The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
The drawings are for the purpose of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings.
Listening to media content out loud can be a social activity that involves family, friends, and guests. Media content may include, for instance, talk radio, books, audio from television, music stored on a local drive, music from media sources (e.g., Pandora® Radio, Spotify®, Slacker®, Radio, Google Play™, iTunes Radio), and other audible material. In a household, for example, people may play music out loud at parties and other social gatherings. In such an environment, people may wish to play the music in one listening zone or multiple listening zones simultaneously, such that the music in each listening zone may be synchronized, without audible echoes or glitches.
Such an experience may be enriched when voice commands are used to control an audio playback device or system, among other devices in a household (e.g., lights). For example, a user may wish to change the audio content, playlist, or listening zone, add a music track to a playlist or playback queue, or change a playback setting (e.g., play, pause, next track, previous track, playback volume, and EQ settings, among others) using various voice commands. Some example audio playback devices or systems may include a microphone to detect such voice commands.
In some cases, listening to media content out loud is an individual experience. For example, an individual may play music out loud for themselves in the morning before work, during a workout, in the evening during dinner, or at other times throughout the day at home or at work. For these individual experiences, the individual may choose to limit the playback of audio content to a single listening zone or area. Such an experience may be enriched when an individual can use a voice command to choose a listening zone, audio content, and playback settings, among other settings.
In some instances, networked microphone devices (NMDs) may be used to control a household. An NMD may be, for example, a SONOS® playback device, server, or system capable of receiving voice input via a microphone. Additionally, an NMD may be a device other than a SONOS® playback device, server, or system (e.g., AMAZON® ECHO®, APPLE® IPHONE®) capable of receiving voice inputs via a microphone. U.S. application Ser. No. 15/098,867 entitled, “Default Playback Device Designation,” which is hereby incorporated by reference, provides examples of voice-enabled household architectures.
In some conventional approaches, a single NMD may independently receive or process voice inputs or commands. Indeed, some commercially-available devices contemplate the presence of a single NMD. Accordingly, in a situation where multiple such conventional NMDs are present in a single location, the conventional NMDs might react independently to a single voice input. In such a household in which multiple NMDs are present, coordinating and identifying a set of NMDs from which to determine a voice command from the voice recordings of respective NMDs may provide an improved voice recognition technique that enhances user experience.
In some examples, NMDs in a given household may each have one or more microphones to record voice inputs or commands from a user. A computing device may receive a set of respective voice recordings from one or more NMDs and process the voice recordings locally at the computing device or remotely on another device that is connected to the computing device by way of one or more networks. For example, the computing device may communicate with a networked microphone system server, one or more NMDs, playback devices, and/or another computing device to receive or process voice recordings. In some embodiments, the computing device, media playback system server and/or networked microphone system server may be cloud-based server systems. In other embodiments, the computing device itself may be an NMD, playback device, or any other device or server described herein.
The computing device may identify, among the set of voice recordings received from multiple NMDs, which voice recordings to process to determine a given voice command. For instance, in some embodiments, the voice input from any NMD that registers the voice input is processed. Alternatively, the computing device may identify a subset of the recordings. This subset might include any NMD that registered a given voice command at or above a given threshold (e.g., a threshold sound pressure level). As another example, this subset might include voice inputs from a pre-defined number of NMDs (e.g., the three NMDs registering the voice command at or above a given threshold). Other examples are possible as well.
For example, the computing devices may select from among multiple recorded voice inputs based on pre-determined rules. To illustrate, where the NMDs are playback devices, a subset of voice inputs may be selected for processing based on zone configurations of the playback devices. For instance, recordings of a given command from multiple playback devices joined together as a bonded pair (e.g., a stereo pair or surround sound configuration) may be processed together. In some cases, recordings from devices outside the bonded zone may be ignored. As another example, recordings of a given command from multiple zones that are grouped together (as a zone group) may be processed together. Further examples are contemplated as well.
The computing device may cause the identified subset of voice recordings to be analyzed to determine the given voice command. In other words, voice recordings of multiple NMDs may be processed to determine a single voice command. Processing a particular subset of voice recordings may improve accuracy in refining and processing the voice recordings, which in turn may enable a higher-quality speech-to-text conversion of voice commands. More particularly, refining the identified recordings may prevent duplicate, redundant, or separate processing of the same voice recordings (or same portions of a voice recording). In further instances, identifying a subset of voice recordings may reduce processing time in determining a given voice command, perhaps by avoiding duplicate, redundant, or separate processing of the same voice recordings. Examples are described further herein.
NMDs may continuously record or start recording in response to a trigger, among other examples. For instance, a given NMD might continuously record ambient noise but might only provide its recording to the computing device (to possibly be included in processing) if the given NMD (1) itself is woken up by a wake-up word or voice input, or (2) receives an instruction from another device to provide the recording to the computing device. In such implementations, processing of recordings of the given NMD may be triggered, despite the given NMD not necessarily registering a far-field voice input itself (e.g., by registering a wake-up word or voice input).
While some examples described herein may refer to functions performed by given actors such as “users” and/or other entities, it should be understood that this is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves. It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments. Moreover, the examples described herein may extend to a multitude of embodiments formed by combining the example features in any suitable manner.
Further discussions relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in
a. Example Playback Devices
In one example, the processor 202 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 206. The memory 206 may be a tangible computer-readable medium configured to store instructions executable by the processor 202. For instance, the memory 206 may be data storage that can be loaded with one or more of the software components 204 executable by the processor 202 to achieve certain functions. In one example, the functions may involve the playback device 200 retrieving audio data from an audio source or another playback device. In another example, the functions may involve the playback device 200 sending audio data to another device or playback device on a network. In yet another example, the functions may involve pairing of the playback device 200 with one or more playback devices to create a multi-channel audio environment.
Certain functions may involve the playback device 200 synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener will preferably not be able to perceive time-delay differences between playback of the audio content by the playback device 200 and the one or more other playback devices. U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference, provides in more detail some examples for audio playback synchronization among playback devices.
The memory 206 may further be configured to store data associated with the playback device 200, such as one or more zones and/or zone groups the playback device 200 is a part of, audio sources accessible by the playback device 200, or a playback queue that the playback device 200 (or some other playback device) may be associated with. The data may be stored as one or more state variables that are periodically updated and used to describe the state of the playback device 200. The memory 206 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system. Other embodiments are also possible.
The audio processing components 208 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In one embodiment, one or more of the audio processing components 208 may be a subcomponent of the processor 202. In one example, audio content may be processed and/or intentionally altered by the audio processing components 208 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback by the playback device 200, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.
Audio content to be processed and/or played back by the playback device 200 may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 214.
The network interface 214 may be configured to facilitate a data flow between the playback device 200 and one or more other devices on a data network. As such, the playback device 200 may be configured to receive audio content over the data network from one or more other playback devices in communication with the playback device 200, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by the playback device 200 may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 214 may be configured to parse the digital packet data such that the data destined for the playback device 200 is properly received and processed by the playback device 200.
As shown, the network interface 214 may include wireless interface(s) 216 and wired interface(s) 218. The wireless interface(s) 216 may provide network interface functions for the playback device 200 to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device 200 is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 218 may provide network interface functions for the playback device 200 to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 214 shown in
The microphone(s) 220 may be arranged to detect sound in the environment of the playback device 200. For instance, the microphone(s) may be mounted on an exterior wall of a housing of the playback device. The microphone(s) may be any type of microphone now known or later developed such as a condenser microphone, electret condenser microphone, or a dynamic microphone. The microphone(s) may be sensitive to a portion of the frequency range of the speaker(s) 220. One or more of the speaker(s) 220 may operate in reverse as the microphone(s) 220. In some aspects, the playback device 200 might not include the microphone(s) 220.
In one example, the playback device 200 and one other playback device may be paired to play two separate audio components of audio content. For instance, playback device 200 may be configured to play a left channel audio component, while the other playback device may be configured to play a right channel audio component, thereby producing or enhancing a stereo effect of the audio content. The paired playback devices (also referred to as “bonded playback devices”) may further play audio content in synchrony with other playback devices.
In another example, the playback device 200 may be sonically consolidated with one or more other playback devices to form a single, consolidated playback device. A consolidated playback device may be configured to process and reproduce sound differently than an unconsolidated playback device or playback devices that are paired, because a consolidated playback device may have additional speaker drivers through which audio content may be rendered. For instance, if the playback device 200 is a playback device designed to render low frequency range audio content (i.e. a subwoofer), the playback device 200 may be consolidated with a playback device designed to render full frequency range audio content. In such a case, the full frequency range playback device, when consolidated with the low frequency playback device 200, may be configured to render only the mid and high frequency components of audio content, while the low frequency range playback device 200 renders the low frequency component of the audio content. The consolidated playback device may further be paired with a single playback device or yet another consolidated playback device.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in
b. Example Playback Zone Configurations
Referring back to the media playback system 100 of
As shown in
In one example, one or more playback zones in the environment of
As suggested above, the zone configurations of the media playback system 100 may be dynamically modified, and in some embodiments, the media playback system 100 supports numerous configurations. For instance, if a user physically moves one or more playback devices to or from a zone, the media playback system 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102 from the balcony zone to the office zone, the office zone may now include both the playback device 118 and the playback device 102. The playback device 102 may be paired or grouped with the office zone and/or renamed if so desired via a control device such as the control devices 126 and 128. On the other hand, if the one or more playback devices are moved to a particular area in the home environment that is not already a playback zone, a new playback zone may be created for the particular area.
Further, different playback zones of the media playback system 100 may be dynamically combined into zone groups or split up into individual playback zones. For instance, the dining room zone and the kitchen zone 114 may be combined into a zone group for a dinner party such that playback devices 112 and 114 may render audio content in synchrony. On the other hand, the living room zone may be split into a television zone including playback device 104, and a listening zone including playback devices 106, 108, and 110, if the user wishes to listen to music in the living room space while another user wishes to watch television.
c. Example Control Devices
The processor 302 may be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 304 may be data storage that can be loaded with one or more of the software components executable by the processor 302 to perform those functions. The memory 304 may also be configured to store the media playback system controller application software and other data associated with the media playback system 100 and the user.
In one example, the network interface 306 may be based on an industry standard (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The network interface 306 may provide a means for the control device 300 to communicate with other devices in the media playback system 100. In one example, data and information (e.g., such as a state variable) may be communicated between control device 300 and other devices via the network interface 306. For instance, playback zone and zone group configurations in the media playback system 100 may be received by the control device 300 from a playback device or another network device, or transmitted by the control device 300 to another playback device or network device via the network interface 306. In some cases, the other network device may be another control device.
Playback device control commands such as volume control and audio playback control may also be communicated from the control device 300 to a playback device via the network interface 306. As suggested above, changes to configurations of the media playback system 100 may also be performed by a user using the control device 300. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others. Accordingly, the control device 300 may sometimes be referred to as a controller, whether the control device 300 is a dedicated controller or a network device on which media playback system controller application software is installed.
Control device 300 may include microphone(s) 310. Microphone(s) 310 may be arranged to detect sound in the environment of the control device 300. Microphone(s) 310 may be any type of microphone now known or later developed such as a condenser microphone, electret condenser microphone, or a dynamic microphone. The microphone(s) may be sensitive to a portion of a frequency range. Two or more microphones 310 may be arranged to capture location information of an audio source (e.g., voice, audible sound) and/or to assist in filtering background noise.
The user interface 308 of the control device 300 may be configured to facilitate user access and control of the media playback system 100, by providing a controller interface such as the controller interface 400 shown in
The playback control region 410 may include selectable (e.g., by way of touch or by using a cursor) icons to cause playback devices in a selected playback zone or zone group to play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode. The playback control region 410 may also include selectable icons to modify equalization settings, and playback volume, among other possibilities.
The playback zone region 420 may include representations of playback zones within the media playback system 100. In some embodiments, the graphical representations of playback zones may be selectable to bring up additional selectable icons to manage or configure the playback zones in the media playback system, such as a creation of bonded zones, creation of zone groups, separation of zone groups, and renaming of zone groups, among other possibilities.
For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400 are also possible. The representations of playback zones in the playback zone region 420 may be dynamically updated as playback zone or zone group configurations are modified.
The playback status region 430 may include graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 420 and/or the playback status region 430. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system via the user interface 400.
The playback queue region 440 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.
In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.
Referring back to the user interface 400 of
The audio content sources region 450 may include graphical representations of selectable audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. Discussions pertaining to audio content sources may be found in the following section.
d. Example Audio Content Sources
As indicated previously, one or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g. according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices.
Example audio content sources may include a memory of one or more playback devices in a media playback system such as the media playback system 100 of
In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the media playback system 100 of
The above discussions relating to playback devices, controller devices, playback zone configurations, and media content sources provide only some examples of operating environments within which functions and methods described below may be implemented. Other operating environments and configurations of media playback systems, playback devices, and network devices not explicitly described herein may also be applicable and suitable for implementation of the functions and methods.
e. Example Plurality of Networked Devices
Each of the plurality of devices 500 may be network-capable devices that can establish communication with one or more other devices in the plurality of devices according to one or more network protocols, such as NFC, Bluetooth, Ethernet, and IEEE 802.11, among other examples, over one or more types of networks, such as wide area networks (WAN), local area networks (LAN), and personal area networks (PAN), among other possibilities.
As shown, the computing devices 504, 506, and 508 may be part of a cloud network 502. The cloud network 502 may include additional computing devices. In one example, the computing devices 504, 506, and 508 may be different servers. In another example, two or more of the computing devices 504, 506, and 508 may be modules of a single server. Analogously, each of the computing device 504, 506, and 508 may include one or more modules or servers. For ease of illustration purposes herein, each of the computing devices 504, 506, and 508 may be configured to perform particular functions within the cloud network 502. For instance, computing device 508 may be a source of audio content for a streaming music service.
As shown, the computing device 504 may be configured to interface with NMDs 512, 514, and 516 via communication path 542. NMDs 512, 514, and 516 may be components of one or more “Smart Home” systems. In one case, NMDs 512, 514, and 516 may be physically distributed throughout a household, similar to the distribution of devices shown in
In one example, one or more of the NMDs 512, 514, and 516 may be devices configured primarily for audio detection. In another example, one or more of the NMDs 512, 514, and 516 may be components of devices having various primary utilities. For instance, as discussed above in connection to
As shown, the computing device 506 may be configured to interface with CR 522 and PBDs 532, 534, 536, and 538 via communication path 544. In one example, CR 522 may be a network device such as the network device 200 of
In one example, as with NMDs 512, 514, and 516, CR522 and PBDs 532, 534, 536, and 538 may also be components of one or more “Smart Home” systems. In one case, PBDs 532, 534, 536, and 538 may be distributed throughout the same household as the NMDs 512, 514, and 516. Further, as suggested above, one or more of PBDs 532, 534, 536, and 538 may be one or more of NMDs 512, 514, and 516.
The NMDs 512, 514, and 516 may be part of a local area network, and the communication path 542 may include an access point that links the local area network of the NMDs 512, 514, and 516 to the computing device 504 over a WAN (communication path not shown). Likewise, each of the NMDs 512, 514, and 516 may communicate with each other via such an access point.
Similarly, CR 522 and PBDs 532, 534, 536, and 538 may be part of a local area network and/or a local playback network as discussed in previous sections, and the communication path 544 may include an access point that links the local area network and/or local playback network of CR 522 and PBDs 532, 534, 536, and 538 to the computing device 506 over a WAN. As such, each of the CR 522 and PBDs 532, 534, 536, and 538 may also communicate with each over such an access point.
In one example, a single access point may include communication paths 542 and 544. In an example, each of the NMDs 512, 514, and 516, CR 522, and PBDs 532, 534, 536, and 538 may access the cloud network 502 via the same access point for a household.
As shown in
In one example, CR 522 may communicate with NMD 512 over Bluetooth™, and communicate with PBD 534 over another local area network. In another example, NMD 514 may communicate with CR 522 over another local area network, and communicate with PBD 536 over Bluetooth. In a further example, each of the PBDs 532, 534, 536, and 538 may communicate with each other according to a spanning tree protocol over a local playback network, while each communicating with CR 522 over a local area network, different from the local playback network. Other examples are also possible.
In some cases, communication means between the NMDs 512, 514, and 516, CR 522, and PBDs 532, 534, 536, and 538 may change depending on types of communication between the devices, network conditions, and/or latency demands. For instance, communication means 546 may be used when NMD 516 is first introduced to the household with the PBDs 532, 534, 536, and 538. In one case, the NMD 516 may transmit identification information corresponding to the NMD 516 to PBD 538 via NFC, and PBD 538 may in response, transmit local area network information to NMD 516 via NFC (or some other form of communication). However, once NMD 516 has been configured within the household, communication means between NMD 516 and PBD 538 may change. For instance, NMD 516 may subsequently communicate with PBD 538 via communication path 542, the cloud network 502, and communication path 544. In another example, the NMDs and PBDs may never communicate via local communications means 546. In a further example, the NMDs and PBDs may communicate primarily via local communications means 546. Other examples are also possible.
In an illustrative example, NMDs 512, 514, and 516 may be configured to receive voice inputs to control PBDs 532, 534, 536, and 538. The available control commands may include any media playback system controls previously discussed, such as playback volume control, playback transport controls, music source selection, and grouping, among other possibilities. In one instance, NMD 512 may receive a voice input to control one or more of the PBDs 532, 534, 536, and 538. In response to receiving the voice input, NMD 512 may transmit via communication path 542, the voice input to computing device 504 for processing. In one example, the computing device 504 may convert the voice input to an equivalent text command, and parse the text command to identify a command. Computing device 504 may then subsequently transmit the text command to the computing device 506. In another example, the computing device 504 may convert the voice input to an equivalent text command, and then subsequently transmit the text command to the computing device 506. The computing device 506 may then parse the text command to identify one or more playback commands.
For instance, if the text command is “Play ‘Track 1’ by ‘Artist 1’ from ‘Streaming Service 1’ in ‘Zone 1’,” The computing device 506 may identify (i) a URL for “Track 1” by “Artist 1” available from “Streaming Service 1,” and (ii) at least one playback device in “Zone 1.” In this example, the URL for “Track 1” by “Artist 1” from “Streaming Service 1” may be a URL pointing to computing device 508, and “Zone 1” may be the bonded zone 530. As such, upon identifying the URL and one or both of PBDs 536 and 538, the computing device 506 may transmit via communication path 544 to one or both of PBDs 536 and 538, the identified URL for playback. One or both of PBDs 536 and 538 may responsively retrieve audio content from the computing device 508 according to the received URL, and begin playing “Track 1” by “Artist 1” from “Streaming Service 1.”
One having ordinary skill in the art will appreciate that the above is just one illustrative example, and that other implementations are also possible. In one case, operations performed by one or more of the plurality of devices 500, as described above, may be performed by one or more other devices in the plurality of device 500. For instance, the conversion from voice input to the text command may be alternatively, partially, or wholly performed by another device or devices, such as NMD 512, computing device 506, PBD 536, and/or PBD 538. Analogously, the identification of the URL may be alternatively, partially, or wholly performed by another device or devices, such as NMD 512, computing device 504, PBD 536, and/or PBD 538.
f. Example Network Microphone Device
The processor 602 may include one or more processors and/or controllers, which may take the form of a general or special-purpose processor or controller. For instance, the processing unit 602 may include microprocessors, microcontrollers, application-specific integrated circuits, digital signal processors, and the like. The memory 604 may be data storage that can be loaded with one or more of the software components executable by the processor 602 to perform those functions. Accordingly, memory 604 may comprise one or more non-transitory computer-readable storage mediums, examples of which may include volatile storage mediums such as random access memory, registers, cache, etc. and non-volatile storage mediums such as read-only memory, a hard-disk drive, a solid-state drive, flash memory, and/or an optical-storage device, among other possibilities.
The microphone array 606 may be a plurality of microphones arranged to detect sound in the environment of the network microphone device 600. Microphone array 606 may include any type of microphone now known or later developed such as a condenser microphone, electret condenser microphone, or a dynamic microphone, among other possibilities. In one example, the microphone array may be arranged to detect audio from one or more directions relative to the network microphone device. The microphone array 606 may be sensitive to a portion of a frequency range. In one example, a first subset of the microphone array 606 may be sensitive to a first frequency range, while a second subset of the microphone array may be sensitive to a second frequency range. The microphone array 606 may further be arranged to capture location information of an audio source (e.g., voice, audible sound) and/or to assist in filtering background noise. Notably, in some embodiments the microphone array may consist of only a single microphone, rather than a plurality of microphones.
The network interface 608 may be configured to facilitate wireless and/or wired communication between various network devices, such as, in reference to
The user interface 610 of the network microphone device 600 may be configured to facilitate user interactions with the network microphone device. In one example, the user interface 608 may include one or more of physical buttons, graphical interfaces provided on touch sensitive screen(s) and/or surface(s), among other possibilities, for a user to directly provide input to the network microphone device 600. The user interface 610 may further include one or more of lights and the speaker(s) 614 to provide visual and/or audio feedback to a user. In one example, the network microphone device 600 may further be configured to playback audio content via the speaker(s) 614.
As discussed above, in some examples, a computing device may facilitate and coordinate voice recordings of multiple NMDs to determine a voice command. Example voice commands may include commands to modify any of the media playback system controls or playback settings. Playback settings may include, for example, playback volume, playback transport controls, music source selection, and grouping, among other possibilities. Other voice commands may include operations to adjust television control or play settings, mobile phone device settings, or illumination devices, among other device operations. As more household devices become “smart” (e.g., by incorporating a network interface), voice commands may be used to control these household devices.
Generally, it should be understood that one or more functions described herein may be performed by the computing device individually or in combination with the media playback system server, networked microphone system server, PBDs 532-538, NMDs 512-516, CR 522, or any other devices described herein. Alternatively, the computing device itself may be the media playback system server, networked microphone system server, one of the PBDs 532-538, one of the NMDs 512-516, CR 522, or any other device described herein.
Implementation 700 shown in
In addition, for the implementation 700 and other processes and methods disclosed herein, the flowchart shows functionality and operation of one possible implementation of some embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable medium, for example, such as tangible, non-transitory computer-readable media that stores data for short periods of time like register memory, processor cache and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the implementation 700 and other processes and methods disclosed herein, each block in
a. Receive Set of Voice Recordings
At block 702, implementation 700 involves receiving a set of voice recordings. For instance, a computing device, such as computing device 506, may receive a set of voice recordings from one or more NMDs. In some embodiments, a given NMD may have one or more microphones to record voice inputs or commands from a user. For example, one or more NMDs located in or near the living room of a household may record a voice input from a user located in the living room. Additionally, the computing device itself may operate as an NMD and include one or more microphones to record voice input inputs or commands.
In some instances, the computing device may receive voice recordings via a network interface of the computing device, perhaps in addition to receiving voice recordings via a microphone of the computing device. For example, the computing device may communicate and receive voice recordings from the media playback system server, networked microphone system server, PBDs 532-538, NMDs 512-516, CR 522, or any other devices described herein. In some embodiments, the media playback system server and/or networked microphone system server may be cloud-based server systems. The processing NMD may receive voice recordings from any one or a combination of these devices and/or servers.
An NMD may be continuously recording ambient noise (e.g., listening for voice inputs) via one or more microphones. The continuous recording may be stored in a ring or circular buffer, wherein the recording may be discarded unless the recording is needed for processing and determining a given voice command. The buffer may be stored locally and/or remotely via any of the devices or servers described herein.
In other embodiments, some NMDs might not continuously record ambient noise. Rather, in some instances, one or more NMDs may receive a voice input or indication that instructs the one or more NMDs to “wake up” and start recording voice inputs or commands. For example, the computing device 506 may receive a voice input and, in certain situations described herein, send an indication to one or more NMDs to start recording. In other examples, one or more NMDs may receive a specific “wake-up word” (e.g., “hey Sonos”, “Siri”, “Alexa”) that triggers the one or more NMDs to start recording or listen for a voice command.
An NMD may send its voice recording to the computing device upon detecting a voice command or upon being instructed to send its recordings, among other options. For instance, an NMD may transmit a voice recording of a given voice command after registering that voice command (e.g., by registering a voice command preceded by a wake-up word). Alternatively, another NMD or other device may register a voice command and instruct the NMD to transmit recent recordings to the computing device.
In further examples, the computing device may receive only some of the voice recordings from multiple NMDs. The selected voice recording may be provided to the computing device based on various criteria described further herein. For instance, a given NMD might provide its recording to the computing device if the recording meets certain criteria (e.g., that the voice recording was registered at or above a threshold sound pressure level). As another example, another device may register a voice command and, if the registered voice command satisfies certain criteria, may instruct the NMD to transmit recent recordings corresponding to the voice command to the computing device.
Within examples, the voice recordings from multiple NMDs may be refined, processed, and/or combined into a single voice input before the computing device receives the voice recordings. By way of example, the media playback system server may receive voice recordings from one or more NMDs, such as 512-516. In some embodiments, PBDs 532-538 may be configured as NMDs, and the media playback system server may receive voice recordings from PBDs 532-538. The media playback system may refine, process, and/or combine the voice recordings into a single voice input and send the single voice input to the computing device for further processing. Other examples involving the combination of devices and/or servers described herein are possible.
In some examples, the computing device may receive voice recordings from multiple NMDs at different sound pressure levels. For example, a first NMD that is proximate to a user may recorded the user's voice command at a higher sound pressure level voice recording of the user's voice command relative to a second NMD that is further away from the user. As another example, a user might not be stationary when providing the voice command (e.g., a user might moving from the living room to the bedroom). In such instances, a first NMD may have recorded a higher sound-pressure-level voice recording of a first portion of a user's voice command and a second NMD may have recorded a higher sound-pressure-level recording of a second portion of a user's voice command, as caused by the movement of the user while speaking the voice command.
In some cases, multiple NMDs may have recorded identical portions of a user's voice input. For example, a first and second NMD may be proximate to each other and may have each been listening for a voice input. In other cases, multiple NMDs may have recorded different portions of a user's voice input (e.g., the content of the recordings might not overlap at all or might overlap to some degree). By way of example, the second NMD might not have been initially listening for a voice input or a user might not have been nearby (or may have moved to another location while providing a voice input). After the first NMD detects a first portion of a voice command, the first NMD may instruct the second NMD to start recording, which may cause the second NMD to detect a second portion of the voice command. Alternatively, as noted above, the second NMD may be continuously recording, and the computing device may instruct the second NMD to send the portion of its recordings corresponding to the voice command to the computing device.
As noted above, the computing device may itself operate as an NMD. In some cases, the computing device may register a voice command and perhaps instruct other NMDs to record the voice command. For instance, the computing device may record at least a first portion of a given voice command via one or more microphones of the computing device, and cause one or more NMDs to record at least a second portion of the given voice command.
In some implementations, a given NMD may continuously record ambient noise but might only provide its recording to the computing device if the given NMD (1) itself is woken up by a wake-up word or voice input, or (2) receives an instruction from another NMD, device, or system to provide the recording to the computing device. For example, a first NMD may be continuously recording and may, in some instances, record at least a portion of a given voice command received from a user. A second NMD may cause the first NMD to send the voice recording to the computing device via the network interface. In such examples, processing of a particular portion of continuous recordings by a given NMD may be triggered, despite the given NMD not necessarily registering a far-field voice input itself.
To illustrate, referring back to
Additionally or alternatively, a given NMD that may be recording ambient noise and/or at least a portion of a given voice command may receive an instruction from another NMD, device, or system to stop recording. Such embodiments may prevent duplicate or separate processing of the same voice input and may provide faster processing of voice recordings to determine the given voice command.
In some implementations, various NMDs may be configured to operate jointly, which may influence which recordings are transmitted to the computing device. For instance, some NMDs may include playback device functionality (or vice versa). As noted above, playback devices may form various groupings (e.g., bonded zones or zone groups, among other examples). When an NMD that is in a group detects a voice command, that NMD may instruct other NMDs in the group to transmit their recordings corresponding to the voice command to the computing device.
For instance, a computing device may receive a first voice recording corresponding to at least a first portion of the given voice command from a first NMD (e.g., a PBD configured as an NMD). While (or after) the computing device receives the first voice recording, the computing device may determine that the first NMD and a second NMD are paired devices (or bonded playback devices) that typically play media content in synchrony with other playback devices. Based on determining that the first and second NMDs are paired devices, the computing device may cause the second NMD to record and provide a second voice recording corresponding to at least a second portion of the given voice command. In some instances in which the second NMD was continuously recording, the computing device may cause the second NMD to provide the voice recording to the computing device. Alternatively, the computing device may cause the second NMD to stop recording to prevent duplicate processing of the same voice input.
In further examples, the computing device may receive a first voice recording corresponding to at least a first portion of the given voice command from a first NMD (e.g., a PBD configured as an NMD). While (or after) the computing device receives the first voice recording, the computing device may determine that the first NMD and one or more other NMDs are part of a zone group that typically play media content in synchrony within the playback zone. In some instances, the computing device may determine that the first NMD and one or more other NMDs are part of a zone scene (e.g., playback devices that are located on a first floor of a household, or playback devices that are grouped at 5 pm on weekdays). Based on such determination, the computing device may cause the one or more other NMDs to record and provide a second voice recording corresponding to at least a second portion of the given voice command. In some instances in which the one or more other NMDs were continuously recording, the computing device may cause the one or more other NMDs to provide the voice recording to the computing device. Alternatively, the computing device may cause the one or more other NMDs to stop recording to prevent duplicate processing of the same voice input.
In some embodiments, a user may define a voice input or command identifying a set of NMDs (e.g., PBDs configured as NMDs) that may be used together as bonded devices, playback zones, and/or zone scenes to record a portion of a given voice command. In such embodiments, the computing device may receive a user-defined command identifying a set of NMDs that are grouped together as a bonded pair, playback zone, or zone scene. Accordingly, the computing device may cause one or more NMDs that are grouped together to record and/or provide a portion of the given voice command. For example, a user may define “downstairs” as part of a given voice command that identifies a set of NMDs in the basement of a household as a zone scene. The computing device may cause one or more of the identified NMDs that are part of the basement zone scene to record the user's voice input corresponding to the given voice command.
In other embodiments, the computing device may cause a set of NMDs that are grouped together as a bonded pair, playback zone, or zone scene to record and/or provide a given voice command when a pre-defined condition is triggered. For example, the computing device may cause a set of NMDs that are part of a zone group to record and/or provide at least a portion of a given voice command only when the user's command is for playback purposes to for instance, watch a movie, or control one or more playback settings (e.g., play or pause a song, play the next or previous song, adjust volume, etc).
In further embodiments, the computing device may learn that a set of NMDs are commonly grouped together as a zone scene to operate jointly (e.g., to play media content in synchrony). Such learning may be based on the configuration history of the NMDs. For instance, an example configuration history may indicate that the set of NMDs have been grouped together on more than a threshold number of instances. As noted above, to illustrate, such a zone scene might include NMDs that are located on a given floor of a house, NMDs that are in listening proximity of one another, NMDs that are commonly grouped together at a particular time (e.g., party mode on weekends) or other scenes. Accordingly, in response to receiving a portion of a given voice command from a first NMD in a particular zone scene, the computing device may cause one or more other NMDs that have been commonly grouped together with the first NMD to record and/or provide at least a portion of the given voice command to the computing device.
In still further embodiments, the computing device may receive a first voice recording of at least a portion of a given voice command from a first NMD, and determine the orientation or direction of the given voice command relative to the first NMD (e.g., relative direction in which a user faces while recording the voice command). Based on the direction of the given voice command relative to the first NMD, the computing device (or any other device/server) may cause a second NMD to listen and record a second voice recording that represents at least a portion of the given voice command.
To illustrate, referring back to
As a further example, referring still to
Within examples, the media playback system, computing device, and/or NMD receiving a voice command may acknowledge the identity of the particular user providing the voice command to disambiguate from other voice inputs (e.g., other speakers, television, etc). In some instances, the media playback system, computing device, and/or NMD may identify the particular user based on user profiles or voice configuration settings stored in the media playback system and/or one or more combinations of devices described herein. User profiles information may be shared between any of the devices via a network interface. Example user profiles may include voice characteristics that include the tone or frequency of the particular user's voice, age, gender, and user history, among other information identifying the particular user.
In example operations, referring back to
In other instances, the media playback system, computing device, and/or NMD may identify the particular user in response to determining the voice characteristic of the user while receiving a portion of a user's voice input at a particular location. By way of example, referring back to
In further instances, an NMD at a particular location may receive a voice command or input that may trigger a time period or window for the NMD or any one or more other NMDs to actively listen for additional voice inputs or commands. In some examples, a wake-up word or phrase (e.g., Hey Sonos) may trigger a time period or window for one or more NMDs to actively listen for additional voice inputs or commands. In other examples, one or more NMDs receiving at least a portion of a voice input may trigger the time period or window for one or more other NMDs to actively listen for additional voice inputs or commands. Within examples, one or more NMDs receiving at least a portion of a voice input may acknowledge the identity of the particular user and trigger the time period or window for one or more other NMDs to actively listen for additional voice inputs or commands from the particular user.
In some implementations, the time period or window may expire after a certain duration of time (e.g., one minute after one or more NMDs receive an initial voice input). In other implementations, a user may specify the time period or window for one or more NMDs to receive additional voice inputs or commands. In particular, one or more NMDs may receive a voice command (e.g., “let's queue up some songs for a minute”) that specifies a time period or window (e.g., one minute) for one or more NMDs to actively listen for additional voice inputs (e.g., voice inputs to add songs to a playback queue). In further implementations, one or more NMDs may close or key off the time period or window for receiving additional voice inputs before such time period or window expires. U.S. application Ser. No. 15/131,776 entitled, “Action based on User ID,” which is hereby incorporated by reference describes further examples.
In some embodiments, orientation or direction may be determined based on frequency response of the voice inputs or commands. Generally, an NMD that a user is facing while recording a voice input or command may have a larger high-frequency component than an NMD that the user is not facing. Analysis of such components may indicate to the computing device directionality of a voice command. For instance, given (1) data representing the frequency responses of the respective microphones of multiple NMDs and (2) separate time-aligned recordings of the voice inputs by multiple NMDs, a computing device may normalize the frequency response (e.g., 35 Hz-22.05 kHz) of the respective recordings of the voice inputs with respect to the low frequency band. For instance, the frequency response of the voice inputs recorded from a first NMD may be normalized with a second NMD with respect to the fundamental frequency band for human voice (e.g., 85-255 Hz). The high-frequency components of the normalized responses of the voice inputs may then be compared to determine the direction in which the user is facing while recording the voice command.
In other embodiments, orientation or direction of a voice input may be determined by using the variance in the known polar responses of two or more microphones of an NMD. The variance may help determine the angle of the user (or voice input) relative to an NMD, perpendicular to the plane of the two or more microphones. The angle of the user relative to an NMD may help more precisely locate the direction in which the user is facing while recording the voice input and may add an additional level of confidence that the voice input was received from a certain direction or orientation. Such angles may be identified by measuring the polar responses of the voice inputs at each microphone simultaneously and matching the variance with the known polar responses.
In further embodiments, the angle of the user relative to an NMD may be determined by measuring the delay across two or more microphones with a known distance between them. Further examples may include visual imaging, measuring the relative magnitude across two or more microphones or NMDs, Bluetooth proximity detection between an NMD and another computing device, such as a mobile phone, or monitoring WiFi Received Signal Strength Indication (RSSI) to detect user proximity and/or location.
b. Identify Subset of Voice Recordings
At block 704, implementation 700 involves identifying a subset of voice recordings. For instance, the computing device (e.g., computing device 506) may identify, among the set of voice recordings, a subset of voice recordings from which to determine a given voice command. Alternatively, the computing device may use all of the voice recordings received from respective NMDs to determine a given voice command.
In some instances, identifying the subset of voice recordings may include a device other than the computing device (e.g., the media playback server) locally or remotely (via a network interface) determining the subset of voice recordings and providing the subset to the computing device. Some implementations may involve one or more combinations of devices or servers other than the computing device determining the subset of voice recordings.
In some embodiments, the computing device may identify a subset of voice recordings by comparing the received voice recordings from a set of NMDs with a threshold sound pressure level or threshold volume level. The threshold, for example, may be an absolute threshold such as magnitude or a relative threshold that may be normalized according to the highest-magnitude of the voice recordings. In some embodiments, the computing device may identify the voice recordings (or NMDs) that exceed the threshold level as the subset of voice recordings (or NMDs) to determine the given voice command. In other embodiments, the computing device may identify a predetermined number of NMDs (e.g., three NMDs) that recorded at least a portion of the given voice command at the highest sound pressure levels to determine the given voice command. Identifying the subset of voice recordings in such manner may ensure greater accuracy in refining and processing the voice recordings and enable a higher-quality speech to text conversion to determine a given voice command.
In other embodiments, the computing device may identify the voice recordings of NMDs based on various rules or criteria. For instance, voice recordings from NMDs that are grouped together as bonded pairs, playback zones, and/or zone scenes may be identified as the subset of voice recordings from which to determine the given voice command.
Identifying the subset of voice recordings in such manner may be useful when a voice command is invoked for playback purposes. For example, NMDs in the living room and kitchen of a household may record at least a portion of a user's voice command. The computing device may identify the voice recordings of NMDs in the living room as the subset of voice recordings from which to determine the given voice command. In other examples, a set of NMDs in the living room may record at least a portion of a user's voice command. The computing device may identify the voice recordings of a pair of NMDs in the living room that are bonded together as the subset of voice recordings from which to determine the given voice command.
In further examples, a set of NMDs on the first and second floor of a household may record at least a portion of a user's voice command. The computing device may identify the voice recordings of the NMDs on the first floor as the subset of voice recordings from which to determine the given voice command. In some instances, as described above, the computing device may identify the voice recordings of NMDs that have been commonly grouped together as a zone scene on a threshold number of instances as the subset of voice recordings from which to determine the given voice command.
In other embodiments, the computing device may identify two or more voice recordings of NMDs that are acoustically coupled as the subset of voice recordings from which to determine the given voice command. In some instances, the computing device may cause an NMD to determine whether it is acoustically coupled to one or more other NMDs. For example, the computing device may cause a first NMD to play or output a test tone (or any other audio content) and may cause a second NMD to detect the tone via one or more microphones of the second NMD. The computing device may compare the magnitude of the detected test tone with a threshold sound pressure level to determine whether the first and second NMD are acoustically coupled. In other examples, the first NMD may be playing audio content and the second NMD may register the audio content via one or more microphones. The computing device may compare the magnitude of the registered audio content with a threshold sound pressure level to determine whether the first and second NMD are acoustically coupled. Based on the acoustic coupling of two more NMDs, the computing device may identify such NMDs as the subset from which to determine the given voice command.
c. Cause Identified Subset of Voice Recordings to be Analyzed to Determine Given Voice Command
At block 706, implementation 700 involves causing the identified subset of voice recordings to be analyzed to determine the given voice command. For instance, the computing device, such as computing device 506, may cause a subset of voice recordings to be analyzed to determine the given voice command.
In some cases, the computing device may analyze the subset of voice recordings itself. Alternatively, any one or a combination of the devices or servers described herein may cause the identified subset of voice recordings to be analyzed to determine the given voice command, which may be facilitated by one or more networks connecting the devices (e.g., connection means 546).
In some examples, the computing device may cause the identified subset of voice recordings to be analyzed by communicating with an NMD. The computing device may send the identified recordings to the NMD, and the NMD may determine and execute the voice command. Within examples, the computing device may determine the given voice command from the identified subset of voice recordings and send the determined voice command to the NMD to execute the voice command. Other examples involving one or a combination of the devices or servers described herein are possible.
In some embodiments, the computing device may cause the identified subset of voice recordings to be analyzed to determine the given voice command by processing and refining the identified subset of voice recordings. Alternatively, the computing device may process the identified subset of voice recordings without refinement. Refining the identified recordings, however, may enable a higher-quality speech to text conversion. In some implementations, the subset of voice recordings may be refined before identifying the subset of voice recordings. For example, computing device 506 may receive a set of voice recordings and refine the voice recordings locally or remotely before identifying the subset of voice recordings. In other examples, the set of voice recordings may be refined by one or more combination of devices or servers before the computing device (e.g., computing device 506) receives the set of voice recordings. The computing device may identify a subset of voice recordings from the received set of refined voice recordings.
The computing device may time-align the identified subset of voice recordings. Time aligning the voice recordings may prevent processing of redundant or duplicate portions of the given voice command. For instance, a first NMD and a second NMD may have recorded at least a portion of a given voice command at a given time. The first NMD may have recorded some overlapping portion at a given time in which the second NMDs may have been recording. Accordingly, the computing device may time-align the voice recordings from the first and second NMDs and refine or strip out the overlapping portions of the voice recordings according to various criteria described herein.
In some examples, the computing device may take the magnitude-weighted average of the identified subset of voice recordings. A respective portion of a voice recording with a higher magnitude (e.g., higher sound pressure level) may be given a higher weight and may be more likely to be processed to determine the given voice command.
In other examples, the computing device may combine the recordings by determining an average of the identified subset of voice recordings. Such an average may be weighted according to microphone quality and/or quantity of respective NMDs. Some NMDs may have multiple microphones and some NMDs may have better quality microphones than other NMDs. Accordingly, the computing device may determine the magnitude-weighted average of the identified subset of voice recordings based on such factors.
The computing device may “chop” the identified subset of voice recordings and splice them together. For example, at noted above, a user may be moving from the living room to the bedroom of a household while providing a given voice command. Based on determining the relative orientation or direction of the identified subset of voice recordings of respective NMDs, the computing device may use the identified subset of voice recordings from the living room as the first portion from which to determine the given voice command and the identified subset of voice recordings from the bedroom as the second portion from which to determine the given voice command.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
Additionally, references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of an invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 16/214,666, filed on Dec. 10, 2018, entitled “Voice Detection By Multiple Devices,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 16/214,666 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/211,748, filed on Jul. 15, 2016, entitled “Voice Detection By Multiple Devices,” and issued as U.S. Pat. No. 10,152,969 on Dec. 11, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4741038 | Elko et al. | Apr 1988 | A |
4941187 | Slater | Jul 1990 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5588065 | Tanaka et al. | Dec 1996 | A |
5740260 | Odom | Apr 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5923902 | Inagaki | Jul 1999 | A |
6032202 | Lea et al. | Feb 2000 | A |
6088459 | Hobelsberger | Jul 2000 | A |
6256554 | DiLorenzo | Jul 2001 | B1 |
6301603 | Maher et al. | Oct 2001 | B1 |
6311157 | Strong | Oct 2001 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6408078 | Hobelsberger | Jun 2002 | B1 |
6469633 | Wachter et al. | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6594347 | Calder et al. | Jul 2003 | B1 |
6594630 | Zlokarnik et al. | Jul 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6611604 | Irby et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6757517 | Chang et al. | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7236773 | Thomas | Jun 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7661107 | Van Dyke et al. | Feb 2010 | B1 |
7702508 | Bennett | Apr 2010 | B2 |
7792311 | Holmgren et al. | Sep 2010 | B1 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7961892 | Fedigan | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8032383 | Bhardwaj et al. | Oct 2011 | B1 |
8041565 | Bhardwaj et al. | Oct 2011 | B1 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8073125 | Zhang et al. | Dec 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8234395 | Millington | Jul 2012 | B2 |
8239206 | Lebeau et al. | Aug 2012 | B1 |
8255224 | Singleton et al. | Aug 2012 | B2 |
8284982 | Bailey | Oct 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8340975 | Rosenberger et al. | Dec 2012 | B1 |
8364481 | Strope et al. | Jan 2013 | B2 |
8385557 | Tashev et al. | Feb 2013 | B2 |
8386261 | Mellott et al. | Feb 2013 | B2 |
8423893 | Ramsay et al. | Apr 2013 | B2 |
8428758 | Naik et al. | Apr 2013 | B2 |
8453058 | Coccaro et al. | May 2013 | B1 |
8473618 | Spear et al. | Jun 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8484025 | Moreno Mengibar et al. | Jul 2013 | B1 |
8831761 | Kemp et al. | Sep 2014 | B2 |
8831957 | Taubman et al. | Sep 2014 | B2 |
8874448 | Kauffmann et al. | Oct 2014 | B1 |
8938394 | Faaborg et al. | Jan 2015 | B1 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8983383 | Haskin | Mar 2015 | B1 |
8983844 | Thomas et al. | Mar 2015 | B1 |
9042556 | Kallai et al. | May 2015 | B2 |
9094539 | Noble | Jul 2015 | B1 |
9215545 | Dublin et al. | Dec 2015 | B2 |
9251793 | Lebeau et al. | Feb 2016 | B2 |
9253572 | Beddingfield, Sr. et al. | Feb 2016 | B2 |
9262612 | Cheyer | Feb 2016 | B2 |
9288597 | Carlsson et al. | Mar 2016 | B2 |
9300266 | Grokop | Mar 2016 | B2 |
9307321 | Unruh | Apr 2016 | B1 |
9318107 | Sharifi | Apr 2016 | B1 |
9319816 | Narayanan | Apr 2016 | B1 |
9324322 | Torok et al. | Apr 2016 | B1 |
9335819 | Jaeger et al. | May 2016 | B1 |
9361878 | Boukadakis | Jun 2016 | B2 |
9368105 | Freed et al. | Jun 2016 | B1 |
9374634 | Macours | Jun 2016 | B2 |
9386154 | Baciu et al. | Jul 2016 | B2 |
9412392 | Lindahl et al. | Aug 2016 | B2 |
9426567 | Lee et al. | Aug 2016 | B2 |
9431021 | Scalise et al. | Aug 2016 | B1 |
9443527 | Watanabe et al. | Sep 2016 | B1 |
9472201 | Sleator | Oct 2016 | B1 |
9472203 | Ayrapetian et al. | Oct 2016 | B1 |
9484030 | Meaney et al. | Nov 2016 | B1 |
9489948 | Chu et al. | Nov 2016 | B1 |
9494683 | Sadek | Nov 2016 | B1 |
9509269 | Rosenberg | Nov 2016 | B1 |
9510101 | Polleros | Nov 2016 | B1 |
9514752 | Sharifi | Dec 2016 | B2 |
9536541 | Chen et al. | Jan 2017 | B2 |
9548053 | Basye et al. | Jan 2017 | B1 |
9548066 | Jain et al. | Jan 2017 | B2 |
9552816 | Vanlund et al. | Jan 2017 | B2 |
9560441 | Mcdonough, Jr. et al. | Jan 2017 | B1 |
9576591 | Kim et al. | Feb 2017 | B2 |
9601116 | Melendo Casado et al. | Mar 2017 | B2 |
9615170 | Kirsch et al. | Apr 2017 | B2 |
9615171 | O'Neill et al. | Apr 2017 | B1 |
9626695 | Balasubramanian et al. | Apr 2017 | B2 |
9632748 | Faaborg et al. | Apr 2017 | B2 |
9633186 | Ingrassia, Jr. et al. | Apr 2017 | B2 |
9633368 | Greenzeiger et al. | Apr 2017 | B2 |
9633660 | Haughay et al. | Apr 2017 | B2 |
9633671 | Giacobello et al. | Apr 2017 | B2 |
9633674 | Sinha et al. | Apr 2017 | B2 |
9640179 | Hart et al. | May 2017 | B1 |
9640183 | Jung et al. | May 2017 | B2 |
9641919 | Poole et al. | May 2017 | B1 |
9646614 | Bellegarda et al. | May 2017 | B2 |
9653060 | Hilmes et al. | May 2017 | B1 |
9653075 | Chen et al. | May 2017 | B1 |
9659555 | Hilmes et al. | May 2017 | B1 |
9672821 | Krishnaswamy et al. | Jun 2017 | B2 |
9685171 | Yang | Jun 2017 | B1 |
9691378 | Meyers et al. | Jun 2017 | B1 |
9691379 | Mathias et al. | Jun 2017 | B1 |
9697826 | Sainath et al. | Jul 2017 | B2 |
9697828 | Prasad et al. | Jul 2017 | B1 |
9698999 | Mutagi et al. | Jul 2017 | B2 |
9704478 | Vitaladevuni et al. | Jul 2017 | B1 |
9721566 | Newendorp et al. | Aug 2017 | B2 |
9721568 | Polansky et al. | Aug 2017 | B1 |
9721570 | Beal et al. | Aug 2017 | B1 |
9728188 | Rosen et al. | Aug 2017 | B1 |
9734822 | Sundaram et al. | Aug 2017 | B1 |
9747011 | Lewis et al. | Aug 2017 | B2 |
9747899 | Pogue et al. | Aug 2017 | B2 |
9747920 | Ayrapetian et al. | Aug 2017 | B2 |
9747926 | Sharifi et al. | Aug 2017 | B2 |
9754605 | Chhetri | Sep 2017 | B1 |
9762967 | Clarke et al. | Sep 2017 | B2 |
9811314 | Plagge et al. | Nov 2017 | B2 |
9813810 | Nongpiur | Nov 2017 | B1 |
9813812 | Berthelsen et al. | Nov 2017 | B2 |
9820036 | Tritschler et al. | Nov 2017 | B1 |
9820039 | Lang | Nov 2017 | B2 |
9826306 | Lang | Nov 2017 | B2 |
9865259 | Typrin et al. | Jan 2018 | B1 |
9865264 | Gelfenbeyn | Jan 2018 | B2 |
9881616 | Beckley et al. | Jan 2018 | B2 |
9916839 | Scalise et al. | Mar 2018 | B1 |
9947316 | Millington et al. | Apr 2018 | B2 |
9973849 | Zhang et al. | May 2018 | B1 |
10013995 | Lashkari et al. | Jul 2018 | B1 |
10048930 | Vega et al. | Aug 2018 | B1 |
10051366 | Buoni et al. | Aug 2018 | B1 |
10079015 | Lockhart et al. | Sep 2018 | B1 |
10134399 | Lang et al. | Nov 2018 | B2 |
10152969 | Reilly et al. | Dec 2018 | B2 |
10297256 | Reilly | May 2019 | B2 |
20010042107 | Palm | Nov 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020034280 | Infosino | Mar 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030070869 | Hlibowicki | Apr 2003 | A1 |
20030072462 | Hlibowicki | Apr 2003 | A1 |
20030095672 | Hobelsberger | May 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040093219 | Shin et al. | May 2004 | A1 |
20040127241 | Shostak | Jul 2004 | A1 |
20040128135 | Anastasakos et al. | Jul 2004 | A1 |
20050031131 | Browning et al. | Feb 2005 | A1 |
20050031132 | Browning et al. | Feb 2005 | A1 |
20050031133 | Browning et al. | Feb 2005 | A1 |
20050031134 | Leske | Feb 2005 | A1 |
20050031137 | Browning et al. | Feb 2005 | A1 |
20050031138 | Browning et al. | Feb 2005 | A1 |
20050031139 | Browning et al. | Feb 2005 | A1 |
20050031140 | Browning | Feb 2005 | A1 |
20050047606 | Lee et al. | Mar 2005 | A1 |
20050077843 | Benditt | Apr 2005 | A1 |
20050164664 | DiFonzo et al. | Jul 2005 | A1 |
20050195988 | Tashev et al. | Sep 2005 | A1 |
20050207584 | Bright | Sep 2005 | A1 |
20050268234 | Rossi et al. | Dec 2005 | A1 |
20050283330 | Laraia et al. | Dec 2005 | A1 |
20060104451 | Browning et al. | May 2006 | A1 |
20060147058 | Wang | Jul 2006 | A1 |
20060190269 | Tessel et al. | Aug 2006 | A1 |
20060190968 | Jung et al. | Aug 2006 | A1 |
20060247913 | Huerta et al. | Nov 2006 | A1 |
20060262943 | Oxford | Nov 2006 | A1 |
20070018844 | Sutardja | Jan 2007 | A1 |
20070019815 | Asada et al. | Jan 2007 | A1 |
20070033043 | Hyakumoto | Feb 2007 | A1 |
20070071255 | Schobben | Mar 2007 | A1 |
20070076131 | Li et al. | Apr 2007 | A1 |
20070076906 | Takagi et al. | Apr 2007 | A1 |
20070140058 | McIntosh et al. | Jun 2007 | A1 |
20070140521 | Mitobe et al. | Jun 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070147651 | Mitobe et al. | Jun 2007 | A1 |
20080037814 | Shau | Feb 2008 | A1 |
20080090537 | Sutardja | Apr 2008 | A1 |
20080146289 | Korneluk et al. | Jun 2008 | A1 |
20080221897 | Cerra et al. | Sep 2008 | A1 |
20080247530 | Barton et al. | Oct 2008 | A1 |
20080248797 | Freeman et al. | Oct 2008 | A1 |
20080301729 | Broos et al. | Dec 2008 | A1 |
20090003620 | McKillop et al. | Jan 2009 | A1 |
20090005893 | Sugii et al. | Jan 2009 | A1 |
20090010445 | Matsuo et al. | Jan 2009 | A1 |
20090018828 | Nakadai et al. | Jan 2009 | A1 |
20090076821 | Brenner et al. | Mar 2009 | A1 |
20090153289 | Hope et al. | Jun 2009 | A1 |
20090197524 | Haff et al. | Aug 2009 | A1 |
20090228919 | Zott et al. | Sep 2009 | A1 |
20090238377 | Ramakrishnan et al. | Sep 2009 | A1 |
20090248397 | Garcia et al. | Oct 2009 | A1 |
20090264072 | Dai | Oct 2009 | A1 |
20090326949 | Douthitt et al. | Dec 2009 | A1 |
20100014690 | Wolff et al. | Jan 2010 | A1 |
20100023638 | Bowman | Jan 2010 | A1 |
20100035593 | Franco et al. | Feb 2010 | A1 |
20100075723 | Min et al. | Mar 2010 | A1 |
20100092004 | Kuze | Apr 2010 | A1 |
20100172516 | Lastrucci | Jul 2010 | A1 |
20100179874 | Higgins et al. | Jul 2010 | A1 |
20100185448 | Meisel | Jul 2010 | A1 |
20100211199 | Naik et al. | Aug 2010 | A1 |
20110033059 | Bhaskar et al. | Feb 2011 | A1 |
20110035580 | Wang et al. | Feb 2011 | A1 |
20110044461 | Kuech et al. | Feb 2011 | A1 |
20110044489 | Saiki et al. | Feb 2011 | A1 |
20110091055 | Leblanc | Apr 2011 | A1 |
20110145581 | Malhotra et al. | Jun 2011 | A1 |
20110182436 | Murgia et al. | Jul 2011 | A1 |
20110267985 | Wilkinson et al. | Nov 2011 | A1 |
20110276333 | Wang et al. | Nov 2011 | A1 |
20110280422 | Neumeyer et al. | Nov 2011 | A1 |
20110289506 | Trivi et al. | Nov 2011 | A1 |
20110299706 | Sakai | Dec 2011 | A1 |
20120020486 | Fried et al. | Jan 2012 | A1 |
20120022863 | Cho et al. | Jan 2012 | A1 |
20120022864 | Leman et al. | Jan 2012 | A1 |
20120078635 | Rothkopf et al. | Mar 2012 | A1 |
20120123268 | Tanaka et al. | May 2012 | A1 |
20120131125 | Seidel et al. | May 2012 | A1 |
20120148075 | Goh et al. | Jun 2012 | A1 |
20120163603 | Abe et al. | Jun 2012 | A1 |
20120177215 | Bose et al. | Jul 2012 | A1 |
20120297284 | Matthews, III et al. | Nov 2012 | A1 |
20120308044 | Vander Mey et al. | Dec 2012 | A1 |
20120308046 | Muza | Dec 2012 | A1 |
20130006453 | Wang et al. | Jan 2013 | A1 |
20130024018 | Chang et al. | Jan 2013 | A1 |
20130039527 | Jensen et al. | Feb 2013 | A1 |
20130058492 | Silzle et al. | Mar 2013 | A1 |
20130066453 | Seefeldt | Mar 2013 | A1 |
20130080146 | Kato et al. | Mar 2013 | A1 |
20130124211 | McDonough | May 2013 | A1 |
20130148821 | Sorensen | Jun 2013 | A1 |
20130179173 | Lee et al. | Jul 2013 | A1 |
20130183944 | Mozer et al. | Jul 2013 | A1 |
20130191122 | Mason | Jul 2013 | A1 |
20130198298 | Li et al. | Aug 2013 | A1 |
20130216056 | Thyssen | Aug 2013 | A1 |
20130315420 | You | Nov 2013 | A1 |
20130317635 | Bates et al. | Nov 2013 | A1 |
20130322665 | Bennett et al. | Dec 2013 | A1 |
20130324031 | Loureiro | Dec 2013 | A1 |
20130329896 | Krishnaswamy et al. | Dec 2013 | A1 |
20130331970 | Beckhardt et al. | Dec 2013 | A1 |
20130332165 | Beckley et al. | Dec 2013 | A1 |
20130343567 | Triplett et al. | Dec 2013 | A1 |
20140003611 | Mohammad et al. | Jan 2014 | A1 |
20140003625 | Sheen et al. | Jan 2014 | A1 |
20140003635 | Mohammad et al. | Jan 2014 | A1 |
20140006026 | Lamb et al. | Jan 2014 | A1 |
20140034929 | Hamada et al. | Feb 2014 | A1 |
20140064501 | Olsen et al. | Mar 2014 | A1 |
20140075306 | Rega | Mar 2014 | A1 |
20140094151 | Klappert et al. | Apr 2014 | A1 |
20140100854 | Chen et al. | Apr 2014 | A1 |
20140122075 | Bak et al. | May 2014 | A1 |
20140145168 | Ohsawa et al. | May 2014 | A1 |
20140146983 | Kim et al. | May 2014 | A1 |
20140164400 | Kruglick | Jun 2014 | A1 |
20140167931 | Lee et al. | Jun 2014 | A1 |
20140168344 | Shoemake et al. | Jun 2014 | A1 |
20140172953 | Blanksteen | Jun 2014 | A1 |
20140195252 | Gruber et al. | Jul 2014 | A1 |
20140219472 | Huang et al. | Aug 2014 | A1 |
20140222436 | Binder et al. | Aug 2014 | A1 |
20140244013 | Reilly | Aug 2014 | A1 |
20140244712 | Walters et al. | Aug 2014 | A1 |
20140249817 | Hart et al. | Sep 2014 | A1 |
20140252386 | Ito et al. | Sep 2014 | A1 |
20140254805 | Su et al. | Sep 2014 | A1 |
20140258292 | Thramann et al. | Sep 2014 | A1 |
20140259075 | Chang et al. | Sep 2014 | A1 |
20140270282 | Tammi et al. | Sep 2014 | A1 |
20140274185 | Luna et al. | Sep 2014 | A1 |
20140274203 | Ganong, III et al. | Sep 2014 | A1 |
20140274218 | Kadiwala et al. | Sep 2014 | A1 |
20140277650 | Zurek et al. | Sep 2014 | A1 |
20140291642 | Watabe et al. | Oct 2014 | A1 |
20140310002 | Nitz et al. | Oct 2014 | A1 |
20140340888 | Ishisone et al. | Nov 2014 | A1 |
20140357248 | Tonshal et al. | Dec 2014 | A1 |
20140363022 | Dizon et al. | Dec 2014 | A1 |
20140365227 | Cash et al. | Dec 2014 | A1 |
20140369491 | Kloberdans et al. | Dec 2014 | A1 |
20140372109 | Iyer et al. | Dec 2014 | A1 |
20150006176 | Pogue et al. | Jan 2015 | A1 |
20150010169 | Popova et al. | Jan 2015 | A1 |
20150014680 | Yamazaki et al. | Jan 2015 | A1 |
20150016642 | Walsh et al. | Jan 2015 | A1 |
20150019201 | Schoenbach | Jan 2015 | A1 |
20150036831 | Klippel | Feb 2015 | A1 |
20150063580 | Huang et al. | Mar 2015 | A1 |
20150086034 | Lombardi et al. | Mar 2015 | A1 |
20150104037 | Lee et al. | Apr 2015 | A1 |
20150106085 | Lindahl | Apr 2015 | A1 |
20150110294 | Chen et al. | Apr 2015 | A1 |
20150112672 | Giacobello et al. | Apr 2015 | A1 |
20150154976 | Mutagi | Jun 2015 | A1 |
20150169279 | Duga | Jun 2015 | A1 |
20150170645 | Di Censo et al. | Jun 2015 | A1 |
20150180432 | Gao et al. | Jun 2015 | A1 |
20150181318 | Gautama et al. | Jun 2015 | A1 |
20150189438 | Hampiholi et al. | Jul 2015 | A1 |
20150200454 | Heusdens et al. | Jul 2015 | A1 |
20150221678 | Yamazaki et al. | Aug 2015 | A1 |
20150222987 | Angel, Jr. et al. | Aug 2015 | A1 |
20150228274 | Leppänen et al. | Aug 2015 | A1 |
20150228803 | Koezuka et al. | Aug 2015 | A1 |
20150237406 | Ochoa et al. | Aug 2015 | A1 |
20150249889 | Iyer et al. | Sep 2015 | A1 |
20150253292 | Larkin et al. | Sep 2015 | A1 |
20150253960 | Lin et al. | Sep 2015 | A1 |
20150263174 | Yamazaki et al. | Sep 2015 | A1 |
20150271593 | Sun et al. | Sep 2015 | A1 |
20150277846 | Yen et al. | Oct 2015 | A1 |
20150280676 | Holman et al. | Oct 2015 | A1 |
20150296299 | Klippel et al. | Oct 2015 | A1 |
20150302856 | Kim et al. | Oct 2015 | A1 |
20150319529 | Klippel | Nov 2015 | A1 |
20150325267 | Lee | Nov 2015 | A1 |
20150338917 | Steiner et al. | Nov 2015 | A1 |
20150341406 | Rockefeller et al. | Nov 2015 | A1 |
20150346845 | Di Censo et al. | Dec 2015 | A1 |
20150348551 | Gruber et al. | Dec 2015 | A1 |
20150363061 | De Nigris, III et al. | Dec 2015 | A1 |
20150363401 | Chen et al. | Dec 2015 | A1 |
20150371657 | Gao et al. | Dec 2015 | A1 |
20150371664 | Bar-Or et al. | Dec 2015 | A1 |
20150380010 | Srinivasan et al. | Dec 2015 | A1 |
20160007116 | Holman | Jan 2016 | A1 |
20160021458 | Johnson et al. | Jan 2016 | A1 |
20160029142 | Isaac et al. | Jan 2016 | A1 |
20160035321 | Cho et al. | Feb 2016 | A1 |
20160036962 | Rand et al. | Feb 2016 | A1 |
20160042748 | Jain et al. | Feb 2016 | A1 |
20160044151 | Shoemaker et al. | Feb 2016 | A1 |
20160057522 | Choisel et al. | Feb 2016 | A1 |
20160077710 | Lewis et al. | Mar 2016 | A1 |
20160088036 | Corbin et al. | Mar 2016 | A1 |
20160088392 | Huttunen et al. | Mar 2016 | A1 |
20160093304 | Kim et al. | Mar 2016 | A1 |
20160094917 | Wilk et al. | Mar 2016 | A1 |
20160098393 | Hebert | Apr 2016 | A1 |
20160098992 | Renard et al. | Apr 2016 | A1 |
20160103653 | Jang | Apr 2016 | A1 |
20160111110 | Gautama et al. | Apr 2016 | A1 |
20160134982 | Iyer | May 2016 | A1 |
20160155442 | Kannan et al. | Jun 2016 | A1 |
20160155443 | Khan et al. | Jun 2016 | A1 |
20160157035 | Russell et al. | Jun 2016 | A1 |
20160162469 | Santos | Jun 2016 | A1 |
20160173578 | Sharma et al. | Jun 2016 | A1 |
20160173983 | Berthelsen et al. | Jun 2016 | A1 |
20160180853 | Vanlund et al. | Jun 2016 | A1 |
20160189716 | Lindahl et al. | Jun 2016 | A1 |
20160196499 | Khan et al. | Jul 2016 | A1 |
20160203331 | Khan et al. | Jul 2016 | A1 |
20160212538 | Fullam et al. | Jul 2016 | A1 |
20160225385 | Hammarqvist | Aug 2016 | A1 |
20160232451 | Scherzer | Aug 2016 | A1 |
20160234204 | Rishi et al. | Aug 2016 | A1 |
20160239255 | Chavez et al. | Aug 2016 | A1 |
20160260431 | Newendorp et al. | Sep 2016 | A1 |
20160302018 | Russell et al. | Oct 2016 | A1 |
20160314782 | Klimanis | Oct 2016 | A1 |
20160336519 | Seo et al. | Nov 2016 | A1 |
20160343866 | Koezuka et al. | Nov 2016 | A1 |
20160343949 | Seo et al. | Nov 2016 | A1 |
20160343954 | Seo et al. | Nov 2016 | A1 |
20160345114 | Hanna et al. | Nov 2016 | A1 |
20160352915 | Gautama | Dec 2016 | A1 |
20160353218 | Starobin | Dec 2016 | A1 |
20160366515 | Mendes et al. | Dec 2016 | A1 |
20160372688 | Seo et al. | Dec 2016 | A1 |
20160373269 | Okubo et al. | Dec 2016 | A1 |
20160373909 | Rasmussen et al. | Dec 2016 | A1 |
20160379634 | Yamamoto et al. | Dec 2016 | A1 |
20170003931 | Dvortsov et al. | Jan 2017 | A1 |
20170012207 | Seo et al. | Jan 2017 | A1 |
20170012232 | Kataishi et al. | Jan 2017 | A1 |
20170019732 | Mendes et al. | Jan 2017 | A1 |
20170025615 | Seo et al. | Jan 2017 | A1 |
20170025630 | Seo et al. | Jan 2017 | A1 |
20170026769 | Patel | Jan 2017 | A1 |
20170039025 | Kielak | Feb 2017 | A1 |
20170060526 | Barton et al. | Mar 2017 | A1 |
20170062734 | Suzuki et al. | Mar 2017 | A1 |
20170070478 | Park et al. | Mar 2017 | A1 |
20170076720 | Gopalan et al. | Mar 2017 | A1 |
20170078824 | Heo | Mar 2017 | A1 |
20170083285 | Meyers et al. | Mar 2017 | A1 |
20170084292 | Yoo | Mar 2017 | A1 |
20170090864 | Jorgovanovic | Mar 2017 | A1 |
20170092278 | Evermann et al. | Mar 2017 | A1 |
20170092297 | Sainath et al. | Mar 2017 | A1 |
20170092889 | Seo et al. | Mar 2017 | A1 |
20170092890 | Seo et al. | Mar 2017 | A1 |
20170103754 | Higbie et al. | Apr 2017 | A1 |
20170103755 | Jeon et al. | Apr 2017 | A1 |
20170110124 | Boesen et al. | Apr 2017 | A1 |
20170110144 | Sharifi et al. | Apr 2017 | A1 |
20170117497 | Seo et al. | Apr 2017 | A1 |
20170123251 | Nakada et al. | May 2017 | A1 |
20170125037 | Shin | May 2017 | A1 |
20170125456 | Kasahara | May 2017 | A1 |
20170139720 | Stein | May 2017 | A1 |
20170140748 | Roberts et al. | May 2017 | A1 |
20170140759 | Kumar et al. | May 2017 | A1 |
20170177585 | Rodger et al. | Jun 2017 | A1 |
20170178662 | Ayrapetian et al. | Jun 2017 | A1 |
20170188150 | Brunet et al. | Jun 2017 | A1 |
20170193999 | Aleksic et al. | Jul 2017 | A1 |
20170206896 | Ko et al. | Jul 2017 | A1 |
20170214996 | Yeo | Jul 2017 | A1 |
20170236512 | Williams et al. | Aug 2017 | A1 |
20170236515 | Pinsky et al. | Aug 2017 | A1 |
20170242651 | Lang et al. | Aug 2017 | A1 |
20170242653 | Lang et al. | Aug 2017 | A1 |
20170243576 | Millington et al. | Aug 2017 | A1 |
20170243587 | Plagge et al. | Aug 2017 | A1 |
20170245076 | Kusano et al. | Aug 2017 | A1 |
20170257686 | Gautama et al. | Sep 2017 | A1 |
20170270919 | Parthasarathi et al. | Sep 2017 | A1 |
20170287485 | Civelli et al. | Oct 2017 | A1 |
20170353789 | Kim et al. | Dec 2017 | A1 |
20180025733 | Qian et al. | Jan 2018 | A1 |
20180033428 | Kim et al. | Feb 2018 | A1 |
20180040324 | Wilberding | Feb 2018 | A1 |
20180047394 | Tian et al. | Feb 2018 | A1 |
20180062871 | Jones et al. | Mar 2018 | A1 |
20180091913 | Hartung et al. | Mar 2018 | A1 |
20180130469 | Gruenstein et al. | May 2018 | A1 |
20180137861 | Ogawa et al. | May 2018 | A1 |
20180210698 | Park et al. | Jul 2018 | A1 |
20180233136 | Torok et al. | Aug 2018 | A1 |
20180277113 | Hartung et al. | Sep 2018 | A1 |
20190043492 | Lang | Feb 2019 | A1 |
20190074025 | Lashkari et al. | Mar 2019 | A1 |
20190079721 | Vega et al. | Mar 2019 | A1 |
20190090056 | Rexach et al. | Mar 2019 | A1 |
20190098400 | Buoni et al. | Mar 2019 | A1 |
20190108839 | Reilly et al. | Apr 2019 | A1 |
20190130906 | Kobayashi et al. | May 2019 | A1 |
20190172452 | Smith et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
2017100486 | Jun 2017 | AU |
2017100581 | Jun 2017 | AU |
103546616 | Jan 2014 | CN |
105284076 | Jan 2016 | CN |
1349146 | Oct 2003 | EP |
1389853 | Feb 2004 | EP |
2683147 | Jan 2014 | EP |
2351021 | Sep 2017 | EP |
2001236093 | Aug 2001 | JP |
2004347943 | Dec 2004 | JP |
2004354721 | Dec 2004 | JP |
2005284492 | Oct 2005 | JP |
2008079256 | Apr 2008 | JP |
2008158868 | Jul 2008 | JP |
2010141748 | Jun 2010 | JP |
2013037148 | Feb 2013 | JP |
2014071138 | Apr 2014 | JP |
2014137590 | Jul 2014 | JP |
20100111071 | Oct 2010 | KR |
200153994 | Jul 2001 | WO |
2003093950 | Nov 2003 | WO |
2015037396 | Mar 2015 | WO |
2015178950 | Nov 2015 | WO |
2016014142 | Jan 2016 | WO |
2016022926 | Feb 2016 | WO |
2016033364 | Mar 2016 | WO |
2016057268 | Apr 2016 | WO |
2017039632 | Mar 2017 | WO |
Entry |
---|
US 9,299,346 B1, 03/2016, Hart et al. (withdrawn) |
Advisory Action dated Jun. 28, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 3 pages. |
Advisory Action dated Dec. 31, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 4 pages. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Australian Patent Office, Examination Report dated Oct. 30, 2018, issued in connection with Australian Application No. 2017222436, 3 pages. |
“Automatic Parameter Tying in Neural Networks” ICLR 2018, 14 pages. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Canadian Patent Office, Canadian Office Action dated Nov. 14, 2018, issued in connection with Canadian Application No. 3015491, 3 pages. |
Chinese Patent Office, First Office Action and Translation dated Mar. 20, 2019, issued in connection with Chinese Application No. 201780025028.2, 18 pages. |
Chinese Patent Office, First Office Action and Translation dated Mar. 27, 2019, issued in connection with Chinese Application No. 201780025029.7, 9 pages. |
Chinese Patent Office, Second Office Action and Translation dated Jul. 18, 2019, issued in connection with Chinese Application No. 201780025029.7, 14 pages. |
Corrected Notice of Allowability dated Mar. 8, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 6 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 177570702, 8 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 17757075.1, 9 pages. |
European Patent Office, European Extended Search Report dated Oct. 30, 2017, issued in connection with EP Application No. 17174435.2, 11 pages. |
European Patent Office, European Office Action dated Jan. 22, 2019, issued in connection with European Application No. 17174435.2, 9 pages. |
Fadilpasic,“Cortana can now be the default PDA on your Android”, IT Pro Portal: Accessed via WayBack Machine; http://web.archive.org/web/20171129124915/https://www.itproportal.com/2015/08/11/cortana-can-now-be- . . . , Aug. 11, 2015, 6 pages. |
Final Office Action dated Oct. 6, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 25 pages. |
Final Office Action dated Apr. 11, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 17 pages. |
Final Office Action dated Aug. 11, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 7 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 18 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 20 pages. |
Final Office Action dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Final Office Action dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 10 pages. |
Final Office Action dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 12 pages. |
Final Office Action dated Apr. 26, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 20 pages. |
Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 6 pages. |
Final Office Action dated Feb. 5, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 17 pages. |
Fiorenza Arisio et al. “Deliverable 1.1 User Study, analysis of requirements and definition of the application task,” May 31, 2012, http://dirha.fbk.eu/sites/dirha.fbk.eu/files/docs/DIRHA_D1.1., 31 pages. |
First Action Interview Office Action dated Jul. 5, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 4 pages. |
Freiberger, Karl, “Development and Evaluation of Source Localization Algorithms for Coincident Microphone Arrays,” Diploma Thesis, Apr. 1, 2010, 106 pages. |
Giacobello et al. “A Sparse Nonuniformly Partitioned Multidelay Filter for Acoustic Echo Cancellation,” 2013, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2013, New Paltz, NY, 4 pages. |
Giacobello et al. “Tuning Methodology for Speech Enhancement Algorithms using a Simulated Conversational Database and Perceptual Objective Measures,” 2014, 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays HSCMA, 2014, 5 pages. |
Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.” ICLR 2016, Feb. 15, 2016, 14 pages. |
Helwani et al “Source-domain adaptive filtering for MIMO systems with application to acoustic echo cancellation”, Acoustics Speech and Signal Processing, 2010 IEEE International Conference, Mar. 14, 2010, 4 pages. |
Hirano et al. “A Noise-Robust Stochastic Gradient Algorithm with an Adaptive Step-Size Suitable for Mobile Hands-Free Telephones,” 1995, International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 4 pages. |
International Bureau, International Preliminary Report on Patentability, dated Apr. 11, 2019, issued in connection with International Application No. PCT/US2017/0054063, filed on Sep. 28, 2017, 9 pages. |
International Bureau, International Preliminary Report on Patentability, dated Apr. 23, 2019, issued in connection with International Application No. PCT/US2017/057220, filed on Oct. 18, 2017, 7 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018728, filed on Feb. 21, 2017, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018739, filed on Feb. 21, 2017, 7 pages. |
International Searching Authority, International Search Report and Written Opinion dated Dec. 19, 2018, in connection with International Application No. PCT/US2018/053517, 13 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 22, 2017, issued in connection with International Application No. PCT/US2017/054063, filed on Sep. 28, 2017, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2017/57220, filed on Oct. 18, 2017, 8 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 23, 2017, issued in connection with International Application No. PCT/US2017/018739, Filed on Feb. 21, 2017, 10 pages. |
Non-Final Office Action dated Jul. 3, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 7 pages. |
Non-Final Office Action dated May 3, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 14 pages. |
Non-Final Office Action dated Oct. 3, 2018, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 20 pages. |
Non-Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 39 pages. |
Non-Final Office Action dated Jun. 30, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 13 pages. |
Non-Final Office Action dated Apr. 4, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 21 pages. |
Non-Final Office Action dated Jan. 4, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 6 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 32 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 6 pages. |
Non-Final Office Action dated Sep. 6, 2017, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 13 pages. |
Non-Final Office Action dated Sep. 6, 2018, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 29 pages. |
Non-Final Office Action dated Apr. 9, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Non-Final Office Action dated May 9, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 22 pages. |
Notice of Allowance dated Dec. 4, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 5 pages. |
Notice of Allowance dated Jul. 5, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 5 pages. |
Notice of Allowance dated Jul. 9, 2018, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Apr. 1, 2019, issued in connection with U.S. Appl. No. 15/935,966, filed Mar. 26, 2018, 5 pages. |
Notice of Allowance dated Aug. 1, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 9 pages. |
Notice of Allowance dated Apr. 11, 2018, issued in connection with U.S. Appl. No. 15/719,454, filed Sep. 28, 2017, 15 pages. |
Notice of Allowance dated Dec. 12, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 9 pages. |
Notice of Allowance dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 8 pages. |
Notice of Allowance dated Jun. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 1, 2017, 7 pages. |
Notice of Allowance dated Sep. 12, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 15 pages. |
Notice of Allowance dated Dec. 13, 2017, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 9 pages. |
Notice of Allowance dated Feb. 13, 2019, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 10 pages. |
Notice of Allowance dated Aug. 14, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 10 pages. |
Notice of Allowance dated Feb. 14, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Jun. 14, 2017, issued in connection with U.S. Appl. No. 15/282,554, filed Sep. 30, 2016, 11 pages. |
Notice of Allowance dated Nov. 14, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 5 pages. |
Notice of Allowance dated Dec. 15, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Notice of Allowance dated Mar. 15, 2019, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 9 pages. |
Notice of Allowance dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 9 pages. |
Notice of Allowance dated Aug. 17, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 9 pages. |
Notice of Allowance dated Jul. 17, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 5 pages. |
Notice of Allowance dated Sep. 17, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 6 pages. |
Notice of Allowance dated Apr. 18, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 9 pages. |
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 9 pages. |
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 8 pages. |
Notice of Allowance dated Dec. 19, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 9 pages. |
Notice of Allowance dated Jul. 19, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 7 pages. |
Notice of Allowance dated Aug. 2, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 5 pages. |
Notice of Allowance dated Mar. 20, 2018, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 7 pages. |
Notice of Allowance dated Sep. 20, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 7 pages. |
Notice of Allowance dated Aug. 22, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Sep. 22, 2016, 5 pages. |
Notice of Allowance dated Jan. 22, 2018, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 9 pages. |
Notice of Allowance dated Apr. 24, 2019, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 3, 2018, 5 pages. |
Notice of Allowance dated Mar. 27, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 6 pages. |
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/699,982, filed Sep. 8, 2017, 17 pages. |
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 13 pages. |
Notice of Allowance dated Apr. 3, 2019, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 7 pages. |
Notice of Allowance dated Jul. 30, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 5 pages. |
Notice of Allowance dated Jul. 30, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 9 pages. |
Notice of Allowance dated Nov. 30, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated May 31, 2019, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 9 pages. |
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2018, 10 pages. |
Notice of Allowance dated Feb. 6, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages. |
Notice of Allowance dated Jun. 7, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages. |
Notice of Allowance dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Mar. 9, 2018, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 8 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Preinterview First Office Action dated Aug. 5, 2019, issued in connection with U.S. Appl. No. 16/434,426, filed Jun. 7, 2019, 4 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
Restriction Requirement dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 8 pages. |
Souden et al. “An Integrated Solution for Online Multichannel Noise Tracking and Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19. No. 7, Sep. 7, 2011, 11 pages. |
Souden et al. “Gaussian Model-Based Multichannel Speech Presence Probability” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 5, Jul. 5, 2010, 6pages. |
Souden et al. “On Optimal Frequency-Domain Multichannel Linear Filtering for Noise Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 2, Feb. 2010, 17pages. |
Steven J. Nowlan and Geoffrey E. Hinton “Simplifying Neural Networks by Soft Weight-Sharing” Neural Computation 4, 1992, 21 pages. |
Tsiami et al. “Experiments in acoustic source localization using sparse arrays in adverse indoors environments”, 2014 22nd European Signal Processing Conference, Sep. 1, 2014, 5 pages. |
Tweet: “How to start using Google app voice commands to make your life easier Share This Story shop @Bullet”, Jan. 21, 2016, https://bgr.com/2016/01/21/best-ok-google-voice-commands/, 3 page. |
Ullrich et al. “Soft Weight-Sharing for Neural Network Compression.” ICLR 2017, 16 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Vacher at al. “Recognition of voice commands by multisource ASR and noise cancellation in a smart home environment” Signal Processing Conference 2012 Proceedings of the 20th European, IEEE, Aug. 27, 2012, 5 pages. |
Vacher et al. “Speech Recognition in a Smart Home: Some Experiments for Telemonitoring,” 2009 Proceedings of the 5th Conference on Speech Technology and Human-Computer Dialogoue, Constant, 2009, 10 pages. |
“S Voice or Google Now?”; https://web.archive.org/web/20160807040123/lowdown.carphonewarehouse.com/news/s-voice-or-google-now/ . . . , Apr. 28, 2015; 4 pages. |
Wung et al. “Robust Acoustic Echo Cancellation in the Short-Time Fourier Transform Domain Using Adaptive Crossband Filters” IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP, 2014, p. 1300-1304. |
Xiao et al. “A Learning-Based Approach to Direction of Arrival Estimation in Noisy and Reverberant Environments,” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19, 2015, 5 pages. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 23, 2017, issued in connection with International Application No. PCT/US2017/042170, filed on Jul. 14, 2017, 15 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2017/042227, filed on Jul. 14, 2017, 16 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 30, 2017, issued in connection with International Application No. PCT/US2017/018728, Filed on Feb. 21, 2017, 11 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 retrieved Jun. 18, 2014, 2 pages. |
Jose Alvarez and Mathieu Salzmann “Compression-aware Training of Deep Networks” 31st Conference on Neural Information Processing Systems, Nov. 13, 2017, 12pages. |
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Application No. 10-2018-7027451, 7 pages. |
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Application No. 10-2018-7027452, 5 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Maja Taseska and Emanual A.P. Habets, “MMSE-Based Blind Source Extraction in Diffuse Noise Fields Using a Complex Coherence-Based a Priori Sap Estimator.” International Workshop on Acoustic Signal Enhancement 2012, Sep. 4-6, 2012, 4pages. |
Morales-Cordovilla et al. “Room Localization for Distant Speech Recognition,” Proceedings of Interspeech 2014, Sep. 14, 2014, 4 pages. |
Newman, Jared. “Chromecast Audio's multi-room support has arrived,” Dec. 11, 2015, https://www.pcworld.com/article/3014204/customer-electronic/chromcase-audio-s-multi-room-support-has . . . , 1 page. |
Ngo et al. “Incorporating the Conditional Speech Presence Probability in Multi-Channel Wiener Filter Based Noise Reduction in Hearing Aids.” EURASIP Journal on Advances in Signal Processing vol. 2009, Jun. 2, 2009, 11 pages. |
Non-Final Office Action dated Jun. 1, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 11 pages. |
Non-Final Office Action dated Nov. 3, 2017, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 11 pages. |
Non-Final Office Action dated Feb. 7, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Feb. 8, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 17 pages. |
Non-Final Office Action dated Mar. 9, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2017, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 15 pages. |
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 17 pages. |
Non-Final Office Action dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Feb. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 13 pages. |
Non-Final Office Action dated Jan. 13, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 23 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 8 pages. |
Non-Final Office Action dated Sep. 14, 2017, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 16 pages. |
Non-Final Office Action dated Sep. 14, 2018, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 15 pages. |
Non-Final Office Action dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 6 pages. |
Non-Final Office Action dated Mar. 16, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 5 pages. |
Non-Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 16 pages. |
Non-Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 14 pages. |
Non-Final Office Action dated Jan. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 18 pages. |
Non-Final Office Action dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Feb. 20, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2016, 31 pages. |
Non-Final Office Action dated Feb. 21, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 12 pages. |
Non-Final Office Action dated May 22, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2017, 19 pages. |
Non-Final Office Action dated May 23, 2019, issued in connection with U.S. Appl. No. 16/154,071, filed Oct. 8, 2018, 36 pages. |
Non-Final Office Action dated Aug. 24, 2017, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 13 pages. |
Non-Final Office Action dated Jul. 24, 2019, issued in connection with U.S. Appl. No. 16/439,009, filed Jun. 12, 2019, 26 pages. |
Non-Final Office Action dated Jul. 25, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Jul. 22, 2016, 11 pages. |
Non-Final Office Action dated Dec. 26, 2018, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 8, 2018, 7 pages. |
Non-Final Office Action dated Jan. 26, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 16 pages. |
Non-Final Office Action dated Oct. 26, 2017, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 12 pages. |
Non-Final Office Action dated Jun. 27, 2018, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 16 pages. |
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,437, filed Jun. 11, 2019, 8 pages. |
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,476, filed Jun. 11, 2019, 8 pages. |
Non-Final Office Action dated Mar. 29, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20190341045 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16214666 | Dec 2018 | US |
Child | 16416752 | US | |
Parent | 15211748 | Jul 2016 | US |
Child | 16214666 | US |