This application relates to void fillers and, more particularly, to void filler panels formed from polymeric materials.
Cargo is typically shipped in large vessels, such as trucks, cargo containers, railway boxcars and the like. Prior to shipping, the cargo is often secured onto pallets, such as a 40 inch by 48 inch pallet. These pallets are then loaded in the shipping vessel in a manner that maximizes the use of available space in the vessel. For example, shipping vessels are commonly loaded with two rows of double-stacked pallets.
Despite the best attempts to maximize the available space in shipping vessels, there is often void space between the cargo. Unless such void space is filled, the cargo is prone to movement during shipping, which may result in damage to the cargo. As such, various void fillers have been used to fill void space in shipping vessels.
Conventional void fillers commonly include a honeycomb structure formed from paperboard. Optionally, a sheet or decking is applied to opposite sides of the honeycomb structure to provide a continuous surface. The paperboard forming the honeycomb structure is provided with a sufficient thickness to impart the honeycomb structure with the required compression strength.
Paperboard-based honeycomb void fillers are generally used once or twice and then are discarded. Therefore, paperboard-based honeycomb void fillers present ongoing expenses associated with the purchase of new void fillers and the disposal of used void fillers. Furthermore, such paperboard-based honeycomb void fillers lose their compression strength when they are stacked, thereby requiring the use of void fillers of various thicknesses to accommodate various situations.
Accordingly, those skilled in the art continue to seek new solutions for filling the voids between cargo.
In one aspect, the disclosed void filler panel may include a first major wall, a second major wall spaced apart from the first major wall and a plurality of pillars extending between the first and second major walls, wherein the first major wall, the second major wall and the plurality of pillars are formed from a polymeric material.
In another aspect, the disclosed void filler panel may include a first major wall that defines a plurality of first protuberances, a second major wall spaced apart from the first major wall, the second major wall defining a plurality of second protuberances, and a plurality of pillars extending between the first and second major walls, each pillar comprising at least one of the first protuberances connected to at least one of the second protuberances, wherein the first major wall, the second major wall and the plurality of pillars are formed from a polymeric material.
In yet another aspect, disclosed is a method for forming a void filler panel using a thermoforming machine having at least a first mold and a second mold. The method may include the steps of (1) heating a first sheet of polymeric material and a second sheet of polymeric material, (2) shaping the first sheet of heated polymeric material to include a first outer surface and a plurality of first protuberances extending from the first outer surface, (3) shaping the second sheet of heated polymeric material to include a second outer surface and a plurality of second protuberances extending from the second outer surface and (4) pressing the first shaped sheet into contact with the second shaped sheet to fuse each of the first protuberances with a corresponding one of the second protuberances.
Other aspects of the disclosed void filler panel and method for forming a void filler panel will become apparent from the following description, the accompanying drawings and the appended claims.
Disclosed is a void filler panel formed from one or more polymeric materials using, for example, a thermoforming process. The polymeric materials forming the disclosed void filler panel may render the void filler panel durable and reusable. Furthermore, the structure of the disclosed void filler panel may provide relatively high compression strength (e.g., greater than 10.4 pounds per square inch), and the compression strength may be preserved upon stacking multiple panels.
Referring to
Optionally, at least one opening 42 may extend through the first 12 and second 14 major walls to provide a handle for gripping the void filler panel 10. While the opening 42 is shown in
The first major wall 12, the second major wall 14 and the side wall 16 may be formed from polymeric materials. One example of a useful polymeric material for forming the disclosed void filler panel 10 is high density polyethylene (“HDPE”). However, those skilled in the art will appreciate that various polymeric materials and combinations of polymeric materials may used without departing from the scope of the present disclosure. For example, the polymeric material forming the void filler panel 10 may be selected to provide additional functionality based on the intended end use of the void filler panel 10.
In one particular expression, the void filler panel 10 may be formed as a three-dimensional rectilinear body having a length L, a width W and the cross-sectional thickness T. For example, the first 12 and second 14 major walls of the void filler panel 10 may be generally rectangular in plan view (
The first major wall 12 may be, for example, a front wall, and may define a first major outer surface 20 of the void filler panel 10. As shown in
Optionally, various features and textures may be used to provide the first major outer surface 20 with non-skid functionality. For example, a non-skid material may be laminated or coextruded onto the first major outer surface 20 (e.g., before thermoforming) to provide the first major outer surface 20 with non-skid functionality.
The first major wall 12 may also define a plurality of protuberances 26, 28 (only several are numbered in the drawings) that extend (e.g., generally perpendicularly) from the first major outer surface 20 into the internal volume 18 of the void filler panel 10. In one particular expression, the protuberances 26, 28 may be generally equidistantly spaced from each other. For example, as shown in
Referring to
The second major wall 14 may be, for example, a rear wall, and may define a second major outer surface 30 of the void filler panel 10. Like the first major wall 12, the second major wall 14 may define a plurality of longitudinal channels and a plurality of transverse channels to provide the second major outer surface 30 with adequate deck stiffness.
Like the first major outer surface 20, the second major outer surface 30 may optionally be provided with non-skid functionality.
In one particular expression, the first 20 and second 30 major outer surfaces of the first 12 and second 14 major walls may be generally flat, planar surfaces, and may be generally parallel with each other. Other configurations of the first 20 and second 30 major outer surfaces may be dictated by the intended application of the void filler panel 10.
As shown in
Referring to
While the protuberances 26, 28, 32, 34 are shown in the drawings, particularly in
Referring again to
Referring to
As shown in
Accordingly, the pillars 40 of the disclosed void filler panel 10 may reinforce the spacing between the first 12 and second 14 major walls, thereby providing the void filler panel 10 with significantly greater compression strength than can be achieved without the pillars 40. At this point, those skilled in the art will also appreciate that the compression strength of the disclosed void filler panel 10 may be a function of, among other things, the type of polymeric material used to form the void filler panel 10, the total number of pillars 40, the spacing of the pillars 40, the size and shape of the pillars 40, as well as the cross-sectional thickness of the first 12, second 14 and side 16 walls.
Although various aspects of the disclosed void filler panel have been shown and described, modifications may occur to those skilled in the art upon reading the specification. The present application includes such modifications and is limited only by the scope of the claims.