The present invention relates to the field of light emitting diode based lighting and more particularly to a system for powering and controlling a plurality of LED strings having a controllable power source.
Light emitting diodes (LEDs) and in particular high intensity and medium intensity LED strings are rapidly coming into wide use for lighting applications. LEDs with an overall high luminance are useful in a number of applications including, but not limited to, backlighting for liquid crystal display (LCD) based monitors and televisions, collectively hereinafter referred to as a monitor. In a large LCD monitor the LEDs are typically supplied in one or more strings of serially connected LEDs, thus sharing a common current.
In order supply a white backlight for the monitor, one of two basic techniques are commonly used. In a first technique one or more strings of “white” LEDs are utilized, the white LEDs typically comprising a blue LED with a phosphor which absorbs the blue light emitted by the LED and emits a white light. In a second technique one or more individual strings of colored LEDs are placed in proximity so that in combination their light is seen as a white light. Often, two strings of green LEDs are utilized to balance one string each of red and blue LEDs.
In either of the two techniques, the strings of LEDs are in one embodiment located at one end or one side of the monitor, the light being diffused to appear behind the LCD by a diffuser. In another embodiment the LEDs are located directly behind the LCD, the light being diffused so as to avoid hot spots by a diffuser. In the case of colored LEDs, a further mixer is required, which may be part of the diffuser, to ensure that the light of the colored LEDs are not viewed separately, but are rather mixed to give a white light. The white point of the light is an important factor to control, and much effort in design and manufacturing is centered on the need for a controlled white point.
Each of the colored LED strings is typically controlled by both amplitude modulation (AM) and pulse width modulation (PWM) to achieve an overall fixed perceived luminance and color balance. AM is typically used to set the white point produced by the disparate colored LED strings by setting the constant current flow through the LED strings to a value determined as part of a white point calibration process and PWM is typically used to variably control the overall luminance, or brightness, of the monitor without affecting the white point balance. Thus the current, when pulsed on, is held constant to maintain the white point produced by the combination of disparate colored LED strings, and the PWM duty cycle is controlled to dim or brighten the backlight by adjusting the average current over time. The PWM duty cycle of each color is further modified to maintain the white point, preferably responsive to a color sensor. It is to be noted that different colored LEDs age, or reduce their luminance as a function of current, at different rates and thus the PWM duty cycle of each color must be modified over time to maintain the white point. There is however a limit to the range of the PWM duty cycle and unfortunately when it has been reached, the maximum luminance begins to decline.
Each of the disparate colored LED strings has a voltage requirement associated with the forward voltage drop of the LEDs and the number of LEDs in the LED string. In the event that multiple LED strings of each color are used, the voltage drop across strings of the same color having the same number of LEDs per string may also vary due to manufacturing tolerances and temperature differences. Ideally, separate power sources are supplied for each LED string, the power sources being adapted to adjust their voltage output to be in line with voltage drop across the associated LED string. Such a large plurality of power sources effectively minimizes excess power dissipation however the requirement for a large plurality of power sources is costly.
An alternative solution, which reduces the number of power sources required, is to supply a single power source for each color. Thus a plurality of LED strings of a single color is driven by a single power source, and the number of power sources required is reduced to the number of different colors, i.e. typically to 3. Unfortunately, since as indicated above different LED strings of the same color may exhibit different voltage drops, such a solution further requires an active element in series with each LED string to compensate for the different voltage drops so as to ensure an essentially equal current through each of the LED strings of the same color.
In one embodiment, in which a single power source is used for a plurality of LED strings of a single color, power through each of the LED strings is controlled by a single controller chip, the controller chip exhibiting a dissipative active element operative to compensate for the different voltage drops. Unfortunately, the dissipative elements limit the range of operation of the controller chip, since the dissipative elements are a significant source of heat. Placing the dissipative elements external of the controller chip solves the problem of heat but unfortunately results in a higher cost and footprint and is thus less than optimal. In summary, a controller chip comprising within dissipative elements is limited by thermal constraints at least partially as a result of the action of the dissipative elements, yet still must provide both AM and PWM modulation.
As the LED strings age, their voltage drops change. Furthermore, the voltage drops of the LED strings are a function of temperature, and thus the voltage output of the power source must initially be set high enough so as to supply sufficient voltage over the operational life of the LED strings taking into account a range of operating temperatures. Utilizing a single fixed voltage power source for each color thus results in excess power dissipation, as the power source is set to supply a sufficient voltage for all the LED strings over their operational life, which must be dissipated for LED strings exhibiting a lower voltage drop.
What is needed, and not provided by the prior art, is a means for controlling the current flow through a plurality of LED strings, and simultaneously controlling the voltage source so as to minimize excess power dissipation. Preferably, the means for controlling the current flow is responsive to thermal constraints.
Accordingly, it is a principal object of the present invention to overcome the disadvantages of prior art. This is provided in the present invention by a backlighting system exhibiting a plurality of LED strings. A controllable voltage source is provided for each color, the controllable voltage source providing power for a plurality of LED strings of the respective color. In an embodiment in which only white LEDs are utilized, a single controllable voltage source is provided for a plurality of white LED strings. An LED string controller is arranged to variably control current limiters associated with each LED string. The LED string controller is further operative to measure an electrical characteristic, such as current flow, of each string, and feedback a predetermined function of the measured electrical characteristic of at least one LED string to the associated controllable voltage source. The controllable voltage source is operative to adjust its voltage output responsive to the feedback. In an exemplary embodiment the LED string controller selects one of the LED string exhibiting the highest current, the LED string exhibiting the lowest current and the LED string exhibiting the average current.
Advantageously, the LED string controller of the subject invention is further operative to detect an open circuit failure of an LED string or a short circuit failure of one or more LEDs of a string. In one embodiment the LED string controller is operative to adjust the current of other LED strings to compensate for the failed LED string.
The LED string controller of the subject invention is further operative to monitor the dynamic range of the PWM control of the LED strings. In the event that the PWM control approaches a predetermined maximum, the current of the LED strings is preferably increased by adjusting the settings of the variable current limiters, and the controllable voltage source is responsive to adjust its voltage output accordingly. The increased current results in an increased luminance during the PWM on time, and resets the PWM dynamic range.
In an embodiment in which the LED string controller of the subject invention comprises internal dissipative current limiters, typically comprising a filed effect transistor (FET), arranged serially in the path of each LED string, the LED string controller preferably receives both an indication of the voltage drop across each internal FET as well as the current flowing there through and determines the power dissipation of the FET in comparison with a predetermined thermal limit. In the event that the power dissipation of any of the FETs exceeds the pre-determined value, the LED string controller acts to reduce the power dissipation across the FET by pulsing the FET to maintain the average current over time while reducing the power dissipation to be less than or equal to the pre-determined thermal limit.
In a preferred embodiment at least one internal thermal sensor is further provided in the LED string controller, the thermal sensor being arranged to provide the control circuitry with information regarding the thermal stress being experienced by the LED string controller. In the event that one or more of the internal thermal sensors indicates that an overall temperature limit has been exceeded, the LED string controller acts to reduce the power dissipation by pulsing the FET having the largest power dissipation to preferably arrive at a current whose average over time is equal to a pre-determined nominal value.
The invention provides for a system for powering and controlling an LED backlight, the system comprising: a control circuitry; a controllable power source responsive to the control circuitry; and a plurality of LED strings receiving power from the controllable power source, the control circuitry being operative to control the output voltage of the controllable power source responsive to a function of an electrical characteristic of at least one of the plurality of LED strings.
In one embodiment the at least one of the plurality of strings is selectable by the control circuitry. In another embodiment the at least one of the plurality of strings is selectable by the control circuitry according to predetermined criteria.
In one further embodiment the control circuitry is operative to determine the LED string exhibiting one of the highest voltage drop, the lowest voltage drop, the mean voltage drop and the substantially average voltage drop from among the plurality of LED strings, the selectable at least one of the plurality of LED strings corresponding to the determined LED string. In another further embodiment the control circuitry is operative to determine the LED string exhibiting one of the lowest current, the highest current, the mean current and the substantially average current from among the plurality of LED strings, the selectable at least one of the plurality of LED strings corresponding to the determined LED string.
In one embodiment the control circuitry is operative to periodically select the selectable at least one of the plurality of LED strings. In another embodiment the control circuitry is operative to calculate one of an average current and an average voltage drop of the plurality of LED strings, the function corresponding to the one of an average current and an average voltage drop. In yet another embodiment the control circuitry comprises an analog to digital converter operative to input the electrical characteristic.
In one embodiment the system further comprises a plurality of current limiters responsive to the control circuitry, each of the plurality of current limiters being associated with a particular one of the plurality of LED strings and arranged to limit the current flow there through. In one further embodiment each of the plurality of current limiters comprise a field effect transistor and a comparator, the comparator being operably connected to the gate of the field effect transistor. In another further embodiment the plurality of current limiters are arranged to limit current to a value responsive to an output of the control circuitry. In yet another further embodiment the control circuitry further comprises a pulse width modulator functionality in communication with each of the plurality of current limiters and operative to control the duty cycle of each of the LED strings.
In one yet further embodiment, or independently, the system comprises a thermal sensor responsive to at least one of the plurality of current limiters, and wherein the control circuitry is operative responsive to the thermal sensor, in the event of a predetermined thermal condition, to reduce the duty cycle of at least one of the LED strings. Preferably the control circuitry is further operative to increase the current limit value of the at least one LED string to compensate for the reduced duty cycle.
In another further embodiment the system further comprises a voltage sensor arranged to output an indication of the voltage drop across each of the current limiters, and wherein the control circuitry is operative responsive to the voltage sensor, in the event of the output of the voltage sensor is indicative of a predetermined thermal condition, to reduce the duty cycle of at least one of the LED strings. Preferably, the control circuitry is further operative to increase the current limit value of the at least one LED string to compensate for the reduced duty cycle.
In another further embodiment the system further comprises a voltage sensor arranged to output an indication of the voltage drop across each of the current limiters and a current sensor arranged to output an indication of the current flow through each of the current limiters, and wherein the control circuitry is operative responsive to the voltage sensor and the current sensor, in the event of the output of the voltage sensor and the current sensor is indicative of a predetermined thermal condition, to reduce the duty cycle of at least one of the LED strings. Preferably, the control circuitry is further operative to increase the current limit value of the at least one LED string to compensate for the reduced duty cycle.
In one embodiment the control circuitry further comprises a pulse width modulator functionality operative to control the duty cycle of each of the LED strings.
In one embodiment, or independently, the system comprises a plurality of current limiters responsive to the control circuitry, each of the plurality of current limiters being associated with a particular one of the plurality of LED strings and arranged to limit the current flow there through, and wherein the control circuitry is further operative to: monitor the pulse width modulator functionality, and in the event the duty cycle of the pulse width modulator functionality exceeds a predetermined maximum, to adjust the current of at least one of the controllable current limiters so as to reduce the duty cycle of the pulse width modulator functionality while maintaining a predetermined luminance.
In one further embodiment the adjustment of the current of the at least one of the controllable current limiters is by a predetermined amount. In another further embodiment the current is adjusted and the pulse width modulator duty cycle is reduced so as to maintain the predetermined luminance while reducing the maximum duty cycle to a predetermined amount. In yet another further embodiment the current is adjusted and the pulse width modulator duty cycle is reduced so as to maintain the predetermined luminance while reducing the maximum duty cycle by a predetermined amount.
In one embodiment, and independently, the control circuitry is operative to monitor an electrical characteristic of each of the plurality of LED strings and determine, responsive to the monitored electrical characteristic, if any of the plurality of LED strings exhibits and open circuit condition.
In one further embodiment, responsive to the determined open circuit condition, the control circuitry is further operative to adjust the current of at least one of the remaining LED strings by a predetermined amount to at least partially compensate for the determined open circuit condition. In one yet further embodiment, or independently, the plurality of LED strings are arranged in a matrix such that the at least partial compensation maintains a substantial uniform color. In one embodiment the plurality of LED strings are each constituted of white LEDs.
The invention independently provides for a method for powering and controlling an LED backlight comprising: providing a controllable power source; providing a plurality of LED strings arranged to receive power in parallel from the provided controllable power source; determining a function of an electrical characteristic of at least one of the plurality of LED strings; and controlling the provided controllable power source responsive to the determined function of the electrical characteristic.
In one embodiment the method further comprises: selecting the at least one of the plurality of LED strings, the determining being a function of the electrical characteristic of the selected at least one LED string. In another embodiment the method further comprises: selecting the at least one of the plurality of LED strings according to pre-determined criteria, the determining being a function of the electrical characteristic of the selected at least one LED string.
In one further embodiment, the selecting comprises: determining the LED string of the provided plurality of LED strings exhibiting one of the highest voltage drop, the lowest voltage drop, the mean voltage drop and the substantially average voltage drop. In another further embodiment the selecting comprises: determining the LED string of the provided plurality of LED strings exhibiting one of the lowest current, the highest current, the mean current and the substantially average current. In yet another further embodiment selecting is periodic.
In one embodiment the determining a function of an electrical characteristic comprises: calculating one of an average current and an average voltage drop of the provided plurality of LED strings.
In one embodiment the method further comprises: pulse width modulating the provided plurality of LED strings so as to maintain at least one of a predetermined luminance and a predetermined white point. Preferably, the pulse width modulating is responsive to one of a color sensor and a photo-sensor.
In one further embodiment, or independently, the method comprises: providing a thermal sensor; and in the event of a predetermined thermal condition of the provided thermal sensor, reducing the duty cycle of the pulse width modulating of at least one of the provided plurality of LED strings. Preferably, the method further comprises: increasing the current flow through the at least one LED string having the reduced duty cycle.
In one further embodiment, or independently, the method comprises: providing a plurality of current limiters, each of the provided plurality of current limiters limiting current flow through a particular one of the provided plurality of LED strings; providing a voltage sensor arranged to output an indication of the voltage drop across each of the provided plurality of current limiters; and in the event of the output of the provided voltage sensor is indicative of a predetermined thermal condition, reducing the duty cycle of the pulse width modulating of at least one of the provided plurality of LED strings. Preferably the method further comprises: increasing the current flow through the at least one LED string having the reduced duty cycle.
In one further embodiment, or independently, the method comprises: providing a plurality of current limiters, each of the provided plurality of current limiters limiting current flow through a particular one of the provided plurality of LED strings; providing a voltage sensor arranged to output an indication of the voltage drop across each of the provided plurality of current limiters; providing a current sensor arranged to output an indication of the current flow through each of the provided current limiters; and in the event of the output of the provided voltage sensor and the provided current sensor are indicative of a predetermined thermal condition, reducing the duty cycle of the pulse width modulating of at least one of the provided plurality of LED strings. Preferably, the method further comprises: increasing the current flow through the at least one LED string having the reduced duty cycle.
In one further embodiment, or independently, the method comprises: monitoring a pulse width modulating; and in the event the duty cycle of the pulse width modulating exceeds a predetermined maximum, increasing the current through at last one of the provided plurality of LED strings; and reducing the duty cycle so as to maintain the at least one of a predetermined luminance and a predetermined white point. In one yet further embodiment the increasing the current is a by a predetermined amount. In another yet further embodiment the increasing the current is by an amount sufficient to reduce the duty cycle by a predetermined amount. In another yet further embodiment, the increasing the current is by an amount sufficient to reduce the duty cycle to a predetermined amount.
In one further embodiment, or independently, the method comprises: periodically monitoring each of the plurality of LED strings and determining if any of the plurality of LED strings exhibits an open circuit condition. Preferably, in the event the determining determines that one of the plurality of LED strings exhibits an open circuit condition, adjusting the current of at least one of the remaining LED strings by a predetermined amount to at least partially compensate for the LED string exhibiting the open circuit condition. Further preferably, the method further comprises comprising arranging the provided plurality of LED strings in a matrix such that the at least partial compensation maintains a uniform color.
Additional features and advantages of the invention will become apparent from the following drawings and description.
For a better understanding of the invention and to show how the same may be carried into effect, reference will now be made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections throughout.
With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. In the accompanying drawings:
The present embodiments enable a backlighting system exhibiting a plurality of LED strings. A controllable voltage source is provided for each color, the controllable voltage source providing power for a plurality of LED strings of the respective color. In an embodiment in which only white LEDs are utilized, a single controllable voltage source is provided for a plurality of white LED strings. An LED string controller is arranged to variably control current limiters associated with each LED string. The LED string controller is further operative to measure an electrical characteristic, such as current flow, of each string, and feedback a predetermined function of the measured electrical characteristic of at least one LED string to the associated controllable voltage source. The controllable voltage source is operative to adjust its voltage output responsive to the feedback. In an exemplary embodiment the LED string controller selects one of the LED string exhibiting the highest current, the LED string exhibiting the lowest current and the LED string exhibiting the average current.
Advantageously, the LED string controller of the subject invention is further operative to detect an open circuit failure of an LED string or a short circuit failure of one or more LEDs of a string. In one embodiment the LED string controller is operative to adjust the current of other LED strings to compensate for the failed LED string.
The LED string controller of the subject invention is further operative to monitor the dynamic range of the PWM control of the LED strings. In the event that the PWM control approaches a predetermined maximum, the current of the LED strings is preferably increased by adjusting the settings of the variable current limiters, and the controllable voltage source is responsive to adjust its voltage output accordingly. The increased current results in an increased luminance during the PWM on time, and resets the PWM dynamic range.
In an embodiment in which the LED string controller of the subject invention comprises internal dissipative current limiters, typically comprising a filed effect transistor (FET), arranged serially in the path of each LED string, the LED string controller preferably receives both an indication of the voltage drop across each internal FET as well as the current flowing there through and determines the power dissipation of the FET in comparison with a pre-determined thermal limit. In the event that the power dissipation of any of the FETs exceeds the pre-determined value, the LED string controller acts to reduce the power dissipation across the FET by pulsing the FET to maintain the average current over time while reducing the power dissipation to be less than or equal to the pre-determined thermal limit.
In a preferred embodiment at least one internal thermal sensor is further provided in the LED string controller, the thermal sensor being arranged to provide the control circuitry with information regarding the thermal stress being experienced by the LED string controller. In the event that one or more of the internal thermal sensors indicates that an overall temperature limit has been exceeded, the LED string controller acts to reduce the power dissipation by pulsing the FET having the largest power dissipation to preferably arrive at a current whose average over time is equal to a pre-determined nominal value.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is applicable to other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
In operation, each current limiter 35 comprising a FET 40, a comparator 50 and receiving a voltage drop across Rsense is arranged as a controllable current limiter, in which the current limit is set by the respective output of LED string controller 60. Color sensor 70 is operative to sense the color balance, i.e. the actual white point, of the output of the LED color strings 30, and output a signal responsive the luminance of the red, green and blue wavelengths experienced by color sensor 70. The enable input of each comparator 50 is arranged to disable or enable current through the respective FET 40, thereby enabling PWM control of the respective LED string 30 while maintaining a constant current when current is enabled. LED string controller 60, responsive to output of color sensor 70, is operative to adjust the PWM duty cycle of each of the respective LED strings 30 so as to maintain the desired white point. LED string controller 60 is arranged to enable voltage measurements across each FET 40 and Rsense so as to enable a feedback loop to control each controllable voltage source 20 as will be explained further hereinto below.
System 10 has been illustrated and described in an embodiment in which only a single LED string 30 is arranged connected to a particular current limiter 35, however this is not meant to be limiting in any way. The use of a plurality of LED strings 30 connected to a particular current limiter is specifically included herein.
Advantageously, system 10 provides a separate PWM control for each LED string 30 in the system. Such a PWM control enables improved brightness control, color uniformity and average current accuracy since any inaccuracy in current control due to the action of current limiter 35 is compensatable by adjusting the appropriate PWM duty cycle. In one non-limiting example, inaccuracy in the value of a particular Rsense is compensated for by adjusting the respective PWM duty cycle associated with the particular Rsense.
A first end of each LED string 30 is connected to a common output of controllable voltage source 20. A second end of each LED string 30 is connected to one end of current limiter 35 at the drain of the respective FET 40 and to an input of a respective S/H circuit 170 of LED string controller 60. The source of the respective FET 40 is connected to a first end of the respective sense resistor Rsense, and the second end of the respective Rsense is connected to ground. The first end of the respective Rsense is further connected to a first input of the respective comparator 50 of the respective current limiter 35 and to an input of a respective S/H circuit 170 of LED string controller 60. The gate of each FET 40 is connected to the output of the respective comparator 50 and to a first end of respective pull down resistor 160. A second end of each pull down resistor 160 is connected to ground.
A second input of each comparator 50 is connected to the output of a respective D/A converter 140 of LED string controller 60. The enable input of each comparator 50 is connected to a respective output of control circuit 120 associated with PWM functionality 135. Each D/A converter 140 is connected to a unique output of control circuitry 120, and the output of each S/H circuit 170 is connected to a respective input of multiplexer 190. The output of multiplexer 190, which is illustrated as an analog multiplexer, is connected to the input of A/D converter 150, and the digitized output of A/D converter 150 is connected to a respective input of control circuitry 120. The output of thermal sensor 180 is connected to a respective input of control circuitry 120 and the output of color sensor 70 is connected to a respective input of control circuitry 120. The S/H circuits 170 are preferably further connected (not shown) to receive from control circuitry 120 a timing signal so as to sample during the conduction portion of the respective PWM cycle responsive to PWM functionality 135. Color sensor 70 is associated with each of the plurality of colored LED strings 30, comprising strings of a plurality of colors, of which only a plurality of LED strings of a single color are illustrated.
Controllable voltage source 20 is shown as being controlled by an output of control circuitry 120, however this is not meant to be limiting in any way. A multiplexed analog feedback loop as will be described further hereinto below may be utilized without exceeding the scope of the invention.
In operation, control circuitry 120 enables operation of each of LED strings 30 via the operation of the respective current limiter 35, and initially sets the voltage output of controllable voltage source 20 to a minimum nominal voltage and each of the current limiters 35 to a minimum current setting. The current through each LED string 30 is sensed via a respective sense resistor Rsense, sampled and digitized via respective S/H circuit 170, multiplexer 190 and A/D converter 150 and fed to control circuitry 120. The voltage drop across each current limiter 35 is sampled and digitized via a respective S/H circuit 170, multiplexer 190 and A/D converter 150 and fed to control circuitry 120. Control circuitry 120 selects a particular one of the LED strings 30, or a function of the LED strings 30, and controls the output of controllable voltage source 20, as will be described further hereinto below, responsive to an electrical characteristic thereof. In one embodiment a LED string 30 is selected so as to minimize power dissipation, in another embodiment a LED string 30 is selected so as to ensure a precisely matching current in each of the LED strings 30, and in yet another embodiment a function of the LED strings 30 is selected as a compromise between precisely matched currents and minimized power dissipation. Control circuitry 120 further acts, as will be described further hereinto below, to compensate for aging when the PWM duty factor of respective current limiters 35 has reached a predetermined maximum by modifying the PWM duty factor of PWM functionality 135.
Control circuitry 120 further sets the current limit of the LED strings 30 to the same value, via a respective D/A converter 140. In particular FET 40, responsive to comparator 50, ensures that the voltage drop across sense resistor Rsense is equal to the output of the respective D/A converter 140. Control circuitry 120 further acts to receive the output of color sensor 70, and modify the PWM duty cycle of the color strings 30 so as to maintain a predetermined white point and/or luminance. The PWM duty cycle is operated by the enabling and disabling of the respective comparator 50 under control of PWM functionality 135 of control circuitry 120.
In one embodiment, control circuitry 120 further inputs temperature information from one or more thermal sensors 180. In the event that one or more thermal sensors 180 indicate that temperature has exceeded a predetermined limit, control circuitry 120 acts to reduce power dissipation so as to avoid thermal overload.
A first end of each white LED string 210 is connected to a common output of controllable voltage source 20. A second end of each white LED string 210 is connected to one end of current limiter 35 at the drain of the respective FET 40 and to an input of a respective S/H circuit 170 of LED string controller 60. The source of the respective FET 40 is connected to a first end of the respective sense resistor Rsense, and the second end of the respective Rsense is connected to ground. The first end of the respective Rsense is further connected to a first input of the respective comparator 50 of the respective current limiter 35 and to an input of a respective S/H circuit 170 of LED string controller 60. The gate of each FET 40 is connected to the output of the respective comparator 50 and to a first end of respective pull down resistor 160. A second end of each pull down resistor 160 is connected to ground.
A second input of each comparator 50 is connected to the output of a respective D/A converter 140 of LED string controller 60. The enable input of each comparator 50 is connected to a respective output of control circuit 120 associated with PWM functionality 135. Each D/A converter 140 is connected to a unique output of control circuitry 120, and the output of each S/H circuit 170 is connected to a respective input of multiplexer 190. The output of multiplexer 190, which is illustrated as an analog multiplexer, is connected to the input of A/D converter 150, and the digitized output of A/D converter 150 is connected to a respective input of control circuitry 120. The output of thermal sensor 180 is connected to a respective input of control circuitry 120 and the output of photo-sensor 220 is connected to a respective input of control circuitry 120. The S/H circuits 170 are preferably further connected (not shown) to receive from control circuitry 120 a timing signal so as to sample during the conduction portion of the respective PWM cycle responsive to PWM functionality 135.
Controllable voltage source 20 is shown as being controlled by an output of control circuitry 120, however this is not meant to be limiting in any way. A multiplexed analog feedback loop as will be described further hereinto below may be utilized without exceeding the scope of the invention.
In operation, control circuitry 120 enables operation of each of white LED strings 210 via the operation of the respective current limiter 35, and initially sets the voltage output of controllable voltage source 20 to a minimum nominal voltage and each of the current limiters 35 to a minimum current setting. The current through each of the LED strings 30 is sensed via a respective sense resistor Rsense, sampled and digitized via respective S/H circuit 170, multiplexer 190 and A/D converter 150 and fed to control circuitry 120. The voltage drop across current limiter 35 is sampled and digitized via a respective S/H circuit 170, multiplexer 190 and A/D converter 150 and fed to control circuitry 120. Control circuitry 120 selects a particular one of the LED strings 30, and controls the output of controllable voltage source 20, as will be described further hereinto below, responsive to the current flow through the selected LED string 30. In one embodiment the LED string 30 is selected so as to minimize power dissipation, in another embodiment the LED string 30 is selected so as to ensure a precisely matching current in each of the LED strings 30, and in yet another embodiment a function of the LED strings 30 is selected as a compromise between precisely matched currents and minimized power dissipation. Control circuitry 120 further acts, as will be described further hereinto below to compensate for aging when the PWM duty factor of respective current limiters 35 has reached a predetermined maximum by modifying the PWM duty factor of PWM functionality 135.
Control circuitry 120 further sets the current limit of the LED strings 210 to the same value, via a respective D/A converter 140. In particular FET 40 responsive to comparator 50 ensures that the voltage drop across sense resistor Rsense is equal to, or less than, the output of the respective D/A converter 140. Control circuitry 120 further acts to receive the output of photo-sensor 220, and modify the PWM duty cycle of white LED strings 210 so as to maintain a predetermined intensity. The PWM duty cycle is operated by the enabling and disabling of the respective comparator 50 under control of PWM functionality 135 of control circuitry 120.
In one embodiment, control circuitry 20 further inputs temperature information from one or more thermal sensors 180. In the event that one or more thermal sensors 180 indicate that temperature has exceeded a predetermined limit, control circuitry 120 acts to reduce power dissipation so as to avoid thermal overload.
In stage 1020 the voltage drop across each current limiter 35, i.e. across the respective FET 40, is measured and the actual voltage drop representative of the current flow through the respective LED string 30, 210 is measured for string i. In stage 1030 the values input are compared to prestored minimum safe values, thereby checking whether LED string, i, is safe to be fully enabled. For example in the event that no current is sensed an error condition may be flagged. In the event an excess current condition across sense resistor Rsense is measured, a short circuit condition may be flagged and, as will be described further, the LED string, i, is not to be enabled.
In the event that in stage 1030 the measured values associated with LED string, i, are indicative of proper operation, in stage 1040 index i is checked to see if it represents the last LED string. In the event that index i does not represent the last LED string, in stage 1050 the index i is incremented and stage 1020 as described above is again performed.
In the event that in stage 1040 index i represents the last LED string, thus all LED strings have been checked for values indicative of proper operation, in stage 1060, stage 2000 of
In stage 2020 a representation of the actual current through each of the LED strings 30 is input. In one embodiment the representation is a digitized measurement of the voltage drop across the respective Rsense of each LED string as described above. In another embodiment the representation is a digitized measurement of the voltage drop from the drain of FET 40 to ground of each LED string as described above. In yet another embodiment the representation is a two dimensional filter of the voltage drop across Rsense and the voltage from the drain of FET 40 to ground. Such a filter, which may be implemented digitally, in one embodiment take n samples of the voltage from the drain of FET 40 to ground, and adds to it to a weighted measurement of the voltage drop across Rsense. The weighted average is compared to a reference indicative of the expected value. The use of the weighted average reduces noise in the measurement.
In stage 2030 the LED string 30 of each color exhibiting the lowest actual current as input in stage 2020 is identified. As described above, the lowest actual current corresponds with the LED string 30 exhibiting the greatest voltage drop. In the embodiment in which the voltage from drain to ground is utilized for stage 2020, the minimum voltage drop is selected. It is to be understood that the minimum voltage drop is equivalent to the maximum voltage drop across the respective LED string 30.
In stage 2040 the feedback loop to controllable voltage source 20 is set to sense resistor Rsense of the LED string 30 identified in stage 2030. In the embodiment in which the voltage from the drain of FET 40 to ground, or a filtered component thereof, is utilized, the feedback loop to controllable voltage source 20 is set to the FET 40 exhibiting the lowest voltage drop from the drain of FET 40 to ground.
In stage 2050 the actual current of the LED string 30 identified in stage 2030 is compared with the nominal predetermined current of stage 2000 or stage 2120 described below. In the event that the actual current of the LED string 30 identified in stage 2030 is not equal to the nominal predetermined current of stage 2000 or stage 2120 described below, in stage 2060 the controllable voltage source 20 is adjusted and stage 2050 is again performed. The feedback loop from the actual current of the LED string 30 to the controllable voltage source 20 may be digitally implemented or implemented by analog electronics, or a combination thereof, in which the actual measured value is compared to the predetermined reference value reflective of the nominal predetermined current, and any difference is fed as a correction to controllable voltage source 20. In an embodiment in which the voltage from the drain of FET 40 to ground, or a filtered component thereof, is utilized the reference for the feedback loop is a calculated value which will provide the nominal predetermined current and enable proper operation of the current limiters 35. Hysteresis as required may be added into stages 2050 and 2060 without exceeding the scope of the invention.
In the event that in stage 2050 the actual current of the LED string 30 identified in stage 2030 is equal to the nominal predetermined current of stage 2000 or stage 2120 described below, in stage 2070 the voltage drop across each current limiter 35, i.e. the voltage drop across FET 40 is measured and in stage 2080 the measured voltage drop is stored in memory 130. As will be described further below a sudden change in voltage drop is advantageously used to identify a failure of one or more LEDs in an LED string 30.
In stage 2090 the overall luminance and white point is controlled, responsive to color sensor 70, by modifying the PWM duty cycle of each of the LED strings 30 as is known to those skilled in the art and is further described in U.S. Pat. No. 6,127,783 issued Oct. 3, 2000 to Pashley and U.S. Pat. No. 6,441,558 issued Aug. 27, 2002 to Muthu, the entire contents of both of which are incorporated herein by reference. Preferably the timing of the PWM duty cycle of PWM functionality 135 is controlled to balance out the load on each of the controllable voltage sources 20. The prior art teaches staggering the start time of each string so as to reduce electromagnetic interference, and the subject invention further staggers the start time so as to balance the load.
In stage 2100 the PWM dynamic range utilized in the operation of stage 2090 is monitored. In stage 2110 the dynamic range of stage 2100 is compared with a predetermined maximum. It is known that due to aging of the LEDs the overall luminance decreases, and stage 2090 at least partially compensates for the aging by adjusting the PWM duty cycle of PWM functionality 135 to maintain the overall luminance while maintaining the predetermined white point. Stage 2110 detects when the increase of the PWM duty cycle has reached a predetermined maximum. In one embodiment the PWM duty cycle maximum is 95%. In the event that in stage 2110 the PWM duty cycle has not reached the maximum, stage 2100 is performed as described above.
In the event that in stage 2110 the PWM duty cycle for any of the LED strings has reached the predetermined maximum, in stage 2120 the nominal predetermined current is increased. In one embodiment the current of the color LED string 30 whose PWM duty cycle has reached a maximum is increased, and in another embodiment the current of all LED strings 30 are increased. Thus, the luminance of the LEDs is increased without any requirement to further increase the PWM duty cycle. In one embodiment the nominal predetermined current is increased so as to reduce the PWM duty cycle to a predetermined nominal value. In another embodiment the nominal predetermined current is increased by a predetermined amount. Stage 2020 is again performed as described above thereby resetting the outputs of controllable voltage source 20 in line with the newly set nominal predetermined current.
In one embodiment the selected feedback condition is the lowest current, as described above in relation to the method of
In another embodiment, the selected feedback condition is the highest current, thereby ensuring a minimum power dissipation of the system of
In yet another embodiment, the selected feedback condition is an average current, which may be one of: the mean current of the white LED strings 210; the white LED string 210 exhibiting a current closest to the arithmetic average between the maximum current white LED string 210 and the minimum current white LED string 210; and the arithmetic average of the currents through the white LED strings 210. Use of the average current represents a compromise between minimum power consumption and precision balance between the current of the white LED strings 210. Alternately, in place of current, voltage drop across the various LED strings 210 may be utilized, and the selected feedback condition is therefore one of: the highest voltage drop, the lowest voltage drop, the mean voltage drop from among the plurality of LED strings 210, the substantially arithmetic average voltage drop from among the plurality of LED strings 210 and the arithmetic average of the voltage drops of the plurality of LED strings 210.
In yet another embodiment, the selected feedback condition is a function of the currents in the various LED strings.
In stage 6020, the current limiters 35 of each of the white LED strings 210 are set to the nominal predetermined current input in stage 6000. In stage 6030 a representation of the actual current through each of the white LED strings 210 is input. In one embodiment the representation is a digitized measurement of the voltage across the respective Rsense of each LED string 210 as described above. In another embodiment the representation is a digitized measurement of the voltage drop from the drain of FET 40 to ground. In yet another embodiment the representation is a two dimensional filter of the voltage drop across Rsense and the voltage drop from the drain of FET 40 to ground. Such a filter, which may be implemented digitally, in one embodiment take n samples of the voltage from voltage drop across FET 40, and adds to it to a weighted measurement of the voltage drop across Rsense. The weighted average is compared to a reference indicative of the expected value. The use of the weighted average reduces noise in the measurement.
In stage 6040 the white LED string 210 meeting the feedback condition of stage 6010 is found. In an embodiment in which a calculated average current is utilized, as describe above in relation to stage 6010, stage 6040 is not implemented. Stage 6040 is thus illustrated as optional.
In stage 6050 the feedback loop to controllable voltage source 20 is set in accordance with the feedback condition of stage 6010, in cooperation with optional stage 6040. Thus, in the event a particular white LED string 210 meets the feedback condition, one of the voltage drop across sense resistor Rsense of the particular white LED string 210 identified in stage 6040 and the voltage drop from the drain of FET 40 to ground of the particular white LED string 210 identified in stage 6040, or a filtered combination thereof, is set to be fed back to control the voltage output of controllable voltage source 20. In an embodiment in which a function of the currents are utilized, such as a calculated average as described above, the feedback loop is set to the output of the average current of the white LED strings 210.
In stage 6060 the actual current of feedback condition, whether a particular white LED string 210 identified in stage 6040, or a function of a plurality of white LED strings 210 such as an average, is compared with the nominal predetermined current of stage 6000. In the event that the actual current of the white LED string 210 identified in stage 6040, or the function of the plurality of white LED strings 210, is not equal to the nominal predetermined current, in stage 6070 the controllable voltage source 20 is adjusted and stage 6060 is again performed. The feedback loop from the actual current of the particular white LED string 210, or the function of the plurality of white LED strings 210 to the controllable voltage source 20 may be digitally implemented or implemented by analog electronics, or a combination thereof, in which the actual measured value is compared to the predetermined reference value equivalent to the nominal predetermined current, and any difference is fed as a correction to controllable voltage source 20. In an embodiment in which the voltage from the drain of FET 40 to ground, or a filtered component thereof, is utilized, the reference for the feedback loop is a calculated value which will provide the nominal predetermined current and enable proper operation of the current limiters 35. Hysteresis as required may be added into stages 6060 and 6070 without exceeding the scope of the invention.
In the event that in stage 6060 the actual current of the white LED string 210 identified in stage 6040, or the function of the plurality of white LED strings 210, is equal to the nominal predetermined current, in stage 6080 the voltage drop across each current limiter 35, i.e. the voltage drop across FET 40 is measured and in stage 6090 the measured voltage drop is stored in memory 130. As will be described further below a sudden change in voltage drop is advantageously used to identify a failure of one or more LEDs in a white LED string 210.
In stage 6100 the overall luminance is controlled, responsive to photo-sensor 220, by modifying the PWM duty cycle of each of the white LED strings 210 as is known to those skilled in the art to achieve the desired overall luminance. Preferably the timing of the PWM duty cycle of PWM functionality 135 is controlled to balance out the load on the controllable voltage sources 20. The prior art teaches staggering the start time of each string so as to reduce electromagnetic interference, and the subject invention further staggers the start time so as to balance the load.
In stage 6110 the PWM dynamic range utilized in the operation of stage 6100 is monitored. In stage 6120 the dynamic range monitored in stage 6110 is compared with a predetermined maximum. It is known that due to aging of the LEDs the overall luminance decreases, and stage 6100 at least partially compensates for the aging by adjusting the PWM duty cycle of PWM functionality 135 to maintain the overall luminance. Stage 6120 detects when the increase of the PWM duty cycle has reached a predetermined maximum. In one embodiment the PWM duty cycle maximum is 95%. In the event that in stage 6120 the PWM duty cycle has not reached the maximum, stage 6110 is performed as described above.
In the event that in stage 6120 the PWM duty cycle for any of the white LED strings 210 has reached the predetermined maximum, in stage 6130 the nominal predetermined current is increased. Thus, the luminance of the LEDs is increased without any requirement to further increase the PWM duty cycle. In one embodiment the nominal predetermined current is increased so as to reduce the PWM duty cycle to a predetermined nominal value. In another embodiment the nominal predetermined current is increased by a predetermined amount. Stage 6030 is again performed as described above thereby resetting the outputs of controllable voltage source 20 in line with the newly set nominal predetermined current.
The above has been described in an embodiment of white LEDs 210 of
In stage 3000 a desired white point is achieved by setting a constant current for each of the LED strings. In one embodiment the constant current setting achieving the desired white point used is the initial nominal predetermined current of stage 2000 of
In stage 3020 the LED string indicated by the LED string counter i is disabled. In one embodiment this is accomplished by disabling comparator 50 of current limiter 35 associated with LED string i. Preferably the feedback loop from respective color sensor 70, photo-sensor 220 is disabled so as to prevent LED string controller 60 from attempting to correct for the disabled LED string i responsive to the input from respective color sensor 70, photo-sensor 220. In stage 3030 the chrominance and/or luminance impact on the LCD monitor is measured. In one embodiment this is measured at a plurality of points on the LCD monitor face.
In stage 3040 the required current change for the remainder of the LED strings that will succeed in minimizing deviation from color uniformity is calculated. Preferably the required current change is further determined so as to minimize the deviation from the desired white point. In one embodiment minimized deviation results in a uniform display exhibiting a white point within a predetermined range of the initial set white point. In another embodiment minimized deviation results in a plurality of white points across the display exhibiting white points within a predetermined range of the initial set white point however the white point is not uniform. The required current changes for the balance of the LED strings 30, 210 may be calculated or alternatively an optimization algorithm may be utilized. In an embodiment of white LED strings 210, the required current change that will succeed in minimizing deviation from luminance uniformity is calculated.
In stage 3050 the required current changes as determined in stage 3040 are stored in a non-volatile portion of memory 130 of
In stage 3060 index i is checked to see if it represents the last LED string 30. In the event that index i does not represent the last LED string, in stage 3070 the index is incremented and stage 3020 as described above is again performed. In the event that in stage 3060 index i does represent the last LED string, thus all LED strings have been disabled and the current changes to achieve a minimized deviation have been determined and stored, in stage 3080 the routine ends.
In stage 4000 the voltage drop across each of the current limiters 35 and the voltage drop across each of the sense resistors Rsense are periodically measured and stored. The voltage drop across Rsense is representative of the current flow through the associated LED string 30, 210 and the voltage drop across each current limiter 35, i.e. across FET 40, is indicative of the status of the current limiter, i.e. it is representative of the power dissipation across the current limiter 35. In stage 4010 the voltage drop across each current limiter 35 is compared with the voltage drop stored in memory 130 according to stage 2080 of
In stage 4030 the differences of stages 4010 and 4020 are analyzed to see if the difference is indicative of a shorted LED within a particular LED string 30, 210. For example, a short circuit of a single LED in an LED string 30, 210 will result in a sudden increase from a previous reading in the voltage drop across the particular current limiter 35 associated with the LED string 30, 210 exhibiting the short circuited LED. In the event that the difference in voltage drops of stages 4010 and 4020 are not indicative of short circuited LED in an LED string 30, 210 in stage 4040 the differences of stages 4010 and 4020 are analyzed to see if the difference is indicative of an open circuited LED within a particular LED string 30, 210. An open circuited LED within a particular LED string 30, 210 results in a disabled LED string 30, 210 in which no current is sensed by sense resistor Rsense.
In the event that the difference in voltage drops of stages 4010 and 4020 are indicative of an open circuited LED in an LED string 30, 210 in stage 4050 the required changes in current for each LED string other than the open circuited LED string 30, 210 previously stored in stage 3050 of
In the event that in stage 4040 the difference in voltage drops of stages 4010 and 4020 are not indicative of an open circuited LED in an LED string 30, 210 stage 2020 of
In the event that in stage 4030 the difference in voltage drops of stages 4010 and 4020 are indicative of short circuited LED in an LED string 30, 210 in stage 4080 an error flag indicative of a short circuited LED and indicating the particular LED string 30, 210 in which the short circuited LED has been detected is set. Stage 2020 of
The above has been described in an embodiment in which both the voltage drop across Rsense and the voltage drop across the current limiters 35 are both input and compared, however this is not meant to be limiting in any way. One of the voltage drop across Rsense and the voltage drop across the current limiters 35 may be utilized, or a combination of the two may be utilized in a single function, without exceeding the scope of the invention.
In stage 5000 the voltage drop across each of the current limiters 35 and the voltage drop across each of the sense resistors Rsense are periodically measured and stored. The voltage drop across Rsense is representative of the current flow through the associated LED string 30, 210 and the voltage drop across each current limiter 35, i.e. the voltage drop across FET 40, is indicative of the status of the current limiter 35, i.e. it is representative of the power dissipation across the current limiter 35. In stage 5010 the voltage drop across each current limiter 35 is compared with the voltage drop stored in memory 130 according to stage 2080 of
In stage 5030 the differences of stages 5010 and 5020 are analyzed to see if the difference is indicative of a shorted LED within a particular LED string 30, 210. For example, a short circuit of a single LED in an LED string 30, 210 will result in a sudden increase from a previous reading in the voltage drop across the particular current limiter 35 associated with the LED string 30, 210 exhibiting the short circuited LED. In the event that the difference in voltage drops of stages 5010 and 5020 are not indicative of short circuited LED in an LED string 30, 210 in stage 5040 the differences of stages 5010 and 5020 are analyzed to see if the difference is indicative of an open circuited LED within a particular LED string 30, 210. An open circuited LED within a particular LED string 30, 210 results in a disabled LED string 30, in which no current is sensed by sense resistor Rsense.
In the event that the difference in voltage drops of stages 5010 and 5020 are indicative of an open circuited LED in an LED string 30, in stage 5050 the required changes in current for each LED string other than the open circuited LED string 30, 210 previously stored in stage 3050 of
In the event that in stage 5040 the difference in voltage drops of stages 5010 and 5020 are not indicative of an open circuited LED in an LED string 30, 210 stage 2020 of
In the event that in stage 5030 the difference in voltage drops of stages 5010 and 5020 are indicative of short circuited LED in an LED string 30, in stage 5080 an error flag indicative of a short circuited LED and indicating the particular LED string 30, 210 in which the short circuited LED has been detected is set. In stage 5090, the LED string 30, 210 in which the short circuited LED has been detected is disabled. In an exemplary embodiment the flag set in stage 5080 is operative to disable comparator 50 of the current limiter 35 associated with the LED string 30, 210 having the short circuited LED. Stage 5050 as described above is then performed to compensate for the disabled LED string 30, 210.
The above has been described in which both the voltage drop across Rsense and the voltage drop across the current limiters 35 are both input and compared, however this is not meant to be limiting in any way. One of the voltage drop across Rsense and the voltage drop across the current limiters 35 may be utilized, or a combination of the two may be utilized as a single function without exceeding the scope of the invention.
The methods of
The connection between each of the blue LEDs in each of the three LED strings are shown, and the connection is such that for each blue LED in a particular string of blue LEDs all the adjacent blue LEDs belong to a different string. Thus, in the event of a failure of one of the blue LED strings, an increased luminance from the remaining blue strings may be used to compensate for the failed blue LED string without exhibiting an unacceptable loss of white point or local discoloration. The above has been described as requiring an increase in current for the remaining blue LED strings, however this is not meant to be limiting in any way. Modification of the nominal predetermined current for the red and green LED strings may be additionally required without exceeding the scope of the invention.
Similarly, (not shown) the connection between each of the red LEDs in each of the three LED strings is such that for each red LED in a particular string of red LEDs all the adjacent red LEDs belong to a different string. Thus, in the event of a failure of one of the red LED strings, an increased luminance from the remaining red strings may be used to compensate for the failed red LED string without exhibiting an unacceptable loss of white point or local discoloration. The above has been described as requiring an increase in current for the remaining red LED strings, however this is not meant to be limiting in any way. Modification of the nominal predetermined current for the blue and green LED strings may be additionally required without exceeding the scope of the invention.
Similarly, (not shown) the connection between each of the green LEDs in each of the three LED strings is such that for each green LED in a particular string of green LEDs all the adjacent green LEDs belong to a different string. Thus, in the event of a failure of one of the green LED strings, an increased luminance from the remaining green strings may be used to compensate for the failed green LED string without exhibiting an unacceptable loss of white point or local discoloration. The above has been described as requiring an increase in current for the remaining green LED strings, however this is not meant to be limiting in any way. Modification of the nominal predetermined current for the blue and red LED strings may be additionally required without exceeding the scope of the invention.
The above has been described as utilizing a plurality of controllable voltage sources, and controlling the respective voltages so as to minimize power dissipation, however this is not meant to be limiting in any way. In an alternative embodiment a controllable current source exhibiting a sufficient voltage is supplied in place of the controllable voltage sources without exceeding the scope of the invention.
In stage 7030, the lowest actual current of stage 7020 is compared to a pre-determined nominal current. In the event that the lowest actual current is greater than the pre-determined nominal current, in stage 7040 the output of controllable voltage source 20 is reduced and stage 7010 as described above is again performed. In one embodiment the voltage is reduced in stage 7040 by a pre-determined step, and in another embodiment a feedback of the voltage representation of the lowest current found in stage 7030 is fed back.
In the event that in stage 7030 the lowest actual current is not greater than the pre-determined nominal current, in stage 7050 the current for all LED strings is set to a predetermined nominal value as described in relation to stage 7030 via the operation of the internal current limiters 35. In stage 7060 the voltage drop across each of the internal current limiters 35 are input and in stage 7070 the power dissipation across each of the internal current limiters 35 is calculated using the value input in stage 7060. In one embodiment the current flow through the internal current limiters 35 are again input as described above in relation to stage 7010 for use in the calculation, and in another embodiment the value set in stage 7050 is used in the calculation.
In stage 7080 the power dissipation calculated in stage 7070 for each internal current limiter 35 is compared with a pre-determined thermal limit. In the event that the power dissipation for any of the internal current limiters 35 exceeds the predetermined limit, in stage 7090 the duty cycle of the internal current limiter 35 is reduced. In one embodiment the duty cycle to be used is directly calculated to reduce the power consumption to be less than the predetermined limit, and in another embodiment the duty cycle is reduced by a predetermined step. Stage 7060 is then performed as described above.
In the event that in stage 7080 the power dissipation for any of the internal current limiters 35 does not exceed the pre-determined limit, in stage 7100 input from thermal sensor 180 is received. In stage 7110 the input received in stage 7100 is compared with a predetermined temperature maximum. In the event the temperature input from thermal sensor 180 is within the predetermined limit, stage 7060 is again performed. In the event the temperature input from the thermal sensors is not within the predetermined limit, stage 7090 as described above is performed.
Thus the present embodiments enable a backlighting system exhibiting a plurality of LED strings. A controllable voltage source is provided for each color, the controllable voltage source providing power for a plurality of LED strings of the respective color. In an embodiment in which only white LEDs are utilized, a single controllable voltage source is provided for a plurality of white LED strings. An LED string controller is arranged to variably control current limiters associated with each LED string. The LED string controller is further operative to measure an electrical characteristic, such as current flow, of each string, and feedback a predetermined function of the measured electrical characteristic of at least one LED string to the associated controllable voltage source. The controllable voltage source is operative to adjust its voltage output responsive to the feedback. In an exemplary embodiment the LED string controller selects one of the LED string exhibiting the highest current, the LED string exhibiting the lowest current and the LED string exhibiting the average current.
Advantageously, the LED string controller of the subject invention is further operative to detect an open circuit failure of an LED string or a short circuit failure of one or more LEDs of a string. In one embodiment the LED string controller is operative to adjust the current of other LED strings to compensate for the failed LED string.
The LED string controller of the subject invention is further operative to monitor the dynamic range of the PWM control of the LED strings. In the event that the PWM control approaches a predetermined maximum, the current of the LED strings is preferably increased by adjusting the settings of the variable current limiters, and the controllable voltage source is responsive to adjust its voltage output accordingly. The increased current results in an increased luminance during the PWM on time, and resets the PWM dynamic range.
In an embodiment in which the LED string controller of the subject invention comprises internal dissipative current limiters, typically comprising a filed effect transistor (FET), arranged serially in the path of each LED string, the LED string controller preferably receives both an indication of the voltage drop across each internal FET as well as the current flowing there through and determines the power dissipation of the FET in comparison with a pre-determined thermal limit. In the event that the power dissipation of any of the FETs exceeds the pre-determined value, the LED string controller acts to reduce the power dissipation across the FET by pulsing the FET to maintain the average current over time while reducing the power dissipation to be less than or equal to the pre-determined thermal limit.
In a preferred embodiment at least one internal thermal sensor is further provided in the LED string controller, the thermal sensor being arranged to provide the control circuitry with information regarding the thermal stress being experienced by the LED string controller. In the event that one or more of the internal thermal sensors indicates that an overall temperature limit has been exceeded, the LED string controller acts to reduce the power dissipation by pulsing the FET having the largest power dissipation to preferably arrive at a current whose average over time is equal to a pre-determined nominal value.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
Unless otherwise defined, all technical and scientific terms used herein have the same meanings as are commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods are described herein.
All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the patent specification, including definitions, will prevail. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention is defined by the appended claims and includes both combinations and subcombinations of the various features described hereinabove as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not in the prior art.
This application claims priority from: U.S. Provisional Patent Application Ser. No. 60/775,787 filed Feb. 23, 2006 entitled “Thermal Limited Backlight Driver”; U.S. Provisional Patent Application Ser. No. 60/803,366 filed May 28, 2006 entitled “Voltage Controlled Backlight Driver”; and U.S. Provisional Patent Application Ser. No. 60/868,675 filed Dec. 5, 2006 entitled “Voltage Controlled Backlight Driver”, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6127783 | Pashley et al. | Oct 2000 | A |
6194839 | Chang | Feb 2001 | B1 |
6201353 | Chang et al. | Mar 2001 | B1 |
6441558 | Muthu | Aug 2002 | B1 |
6521879 | Rand et al. | Feb 2003 | B1 |
20040135522 | Berman et al. | Jul 2004 | A1 |
20050212459 | Patel et al. | Sep 2005 | A1 |
20050231127 | Yamamoto et al. | Oct 2005 | A1 |
20050231459 | Furukawa | Oct 2005 | A1 |
20060050529 | Chou et al. | Mar 2006 | A1 |
20060066265 | Plotz et al. | Mar 2006 | A1 |
20060108933 | Chen | May 2006 | A1 |
20060221047 | Tanizoe et al. | Oct 2006 | A1 |
20070046485 | Grootes et al. | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070195025 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60775787 | Feb 2006 | US | |
60803366 | May 2006 | US | |
60868675 | Dec 2006 | US |