | A |
5844682 | Kiyomoto et al. | Dec 1998 | A |
5845000 | Breed et al. | Dec 1998 | A |
5848802 | Breed et al. | Dec 1998 | A |
5850176 | Kinoshita et al. | Dec 1998 | A |
5850254 | Takano et al. | Dec 1998 | A |
5867591 | Onda | Feb 1999 | A |
5877707 | Kowalick | Mar 1999 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5878370 | Olson | Mar 1999 | A |
5883739 | Ashihara et al. | Mar 1999 | A |
5884212 | Lion | Mar 1999 | A |
5890021 | Onoda | Mar 1999 | A |
5896085 | Mori et al. | Apr 1999 | A |
5899956 | Chan | May 1999 | A |
5915800 | Hiwatashi et al. | Jun 1999 | A |
5920367 | Kajimoto et al. | Jul 1999 | A |
5923027 | Stam et al. | Jul 1999 | A |
5924212 | Domanski | Jul 1999 | A |
5929786 | Schofield et al. | Jul 1999 | A |
5956181 | Lin | Sep 1999 | A |
5959555 | Furuta | Sep 1999 | A |
5963247 | Banitt | Oct 1999 | A |
5986796 | Miles | Nov 1999 | A |
5990469 | Bechtel et al. | Nov 1999 | A |
5990649 | Nagao et al. | Nov 1999 | A |
6020704 | Buschur | Feb 2000 | A |
6049171 | Stam et al. | Apr 2000 | A |
6052124 | Stein et al. | Apr 2000 | A |
6066933 | Ponziana | May 2000 | A |
6084519 | Coulling et al. | Jul 2000 | A |
6091833 | Yasui et al. | Jul 2000 | A |
6097024 | Stam et al. | Aug 2000 | A |
6100799 | Fenk | Aug 2000 | A |
6100811 | Hsu et al. | Aug 2000 | A |
6115159 | Baker | Sep 2000 | A |
6144022 | Tenenbaum et al. | Nov 2000 | A |
6175300 | Kendrick | Jan 2001 | B1 |
6178034 | Allemand et al. | Jan 2001 | B1 |
6198409 | Schofield et al. | Mar 2001 | B1 |
6201642 | Bos | Mar 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6226061 | Tagusa | May 2001 | B1 |
6227689 | Miller | May 2001 | B1 |
6250148 | Lynam | Jun 2001 | B1 |
6259423 | Tokito et al. | Jul 2001 | B1 |
6266082 | Yonezawa et al. | Jul 2001 | B1 |
6266442 | Laumeyer et al. | Jul 2001 | B1 |
6285393 | Shimoura et al. | Sep 2001 | B1 |
6285778 | Nakajima et al. | Sep 2001 | B1 |
6294989 | Schofield et al. | Sep 2001 | B1 |
6297781 | Turnbull et al. | Oct 2001 | B1 |
6302545 | Schofield et al. | Oct 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6313454 | Bos et al. | Nov 2001 | B1 |
6317057 | Lee | Nov 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6333759 | Mazzilli | Dec 2001 | B1 |
6341523 | Lynam | Jan 2002 | B2 |
6353392 | Schofield et al. | Mar 2002 | B1 |
6370329 | Teuchert | Apr 2002 | B1 |
6392315 | Jones et al. | May 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6411204 | Bloomfield et al. | Jun 2002 | B1 |
6420975 | DeLine et al. | Jul 2002 | B1 |
6424273 | Gutta et al. | Jul 2002 | B1 |
6430303 | Naoi et al. | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6477326 | Partynski | Nov 2002 | B1 |
6477464 | McCarthy et al. | Nov 2002 | B2 |
6497503 | Dassanayake et al. | Dec 2002 | B1 |
6498620 | Schofield et al. | Dec 2002 | B2 |
6516664 | Lynam | Feb 2003 | B2 |
6523964 | Schofield et al. | Feb 2003 | B2 |
6534884 | Marcus et al. | Mar 2003 | B2 |
6539306 | Turnbull | Mar 2003 | B2 |
6547133 | Devries, Jr. et al. | Apr 2003 | B1 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6559435 | Schofield et al. | May 2003 | B2 |
6570998 | Ohtsuka et al. | May 2003 | B1 |
6574033 | Chui et al. | Jun 2003 | B1 |
6578017 | Ebersole et al. | Jun 2003 | B1 |
6587573 | Stam et al. | Jul 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6593011 | Liu et al. | Jul 2003 | B2 |
6593698 | Stam et al. | Jul 2003 | B2 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6605775 | Seeber et al. | Aug 2003 | B1 |
6611202 | Schofield et al. | Aug 2003 | B2 |
6611610 | Stam et al. | Aug 2003 | B1 |
6627918 | Getz et al. | Sep 2003 | B2 |
6631316 | Stam et al. | Oct 2003 | B2 |
6631994 | Suzuki et al. | Oct 2003 | B2 |
6636258 | Strumolo | Oct 2003 | B2 |
6648477 | Hutzel et al. | Nov 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6672731 | Schnell et al. | Jan 2004 | B2 |
6674562 | Miles | Jan 2004 | B1 |
6678056 | Downs | Jan 2004 | B2 |
6678614 | McCarthy et al. | Jan 2004 | B2 |
6680792 | Miles | Jan 2004 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6700605 | Toyoda et al. | Mar 2004 | B1 |
6703925 | Steffel | Mar 2004 | B2 |
6704621 | Stein et al. | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6711474 | Treyz et al. | Mar 2004 | B1 |
6714331 | Lewis et al. | Mar 2004 | B2 |
6717610 | Bos et al. | Apr 2004 | B1 |
6735506 | Breed et al. | May 2004 | B2 |
6741377 | Miles | May 2004 | B2 |
6744353 | Sjonell | Jun 2004 | B2 |
6757109 | Bos | Jun 2004 | B2 |
6762867 | Lippert et al. | Jul 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6795221 | Urey | Sep 2004 | B1 |
6802617 | Schofield et al. | Oct 2004 | B2 |
6806452 | Bos et al. | Oct 2004 | B2 |
6807287 | Hermans | Oct 2004 | B1 |
6819231 | Berberich et al. | Nov 2004 | B2 |
6822563 | Bos et al. | Nov 2004 | B2 |
6823241 | Shirato et al. | Nov 2004 | B2 |
6824281 | Schofield et al. | Nov 2004 | B2 |
6850156 | Bloomfield et al. | Feb 2005 | B2 |
6864930 | Matsushita et al. | Mar 2005 | B2 |
6882287 | Schofield | Apr 2005 | B2 |
6889161 | Winner et al. | May 2005 | B2 |
6909753 | Meehan et al. | Jun 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
6953253 | Schofield et al. | Oct 2005 | B2 |
6968736 | Lynam | Nov 2005 | B2 |
6975775 | Rykowski et al. | Dec 2005 | B2 |
6989736 | Berberich et al. | Jan 2006 | B2 |
7004606 | Schofield | Feb 2006 | B2 |
7005974 | McMahon et al. | Feb 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7062300 | Kim | Jun 2006 | B1 |
7065432 | Moisel et al. | Jun 2006 | B2 |
7079017 | Lang et al. | Jul 2006 | B2 |
7085637 | Breed et al. | Aug 2006 | B2 |
7092548 | Laumeyer et al. | Aug 2006 | B2 |
7111968 | Bauer et al. | Sep 2006 | B2 |
7113867 | Stein | Sep 2006 | B1 |
7116246 | Winter et al. | Oct 2006 | B2 |
7123168 | Schofield | Oct 2006 | B2 |
7133661 | Hatae et al. | Nov 2006 | B2 |
7136753 | Samukawa et al. | Nov 2006 | B2 |
7145519 | Takahashi et al. | Dec 2006 | B2 |
7149613 | Stam et al. | Dec 2006 | B2 |
7151996 | Stein | Dec 2006 | B2 |
7161616 | Okamoto et al. | Jan 2007 | B1 |
7167796 | Taylor et al. | Jan 2007 | B2 |
7195381 | Lynam et al. | Mar 2007 | B2 |
7202776 | Breed | Apr 2007 | B2 |
7227611 | Hull et al. | Jun 2007 | B2 |
7230640 | Regensburger et al. | Jun 2007 | B2 |
7248283 | Takagi et al. | Jul 2007 | B2 |
7295229 | Kumata et al. | Nov 2007 | B2 |
7311406 | Schofield et al. | Dec 2007 | B2 |
7325934 | Schofield et al. | Feb 2008 | B2 |
7325935 | Schofield et al. | Feb 2008 | B2 |
7336299 | Kostrzewski et al. | Feb 2008 | B2 |
7338177 | Lynam | Mar 2008 | B2 |
7365769 | Mager | Apr 2008 | B1 |
7370983 | DeWind et al. | May 2008 | B2 |
7375803 | Bamji | May 2008 | B1 |
7380948 | Schofield et al. | Jun 2008 | B2 |
7381089 | Hosier, Sr. | Jun 2008 | B2 |
7388182 | Schofield et al. | Jun 2008 | B2 |
7402786 | Schofield et al. | Jul 2008 | B2 |
7423821 | Bechtel et al. | Sep 2008 | B2 |
7460951 | Altan | Dec 2008 | B2 |
7480149 | DeWard et al. | Jan 2009 | B2 |
7482916 | Au et al. | Jan 2009 | B2 |
7490007 | Taylor et al. | Feb 2009 | B2 |
7492281 | Lynam et al. | Feb 2009 | B2 |
7526103 | Schofield et al. | Apr 2009 | B2 |
7532109 | Takahama et al. | May 2009 | B2 |
7541743 | Salmeen et al. | Jun 2009 | B2 |
7561181 | Schofield et al. | Jul 2009 | B2 |
7565006 | Stam et al. | Jul 2009 | B2 |
7566851 | Stein et al. | Jul 2009 | B2 |
7567291 | Bechtel et al. | Jul 2009 | B2 |
7576767 | Lee et al. | Aug 2009 | B2 |
7581859 | Lynam | Sep 2009 | B2 |
7592928 | Chinomi et al. | Sep 2009 | B2 |
7605856 | Imoto | Oct 2009 | B2 |
7616781 | Schofield et al. | Nov 2009 | B2 |
7619508 | Lynam et al. | Nov 2009 | B2 |
7633383 | Dunsmoir et al. | Dec 2009 | B2 |
7639149 | Katoh | Dec 2009 | B2 |
7681960 | Wanke et al. | Mar 2010 | B2 |
7711201 | Wong et al. | May 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7724962 | Zhu et al. | May 2010 | B2 |
7777611 | Desai | Aug 2010 | B2 |
7786898 | Stein et al. | Aug 2010 | B2 |
7792329 | Schofield et al. | Sep 2010 | B2 |
7843451 | Lafon | Nov 2010 | B2 |
7855755 | Weller et al. | Dec 2010 | B2 |
7855778 | Yung et al. | Dec 2010 | B2 |
7881496 | Camilleri et al. | Feb 2011 | B2 |
7914187 | Higgins-Luthman et al. | Mar 2011 | B2 |
7925441 | Maemura | Apr 2011 | B2 |
7930160 | Hosagrahara et al. | Apr 2011 | B1 |
7949486 | Denny et al. | May 2011 | B2 |
7952490 | Fechner et al. | May 2011 | B2 |
7965336 | Bingle et al. | Jun 2011 | B2 |
8009868 | Abe | Aug 2011 | B2 |
8013780 | Lynam | Sep 2011 | B2 |
8017898 | Lu et al. | Sep 2011 | B2 |
8027029 | Lu et al. | Sep 2011 | B2 |
8058977 | Lynam | Nov 2011 | B2 |
8064643 | Stein et al. | Nov 2011 | B2 |
8072486 | Namba et al. | Dec 2011 | B2 |
8082101 | Stein et al. | Dec 2011 | B2 |
8090976 | Maciver et al. | Jan 2012 | B2 |
8134596 | Lei et al. | Mar 2012 | B2 |
8164628 | Stein et al. | Apr 2012 | B2 |
8203440 | Schofield et al. | Jun 2012 | B2 |
8224031 | Saito | Jul 2012 | B2 |
8233045 | Luo et al. | Jul 2012 | B2 |
8254635 | Stein et al. | Aug 2012 | B2 |
8294563 | Shimoda et al. | Oct 2012 | B2 |
8300886 | Hoffmann | Oct 2012 | B2 |
8320628 | Cheng et al. | Nov 2012 | B2 |
8340866 | Hanzawa et al. | Dec 2012 | B2 |
8378851 | Stein et al. | Feb 2013 | B2 |
8421865 | Euler et al. | Apr 2013 | B2 |
8452055 | Stein et al. | May 2013 | B2 |
8502860 | Demirdjian | Aug 2013 | B2 |
8553088 | Stein et al. | Oct 2013 | B2 |
8849495 | Chundrik, Jr. et al. | Sep 2014 | B2 |
8908039 | De Wind et al. | Dec 2014 | B2 |
9019090 | Weller et al. | Apr 2015 | B2 |
9041806 | Baur et al. | May 2015 | B2 |
9090234 | Johnson et al. | Jul 2015 | B2 |
9092986 | Salomonsson et al. | Jul 2015 | B2 |
9146898 | Ihlenburg et al. | Sep 2015 | B2 |
9205776 | Turk | Dec 2015 | B2 |
9210307 | Gebauer et al. | Dec 2015 | B2 |
9900490 | Ihlenburg et al. | Feb 2018 | B2 |
10071687 | Ihlenburg et al. | Sep 2018 | B2 |
20020005778 | Breed et al. | Jan 2002 | A1 |
20020011611 | Huang et al. | Jan 2002 | A1 |
20020015153 | Downs | Feb 2002 | A1 |
20020037054 | Schurig | Mar 2002 | A1 |
20020044065 | Quist et al. | Apr 2002 | A1 |
20020113873 | Williams | Aug 2002 | A1 |
20020116106 | Breed et al. | Aug 2002 | A1 |
20020149679 | Deangelis et al. | Oct 2002 | A1 |
20030103142 | Hitomi et al. | Jun 2003 | A1 |
20030137586 | Lewellen | Jul 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20040032321 | McMahon et al. | Feb 2004 | A1 |
20040114381 | Salmeen et al. | Jun 2004 | A1 |
20040164228 | Fogg et al. | Aug 2004 | A1 |
20050078389 | Kulas et al. | Apr 2005 | A1 |
20050134983 | Lynam | Jun 2005 | A1 |
20050219852 | Stam et al. | Oct 2005 | A1 |
20050237385 | Kosaka et al. | Oct 2005 | A1 |
20050264891 | Uken et al. | Dec 2005 | A1 |
20060018511 | Stam et al. | Jan 2006 | A1 |
20060018512 | Stam et al. | Jan 2006 | A1 |
20060061008 | Kamer et al. | Mar 2006 | A1 |
20060072011 | Okada | Apr 2006 | A1 |
20060091813 | Stam et al. | May 2006 | A1 |
20060103727 | Tseng | May 2006 | A1 |
20060133476 | Page | Jun 2006 | A1 |
20060164221 | Jensen | Jul 2006 | A1 |
20060212624 | Kim | Sep 2006 | A1 |
20060232670 | Chu | Oct 2006 | A1 |
20060250501 | Widmann et al. | Nov 2006 | A1 |
20060254805 | Scherer et al. | Nov 2006 | A1 |
20060255920 | Maeda et al. | Nov 2006 | A1 |
20060290479 | Akatsuka et al. | Dec 2006 | A1 |
20070024724 | Stein et al. | Feb 2007 | A1 |
20070103313 | Washington | May 2007 | A1 |
20070104476 | Yasutomi et al. | May 2007 | A1 |
20070242339 | Bradley | Oct 2007 | A1 |
20070257923 | Whitby-Strevens | Nov 2007 | A1 |
20080043099 | Stein | Feb 2008 | A1 |
20080063129 | Voutilainen | Mar 2008 | A1 |
20080147321 | Howard et al. | Jun 2008 | A1 |
20080150814 | Hedou | Jun 2008 | A1 |
20080166024 | Iketani | Jul 2008 | A1 |
20080192132 | Bechtel et al. | Aug 2008 | A1 |
20080266396 | Stein | Oct 2008 | A1 |
20090024756 | Spalla et al. | Jan 2009 | A1 |
20090093938 | Isaji et al. | Apr 2009 | A1 |
20090113509 | Tseng et al. | Apr 2009 | A1 |
20090160987 | Bechtel et al. | Jun 2009 | A1 |
20090171559 | Lehtiniemi et al. | Jul 2009 | A1 |
20090177347 | Breuer et al. | Jul 2009 | A1 |
20090190015 | Bechtel et al. | Jul 2009 | A1 |
20090243824 | Peterson et al. | Oct 2009 | A1 |
20090244361 | Gebauer et al. | Oct 2009 | A1 |
20090256938 | Bechtel et al. | Oct 2009 | A1 |
20090265069 | Desbrunes | Oct 2009 | A1 |
20090273524 | Furuya | Nov 2009 | A1 |
20090290032 | Zhang et al. | Nov 2009 | A1 |
20090295181 | Lawlor et al. | Dec 2009 | A1 |
20100020170 | Higgins-Luthman et al. | Jan 2010 | A1 |
20100076621 | Kubotani et al. | Mar 2010 | A1 |
20100088021 | Viner | Apr 2010 | A1 |
20100097469 | Blank et al. | Apr 2010 | A1 |
20100097519 | Byrne et al. | Apr 2010 | A1 |
20100110939 | Fukuda | May 2010 | A1 |
20100118145 | Betham et al. | May 2010 | A1 |
20100228437 | Hanzawa et al. | Sep 2010 | A1 |
20100231409 | Okada et al. | Sep 2010 | A1 |
20100296519 | Jones | Nov 2010 | A1 |
20110115615 | Luo et al. | May 2011 | A1 |
20110141381 | Minikey, Jr. et al. | Jun 2011 | A1 |
20110157309 | Bennett et al. | Jun 2011 | A1 |
20110193961 | Peterson | Aug 2011 | A1 |
20110216201 | McAndrew et al. | Sep 2011 | A1 |
20110224978 | Sawada | Sep 2011 | A1 |
20110228088 | Gloger | Sep 2011 | A1 |
20110257973 | Chutorash et al. | Oct 2011 | A1 |
20110286544 | Avudainayagam et al. | Nov 2011 | A1 |
20120044066 | Mauderer et al. | Feb 2012 | A1 |
20120045112 | Lundblad et al. | Feb 2012 | A1 |
20120050550 | Oba et al. | Mar 2012 | A1 |
20120062743 | Lynam et al. | Mar 2012 | A1 |
20120069184 | Hoffmann | Mar 2012 | A1 |
20120069185 | Stein | Mar 2012 | A1 |
20120127062 | Bar-Zeev | May 2012 | A1 |
20120154591 | Baur et al. | Jun 2012 | A1 |
20120186447 | Hodgson et al. | Jul 2012 | A1 |
20120200707 | Stein et al. | Aug 2012 | A1 |
20120218412 | Dellantoni et al. | Aug 2012 | A1 |
20120239242 | Uehara | Sep 2012 | A1 |
20120245817 | Cooprider et al. | Sep 2012 | A1 |
20120262340 | Hassan et al. | Oct 2012 | A1 |
20120287140 | Lin et al. | Nov 2012 | A1 |
20120303222 | Cooprider et al. | Nov 2012 | A1 |
20120314071 | Rosenbaum et al. | Dec 2012 | A1 |
20120320209 | Vico et al. | Dec 2012 | A1 |
20130103259 | Eng | Apr 2013 | A1 |
20130116859 | Ihienburg et al. | May 2013 | A1 |
20130124052 | Hahne | May 2013 | A1 |
20130129150 | Saito | May 2013 | A1 |
20130131918 | Hahne | May 2013 | A1 |
20130134964 | Ahrentorp et al. | May 2013 | A1 |
20130141578 | Chundrlik, Jr. et al. | Jun 2013 | A1 |
20130141580 | Stein et al. | Jun 2013 | A1 |
20130147957 | Stein | Jun 2013 | A1 |
20130169812 | Lu et al. | Jul 2013 | A1 |
20130187445 | Mutzabaugh | Jul 2013 | A1 |
20130222593 | Byrne et al. | Aug 2013 | A1 |
20130242413 | Baba | Sep 2013 | A1 |
20130278769 | Nix et al. | Oct 2013 | A1 |
20130286193 | Pflug | Oct 2013 | A1 |
20130314503 | Nix et al. | Nov 2013 | A1 |
20130328672 | Sesti et al. | Dec 2013 | A1 |
20140009633 | Chopra et al. | Jan 2014 | A1 |
20140043473 | Gupta et al. | Feb 2014 | A1 |
20140063254 | Shi et al. | Mar 2014 | A1 |
20140067206 | Pflug | Mar 2014 | A1 |
20140098229 | Lu et al. | Apr 2014 | A1 |
20140152778 | Ihlenburg et al. | Jun 2014 | A1 |
20140156157 | Johnson et al. | Jun 2014 | A1 |
20140160291 | Schaffner | Jun 2014 | A1 |
20140176711 | Kirchner et al. | Jun 2014 | A1 |
20140218529 | Mahmoud et al. | Aug 2014 | A1 |
20140218531 | Michiguchi | Aug 2014 | A1 |
20140218535 | Ihlenburg et al. | Aug 2014 | A1 |
20140222280 | Salomonsson et al. | Aug 2014 | A1 |
20140247352 | Rathi et al. | Sep 2014 | A1 |
20140247354 | Knudsen | Sep 2014 | A1 |
20140247355 | Ihlenburg | Sep 2014 | A1 |
20140313339 | Diessner | Oct 2014 | A1 |
20140320658 | Pliefke | Oct 2014 | A1 |
20140333729 | Pflug | Nov 2014 | A1 |
20140340510 | Ihlenburg et al. | Nov 2014 | A1 |
20140347486 | Okouneva | Nov 2014 | A1 |
20140362209 | Ziegenspeck et al. | Dec 2014 | A1 |
20140373345 | Steigerwald | Dec 2014 | A1 |
20140379233 | Chundrlik, Jr. et al. | Dec 2014 | A1 |
20150042807 | Ihlenburg et al. | Feb 2015 | A1 |
20150156383 | Biemer et al. | Jun 2015 | A1 |
20150222795 | Sauer et al. | Aug 2015 | A1 |
20150232030 | Bongwald | Aug 2015 | A1 |
20150294169 | Zhou et al. | Oct 2015 | A1 |
20150296135 | Wacquant et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
1115250 | Jul 2001 | EP |
2377094 | Oct 2011 | EP |
2667325 | Nov 2013 | EP |
H1168538 | Jul 1989 | JP |
200274339 | Mar 2002 | JP |
2012139636 | Oct 2012 | WO |
2012139660 | Oct 2012 | WO |
2012143036 | Oct 2012 | WO |
Entry |
---|
Achler et al., “Vehicle Wheel Detector using 2D Filter Banks,” IEEE Intelligent Vehicles Symposium of Jun. 2004. |
Behringer et al., “Simultaneous Estimation of Pitch Angle and Lane Width from the Video Image of a Marked Road,” pp. 966-973, Sep. 12-16, 1994. |
Broggi et al., “Multi-Resolution Vehicle Detection using Artificial Vision,” IEEE Intelligent Vehicles Symposium of Jun. 2004. |
Kastrinaki et al., “A survey of video processing techniques for traffic applications”. |
Philomin et al., “Pedestrain Tracking from a Moving Vehicle”. |
Sahli et al., “A Kalman Filter-Based Update Scheme for Road Following,” IAPR Workshop on Machine Vision Applications, pp. 5-9, Nov. 12-14, 1996. |
Sun et al., “On-road vehicle detection using optical sensors: a review”, IEEE Conference on Intelligent Transportation Systems, 2004. |
Van Leeuwen et al., “Motion Estimation with a Mobile Camera for Traffic Applications”, IEEE, US, vol. 1, Oct. 3, 2000, pp. 58-63. |
Van Leeuwen et al., “Motion Interpretation for In-Car Vision Systems”, IEEE, US, vol. 1, Sep. 30, 2002, p. 135-140. |
Van Leeuwen et al., “Real-Time Vehicle Tracking in Image Sequences”, IEEE, US, vol. 3, May 21, 2001, pp. 2049-2054, XP010547308. |
Van Leeuwen et al., “Requirements for Motion Estimation in Image Sequences for Traffic Applications”, IEEE, US, vol. 1, May 24, 1999, pp. 145-150, XP010340272. |
International Search Report and Written Opinion dated Feb. 8, 213 for PCT Application No. PCT/US2012/066571. |
Number | Date | Country | |
---|---|---|---|
20190001889 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
61650667 | May 2012 | US | |
61605409 | Mar 2012 | US | |
61579682 | Dec 2011 | US | |
61565713 | Dec 2011 | US | |
61563965 | Nov 2011 | US | |
61605409 | Mar 2012 | US | |
61563965 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14359341 | May 2014 | US |
Child | 16125903 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2012/066570 | US | |
Child | 14359341 | US |