This application is the U.S. national phase of international application PCT/JP2005/004834 filed 17 Mar. 2005, which designated the U.S. and claimed priority of JP 2004-083233 filed 22 Mar 2004, the entire contents of each of which are hereby incorporated by reference.
The present invention relates to a power semiconductor for controlling large current, and more particularly relates to a voltage-controlled semiconductor device such as insulated-gate bipolar transistors having high breakdown voltage.
As semiconductor devices for controlling large current, though power semiconductor devices using Si (silicon) as a semiconductor material have conventionally been used, the improvement of their performance is difficult since Si has a limit in electrical and physical characteristics. Accordingly, development of power semiconductor devices with use of wide gap semiconductor materials having good electrical and physical characteristics compared to Si are currently proceeding. The wide gap semiconductor materials are typified by SiC (silicon carbide) having an energy gap of 2.2 eV to 3.2 eV. An insulated-gate bipolar transistor (IGBT) that is a voltage-controlled semiconductor device with use of the SiC is disclosed in, for example, Material Science Forum Vols. 338-342 (2000), pp. 1427-1430. This SIC-IGBT is shown in
In
Upon application of a voltage to between the gate electrode 111 and the collector electrode 115 so as to make the potential of the gate electrode 111 negative, electric fields are given to the gate insulating film 106 placed in between a portion of the base layer 104 forming a lateral wall of the trench 109 and the gate electrode 111. As a result, in the vicinity of a contact surface of the n-type base layer 104 in contact with the gate insulating film 106, an n-type conductivity is inverted to a P type. Since a channel for current flow is formed in a portion of the base layer 104 which is an inversion layer inverted to the P type, the channel is referred to as “inversion-type” channel. Through the channel, current flows between the collector electrode 115 and the emitter electrode 113.
In the case of the SiC-IGBT, there is a problem that the inversion layer has low channel mobility. This is considered to be because a surface state is present in the interface between SiO2 used as the gate insulating film and SiC so that the holes flowing through the inversion layer at on time are captured by the surface state. Further, it is also considered that roughness of the interface causes the holes as carriers to stop contributing to the conductivity, which causes the low mobility of the holes in the channel. Because of these reasons, channel resistance and on-voltage tend to increase.
In a SiC-IGBT in the conventional example shown in
Means for Solving the Problems
In order to achieve the above object, there is provided a voltage-controlled semiconductor device, comprising:
a first semiconductor layer made of a first conductivity-type wide gap semiconductor having a first electrode on one surface, the first electrode becoming either one of a current inflow terminal and a current outflow terminal for a controlled current;
a second semiconductor layer made of a wide gap semiconductor which is formed on the other surface of the first semiconductor layer and which has a second conductivity-type different from the first conductivity type;
an embedded semiconductor region made of a wide gap semiconductor which is partially provided in a vicinity of an opposite surface of the second semiconductor layer to a surface being in contact with the first semiconductor layer and which has a conductivity type different from that of the second semiconductor layer;
a channel layer made of a wide gap semiconductor which is provided so as to be in contact with the second semiconductor layer and the embedded semiconductor region and which has a conductivity type identical to that of the second semiconductor layer;
a semiconductor region made of a wide gap semiconductor which is provided in the channel layer so as to be overlapped with the embedded semiconductor region and which has a conductivity type identical to that of the channel layer and a dopant concentration larger than that of the channel layer;
a second electrode electrically connected to the embedded semiconductor region and to the semiconductor region, the second electrode becoming a current outflow end when the first semiconductor layer becomes a current inflow end while the second electrode becoming a current inflow end when the first semiconductor layer becomes a current outflow end; and
a control electrode facing the channel layer and the semiconductor region via an insulating film.
According to the present invention, in the voltage-controlled semiconductor device using a wide gap semiconductor, an embedded semiconductor region is provided in the vicinity of the surface of the second semiconductor layer which is in contact with the channel layer, the channel layer facing the control electrode via the insulating film. Consequently, without application of a voltage to between the control electrode and the second electrode at off time, current can be blocked by a built-in voltage of the Sic semiconductor. That is, the normally-off characteristic, i.e., capability of maintaining the off-state, can be implemented. At on time, holes are flowed from the channel layer into the second semiconductor layer so that a base current is fed to an npn transistor composed of the embedded semiconductor region, the second semiconductor layer and the first semiconductor layer, while a main current is flowed from the semiconductor region into the first semiconductor layer. Moreover, by widening an interval between adjacent embedded semiconductor regions, conductivity modulation occurs in the base layer or the channel layer so that the resistance in the second semiconductor layer can be reduced considerably. This can lead to considerable reduction of the on-voltage.
There is also provided a voltage-controlled semiconductor device, comprising:
a first semiconductor layer made of a first conductivity-type wide gap semiconductor having a first electrode on one surface, the first electrode becoming either one of a current inflow terminal and a current outflow terminal for a controlled current;
a second semiconductor layer made of a wide gap semiconductor which is formed on the other surface of the first semiconductor layer and which has a second conductivity-type different from the first conductivity type;
at least two embedded semiconductor regions made of a wide gap semiconductor which is partially provided in a vicinity of an opposite surface of the second semiconductor layer to a surface being in contact with the first semiconductor layer and which has a conductivity type different from that of the second semiconductor layer;
a channel layer made of a wide gap semiconductor which is provided so as to be in contact with the second semiconductor layer and the embedded semiconductor regions and which has a conductivity type identical to that of the second semiconductor layer;
a semiconductor region made of a wide gap semiconductor which is provided in the channel layer so as to be overlapped with the embedded semiconductor regions and which has a conductivity type identical to that of the channel layer and a dopant concentration larger than that of the channel layer;
a second electrode electrically connected to the embedded semiconductor regions and to the semiconductor region, the second electrode becoming a current outflow end when the first semiconductor layer becomes a current inflow end while the second electrode becoming a current inflow end when the first semiconductor layer becomes a current outflow end; and
a control electrode facing the second semiconductor layer, the channel layer and the semiconductor region via an insulating film.
According to the present invention, in the voltage-controlled semiconductor device using a wide gap semiconductor, at least another first conductivity-type electric field relaxation layer is provided onto the second conductivity-type second semiconductor layer placed between the first conductivity-type embedded semiconductor regions. This allows considerable reduction of maximum electric fields applied to the insulating film at off time. Moreover, on the second conductivity-type second semiconductor layer placed between the first conductivity-type embedded semiconductor regions, a control electrode facing the second semiconductor layer via the insulating film is provided. This makes it possible to increase inflow of holes to the second semiconductor layer. The inflow of the holes to the second semiconductor layer leads to the increase of current passing through the second semiconductor layer, which allows further reduction of the on-voltage.
The voltage-controlled semiconductor device of the present invention has a channel layer which faces a gate electrode via a gate insulating film and a base layer in contact with the channel layer, the base layer being partially provided with a plurality of embedded collector regions. At on time, holes are accumulated in the channel layer in the vicinity of the gate insulating film, resulting in formation of a low-resistant channel, through which a large base current is fed to a transistor composed of the embedded collector region, the base layer and the emitter layer. This causes conductivity modulation inside the base layer. As a result, a voltage-controlled semiconductor device having low on-resistance, i.e., low on-voltage, can be provided.
Preferred embodiments of a voltage-controlled semiconductor device in the present invention will now be described with reference to
A voltage-controlled semiconductor device in a first embodiment of the present invention will hereinbelow be described with reference to
In
In this embodiment, the dopant concentration of the channel layer 4 is larger than the dopant concentration of the base layer 3. However, the dopant concentration of the channel layer 4 may be smaller than the dopant concentration of the base layer 3. The dopant concentration of the channel layer 4 may also be equal to the dopant concentration of the base layer 3, and in such a case, by forming the embedded collector region 5 inside the base layer 3 by ion implantation, the base layer 3 and the channel layer 4 can be formed in the same step. Formed on upper end portions of the channel layer 4 is a collector region 6 (semiconductor region) made of a p+type SiC semiconductor with a dopant concentration of approx. 1×1019 cm−3. The collector region 6 is shorter in the transverse direction than the embedded collector region 5. A gate insulating film 10 (insulating film) is formed on both the collector regions 6 and the channel layer 4, and a gate electrode 9 (control electrode) connected to a gate terminal 9a is provided on the gate insulating film 10. A collector electrode 8 (second electrode) connected to a collector terminal 8a is provided so as to be in contact with a lateral surface of the collector region 6 and with an upper surface of the embedded collector region 5. The collector electrode 8 and the gate electrode 9 are formed from metal films made of gold, copper or the like.
In the SIC-IGBT in the present embodiment, when a voltage is applied to between the emitter electrode 7 and the collector electrode 8 so that the potential of the collector electrode 8 is high and then the potential of the gate electrode 9 is set to be lower than the potential of the collector electrode 8, the SIC-IGBT is turned on and a main current flows to between the collector electrode 8 and the emitter electrode 7.
In order to turn off the SiC-IGBT in the on state, the voltage between the gate electrode 9 and the collector electrode 8 is set at 0, or the potential of the gate electrode 9 is set to be positive with respect to the collector electrode 8 in the state that the potential of the collector electrode 8 is higher than the potential of the emitter electrode 7. As a result, with a built-in voltage of the SiC semiconductor, a depletion layer spreads in the channel layer 4 from a junction between the embedded collector region 5 and the channel layer 4, which brings the channel layer 4 in a pinch-off state. Consequently, the current flowing from the collector region 6 to the emitter layer 1 is blocked, as a result of which the SiC-IGBT is put in an off state, i.e., a normally-off state. By applying a voltage to between the gate electrode 9 and the collector electrode 8 with the gate electrode 9 being positive, a leak current between the collector electrode 8 and the emitter electrode 7 can be reduced.
When a voltage is applied to between the gate electrode 9 and the collector electrode 8 with the gate electrode 9 being negative at the turn-on of the SiC-IGBT, holes are accumulated in an upper layer portion of the channel layer 4 close to the gate insulating film 10, resulting in formation of a low-resistant channel. A current by the holes flows from the collector region 6 through the channel and travels in between both the embedded collector regions 5 to the emitter layer 1. This current is a base current for an npn transistor composed of the embedded collector region 5, the base layer 3 and the emitter layer 1. The main current flows through the collector electrode 8, the embedded collector region 5, the base layer 3, the emitter layer 1 and the emitter electrode 7. Electrons flow from the emitter layer 1 to the embedded collector region 5 through the buffer layer 2 and the base layer 3. The holes go into the base layer 3 from the collector region 6 through the channel and travels from the base layer 3 to the emitter layer 1. Electrons corresponding to the base current go into the base layer 3 from the emitter layer 1 and reach the embedded collector region 5. By widening an interval between the adjacent embedded collector regions 5, conductivity modulation is induced in the base layer 3 by the holes and the electrons coming into the base layer 3 from the embedded collector region 5, by which the resistance of the base layer 3 is considerably reduced.
In the structure of the present embodiment, an “accumulation-type” operation is performed in which holes are accumulated in the channel layer 4. In the accumulation-type operation, channel resistance is smaller than that in the “inversion-type” operation described in the BACKGROUND ART. In the conventional IGBT in
When a main current with a current density of 100 A/cm2 was applied to between the collector electrode 8 and the emitter electrode 7 in the SiC-IGBT in the present embodiment, the on-voltage was 3.5 V, which was considerably lower than 9.5 V, the on-voltage of the conventional SiC-IGBT. Although in the present invention, an interval between the adjacent embedded collector regions 5 was 3 μm or more, increasing the interval to 10 μm decreased the resistance between the embedded collector regions 5. Consequently, the base current flowing from the collector region 6 through the channel layer 4 became larger, and this increased the main current. As a result, the on-voltage was further decreased to 3.2 V.
Although the embedded collector region 5 is formed by ion implantation in the present embodiment, an embedded collector region similar to the embedded collector region 5 in the present embodiment can be formed by the steps of forming an n+ region through epitaxial method and etching away the region except a necessary portion. In this case, the channel layer 4 on the embedded collector region 5 has sufficient crystallinity and high channel mobility compared to the channel layer 4 in the case of ion implantation.
While the maximum electric field intensity of the gate insulating film 10 at off time was 2.1 MV/cm in the SiC-IGBT in the first embodiment, the maximum electric field intensity in the SiC-IGBT in the second embodiment was 0.7 MV/cm, which was approx. 67% reduction from the first embodiment. In addition to the low on-voltage, which is the characteristic of the SiC-IGBT in the first embodiment, the SiC-IGBT in the second embodiment has a characteristic in which the electric field intensity of the gate insulating film 10 is relaxed, so that it becomes possible to enhance long-term reliability of the IGBT.
The inventors of the present invention have found out that in the SiC-IGBT in the first embodiment, a central portion 10g of the gate insulating film 10a facing the base layer 3 between the adjacent embedded collector regions 5 was higher in electric field intensity than other portions of the gate insulating film 10a at off time. The reason thereof is considered to be as follows.
In the voltage-controlled semiconductor device in the first embodiment, in order to achieve effective passage of a base current from the collector region 6 to the embedded collector region 5, an accumulation layer is formed in the range from the upper side of the embedded collector regions 5 up to as close as to a central region on an interval between the adjacent embedded collector regions 5. This decreases voltage drop during the passage of the base current. Further, the interval between the adjacent embedded collector regions 5 is widened so that conductivity modulation sufficiently occurs in the base layer 3.
While a depletion layer spreads from a junction between the embedded collector region 5 and the base layer 3 at off time, the depletion layer does not fully spread in the vicinity of the central region between the embedded collector regions 5 since the interval therebetween is wide. Consequently, the collector voltage is not shared by the depletion layer, by which the central portion 10g of the gate insulating film 10a has a high electric field. More specifically, at off time, the depletion layer spreading to the base layer 3 and the channel layer 4 from the junction between the embedded collector region 5 and the base layer 3 shares the voltage between the collector region 6 and the emitter layer 1. However, the depletion layer does not fully spread in the central portions of the base layer 3 and the channel layer 4 placed between the adjacent embedded collector regions 5, as a result of which high electric fields are easily applied to the central portion 10g of the gate insulating film 10a. Accordingly, the thickness of the central portion 10g of the gate insulating film 10a is made larger than that of other portions so as to enhance electric field intensity withstand characteristics. This makes it possible to reduce the maximum electric field intensity applied to the gate insulating film 10a at off time.
In the present embodiment shown in
While the thickness of the gate insulating film 10a influences the channel resistance, the channel resistance needs to be small for effective passage of the base current from the collector region 6 to the base layer 3 at on time. Therefore, the gate insulating film 10a should preferably be thin so that holes are fully accumulated in the upper side of the channel layer 4. In the present embodiment, only the central portion 10g of the gate insulating film 10a, to which high electric fields are easily applied, is given a large thickness while the other portions have an unchanged thickness, and this makes it possible to obtain the SiC-IGBT with a low on voltage and a high breakdown voltage with the structure almost identical to that of the SiC-IGBT in the first embodiment.
In the SiC-IGBT in the present embodiment, an accumulation layer formed in the channel layer 4a below the gate insulating film 10b at on time is formed in a region extending down through the channel layer 4a and reaching the upper side of the lower base layer 3, so that the base current can be increased and the on-voltage can be further decreased compared to the on-voltage in the first to third embodiments. Moreover, since a part of the gate insulating film 10b is formed on the electric field relaxation layer 56, the maximum electric field intensity of the gate insulating film 10b can considerably be reduced. In the SiC-IGBT in the present embodiment, the on-voltage during current application of 100 A/cm2 was 3.3 V while the maximum electric field intensity of the gate insulating film 10b at off time was approx. 0.1 MV/cm2, which were considerable reduction from the values in each of the aforementioned embodiments.
A SiC-IGBT in another example of the present embodiment shown in
In each of the disclosed embodiments, the present invention is also applicable to the voltage-controlled semiconductor device with a structure in which n-type layers and regions are respectively replaced with p-type layers and regions while p-type layers and regions are respectively replaced with n-type layers and regions.
In the voltage-controlled semiconductor device in the first to fourth embodiments, forming the channel layer 4 as an accumulation-type layer allows the channel resistance to become smaller than that in the case of the inversion type layer. Further, as shown in
Moreover, although description has been given in the case of the device with use of SiC as a wide gap semiconductor in each of the embodiments, the present invention is effectively applicable to devices with use of other wide gap semiconductor materials such as diamond and gallium nitride.
The present invention is applicable to insulated-gate bipolar transistor having low on-voltage and high breakdown voltage.
Number | Date | Country | Kind |
---|---|---|---|
2004-083233 | Mar 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/004834 | 3/17/2005 | WO | 00 | 9/22/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/091372 | 9/29/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5917204 | Bhatnagar et al. | Jun 1999 | A |
20040104429 | Takahashi et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
10-27899 | Jan 1998 | JP |
10-256529 | Sep 1998 | JP |
10-284733 | Oct 1998 | JP |
2001-291869 | Oct 2001 | JP |
2002-231947 | Aug 2002 | JP |
2003-31802 | Jan 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20070200150 A1 | Aug 2007 | US |