The present application claims the benefit of U.S. patent application Ser. No. 13/464,799 for Volume Dimensioning Systems and Methods filed May 4, 2012 (and published Nov. 7, 2013 as U.S. Patent Publication No. 2013/0293539), now U.S. Pat. No. 9,779,546. Each of the foregoing patent application, patent publication, and patent is hereby incorporated by reference in its entirety.
International Application No. PCT/US13/39438 for Volume Dimensioning Systems and Methods filed May 3, 2013 (and published Nov. 7, 2013 as WIPO Publication No. WO 2013/166368) also claims the benefit of U.S. patent application Ser. No. 13/464,799. Each of the foregoing patent application and patent publication is hereby incorporated by reference in its entirety.
This disclosure generally relates to non-contact systems and methods for determining dimensions and volume of one or more objects.
Volume dimensioning systems are useful for providing dimensional and volumetric data related to three-dimensional objects disposed within the point of view of the volume dimensioning system. Such dimensional and volumetric information is useful for example, in providing users with accurate shipping rates based on the actual size and volume of the object being shipped. Additionally, the volume dimensioning system's ability to transmit parcel data immediately to a carrier can assist the carrier in selecting and scheduling appropriately sized vehicles based on measured cargo volume and dimensions. Finally, the ready availability of dimensional and volumetric information for all the objects within a carrier's network assists the carrier in ensuring optimal use of available space in the many different vehicles and containers used in local, interstate, and international commerce.
Automating the volume dimensioning process can speed parcel intake, improve the overall level of billing accuracy, and increase the efficiency of cargo handling. Unfortunately, parcels are not confined to a standard size or shape, and may, in fact, have virtually any size or shape. Additionally, parcels may also have specialized handling instructions such as a fragile side that must be protected during shipping or a side that must remain up throughout shipping. Automated systems may struggle with assigning accurate dimensions and volumes to irregularly shaped objects, with a single object that may be represented as a combination of two objects (e.g., a guitar) or with multiple objects that may be better represented as a single object (e.g., a pallet holding multiple boxes that will be shrink-wrapped for transit). Automated systems may also struggle with identifying a particular portion of an object as being “fragile” or a particular portion of an object that should remain “up” while in transit.
Providing users with the ability to identify and/or confirm the shape and/or numbers of either single objects or individual objects within a group or stack of objects and to identify the boundaries of irregularly shaped objects benefits the user in providing cartage rates that are proportionate to the actual size and/or volume of the parcel being shipped. Involving the user in providing accurate shape and/or volume data for a parcel or in providing an accurate outline of an irregularly shaped parcel also benefits the carrier by providing data that can be used in optimizing transport coordination and planning. Providing the user with the ability to designate one or more special handling instructions provides the user with a sense of security that the parcel will be handled in accordance with their wishes, that fragile objects will be protected, and that “up” sides will be maintained on the “top” of the parcel during transport. The special handling instructions also benefit the transporter by providing information that can be useful in load planning (ensuring, for example, “fragile” sides remain protected and “up” sides remain “up” in load planning) and in reducing liability for mishandled parcels that are damaged in transit.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least on part on the determined features of the first three-dimensional object, fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed.
The method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; and causing a displaying of an updated image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; based at least in part on the received user input, fitting a second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor, the second three-dimensional packaging wireframe model having a different geometrical shape than the first three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of an identification of a second three-dimensional object, the second three-dimensional object different from the first three-dimensional object; based at least in part on the received user input, fitting a second three-dimensional packaging wireframe model about the second three-dimensional object by the at least one processor, the second three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display. The at least one processor may cause the concurrent displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display and the image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of an identification of at least one portion of the first three-dimensional object; based at least in part on the received user input, fitting one three-dimensional packaging wireframe model about a first portion of the first three-dimensional object by the at least one processor; based at least in part on the received user input, fitting one three-dimensional packaging wireframe model about a second portion of the first three-dimensional object by the at least one processor; and causing a concurrent displaying of an image of the three-dimensional wireframe models respectively fitted about the image of the first and the second portions of the first three-dimensional object on the display. The at least one processor may cause the displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis. The method may further include receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor; based on the determined features of the first three-dimensional object, at least one of adjusting the first three-dimensional packaging wireframe model or fitting a second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of at least one of the adjusted first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. Fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor may include selecting from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first three-dimensional object such that the first three-dimensional object is completely encompassed by the selected and sized geometric primitive. The method may further include producing a wireframe model of the first three-dimensional object; and causing a concurrently displaying of the wireframe model of the first three-dimensional object along with the three-dimensional packaging wireframe model. The method may further include receiving at least one user input via a user interface, the user input indicative of a geometric primitive of the first three-dimensional object; and selecting the first three-dimensional object from a plurality of three-dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of the first three-dimensional object. Selecting the first three-dimensional object from a plurality of three-dimensional objects represented in the image data based at least in part on the user input indicative of the geometric primitive of the first three-dimensional object includes determining which of the three-dimensional objects has a geometric primitive that most closely matches the geometric primitive indicated by the received user input. The method may further include receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three-dimensional packaging wireframe model; and performing at least a volumetric calculation using a number of dimensions of the selected three-dimensional packaging wireframe model. The method may further include receiving at least one user input via a user interface, the user input indicative of a rejection of the first three-dimensional packaging wireframe model; and in response to the received user input, fitting a second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor, the second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a second three-dimensional packaging wireframe model, the second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model; in response to the received user input, fitting the second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor. The method may further include causing by the at least one processor a displaying of a plurality of user selectable icons, each corresponding to a respective one of a plurality of three-dimensional packaging wireframe model and selectable by a user to be fitted to the first three-dimensional object. The method may further include receiving at least one user input via a user interface, the user input indicative of a region of interest of the displayed image of the first three-dimensional object; and in response to the received user input, causing by the at least one processor a displaying of an enlarged image of a portion of the first three-dimensional object corresponding to the region of interest by the display. The method may further include causing by the at least one processor a displaying of a plurality of user selectable icons, each corresponding to a respective one of a plurality of three-dimensional packaging wireframe model and selectable by a user to be fitted to the first three-dimensional object. 19. The method of claim 1 wherein the volume dimensioning system comprises a computer having a first processor, a camera and the display, and the volume dimensioning system further comprises a volume dimensioning system having a second processor, the volume dimensioning system selectively detachably coupleable to the computer, and causing a displaying of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed includes the second processor causing the first processor to display the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display of the first computer.
A volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; a machine executable instruction set stored within at least one nontransitory processor-readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determine from the received image data a number of features in three dimensions of the first three-dimensional object; based at least on part on the determined features of the first three-dimensional object, fit a first three-dimensional packaging wireframe model about the first three-dimensional object; and cause a display of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display device.
The machine executable instruction set may further include instructions, that when executed by the at least one processor cause the at least one processor to: select from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first three-dimensional object such that the first three-dimensional object is completely encompassed by the selected and sized geometric primitive; produce a wireframe model of the first three-dimensional object; and cause a concurrent display of the wireframe model of the first three-dimensional object along with the three-dimensional packaging wireframe model. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, change a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; and cause a display of an updated image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display device. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, change a position of at least a portion of the displayed image of the three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; responsive to a user input received by the at least one processor, fit a second three-dimensional packaging wireframe model about the first three-dimensional object, the second three-dimensional packaging wireframe model having a different geometrical shape than the first three-dimensional wireframe model; and cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display device. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, the user input indicative of an identification of a second three-dimensional object different from the first three-dimensional object, fit a second three-dimensional packaging wireframe model about the second three-dimensional object; and cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, the user input indicative of an identification of at least one portion of the first three-dimensional object, fit a three-dimensional packaging wireframe model about a first portion of the first three-dimensional object; responsive to a user input received by the at least one processor, the user input indicative of an identification of at least one portion of the first three-dimensional object, fit a three-dimensional packaging wireframe model about a second portion of the first three-dimensional object; and cause a display of an image of the three-dimensional wireframe models fitted about the image of the first and the second portions of the first three-dimensional object on the display device. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, the user input indicative of a second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model, fit the second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: cause a display of a plurality of user selectable icons on the display device, each user selectable icon corresponding to a respective one of a plurality of three-dimensional packaging wireframe models and selectable by a user to be fitted to the first three-dimensional object.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least in part on the determined features of the first three-dimensional object, identifying a first portion and at least a second portion of the first three-dimensional object by the at least one processor; based on the determined features of the first three-dimensional object, fitting a first three-dimensional packaging wireframe model about the first portion of the first three-dimensional object by the at least one processor; based on the determined features of the first three-dimensional object, fitting a second three-dimensional packaging wireframe model about the second portion of the first three-dimensional object by the at least one processor; and causing a concurrent displaying of an image of the first and the second three-dimensional wireframe models respectively fitted about the image of the first and the second portions of the first three-dimensional object on the display.
The method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model relative to the displayed image of the first and second portions of the first three-dimensional object, respectively; and causing a displaying of an updated image of the first and second three-dimensional packaging wireframe models fitted about the image of the first and second portions of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; based at least in part on the received user input, fitting a replacement three-dimensional packaging wireframe model about at least one of the first or second portions of the first three-dimensional object by the at least one processor, the replacement three-dimensional packaging wireframe model having a different geometric primitive than the first or second three-dimensional wireframe model that it replaces; and causing a displaying of an image of at least the replacement three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The at least one processor may cause the displaying of the image of the first and the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis. The method may further include receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor; based on the determined features of the first three-dimensional object, performing at least one of adjusting the first or second three-dimensional packaging wireframe model or fitting a third three-dimensional packaging wireframe model about at least a portion of the first three-dimensional object not discernible from the first point of view by the at least one processor; and causing a displaying of an image of at least one of the adjusted first or second three-dimensional packaging wireframe model or the first, second, and third three-dimensional packaging wireframe models fitted about the image of the first three-dimensional object on the display. Fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor may include selecting the first three-dimensional packaging wireframe model from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first portion of the first three-dimensional object such that the first portion of the first three-dimensional object is completely encompassed by the selected and sized geometric primitive; and wherein fitting a second three-dimensional packaging wireframe model about the second portion of the first three-dimensional object by the at least one processor may include selecting the second three-dimensional packaging wireframe model from the number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the second portion of the first three-dimensional object such that the second portion of the first three-dimensional object is completely encompassed by the selected and sized geometric primitive. The method may further include producing a wireframe model of the first three-dimensional object; and causing a concurrently displaying of the wireframe model of the first three-dimensional object along with the first and second three-dimensional packaging wireframe models by the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a geometric primitive of at least the first portion or the second portion of the first three-dimensional object; and selecting the first three-dimensional object from a plurality of three-dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of at least a portion of the first three-dimensional object. Selecting the first three-dimensional object from a plurality of three-dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of at least a portion of the first three-dimensional object may include determining which of the three-dimensional objects contains a portion having a geometric primitive that most closely matches the geometric primitive indicated by the received user input. The method may further include receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three-dimensional packaging wireframe model and the second three-dimensional packaging wireframe model; and performing at least a volumetric calculation using a number of dimensions of the selected first and second three-dimensional packaging wireframe models. The method may further include receiving at least one user input via a user interface, the user input indicative of a rejection of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model; and in response to the received user input, fitting a replacement three-dimensional packaging wireframe model about the first or second portion of the first three-dimensional object by the at least one processor, the replacement three-dimensional packaging wireframe model having a different geometric primitive than the first or second three-dimensional wireframe model that it replaces; and causing a displaying of an image of the replacement three-dimensional packaging wireframe model fitted about at least a portion of the image of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a replacement three-dimensional packaging wireframe model, the replacement three-dimensional packaging wireframe model having a different geometric primitive than at least one of the first three-dimensional wireframe model and the second three-dimensional wireframe model; in response to the received user input, fitting the replacement three-dimensional packaging wireframe model about either the first or second portion of the first three-dimensional object by the at least one processor; and causing a displaying of an image of the replacement three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor. The method may further include causing by the at least one processor a displaying of a plurality of user selectable options, each user selectable option corresponding to a respective one of a plurality of three-dimensional packaging wireframe model and selectable by a user to be fitted to either the first or second portion of the first three-dimensional object.
A volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor-readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determine from the received image data a number of features in three dimensions of the first three-dimensional object; based at least in part on the determined features of the first three-dimensional object, identify a first portion and at least a second portion of the first three-dimensional object; based on the determined features of the first three-dimensional object, fit a first three-dimensional packaging wireframe model about the first portion of the first three-dimensional object; based on the determined features of the first three-dimensional object, fit a second three-dimensional packaging wireframe model about the second portion of the first three-dimensional object; and cause a concurrent display of an image of the first and the second three-dimensional wireframe models fitted about the image of the first and the second portions of the first three-dimensional object.
The first three-dimensional wireframe model may be a first geometric primitive; and wherein the second three-dimensional wireframe model may be a second geometric primitive.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining that there are insufficient features in the image data to determine a three-dimensional volume occupied by the first three-dimensional object; in response to the determination, generating an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view, the second point of view different from the first point of view.
Generating an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view may include generating at least one output, including at least one of an audio output or a visual output that is perceivable by a user. The at least one output may indicate to the user a direction of movement to change at least one of a relative position or orientation of the at least one sensor with respect to the first three-dimensional object. The method may further include causing a displaying of an image of a two-dimensional packaging wireframe model fitted about a portion of an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed. The causing of the displaying of the image of the two-dimensional packaging wireframe model fitted about the portion of the image of the first three-dimensional object may occur before generating the output.
A volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor-readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determine from the received image data that there are an insufficient number of features in the image data to determine a three-dimensional volume occupied by the first three-dimensional object; responsive to the determination of an insufficient number of features in the image data, generate an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view, the second point of view different from the first point of view.
The machine executable instruction set may further include instructions that when executed by the at least one processor further cause the at least one processor to: generate at least one output, including at least one of an audio output or a visual output that is perceivable by a user. The at least one output may indicate to the user a direction of movement to change at least one of a relative position or orientation of the at least one sensor with respect to the first three-dimensional object.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; receiving at least one user input via a user interface communicably coupled to at least one processor, the user input indicative of at least a portion of the three-dimensional packaging wireframe model of the first three-dimensional object; in response to the received user input, fitting the user inputted three-dimensional packaging wireframe model to at least a portion of one or more edges of the first three-dimensional object by the at least one processor; and causing a displaying of an image of the user inputted three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor.
The at least one processor may cause the displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis. The method may further include receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor; based on the determined features of the first three-dimensional object, performing at least one of adjusting the three-dimensional packaging wireframe model by accepting additional user input via the user interface communicably coupled to at least one processor, the additional user input indicative the first three-dimensional packaging wireframe model; and causing a displaying of an image of at least one of the adjusted first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three-dimensional packaging wireframe model; and performing at least a volumetric calculation using a number of dimensions of the selected three-dimensional packaging wireframe model.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional void to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional void by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least on part on the determined features of the first three-dimensional void, fitting a first three-dimensional receiving wireframe model within the first three-dimensional void by the at least one processor; and causing a displaying of an image of the first three-dimensional receiving wireframe model fitted within an image of the first three-dimensional void on a display on which the image of the first three-dimensional void is displayed.
The method may further include calculating by the at least one processor, at least one of an available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model. The method may further include receiving by the at least one nontransitory processor-readable medium at least one of dimensional data and volume data for each of a plurality of three-dimensional objects, the dimensional data and volume data determined based upon a respective three-dimensional packaging wireframe model fitted to each of the plurality of three-dimensional objects and corresponding to at least one of the respective dimensions and volume of each of the plurality of three-dimensional objects; and determining by the at least one processor communicably coupled to the at least one nontransitory processor-readable medium based at least in part on at least one of the available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model at least one of a position and an orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void; wherein at least one of the position and the orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void minimizes at least one of: at least one dimension occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void, or a volume occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void. The method may further include indicating at least one of the position and the orientation of each of the three-dimensional packaging wireframes associated with each of the plurality of three-dimensional objects within the first three-dimensional void on the display.
A volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor-readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional void to be dimensioned; determine from the received image data a number of features in three dimensions of the first three-dimensional void; based at least on part on the determined features of the first three-dimensional void, fit a first three-dimensional receiving wireframe model within the first three-dimensional void; and cause a display of an image of the first three-dimensional receiving wireframe model fitted within an image of the first three-dimensional void on the display device.
The machine executable instruction set may further include instructions, that when executed by the at least one processor further cause the at least one processor to: determine at least one of an available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model; receive from the at least one nontransitory processor-readable medium at least one of dimensional data and volume data for each of a plurality of three-dimensional objects, the dimensional data and volume data determined based upon a respective three-dimensional packaging wireframe model fitted to each of the plurality of three-dimensional objects and corresponding to at least one of the respective dimensions and volume of each of the plurality of three-dimensional objects; and determine based at least in part on at least one of the available receiving dimension and the available receiving volume encompassed by the first three-dimensional receiving wireframe model at least one of a position and an orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void; wherein at least one of the position and the orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void minimizes at least one of: at least one dimension occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void, or a volume occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least on part on the determined features of the first three-dimensional object, fitting a first three-dimensional packaging wireframe model selected from a wireframe library stored within the at least one nontransitory processor-readable medium about the first three-dimensional object by the at least one processor; receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; associating via the processor, a plurality of points differentiating the changed first three-dimensional packaging wireframe model from all existing wireframe models within the wireframe library, and the storing the changed first three-dimensional packaging wireframe model in the wireframe library; and reviewing via the processor, the wireframe model stored within the wireframe library and associated with the changed first three-dimensional packaging wireframe model for subsequent fitting about a new three-dimensional object based at least in part on the plurality of points differentiating the changed first three-dimensional packaging wireframe model from all existing wireframe models within the wireframe library.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with sources of electromagnetic energy, operative details concerning image sensors and cameras and detailed architecture and operation of the host computer system have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.
Volume dimensioning systems provide dimensional and volumetric data for one or more three-dimensional objects located within a given point of view without requiring the laborious and time-consuming task of hand measuring and calculating the volume of each individual object. Volume dimensioning systems typically employ one or more image sensors to obtain or otherwise capture an image containing the one or more three-dimensional objects located within the field-of-view of the image sensor. Based on the shape, overall complexity, or surface contours of each of the three-dimensional objects, the volume dimensioning system can select one or more geometric primitives from a library to serve as a model of the three-dimensional object. A wireframe packaging model based, at least in part, on the selected one or more geometric primitives can then be scaled or fitted to encompass the image of each respective three-dimensional object. The scaled and fitted wireframe provides a packaging wireframe that includes sufficient t space about the three-dimensional to include an estimate of the packaging, blocking, padding, and wrapping used to ship the three-dimensional object. Thus, the three-dimensional packaging wireframe model generated by the system can be used to provide shipping data such as the dimensions and volume of not just the three-dimensional object itself, but also any additional packaging or boxing necessary to ship the three-dimensional object.
For example, a box shaped three-dimensional object may result in the selection of a single, cubic, geometric primitive by the volume dimensioning system as approximating the packaging of the actual three-dimensional object. The three-dimensional packaging wireframe model associated with a cubic geometric primitive can then be scaled and fitted to the image of the actual three-dimensional object within the volume dimensioning system to provide a model approximating the size and shape of the packaging of the actual three-dimensional object. From the virtual representation of the three-dimensional object provided by the three-dimensional packaging wireframe model, the length, width, height, and volume of the packaging can be determined by the volume dimensioning system.
In a more complex example, an obelisk shaped three-dimensional object may result in the selection of two geometric primitives by the volume dimensioning system, a rectangular prism representing the body of the obelisk and a four-sided pyramid representing the top of the obelisk. The three-dimensional packaging wireframe models associated with each of these geometric primitives can then be scaled and fitted to the image of the actual three-dimensional object within the volume dimensioning system to provide a model approximating the size, shape, and proportions of the actual, packaged, three-dimensional object. From the virtual representation of the three-dimensional object provided by the three-dimensional packaging wireframe model, the length, width, height, and volume of the packaged obelisk can be determined by the volume dimensioning system. By fitting one or more geometric primitives about three-dimensional objects having even highly complex surface features can be encompassed by the one or more relatively simple geometric primitives to provide a three-dimensional packaging wireframe model of the packaged three-dimensional object that includes allowances for packing, padding, bracing, and boxing of the three-dimensional object.
Advantageously, the volume dimensioning system can permit a user to identify special handling instructions, fragile surfaces, shipping orientation, and the like on the three-dimensional packaging wireframe model. Such handling instructions can then be associated with a given object and where the volume dimensioning system is used to perform load planning, objects can be positioned and oriented within the load plan in accordance with the handling instructions.
Additionally, the interactive nature of the volume dimensioning system can advantageously permit a user to enter, select, or modify the three-dimensional packaging wireframe model fitted to a particular three-dimensional object to more closely follow the actual outline, shape, contours, or surfaces of the object. In some instances, the system can “learn” new geometric primitives or wireframe models based on received user input, for example user input altering or modifying the three-dimensional packaging wireframe model fitted by the volume dimensioning system about three-dimensional objects having a characteristic size or shape.
Two three-dimensional objects, a pyramidal three-dimensional object 102a and a cubic three-dimensional object 102b (collectively 102) appear within the field-of-view 116 of the image sensor 114 and the field-of-view 154 of the camera 152. The three-dimensional objects 102 are depicted as surrounded by a scaled and fitted pyramidal geometric primitive 104a and a scaled and fitted cubic geometric primitive 104b (collectively 104) as displayed upon on the one or more display devices 156. Scaled, fitted, three-dimensional packaging wireframe models 106a, 106b (collectively 106) are depicted as encompassing the scaled and fitted geometric primitives 104a, 104b, respectively.
The scaled, fitted three-dimensional packaging wireframe models 106 may be generated by the host computer 150 or, more preferably by the volume dimensioning system 110. The image on the display device 156 is a provided in part using the image data acquired by the camera 152 coupled to the host computer system 150 which provides the virtual representation of the three-dimensional objects 104, and in part using the scaled and fitted three-dimensional packaging wireframe models 106 provided by the volume dimensioning system 110. Data, including visible image data provided by the camera 152 and depth map data and intensity image data provided by the image sensor 114 is exchanged between the host computer 150 and the volume dimensioning system 110 via the one or more data busses 112. In some instances, the volume dimensioning system 110 and the host computer system 150 may be partially or completely incorporated within the same housing, for example a self service kiosk or a handheld computing device.
The host computer system 150 can include the camera 152 which is communicably coupled to a first bridge processor (e.g., a southbridge processor) 162 via one or more serial or parallel data buses, for example a universal serial bus (“USB”), a small computer serial interface (“SCSI”) bus, a peripheral component interconnect (“PCI”) bus, an integrated drive electronics (“IDE”) bus or similar. One or more local busses 164 communicably couple the first bridge processor 162 to a second bridge processor (e.g., a northbridge processor) 176. The one or more non-transitory, machine-readable storage medium 158 and central processing units (“CPUs”) 160 are communicably coupled to the second bridge processor 176 via one or more high-speed or high bandwidth busses 168. The one or more display devices 156 are coupled to the second bridge processor 176 via an interface 170 such as a Digital Visual Interface (“DVI”) or a High Definition Multimedia Interface (“HDMI”). In some instances, for example where the one or more display devices 156 include at least one touch-screen display device capable of receiving user input to the host computer 150, some or all of the one or more display devices 156 may also be communicably coupled to the first bridge processor 162 via one or more USB interfaces 172.
The volume dimensioning system 110 is communicably coupled to the host computer 150 via one or more communication or data interfaces, for example one or more USB interfaces coupled to a USB bus 174 within the host computer. The USB bus 174 may also be shared with other peripheral devices, such as one or more I/O devices 166, for example one or more keyboards, pointers, touchpads, trackballs, or the like. The host computer 150 can be of any size, structure, or form factor, including, but not limited to a rack mounted kiosk system, a desktop computer, a laptop computer, a netbook computer, a handheld computer, or a tablet computer. Although for clarity and brevity one specific host computer architecture was presented in detail, those of ordinary skill in the art will appreciate that any host computer architecture may be used or substituted with equal effectiveness.
Referring now in detail to the volume dimensioning system 110, the image sensor 114 includes any number of devices, systems, or apparatuses suitable for obtaining three-dimensional image data from the scene within the field-of-view 116 of the image sensor 114. Although referred to herein as a “three-dimensional image data” it should be understood by one of ordinary skill in the art that the term may apply to more than one three-dimensional image and therefore would equally apply to “three-dimensional video images” which may be considered to comprise a series or time-lapse sequence including a plurality of “three-dimensional images.” The three-dimensional image data acquired or captured by the image sensor 114 can include data collected using electromagnetic radiation either falling within the visible spectrum (e.g., wavelengths in the range of about 360 nm to about 750 nm) or falling outside of the visible spectrum (e.g., wavelengths below about 360 nm or above about 750 nm). For example, three-dimensional image data may be collected using infrared, near-infrared, ultraviolet, or near-ultraviolet light. The three-dimensional image data acquired or captured by the image sensor 114 can include data collected using laser or ultrasonic based imaging technology. In some embodiments, a visible, ultraviolet, or infrared supplemental lighting system (not shown) may be synchronized to and used in conjunction with the volume dimensioning system 100. For example, a supplemental lighting system providing one or more structured light patterns or a supplemental lighting system providing one or more gradient light patterns may be used to assist in acquiring, capturing, or deriving three-dimensional image data from the scene within the field-of-view 116 of the image sensor 114.
In a preferred embodiment, the image sensor 114 includes a single sensor capable of acquiring both depth data providing a three-dimensional depth map and intensity data providing an intensity image for objects within the field-of-view 116 of the image sensor 114. The acquisition of depth and intensity data using a single image sensor 114 advantageously eliminates parallax and provides a direct mapping between the depth map and the intensity image. The depth map and intensity image may be collected in an alternating sequence by the image sensor 114 and the resultant depth data and intensity data stored within the one or more non-transitory, machine-readable storage media 118.
The three-dimensional image data captured or acquired by the image sensor 114 may be in the form of an analog signal that is converted to digital data using one or more analog-to-digital (“A/D”) converters (not shown) within the image sensor 114 or within the volume dimensioning system 110 prior to storage within the one or more non-transitory, machine-readable, storage media 118. Alternatively, the three-dimensional image data captured or acquired by the image sensor 114 may be in the form of one or more digital data groups, structures, or files comprising digital data supplied directly by the image sensor 114.
The image sensor 114 can be formed from or contain any number of image capture elements, for example picture elements or “pixels.” For example, the image sensor 114 can have between 1,000,000 pixels (1 MP) and 100,000,000 pixels (100 MP). The image sensor 114 can include any number of current or future developed image sensing devices or systems, including, but not limited to, one or more complementary metal-oxide semiconductor (“CMOS”) sensors or one or more charge-coupled device (“CCD”) sensors.
In some embodiments, the three-dimensional image data captured by the image sensor 114 can include more than one type of data associated with or collected by each image capture element. For example, in some embodiments, the image sensor 114 may capture depth data related to a depth map of the three-dimensional objects within the point of view of the image sensor 114 and may also capture intensity data related to an intensity image of the three-dimensional objects in the field-of-view of the image sensor 114. Where the image sensor 114 captures or otherwise acquires more than one type of data, the data in the form of data groups, structures, files or the like may be captured either simultaneously or in an alternating sequence by the image sensor 114.
In some embodiments, the image sensor 114 may also provide visible image data capable of providing a visible black and white, grayscale, or color image of the three-dimensional objects 102 within the field-of-view 116 of the image sensor 114. Where the image sensor 114 is able to provide visible image data, the visible image data may be communicated to the host computer 150 for display on the one or more display devices 156. In some instances, where the image sensor 114 is able to provide visible image data, the host computer system camera 152 may be considered optional and may be eliminated.
Data is communicated from the image sensor 114 to the one or more non-transitory machine readable storage media 118 via one or more serial or parallel data busses 126. The one or more non-transitory, machine-readable storage media 118 can be any form of data storage device including, but not limited to, optical data storage, electrostatic data storage, electroresistive data storage, magnetic data storage, and molecular data storage. In some embodiments, all or a portion of the one or more non-transitory, machine-readable storage media 118 may be disposed within the one or more processors 120, for example in the form of a cache or similar non-transitory memory structure capable of storing data or machine-readable instructions executable by the one or more processors 120.
In at least some embodiments, the volume dimensioning system 110 including the image sensor 114, the communicably coupled one or more non-transitory, machine-readable storage media 118, and the communicably coupled one or more processors 120 are functionally combined to provide a system capable of selecting one or more geometric primitives 104 to virtually represent each of the one or more three-dimensional objects 102 appearing in the field-of-view 116 of the image sensor 114. Using the selected one or more geometric primitives 104, the system can then fit a three-dimensional packaging wireframe model 106 about each of the respective three-dimensional objects 102.
The one or more non-transitory, machine-readable storage media 118 can have any data storage capacity from about 1 megabyte (1 MB) to about 3 terabytes (3 TB). In some embodiments two or more devices or data structures may form all or a portion of the one or more non-transitory, machine-readable storage media 118. For example, in some embodiments, the one or more non-transitory, machine-readable storage media 118 can include an non-removable portion including a non-transitory, electrostatic, storage medium and a removable portion such as a Secure Digital (SD) card, a compact flash (CF) card, a Memory Stick, or a universal serial bus (“USB”) storage device.
The one or more processors 120 can execute one or more instruction sets that are stored in whole or in part in the one or more non-transitory, machine-readable storage media 118. The machine executable instruction set can include instructions related to basic functional aspects of the one or more processors 120, for example data transmission and storage protocols, communication protocols, input/output (“I/O”) protocols, USB protocols, and the like. Machine executable instruction sets related to all or a portion of the volume dimensioning functionality of the volume dimensioning system 110 and intended for execution by the one or more processors 120 may also be stored within the one or more non-transitory, machine-readable storage media 118, within the one or more processors 120, or within both the one or more non-transitory, machine-readable storage media 118 and the one or more processors 120. Additional volume dimensioning system 110 functionality may also be stored in the form of one or more machine executable instruction sets within the one or more non-transitory, machine-readable storage media 118. Such functionality may include system security settings, system configuration settings, language preferences, dimension and volume preferences, and the like.
The one or more non-transitory, machine-readable storage media 118 may also store a library containing a number of geometric primitives useful in the construction of three-dimensional packaging wireframe models by the one or more processors 120. As used herein, the term “geometric primitive” refers to a simple three-dimensional geometric shape such as a cube, cylinder, sphere, cone, pyramid, torus, prism, and the like that may be used individually or combined to provide a virtual representation of more complex three-dimensional geometric shapes or structures. The geometric primitives stored within the one or more non-transitory, machine-readable storage media 118 are selected by the one or more processors 120 as basic elements in the construction of a virtual representation 104 of each of the three-dimensional objects 102 appearing within the field-of-view 116 of the image sensor 114. The construction of the virtual representation 104 by the one or more processors 120 is useful in fitting properly scaled three-dimensional packaging wireframe models 106 to each of the three-dimensional objects 102 appearing in the field-of-view 116 of the image sensor 114. A properly scaled three-dimensional packaging wireframe model 106 permits the accurate determination of dimensional and volumetric data for each of the three-dimensional objects 102 appearing in the field-of-view 116 of the image sensor 114. A properly scaled and fitted three-dimensional packaging wireframe model 106 will fall on the boundaries of the geometric primitive 104 fitted to the three-dimensional object 102 by the one or more processors 120 as viewed on the one or more display devices 156 as depicted in
Data is transferred between the one or more non-transitory, machine-readable storage media 118 and the one or more processors 120 via one or more serial or parallel bi-directional data busses 128. The one or more processors 120 can include any device comprising one or more cores or independent central processing units that are capable of executing one or more machine executable instruction sets. The one or more processors 120 can, in some embodiments, include a general purpose processor such as a central processing unit (“CPU”) including, but not limited to, an Intel® Atom® processor, an Intel® Pentium®, Celeron®, or Core 2® processor, and the like. In other embodiments the one or more processors 120 can include a system-on-chip (“SoC”) architecture, including, but not limited to, the Intel® Atom® System on Chip (“Atom SoC”) and the like. In other embodiments, the one or more processors 120 can include a dedicated processor such as an application specific integrated circuit (“ASIC”), a programmable gate array (“PGA” or “FPGA”), a digital signal processor (“DSP”), or a reduced instruction set computer (“RISC”) based processor. Where the volume dimensioning system 110 is a battery-powered portable system, the one or more processors 120 can include one or more low power consumption processors, for example Intel® Pentium M®, or Celeron M® mobile system processors or the like, to extend the system battery life.
Data in the form of three-dimensional image data, three-dimensional packaging wireframe model data, instructions, input/output requests, and the like may be bi-directionally transferred from the volume dimensioning system 110 to the host computer 150 via the one or more data busses 112. Within the host computer 150, the three-dimensional packaging wireframe model 106 data can, for example, be combined with visual image data captured or acquired by the camera 152 to provide a display output including a visual image of one or more three-dimensional objects 102 appearing in both the camera 152 field-of-view 154 and the image sensor 114 field-of-view 116 encompassed by the geometric primitive 104 and the fitted three-dimensional packaging wireframe models 106 provided by the volume dimensioning system 110.
Referring now in detail to the host computer system 150, the camera 152 can acquire or capture visual image data of the scene within the field-of-view 154 of the camera 152. As a separate device that is discrete from the image sensor 114, the camera 152 will have a field-of-view 154 than differs from the image sensor 114 field-of-view 116. In at least some embodiments, the one or more CPUs 160, the one or more processors 120, or a combination of the one or more CPUs 160 and the one or more processors 120 will calibrate, align, map, or otherwise relate the field-of-view 154 of the camera 152 to the field-of-view 116 of the image sensor 114 thereby linking or spatially mapping in two-dimensional space or three-dimensional space the visual image data captured or acquired by the camera 152 to the three-dimensional image data captured or acquired by the image sensor 114. In a preferred embodiment, when the volume dimensioning system 110 is initially communicably coupled to the host computer 150, the one or more processors 120 in the volume dimensioning system 110 are used to calibrate, align, or spatially map in three-dimensions the field-of-view 116 of the image sensor 114 to the field-of-view 154 of the camera 152 such that three-dimensional objects 102 appearing in the field-of-view 116 of the image sensor 114 are spatially mapped or correlated in three-dimensions to the same three-dimensional objects 102 appearing in the field-of-view 154 of the camera 152.
The camera 152 can be formed from or contain any number of image capture elements, for example picture elements or “pixels.” For example, the camera 152 may have between 1,000,000 pixels (1 MP) and 100,000,000 pixels (100 MP). In some embodiments, the camera 152 may capture or acquire more than one type of data, for example the camera 152 may acquire visual image data related to the visual image of the scene within the field-of-view 154 of the camera 152 as well as infrared image data related to an infrared image of the scene within the field-of-view 154 of the camera 152. Where the camera 152 captures or otherwise acquires more than one type of image data, the data may be collected into one or more data groups, structures, files, or the like.
In some embodiments, the visual image data captured or acquired by the camera 152 may originate as an analog signal that is converted to digital visual image data using one or more internal or external analog-to-digital (“A/D”) converters (not shown). In other embodiments, the visual image data acquired by the camera 152 is acquired in the form of digital image data provided directly from one or more complementary metal-oxide semiconductor (“CMOS”) sensors or one or more charge-coupled device (“CCD”) sensors disposed at least partially within the camera 152. At least a portion of the visual image data from the camera 152 is stored in the one or more non-transitory, machine-readable storage media 158 in the form of one or more data groups, structures, or files.
Image data is transferred between the camera 152 and the one or more non-transitory, machine-readable storage media 158 via the first bridge processor 162, the second bridge processor 176, and one or more serial or parallel data buses 164, 168. The image data provided by the camera 152 can be stored within the one or more non-transitory, machine-readable storage media 158 in one or more data groups, structures, or files. The one or more non-transitory, machine-readable storage media 158 can have any data storage capacity from about 1 megabyte (1 MB) to about 3 terabytes (3 TB). In some embodiments two or more devices or data structures may form all or a portion of the one or more non-transitory, machine-readable storage media 158. For example, in some embodiments, the one or more non-transitory, machine-readable storage media 158 can include an non-removable portion including a non-transitory, electrostatic, storage medium and a removable portion such as a Secure Digital (SD) card, a compact flash (CF) card, a Memory Stick, or a universal serial bus (“USB”) storage device.
Data is transferred between the one or more non-transitory, machine-readable storage media 158 and the one or more CPUs 160 via the second bridge processor 176 and one or more serial or parallel bi-directional data busses 168. The one or more CPUs 160 can include any device comprising one or more cores or independent central processing units that are capable of executing one or more machine executable instruction sets. The one or more CPUs 160 can, in some embodiments, include a general purpose processor including, but not limited to, an Intel® Atom® processor, an Intel® Pentium®, Celeron®, or Core 2® processor, and the like. In other embodiments the one or more CPUs 160 can include a system-on-chip (“SoC”) architecture, including, but not limited to, the Intel® Atom® System on Chip (“Atom SoC”) and the like. In other embodiments, the one or more CPUs 160 can include a dedicated processor such as an application specific integrated circuit (“ASIC”), a programmable gate array (“PGA” or “FPGA”), a digital signal processor (“DSP”), or a reduced instruction set computer (“RISC”) based processor. Where the host computer 150 is a battery-powered portable system, the one or more CPUs 160 can include one or more low power consumption processors, for example Intel® Pentium M®, or Celeron M® mobile system processors or the like, to extend the system battery life.
Recall, the calibration or alignment process between the camera 152 and the image sensor 114 correlated, aligned, or spatially mapped the field-of-view 154 of the camera 152 with the field of view 116 of the image sensor 114 upon initial coupling of the volume dimensioning system 110 to the host computer 150. The image data captured or acquired by the camera 152 will therefore be spatially mapped, aligned, or correlated with the three-dimensional image data captured or acquired by the image sensor 114. Advantageously, the three-dimensional packaging wireframe models 106 fitted by the one or more processors 120 to the three-dimensional objects 102 in the field-of-view 116 of the image sensor 114 will align with the image of the three-dimensional objects 102 when viewed on the one or more display devices 156. Merging, overlaying, or otherwise combining the three-dimensional packaging wireframe models 106 provided by the one or more processors 120 with the image data captured or acquired by the camera 152 creates a display image on the one or more display devices 156 that contains both an image of the three-dimensional object 102 and the corresponding three-dimensional packaging wireframe model 106.
The host computer 150 may have one or more discrete graphical processing units (GPUs—not shown) or one or more GPUs integrated with the one or more CPUs 160. The one or more CPUs 160 or one or more GPUs can generate a display image output to provide a visible image on the one or more display devices 156. The display image output can be routed through the second bridge processors 176 to the one or more display devices 156 in the host computer system 150. The one or more display devices 156 include at least an output device capable of providing a visible image perceptible to the unaided human eye. In at least some embodiments, the one or more display devices 156 can include one or more input devices, for example a resistive or capacitive touch-screen. The one or more display devices 156 can include any current or future, analog or digital, two-dimensional or three-dimensional display technology, for example cathode ray tube (“CRT”), light emitting diode (“LED”), liquid crystal display (“LCD”), organic LED (“OLED”), digital light processing (“DLP”), eInk, and the like. In at least some embodiments, the one or more display devices 156 may be self-illuminating or provided with a backlight such as a white LED to facilitate use of the system 100 in low ambient light environments.
One or more peripheral I/O devices 166 may be communicably coupled to the host computer system 150 to facilitate the receipt of user input by the host computer 150 via a pointer, a keyboard, a touchpad, or the like. In at least some embodiments the one or more peripheral I/O devices 166 may be USB devices that are communicably coupled to the USB bus 174. In at least some embodiments, the one or more peripheral I/O devices 166 or the one or more display devices 156 may be used by the one or more processors 120 or one or more CPUs 160 to receive specialized shipping instructions associated with one or more three-dimensional objects 102 from a user. Such specialized instructions can include any data provided by the user that is relevant to how a particular three-dimensional object 102 should be handled, and can include, but is not limited to, designation of fragile areas, designation of proper shipping orientation, designation of top-load only or crushable contents, and the like. Upon receipt of the specialized shipping instructions, the one or more processors 120 or the one or more CPUs 160 can associate the instructions with a particular three-dimensional packaging wireframe model 106 which thereby links the instructions with a particular three-dimensional object 102.
The one or more processors 120 can use the plurality of features identified on the three-dimensional object 102 in selecting the one or more geometric primitives 104 from the library. The three-dimensional packaging wireframes 106 encompassing each three-dimensional object 102 within the volume dimensioning system 110 permit a reasonably accurate determination of the dimensions and volume of each three-dimensional object 102. The user benefits from accurate dimensional and volumetric information by receiving accurate shipping rates based on the object's true size and volume. Carriers benefit from accurate dimensional and volumetric information by having access to data needed to optimize the packing of the objects for transport and the subsequent routing of transportation assets based upon reasonably accurate load data.
At 202, the image sensor 114 captures or acquires three-dimensional image data which is communicated to the one or more non-transitory, machine-readable storage media 118 via one or more data busses 126. The three-dimensional image data captured by the image sensor 114 includes a first three-dimensional object 102 disposed within the field-of-view 116 of the image sensor 114. The three-dimensional image data captured by the image sensor 114 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view 116 of the image sensor 114. At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 118 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 preparatory to fitting a first three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102.
At 204, based in whole or in part on the three-dimensional image data received from the image sensor 114, the one or more processors 120 determine a number of features on the first three-dimensional object 102 contained in the three-dimensional image data. The features may include any point, edge, or other discernible structure on the first three-dimensional object 102 and detectable in the image represented by the three-dimensional image data. For example, one or more features may correspond to a three-dimensional point on the three-dimensional object 102 that is detectable in a depth map containing the first three-dimensional object, an intensity image in which the three-dimensional object, or both a depth map and an intensity image in which the first three-dimensional object 102 appears as is represented. The identified features may include boundaries or defining edges of the first three-dimensional object, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of the external boundary of the first three-dimensional object 102.
At 206, based at least in part on the features identified in 204 the one or more processors 120 selects one or more geometric primitives 104 from the library. The one or more processors 120 use the selected one or more geometric primitives 104 to roughly represent the packaging encompassing first three-dimensional object 102 making allowances for any specialized packing instructions (e.g., fragile surfaces, extra packing, unusual packing shapes, etc.) that may have been provided by the user. The one or more processors 120 fit a three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102 that encompasses substantially all of the processor identified features defining an external boundary of the first three-dimensional object 102 and reflecting any specialized packing instructions provided by the user.
For example, where the first three-dimensional object 102 is a cube, the one or more processors 120 may identify seven or more features (e.g., four defining the corners of one face of the cube, two additional defining the corners of a second face of the cube and one defining the fourth corner of the top of the cube). The user may have identified one surface of the cube as requiring “extra packaging.” Based on these indentified features and the user's specialized packing instructions, the one or more processors 120 may select a rectangular prismatic geometric primitive 104 accommodating the cubic three-dimensional object 102 and the extra packaging requirements identified by the user and use the selected rectangular prismatic geometric primitive 104 to fit a first three-dimensional packaging wireframe model 106 that substantially encompasses the cubic first three-dimensional object 102 and the associated packaging surrounding the object.
In another example, the first three-dimensional object 102 may be a cylinder and the one or more processors 120 may identify a number of features about the face and defining the height of the cylinder. Based on these identified features, the one or more processors 120 may select a cylindrical geometric primitive 104 and use the selected geometric primitive to fit a first three-dimensional packaging wireframe model 106 to the cylindrical first three-dimensional object 102 that substantially encompasses the object and includes an allowance for packaging materials about the cylindrical three-dimensional object 102.
Based at least in part on the identified features, the one or more processors 120 may search the library for one or more geometric primitives 104 having features, points, or nodes substantially similar to the spatial arrangement of the identified features, points, or nodes associated with the first three-dimensional object 102. In searching the library, the one or more processors may use one or more appearance-based or feature-based shape recognition or shape selection methods. For example a “large modelbases” appearance-based method using eigenfaces may be used to select geometric primitives 104 appropriate for fitting to the first three-dimensional object 102.
At 208, the one or more processors 120 can generate a video, image, or display output that includes data providing an image of the first three-dimensional packaging wireframe model 106 as fitted to the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes one or more images providing the concurrent or simultaneous depiction of the first three-dimensional object 102 using image data from the camera 152 and the fitted first three-dimensional packaging wireframe model 106. In some instances, an image concurrently or simultaneously depicting the geometric primitive 104 fitted to the first three-dimensional object 102 along with the first three-dimensional packaging wireframe model 106 fitted thereto may also be provided on the one or more display devices 156.
At 302, the one or more processors 120 receive an input indicative of a desired change at least a portion of the first three-dimensional packaging wireframe model 106. The change in position of the first three-dimensional packaging wireframe model 106 may include a change to a single point, multiple points, or even a scalar, arc, curve, face, or line linking two or more points used by the one or more processors 120 to fit the three-dimensional packaging wireframe model 106. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. The use of a touch-screen display device 114 advantageously enables a user to visually align all or a portion of the first three-dimensional packaging wireframe model 106 with all or a corresponding portion of the image of first three-dimensional object 102 in an intuitive and easy to visualize manner. In some embodiments, a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the desired change to the three-dimensional packaging wireframe model 106 will be provided to the one or more processors 120.
At 304, the one or more processors 120 can generate a video, image, or display data output that includes image data of the modified or updated first three-dimensional packaging wireframe model 106 as fitted to the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the first three-dimensional packaging wireframe model 106 data as fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first three-dimensional object 102 along with the one or more scaled and fitted geometric primitives 104 and the first three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
For example, where the first three-dimensional object 102 is a cylindrical object, a cylindrical geometric primitive 104 may be selected by the one or more processors 120, resulting in a cylindrical first three-dimensional packaging wireframe model 106. Perhaps the user has triangular shaped padding that will be used to pad and center the cylindrical object in the center of a rectangular shipping container. In response to an input indicative of a desired change in a position of at least a portion of the first three-dimensional packaging wireframe model 106, the one or more processors 120 may select a second geometric primitive 104, for example a rectangular prismatic geometric primitive, and fit a more appropriate second three-dimensional packaging wireframe model 106 to replace the previously fitted first three-dimensional packaging wireframe model 106.
At 402, the one or more processors 120 receive an input indicative of a desired change to at least a portion of the first three-dimensional packaging wireframe model 106 fitted to the three-dimensional object 102. The input may specify one or more of a single point, multiple points, or even a scalar, arc, curve, face, or line linking two or more points used by the one or more processors 120 to fit the three-dimensional packaging wireframe model 106. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. The use of a touch-screen display device 114 advantageously enables a user to visually align all or a portion of the first three-dimensional packaging wireframe model 106 with all or a corresponding portion of the image of the first three-dimensional object 102 in an intuitive and easy to visualize manner. In some embodiments, a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the desired change to the three-dimensional packaging wireframe model 106 will be provided to the one or more processors 120.
At 404, responsive to the input the one or more processors 120 may select from the library one or more second geometric primitives 104 that are different from the first geometric primitive 104 and fit the second three-dimensional packaging wireframe 106 model using the second geometric primitive 104 to substantially encompass the first three-dimensional object 102. For example, where the one or more processors 120 detect from the input that a cylindrical three-dimensional packaging wireframe model 106 is being changed to a rectangular prismatic three-dimensional packaging wireframe model 106, the one or more processors 120 may alternatively select a second geometric primitive 104 corresponding to a rectangular prism from the library to fit the second three-dimensional packaging wireframe model 106 to the first three-dimensional object 102.
At 406, the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three-dimensional packaging wireframe model 106 as fitted to the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the second three-dimensional packaging wireframe model 106 data as fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first three-dimensional object 102 along with the one or more scaled and fitted second geometric primitives 104 and the first three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
At 502, the one or more processors 120 receive an input that indicates a second three-dimensional object 102 exists within the field-of-view 116 of the image sensor 114. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. The use of a touch-screen display device 114 advantageously enables a user to draw a perimeter around or otherwise clearly delineate the second three-dimensional object 102. In some embodiments, a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the second three-dimensional object 102 will be provided to the one or more processors 120. Responsive to the input indicating the existence of a second three-dimensional object 102 within the field-of-view 116 of the image sensor 114, the one or more processors 120 may detect additional three-dimensional features associated with the second three-dimensional object 102.
At 504, based at least in part on the three-dimensional features identified in 502, the one or more processors 120 may select from the library one or more second geometric primitives 104 to provide representation of the packaging encompassing the second three-dimensional object 102. The one or more processors 120 fit a second three-dimensional packaging wireframe model 106 about the second three-dimensional object 102 that is responsive to any specialized instructions received from the user and encompasses substantially all the three-dimensional features of the second three-dimensional object 102 identified by the one or more processors 120 at 502.
At 506, the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three-dimensional packaging wireframe model 106 as fitted to the virtual representation of the second three-dimensional object 104. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs to the one or more display devices 156 that includes image data depicting an image of the second three-dimensional object 102 using image data from the camera 152 along with the fitted second three-dimensional packaging wireframe model 106 provided by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the second three-dimensional object 102 along with the one or more scaled and fitted second geometric primitives 104 and the second three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
At 508, the one or more processors 120 can generate a video, image, or display data output that includes image data of the first three-dimensional packaging wireframe model 106 as fitted to the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or simultaneously depicting images of the first and second three-dimensional objects 102 using image data from the camera 152 along with the respective first and second three-dimensional packaging wireframe models 106 fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first and second three-dimensional objects 102 along with the one or more scaled and fitted first and second geometric primitives 104 and the first and second three-dimensional packaging wireframe models 106 may also be provided on the one or more display devices 156.
For example, rather than fitting a single three-dimensional packaging wireframe model 106 about a guitar-shaped three-dimensional object 102, a more accurate three-dimensional packaging wireframe model 106 may incorporate a plurality wireframe models 106, such as a first three-dimensional packaging wireframe model 106 fitted to the body portion of the guitar-shaped object and a second three-dimensional packaging wireframe model 106 fitted to the neck portion of the guitar-shaped object may provide a more accurate three-dimensional packaging wireframe model 106 for the entire guitar-shaped object. Fitting of multiple three-dimensional packaging wireframe models 106 may be performed automatically by the one or more processors 120, or performed responsive to the receipt of a user input indicating that a plurality of three-dimensional packaging wireframe models should be used. Providing a user with the ability to designate the use of three-dimensional packaging wireframe models 106 about different portions of a single three-dimensional object 102 may provide the user with a more accurate freight rate estimate based upon the actual configuration of the object and may provide the carrier with a more accurate shipping volume.
At 602, the one or more processors 120 receive an input that identifies a portion of the first three-dimensional object 102 that may be represented using a separate three-dimensional packaging wireframe model 106. Using the example of a guitar, the user may provide an input that when received by the one or more processors 120, indicates the neck of the guitar is best fitted using separate three-dimensional packaging wireframe model 106. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. The use of a touch-screen display device 114 advantageously enables a user to draw a perimeter or otherwise clearly delineate the portion of the first three-dimensional object 102 for which one or more separate geometric primitives 104 may be selected and about which a three-dimensional packaging wireframe model 106 may be fitted by the one or more processors 120. In some embodiments, a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the portion of the first three-dimensional object 102 suitable for representation by a separate three-dimensional packaging wireframe model 106 will be provided as an input to the one or more processors 120.
At 604, responsive at least in part to the input indicating the portion of the first three-dimensional object 102 suitable for representation as a separate three-dimensional packaging wireframe model 106, the one or more processors 120 can select one or more geometric primitives 104 encompassing the first portion of the first three-dimensional object 102. Based on the one or more selected geometric primitives 104, the one or more processors 120 fit a three-dimensional packaging wireframe model 106 about the first portion of the three-dimensional object 102. Continuing with the illustrative example of a guitar—the one or more processors 120 may receive an input indicating the user's desire to represent the neck portion of the guitar as a first three-dimensional packaging wireframe model 106. Responsive to the receipt of the input selecting the neck portion of the guitar, the one or more processors 120 select one or more appropriate geometric primitives 104, for example a cylindrical geometric primitive, and fit a cylindrical three-dimensional packaging wireframe model 106 that encompasses the first portion of the first three-dimensional object 102 (i.e., the neck portion of the guitar).
At 606, the one or more processors 120 select one or more geometric primitives 104 encompassing the second portion of the first three-dimensional object 102. Based on the one or more selected geometric primitives 104, the one or more processors 120 fit a three-dimensional packaging wireframe model 106 about the second portion of the first three-dimensional object 102. The separate three-dimensional packaging wireframe model 106 fitted to the second portion may be the same as, different from, or a modified version of the three-dimensional packaging wireframe model 106 fitted to the first portion of the three-dimensional object 102.
Continuing with the illustrative example of a guitar the single, three-dimensional packaging wireframe model 106 originally fitted by the one or more processors 120 to the entire guitar may have been in the form of a rectangular three-dimensional packaging wireframe model 106 encompassing both the body portion and the neck portion of the guitar. After fitting the cylindrical three-dimensional packaging wireframe model 106 about the first portion of the first three-dimensional object 102 (i.e., the neck of the guitar), the one or more processors 120 may reduce the size of the originally fitted, rectangular, three-dimensional packaging wireframe model 106 to a rectangular three-dimensional packaging wireframe model 106 fitted about the second portion of the first three-dimensional object 104 (i.e., the body of the guitar).
At 608, the one or more processors 120 can generate a video, image, or display data output that includes image data of the three-dimensional packaging wireframe models 106 fitted to the first and second portions of the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 including an image concurrently or simultaneously depicting the first and second portions of the first three-dimensional object 102 using image data from the camera 152 and the respective three-dimensional packaging wireframe models 106 fitted to each of the first and second portions by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first and second portions of the first three-dimensional object 102 along with their respective one or more scaled and fitted geometric primitives 104 and their respective three-dimensional packaging wireframe models 106 may also be provided on the one or more display devices 156.
In such instances, obtaining image data from a second point of view that includes the previously hidden or obscured feature will permit the one or more processors 120 to select one or more geometric primitives 104 fitting the entire three-dimensional object 102 including the features hidden in the first point of view. By encompassing all or the features within the one or more geometric primitives 104, the one or more processors 120 are able to fit the first three-dimensional packaging wireframe model 106 about the entire first three-dimensional object 102 or alternatively, to add a second three-dimensional packaging wireframe model 106 incorporating the portion of the first three-dimensional object 102 that was hidden in the first point of view of the image sensor 114.
At 702, after fitting the first three-dimensional packaging wireframe model 106 to the first three-dimensional object 102, the one or more processors 120 rotate the fitted three-dimensional packaging wireframe model 106 about an axis to expose gaps in the model or to make apparent any features absent from the model but present on the first three-dimensional object 102. In some situations, the volume dimensioning system 110 may provide a video, image, or display data output to the host computer 150 providing a sequence or views of the fitted first three-dimensional packaging wireframe model 106 such that the first three-dimensional packaging wireframe model 106 appears to rotate about one or more axes when viewed on the one or more display devices 156.
Responsive to the rotation of the first three-dimensional packaging wireframe model 106 on the one or more display devices 156, the system 100 can generate an output, for example a prompt displayed on the one or more display devices 156, requesting a user to provide an input confirming the accuracy of or noting any deficiencies present in the first three-dimensional packaging wireframe model 106.
At 704, additional image data in the form of a second point of view of the first three-dimensional object 102 that exposes the previously hidden or obscured feature on the first three-dimensional object 102 may be provided to the one or more processors 120. Image data may be acquired or captured from a second point of view in a variety of ways. For example, in some instances, the image sensor 114 may be automatically or manually displaced about the first three-dimensional object 102 to provide a second point of view that includes the previously hidden feature. Alternatively or additionally, a second image sensor (not shown in
At 706, responsive to the receipt of image data from the image sensor as viewed from the second point of view of the first three-dimensional object 102, the one or more processors 120 can detect a portion of the first three-dimensional object 102 that was hidden in the first point of view. Such detection can be accomplished, for example by tracking the feature points on the first three-dimensional object 102 visible in the first point of view as the first point of view is transitioned to the second point of view. Identifying new feature points appearing in the second point of view that were absent from the first point of view provide an indication to the one or more processors 120 of the existence of a previously hidden or obscured portion or feature of the first three-dimensional object 102.
At 708, responsive to the detection of the previously hidden or obscured portion or feature of the first three-dimensional object 102, the one or more processors 120 can modify one or more originally selected geometric primitives 140 (e.g., by stretching the geometric primitive 104) to incorporate the previously hidden or obscured feature, or alternatively can select one or more second geometric primitives 104 that when combined with the one or more previously selected geometric primitives 104 encompasses the previously hidden or obscured feature on the first three-dimensional object 102.
In some instances, the one or more processors 120 may modify the one or more originally selected geometric primitives 104 to encompass the feature hidden or obscured in the first point of view, but visible in the second point of view. The three-dimensional packaging wireframe model 106 can then be scaled and fitted to the modified originally selected geometric primitive 104 to encompass the feature present on the first three-dimensional object 102. For example, a first three-dimensional packaging wireframe model 106 may be fitted to a rectangular prismatic three-dimensional object 102, and a hidden feature in the form of a smaller rectangular prismatic solid may be located on the rear face of the rectangular prismatic three-dimensional object 102. The one or more processors 120 may in such a situation, modify the originally selected geometric primitive 104 to encompass the smaller rectangular prismatic solid. The one or more processors 120 can then scale and fit the first three-dimensional packaging wireframe model 106 to encompass the entire first three-dimensional object 102 by simply modifying, by stretching, the originally fitted rectangular three-dimensional packaging wireframe model 106.
In other instances, the one or more processors 120 may alternatively select one or more second geometric primitives 104 to encompass the smaller rectangular solid feature and fit a second three-dimensional packaging wireframe model 106 to the second geometric primitive 104. For example, when the three-dimensional object 102 is a guitar-shaped object, the first point of view, may expose only the body portion of the guitar-shaped object to the image sensor 114 while the neck portion remains substantially hidden from the first point of view of the image sensor 114. Upon receiving image data from the second point of view, the one or more processors 120 can detect an additional feature that includes the neck portion of the guitar-shaped object. In response, the one or more processors 120 may select a second geometric primitive 104 and use the selected second geometric primitive 104 to fit a second three-dimensional packaging wireframe model 106 about the neck portion of the guitar-shaped object.
At 710, the one or more processors 120 can generate a video, image, or display data output that includes image data of the one or more three-dimensional packaging wireframe models 106 fitted to the first three-dimensional object 102, including features visible from the first and second points of view of the image sensor 114. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image concurrently or simultaneously displaying the first three-dimensional object 102 using image data from the camera 152 and the one or more three-dimensional packaging wireframe models 106 fitted to respective portions of the first three-dimensional object 102 by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first and second portions of the first three-dimensional object 102 along with one or more geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
In the previous example, the one or more processors 120 may receive an input indicating a rectangular prismatic geometric primitive as designating the particular shape of the desired first three-dimensional object. This allows the one or more processors 120 to automatically eliminate the three bowling balls within the field-of-view of the image sensor 114 as potential first three-dimensional objects 102. Such an input, when received by the one or more processors 120 effectively provides a screen or filter for the one or more processors 120 eliminating those three-dimensional objects 102 having geometric primitives not matching the indicated desired geometric primitive received by the one or more processors 120.
At 802, the one or more processors 120 receive an input indicative of a desired geometric primitive 104 useful in selecting, screening, determining or otherwise distinguishing the first three-dimensional object 102 from other objects that are present in the field-of-view 116 of the image sensor 114. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. In some instances, text or graphical icons indicating various geometric primitive shapes may be provided in the form of a list, menu, or selection window to the user.
At 804, responsive to the receipt of the selected geometric primitive 104, the one or more processors 120 search through the three-dimensional objects 102 appearing in the field-of-view 116 of the image sensor 114 to locate only those first three-dimensional objects 102 having a shape that is substantially similar to or matches the user selected geometric primitive 104.
At 902, the one or more processors 120 receive an input indicative of user acceptance of the first three-dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102 by the one or more processors 120. The one or more processors 120 can generate a video, image, or display data output that includes image data of the three-dimensional packaging wireframe model 106 after scaling and fitting to the first three-dimensional object 102, and after any modifications necessary to accommodate any specialized shipping instructions provided by the user.
The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 including image data depicting a simultaneous or concurrent image of the first three-dimensional object 102 using image data from the camera 152 and the three-dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102 by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first three-dimensional object 102 along with one or more scaled and fitted geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
Responsive to the display of at least the first three-dimensional object 102 and the first three-dimensional packaging wireframe model 106, the system 100 may generate a signal output, for example a signal output from the host computer 150 containing a query requesting the user provide an input indicative of an acceptance of the fitting of the first three-dimensional packaging wireframe model 106 to the first three-dimensional object 102.
At 904, responsive to user acceptance of the fitting of the first three-dimensional packaging wireframe model 106 to the first three-dimensional object 102, the one or more processors 120 determine the dimensions and calculate the volume of the first three-dimensional object 102 based at least in part on the three-dimensional packaging wireframe model 106. Any of a large variety of techniques or algorithms for determining a volume of a bounded three-dimensional surface may be employed by the system 100 to determine the dimensions or volume of the first three-dimensional object 102.
At 1002, the one or more processors 120 receive an input indicative of a rejection of the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 about the first three-dimensional object 102. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
At 1004, responsive to the receipt of the rejection of the first three-dimensional packaging wireframe model 106 fitted about the first three-dimensional object 102, the one or more processors 120 select one or more second geometric primitives 104 and, based on the one or more second selected geometric primitives 104, fit a second three-dimensional packaging wireframe model 106 about the first three-dimensional object 102.
At 1006, the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three-dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the second three-dimensional packaging wireframe model 106 fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting an image of the first three-dimensional object 102 along with the one or more second geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
At 1102, the one or more processors 120 receive an input indicative of a selection of a second geometric primitive 104 as representative of the first three-dimensional object 102 or a second three-dimensional packaging wireframe model 106 for fitting about the first three-dimensional object 102. In some instances, the one or more processors 120 receive an input indicative of one or more second geometric primitives 104 that are different from the one or more first geometric primitives 104 used by the one or more processors 120 to fit the first three-dimensional packaging wireframe model 106. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. In at least some instances, the input is provided by selecting a text or graphic icon corresponding to the second geometric primitive 104 or an icon corresponding to the second three-dimensional packaging wireframe model 106 from a list, menu or selection window containing a plurality of such icons.
At 1104, responsive to the selection of the second geometric primitive 104 or the second three-dimensional packaging wireframe model, the one or more processors 120 can fit the second three-dimensional packaging wireframe model 106 to the first three-dimensional object 102.
At 1106, the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three-dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image concurrently or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the second three-dimensional packaging wireframe model 106 fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting an image of the first three-dimensional object 102 along with the one or more geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
At 1202, the one or more processors 120 receive an input indicative of a region of interest lying in the field-of-view 116 of the image sensor 114. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
At 1204, responsive to the receipt of the input indicative of a region of interest in the field-of-view 116 of the image sensor 114, the one or more CPUs 160 enlarge the indicated region of interest and output a video, image, or display data output including the enlarged region of interest to the one or more display devices 156 on the host computer system 150. In some situations, the one or more processors 120 may provide the video, image, or display data output including the enlarged region of interest to the one or more display devices 156 on the host computer system 150.
At 1206, the one or more processors 120 automatically select a geometric primitive 104 based upon the features of the first three-dimensional object 102 included in the enlarged region of interest for use in fitting the first three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102. Alternatively, the one or more processors 120 may receive an input indicative of a geometric primitive 104 to fit the first three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102 depicted in the enlarged region of interest. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. In at least some instances, the input is provided to the one or more processors 120 by selecting a text or graphic icon corresponding to the geometric primitive from a menu, list or selection window containing a plurality of such icons.
At 1302, the image sensor 114 captures or acquires three-dimensional image data which is communicated to the one or more non-transitory, machine-readable storage media 118 via one or more data busses 126. The three-dimensional image data captured by the image sensor 114 includes a first three-dimensional object 102 disposed within the field-of-view 116 of the image sensor 114. The three-dimensional image data captured by the image sensor 114 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view 116 of the image sensor 114. At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 118 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 preparatory to fitting a three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 104.
At 1304, based in whole or in part on the three-dimensional image data received from the image sensor 114, the one or more processors 120 determine a number of features on the first three-dimensional object 102 that appear in the three-dimensional image data. The features may include any point, edge, or other discernible structure on the first three-dimensional object 102 and detectable in the image represented by the three-dimensional image data. For example, one or more features may correspond to a three-dimensional point on the three-dimensional object 102 that is detectable in a depth map containing the first three-dimensional object, an intensity image in which the three-dimensional object, or both a depth map and an intensity image in which the first three-dimensional object 102 appears as is represented. The identified features may include boundaries or defining edges of the first three-dimensional object, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of the external boundary of the first three-dimensional object 102.
At 1306, based at least in part on the features identified in 1304, the one or more processors 120 select one or more geometric primitives 104 having the same or differing shapes to encompass substantially all of the identified features of the first three-dimensional object 102. Dependent upon the overall number, arrangement, and complexity of the one or more selected geometric primitives 104, the one or more processors 120 may autonomously determine that a plurality of three-dimensional packaging wireframe models 106 are useful in fitting an overall three-dimensional packaging wireframe model 106 to the relatively complex three-dimensional object 102. The one or more processors 120 may determine that a first three-dimensional packaging wireframe model 106 can be fitted to a first portion of the first three-dimensional object 102 and a second three-dimensional packaging wireframe model 106 can be fitted to a second portion of the first three-dimensional object 102.
At 1308, the one or more processors 120 scale and fit the first three-dimensional packaging wireframe model 106 to the one or more geometric primitives 104 encompassing the first portion of the first three-dimensional object 102. The scaled and fitted first three-dimensional packaging wireframe model 106 encompasses substantially all the first portion of the first three-dimensional object 102.
At 1310 the one or more processors 120 fit the second three-dimensional packaging wireframe model 106 to the one or more geometric primitives 104 encompassing the second portion of the first three-dimensional object 102. The scaled and fitted second three-dimensional packaging wireframe model 106 encompasses substantially all the second portion of the first three-dimensional object 102.
At 1312, the one or more processors 120 can generate a video, image, or display data output that includes image data of the first and second three-dimensional packaging wireframe models 106 as fitted to the first and second portions of the first three-dimensional object 102, respectively. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs viewable on the one or more display devices 156 that includes an image simultaneously or contemporaneously depicting the first and second portions of the first three-dimensional object 102 using image data from the camera 152 and the respective first and second three-dimensional packaging wireframe models 106 fitted to each of the first and second portions by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting an image of the first and second portions of the first three-dimensional object 102 along with the one or more respective first and second geometric primitives 104 and the respective scaled and fitted first and second three-dimensional packaging wireframe models 106 may also be provided on the one or more display devices 156.
At 1402, the image sensor 114 captures or acquires three-dimensional image data which is communicated to the one or more non-transitory, machine-readable storage media 118 via one or more data busses 126. The three-dimensional image data captured by the image sensor 114 includes a first three-dimensional object 102 disposed within the field-of-view 116 of the image sensor 114. The three-dimensional image data captured by the image sensor 114 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view of the image sensor 114. At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 118 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 to fit a three-dimensional packaging wireframe model 106 that encompasses the first three-dimensional object 102.
At 1404, based on the image data received from the image sensor 114, the one or more processors 120 determine that an insufficient number of features on the first three-dimensional object 102 are present within the first point of view of the image sensor 114 to permit the selection of one or more geometric primitives 104 to fit the first three-dimensional packaging wireframe model 106.
At 1406, responsive to the determination that an insufficient number of features are present within the first point of view of the image sensor 114, the one or more processors 120 generates an output indicative of the lack of an adequate number of features within the first point of view of the image sensor 114. In some instances, the output provided by the one or more processors 120 can indicate a possible second point of view able to provide a view of a sufficient number of additional features on the first three-dimensional object 102 to permit the selection of one or more appropriate geometric primitives representative of the first three-dimensional object 102.
In some situations, the output generated by the one or more processors 120 may cause a second image sensor positioned remote from the image sensor 114 to transmit image data from a second point of view to the one or more non-transitory, machine-readable storage media 118. In some instances the second image sensor can transmit depth data related to a depth map of first three-dimensional object 102 from the second point of view or intensity data related to an intensity image of the first three-dimensional object 102 from the second point of view. The image data provided by the second image sensor is used by the one or more processors 120 in identifying additional features on the first three-dimensional object 102 that are helpful in selecting one or more appropriate geometric primitives representative of the first three-dimensional object 102.
In some situations, the output generated by the one or more processors 120 may include audio, visual, or audio/visual indicator data used by the host computer 150 to generate an audio output via one or more I/O devices 166 or to generate a visual output on the one or more display devices 156 that designate a direction of movement of the image sensor 114 or a direction of movement of the first three-dimensional object 102 that will permit the image sensor 114 to obtain a second point of view of the first three-dimensional object 102. The image data provided by the image sensor 114 from the second point of view is used by the one or more processors 120 in identifying additional features on the first three-dimensional object 102 that are helpful in selecting one or more appropriate geometric primitives representative of the first three-dimensional object 102.
An interior space of a partially or completely empty container or trailer 1503 is depicted as forming a three-dimensional void 1502 falling within the field-of-view 116 of the image sensor 114 and the field-of-view 154 of the camera 152. An image of the three-dimensional void is depicted as an image on the one or more display devices 156. The one or more processors 120 can select one or more geometric primitives 1504 corresponding to the first three-dimensional void 1502 preparatory to scaling and fitting a three-dimensional receiving wireframe 1506 within the first three-dimensional void 1502. The scaled and fitted three-dimensional receiving wireframe model 1506 is depicted within the three-dimensional void 1502. In some embodiments, the scaled and fitted three-dimensional receiving wireframe model 1506 may be shown in a contrasting or bright color on the one or more display devices 156.
The scaled, fitted three-dimensional receiving wireframe model 1506 may be generated by the host computer 150 or, more preferably may be generated by the volume dimensioning system 110. The image on the display device 156 is a provided in part using the image data acquired by the camera 152 coupled to the host computer system 150 which provides an image of the three-dimensional void 1502, and in part using the scaled and fitted three-dimensional receiving wireframe model 1506 provided by the volume dimensioning system 110. Data, including visible image data provided by the camera 152 and depth map data and intensity image data provided by the image sensor 114 is exchanged between the host computer 150 and the volume dimensioning system 110 via the one or more busses 112. In some instances, the volume dimensioning system 110 and the host computer system 150 may be partially or completely incorporated within the same housing, for example a handheld computing device or a self service kiosk.
At 1602, the image sensor 114 captures or acquires three-dimensional image data of a first three-dimensional void 1502 within the field-of-view of 116 of the image sensor 114. Image data captured or acquired by the image sensor 114 is communicated to the one or more non-transitory, machine-readable storage media 118 via one or more data busses 126. The three-dimensional image data captured by the image sensor 114 includes a first three-dimensional void 1502 disposed within the field-of-view 116 of the image sensor 114. The three-dimensional image data captured by the image sensor 114 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view of the image sensor 114. At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 118 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 1504 preparatory to fitting a first three-dimensional receiving wireframe model 1506 within all or a portion of the first three-dimensional void 1502.
At 1604, based in whole or in part on the image data captured by the image sensor 114, stored in the one or more non-transitory, machine-readable storage media 118, and communicated to the one or more processors 120, the one or more processors 120 determine a number of features related to or associated with the first three-dimensional void 1502 present in the image data received by the one or more processors 120. The features may include any point on the first three-dimensional void 1502 detectable in the image data provided by the image sensor 114. For example, one or more features may correspond to a point on the first three-dimensional void 1502 that is detectable in a depth map containing the first three-dimensional void 1502, an intensity image containing the three-dimensional void 1502, or both a depth map and an intensity image containing the first three-dimensional void 1502. The identified features include boundaries or defining edges of the first three-dimensional void 1502, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of one or more boundaries defining the first three-dimensional void 1502.
At 1606, based at least in part on the features identified in 1604, the one or more processors 120 select one or more geometric primitives 1504 and fit the selected geometric primitives 1504 within substantially all of the features identified by the one or more processors 120 as defining all or a portion of one or more boundaries of the first three-dimensional void 1502. The one or more selected geometric primitives 1504 are used by the one or more processors 120 to fit a three-dimensional receiving wireframe model 1506 within all or a portion of the first three-dimensional void 1502.
After fitting the first three-dimensional receiving wireframe model 1506 within the three-dimensional void 1502, the one or more processors 120 determine, based on the first three-dimensional receiving wireframe model 1506, the available dimensions or volume within the first three-dimensional void 1502.
At 1608, the one or more processors 120 can generate a video, image, or display data output that includes image data of the first three-dimensional receiving wireframe model 1506 as fitted to the first three-dimensional void 1502. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 including an image concurrently or simultaneously depicting the first three-dimensional void 1502 using image data from the camera 152 and the first three-dimensional receiving wireframe model 1506 fitted therein by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting an image of the first three-dimensional void 1502 along with the one or more geometric primitives 1504 and the scaled and fitted three-dimensional packaging wireframe model 1506 may also be provided on the one or more display devices 156.
For example, where the first three-dimensional void 1502 corresponds to the available volume in a shipping container 1503 destined for Seattle, the one or more processors 120 may receive volumetric or dimensional data associated with a number of three-dimensional objects 102 for shipment to Seattle using the shipping container 1503. Using the dimensions or volume of the first three-dimensional void 1502, the dimensions of each of the number of three-dimensional objects 102, and any specialized handling instructions (e.g., fragile objects, fragile surfaces, top-load only, etc), the one or more processors 120 can calculate a load pattern including each of the number of three-dimensional objects 102 that accommodates any user specified specialized shipping requirements and also specifies the placement or orientation of each of the number of three-dimensional objects 102 within the three-dimensional void 1502 such that the use of the available volume within the container 1503 is optimized.
At 1702, the one or more processors 120 can receive an input, for example via the host computer system 150, that contains dimensional or volumetric data associated with each of a number of three-dimensional objects 102 that are intended for placement within the first three-dimensional void 1502. In some instances, at least a portion of the dimensional or volumetric data associated with each of a number of three-dimensional objects 102 can be provided by the volume dimensioning system 100. In other instances, at least a portion of the dimensional or volumetric data provided to the one or more processors 120 can be based on three-dimensional packaging wireframe models 106 fitted to each of the three-dimensional objects 102. In some instances, the dimensional or volumetric data associated with a particular three-dimensional object 102 can include one or more user-supplied specialized shipping requirements (e.g., fragile surfaces, top-load items, “this side up” designation, etc.).
At 1704, based in whole or in part upon the received dimensional or volumetric data, the one or more processors 120 can determine the position or orientation for each of the number of three-dimensional objects 102 within the first three-dimensional void 1502. The position or location of each of the number of three-dimensional objects 102 can take into account the dimensions of the object, the volume of the object, any specialized shipping requirements associated with the object, and the available dimensions or volume within the first three-dimensional void 1502. In some instances, the volume dimensioning system 1500 can position or orient the number of three-dimensional objects 102 within the first three-dimensional void 1502 to minimize empty space within the three-dimensional void 1502.
The one or more processors 120 can generate a video, image, or display data output that includes the three-dimensional packaging wireframes 106 fitted to each of the three-dimensional objects 102 intended for placement within the three-dimensional void 1502. The three-dimensional packaging wireframes 106 associated with some or all of the number of three-dimensional objects 102 may be depicted on the one or more display devices 156 in their final positions and orientations within the three-dimensional receiving wireframe 1506. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image concurrently or simultaneously depicting the first three-dimensional void 1502 and all or a portion of the three-dimensional packaging wireframe models 106 fitted within the three-dimensional void 1502 by the one or more processors 120.
Over time, the volume dimensioning system 110 may “learn” to automatically perform one or more functions that previously required initiation based on a user input. In one instance, a first three-dimensional object 102 provides a particular pattern of feature points to the one or more processors 120 and a user provides an input selecting a particular geometric primitive 104 for use by the one or more processors 120 in fitting a three-dimensional packaging wireframe model 106 to the three-dimensional object 102. If, in the future, a three-dimensional object 102 provides a similar pattern of feature points, the one or more processors 120 may autonomously select the geometric primitive 104 previously selected by the user for fitting a three-dimensional packaging wireframe model 106 about the three-dimensional object 102.
In another instance, a first three-dimensional object 102 provides a particular pattern of feature points to the one or more processors 120 and a user indicates to the one or more processors 120 that the first three-dimensional object 102 should be apportioned into first and second portions about which respective first and second three-dimensional packaging wireframe models 106 can be fitted. If, in the future, a three-dimensional object 102 provides a similar pattern of feature points, the one or more processors 120 may autonomously apportion the three-dimensional object 102 into multiple portions based on the apportioning provided by the former user.
At 1802 the image sensor 114 captures or acquires three-dimensional image data which is communicated to the one or more non-transitory, machine-readable storage media 118 via one or more data busses 126. The three-dimensional image data captured by the image sensor 114 includes a first three-dimensional object 102 disposed within the field-of-view of the image sensor 114. The three-dimensional image data captured by the image sensor 114 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view of the image sensor 114. At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 118 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 for use in fitting a three-dimensional packaging wireframe model 106 encompassing all or a portion of the three-dimensional object 102.
At 1804, based in whole or in part on the three-dimensional image data received from the image sensor 114, the one or more processors 120 determine a number of features on the first three-dimensional object 102 appearing in the three-dimensional image data. The features may include any point, edge, face, surface, or other discernible structure on the first three-dimensional object 102 and detectable in the image represented by the three-dimensional image data. For example, one or more features may correspond to a three-dimensional point on the three-dimensional object 102 that is detectable in a depth map containing the first three-dimensional object, an intensity image in which the three-dimensional object, or both a depth map and an intensity image in which the first three-dimensional object 102 appears as is represented. The identified features may include boundaries or defining edges of the first three-dimensional object, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of the external boundary of the first three-dimensional object 102.
At 1806, based at least in part on the features identified in 1804, the one or more processors 120 select one or more geometric primitives 104 from the library. The one or more processors 120 use the selected one or more geometric primitives 104 in constructing a three-dimensional packaging wireframe model 106 that encompasses all or a portion of the first three-dimensional object 102. The three-dimensional packaging wireframe model 106 encompasses substantially all of the features identified in 1804 as defining all or a portion of the first three-dimensional object 102.
Based at least in part on the identified features, the one or more processors 120 may search the library for one or more geometric primitives 104 having features, points, or nodes substantially similar to the spatial arrangement of the identified features, points, or nodes associated with the first three-dimensional object 102. In searching the library, the one or more processors may use one or more appearance-based or feature-based shape recognition or shape selection methods. For example a large modelbases appearance-based method using eigenfaces may be used to select geometric primitives 104 appropriate for fitting to the first three-dimensional object 102.
At 1808 the one or more processors 120 receives an input indicative of a rejection of the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 about the first three-dimensional object 102. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. Responsive to the receipt of the rejection of the first three-dimensional packaging wireframe model 106 fitted about the first three-dimensional object 102, the one or more processors 120 select a second geometric primitive 104 and, based on the second selected geometric primitive 104, fit a second three-dimensional packaging wireframe model 106 about the first three-dimensional object 102.
At 1810 the one or more processors 120 can associate the number, pattern, or spatial relationship of the features identified in 1804 with the second geometric primitive 104 selected by the one or more processors. If, in the future, the one or more processors 120 identify a similar number, pattern, or spatial relationship of the features, the one or more processors 120 can autonomously select the second geometric primitive 104 for use in constructing the first three-dimensional packaging wireframe model 106 about the first three-dimensional object 102.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs) or programmable gate arrays. However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more controllers (e.g., microcontrollers) as one or more programs running on one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of ordinary skill in the art in light of this disclosure.
Various methods and/or algorithms have been described. Some or all of those methods and/or algorithms may omit some of the described acts or steps, include additional acts or steps, combine acts or steps, and/or may perform some acts or steps in a different order than described. Some of the method or algorithms may be implemented in software routines. Some of the software routines may be called from other software routines. Software routines may execute sequentially or concurrently, and may employ a multi-threaded approach.
In addition, those skilled in the art will appreciate that the mechanisms taught herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of nontransitory signal bearing media include, but are not limited to, the following: recordable type media such as portable disks and memory, hard disk drives, CD/DVD ROMs, digital tape, computer memory, and other non-transitory computer-readable storage media.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3971065 | Bayer | Jul 1976 | A |
4026031 | Siddall et al. | May 1977 | A |
4279328 | Ahlbom | Jul 1981 | A |
4398811 | Nishioka et al. | Aug 1983 | A |
4495559 | Gelatt, Jr. | Jan 1985 | A |
4634278 | Ross et al. | Jan 1987 | A |
4730190 | Win et al. | Mar 1988 | A |
4803639 | Steele et al. | Feb 1989 | A |
4914460 | Caimi et al. | Apr 1990 | A |
4974919 | Muraki et al. | Dec 1990 | A |
5111325 | DeJager | May 1992 | A |
5175601 | Fitts | Dec 1992 | A |
5184733 | Amarson et al. | Feb 1993 | A |
5198648 | Hibbard | Mar 1993 | A |
5220536 | Stringer et al. | Jun 1993 | A |
5243619 | Albers et al. | Sep 1993 | A |
5331118 | Jensen | Jul 1994 | A |
5359185 | Hanson | Oct 1994 | A |
5384901 | Glassner et al. | Jan 1995 | A |
5477622 | Skalnik | Dec 1995 | A |
5548707 | LoNegro et al. | Aug 1996 | A |
5555090 | Schmutz | Sep 1996 | A |
5561526 | Huber et al. | Oct 1996 | A |
5590060 | Granville et al. | Dec 1996 | A |
5592333 | Lewis | Jan 1997 | A |
5606534 | Stringer et al. | Feb 1997 | A |
5619245 | Kessler et al. | Apr 1997 | A |
5655095 | LoNegro et al. | Aug 1997 | A |
5661561 | Wurz et al. | Aug 1997 | A |
5699161 | Woodworth | Dec 1997 | A |
5729750 | Ishida | Mar 1998 | A |
5730252 | Herbinet | Mar 1998 | A |
5732147 | Tao | Mar 1998 | A |
5734476 | Dlugos | Mar 1998 | A |
5737074 | Haga et al. | Apr 1998 | A |
5748199 | Palm | May 1998 | A |
5767962 | Suzuki et al. | Jun 1998 | A |
5802092 | Endriz | Sep 1998 | A |
5808657 | Kurtz et al. | Sep 1998 | A |
5831737 | Stringer et al. | Nov 1998 | A |
5850370 | Stringer et al. | Dec 1998 | A |
5850490 | Johnson | Dec 1998 | A |
5869827 | Rando | Feb 1999 | A |
5870220 | Migdal et al. | Feb 1999 | A |
5900611 | Hecht | May 1999 | A |
5923428 | Woodworth | Jul 1999 | A |
5929856 | LoNegro et al. | Jul 1999 | A |
5938710 | Lanza et al. | Aug 1999 | A |
5959568 | Woolley | Sep 1999 | A |
5960098 | Tao | Sep 1999 | A |
5969823 | Wurz et al. | Oct 1999 | A |
5978512 | Kim et al. | Nov 1999 | A |
5979760 | Freyman et al. | Nov 1999 | A |
5988862 | Kacyra et al. | Nov 1999 | A |
5991041 | Woodworth | Nov 1999 | A |
6009189 | Schaack | Dec 1999 | A |
6025847 | Marks | Feb 2000 | A |
6035067 | Ponticos | Mar 2000 | A |
6049386 | Stringer et al. | Apr 2000 | A |
6053409 | Brobst et al. | Apr 2000 | A |
6064759 | Buckley et al. | May 2000 | A |
6067110 | Nonaka et al. | May 2000 | A |
6069696 | McQueen et al. | May 2000 | A |
6115114 | Berg et al. | Sep 2000 | A |
6137577 | Woodworth | Oct 2000 | A |
6177999 | Wurz et al. | Jan 2001 | B1 |
6189223 | Haug | Feb 2001 | B1 |
6232597 | Kley | May 2001 | B1 |
6236403 | Chaki | May 2001 | B1 |
6246468 | Dimsdale | Jun 2001 | B1 |
6333749 | Reinhardt | Dec 2001 | B1 |
6336587 | He et al. | Jan 2002 | B1 |
6369401 | Lee | Apr 2002 | B1 |
6373579 | Ober et al. | Apr 2002 | B1 |
6429803 | Kumar | Aug 2002 | B1 |
6457642 | Good et al. | Oct 2002 | B1 |
6507406 | Yagi et al. | Jan 2003 | B1 |
6517004 | Good et al. | Feb 2003 | B2 |
6519550 | D'Hooge et al. | Feb 2003 | B1 |
6535776 | Tobin et al. | Mar 2003 | B1 |
6661521 | Stern | Dec 2003 | B1 |
6674904 | McQueen | Jan 2004 | B1 |
6705526 | Zhu et al. | Mar 2004 | B1 |
6773142 | Rekow | Aug 2004 | B2 |
6781621 | Gobush et al. | Aug 2004 | B1 |
6804269 | Lizotte et al. | Oct 2004 | B2 |
6824058 | Patel et al. | Nov 2004 | B2 |
6832725 | Gardiner et al. | Dec 2004 | B2 |
6858857 | Pease et al. | Feb 2005 | B2 |
6912293 | Korobkin | Jun 2005 | B1 |
6922632 | Foxlin | Jul 2005 | B2 |
6971580 | Zhu et al. | Dec 2005 | B2 |
6995762 | Pavlidis et al. | Feb 2006 | B1 |
7057632 | Yamawaki et al. | Jun 2006 | B2 |
7085409 | Sawhney et al. | Aug 2006 | B2 |
7086162 | Tyroler | Aug 2006 | B2 |
7104453 | Zhu et al. | Sep 2006 | B1 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7137556 | Bonner et al. | Nov 2006 | B1 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7161688 | Bonner | Jan 2007 | B1 |
7205529 | Andersen et al. | Apr 2007 | B2 |
7214954 | Schopp | May 2007 | B2 |
7233682 | Levine | Jun 2007 | B2 |
7277187 | Smith et al. | Oct 2007 | B2 |
7307653 | Dutta | Dec 2007 | B2 |
7310431 | Gokturk et al. | Dec 2007 | B2 |
7313264 | Crampton | Dec 2007 | B2 |
7353137 | Vock et al. | Apr 2008 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7509529 | Colucci et al. | Mar 2009 | B2 |
7527205 | Zhu | May 2009 | B2 |
7586049 | Wurz | Sep 2009 | B2 |
7602404 | Reinhardt | Oct 2009 | B1 |
7614563 | Nunnink et al. | Nov 2009 | B1 |
7639722 | Paxton et al. | Dec 2009 | B1 |
7726206 | Terrafranca, Jr. et al. | Jun 2010 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
7780084 | Zhang et al. | Aug 2010 | B2 |
7788883 | Buckley et al. | Sep 2010 | B2 |
7912320 | Minor | Mar 2011 | B1 |
7974025 | Topliss | Jul 2011 | B2 |
8009358 | Zalevsky et al. | Aug 2011 | B2 |
8027096 | Feng et al. | Sep 2011 | B2 |
8028501 | Buckley et al. | Oct 2011 | B2 |
8050461 | Shpunt et al. | Nov 2011 | B2 |
8055061 | Katano | Nov 2011 | B2 |
8061610 | Nunnink | Nov 2011 | B2 |
8072581 | Breiholz | Dec 2011 | B1 |
8102395 | Kondo et al. | Jan 2012 | B2 |
8132728 | Dwinell et al. | Mar 2012 | B2 |
8134717 | Pangrazio et al. | Mar 2012 | B2 |
8149224 | Kuo et al. | Apr 2012 | B1 |
8194097 | Xiao et al. | Jun 2012 | B2 |
8201737 | Palacios Durazo et al. | Jun 2012 | B1 |
8212158 | Wiest | Jul 2012 | B2 |
8212889 | Chanas et al. | Jul 2012 | B2 |
8224133 | Popovich et al. | Jul 2012 | B2 |
8228510 | Pangrazio et al. | Jul 2012 | B2 |
8230367 | Bell et al. | Jul 2012 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8301027 | Shaw et al. | Oct 2012 | B2 |
3305458 | Hara | Nov 2012 | A1 |
8305458 | Hara | Nov 2012 | B2 |
8310656 | Zalewski | Nov 2012 | B2 |
8313380 | Zalewski et al. | Nov 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8320621 | McEldowney | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8339462 | Stec et al. | Dec 2012 | B2 |
8350959 | Topliss et al. | Jan 2013 | B2 |
8351670 | Ijiri et al. | Jan 2013 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8368762 | Chen et al. | Feb 2013 | B1 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8374498 | Pastore | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381976 | Mohideen et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
3437539 | Komatsu et al. | May 2013 | A1 |
8441749 | Brown et al. | May 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8463079 | Ackley et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8570343 | Halstead | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8576390 | Nunnink | Nov 2013 | B1 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8594425 | Gurman et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687000 | Panahpour Tehrani | Apr 2014 | B2 |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8792688 | Unsworth | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van Horn et al. | Aug 2014 | B2 |
8810779 | Hilde | Aug 2014 | B1 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822806 | Cockerell et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8897596 | Passmore et al. | Nov 2014 | B1 |
8903172 | Smith | Dec 2014 | B2 |
8908277 | Pesach et al. | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8928896 | Kennington et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | Akel et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8993974 | Goodwin | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9014441 | Truyen et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9061527 | Tobin et al. | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9066087 | Shpunt | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9076459 | Braho et al. | Jul 2015 | B2 |
9079423 | Bouverie et al. | Jul 2015 | B2 |
9080856 | Laffargue | Jul 2015 | B2 |
9082023 | Feng et al. | Jul 2015 | B2 |
9082195 | Holeva et al. | Jul 2015 | B2 |
9084032 | Rautiola et al. | Jul 2015 | B2 |
9087250 | Coyle | Jul 2015 | B2 |
9092681 | Havens et al. | Jul 2015 | B2 |
9092682 | Wilz et al. | Jul 2015 | B2 |
9092683 | Koziol et al. | Jul 2015 | B2 |
9093141 | Liu | Jul 2015 | B2 |
9098763 | Lu et al. | Aug 2015 | B2 |
9104929 | Todeschini | Aug 2015 | B2 |
9104934 | Li et al. | Aug 2015 | B2 |
9107484 | Chaney | Aug 2015 | B2 |
9111159 | Liu et al. | Aug 2015 | B2 |
9111166 | Cunningham | Aug 2015 | B2 |
9135483 | Liu et al. | Sep 2015 | B2 |
9137009 | Gardiner | Sep 2015 | B1 |
9141839 | Xian et al. | Sep 2015 | B2 |
9142035 | Rotman et al. | Sep 2015 | B1 |
9147096 | Wang | Sep 2015 | B2 |
9148474 | Skvoretz | Sep 2015 | B2 |
9158000 | Sauerwein | Oct 2015 | B2 |
9158340 | Reed et al. | Oct 2015 | B2 |
9158953 | Gillet et al. | Oct 2015 | B2 |
9159059 | Daddabbo et al. | Oct 2015 | B2 |
9165174 | Huck | Oct 2015 | B2 |
9171278 | Kong et al. | Oct 2015 | B1 |
9171543 | Emerick et al. | Oct 2015 | B2 |
9183425 | Wang | Nov 2015 | B2 |
9189669 | Zhu et al. | Nov 2015 | B2 |
9195844 | Todeschini et al. | Nov 2015 | B2 |
9202458 | Braho et al. | Dec 2015 | B2 |
9208366 | Liu | Dec 2015 | B2 |
9208367 | Wang | Dec 2015 | B2 |
9219836 | Bouverie et al. | Dec 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224024 | Bremer et al. | Dec 2015 | B2 |
9224027 | Van Horn et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9233470 | Bradski et al. | Jan 2016 | B1 |
9235553 | Fitch et al. | Jan 2016 | B2 |
9235899 | Kirmani et al. | Jan 2016 | B1 |
9239950 | Fletcher | Jan 2016 | B2 |
9245492 | Ackley et al. | Jan 2016 | B2 |
9443123 | Hejl | Jan 2016 | B2 |
9248640 | Heng | Feb 2016 | B2 |
9250652 | London et al. | Feb 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9251411 | Todeschini | Feb 2016 | B2 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9262660 | Lu et al. | Feb 2016 | B2 |
9262662 | Chen et al. | Feb 2016 | B2 |
9269036 | Bremer | Feb 2016 | B2 |
9270782 | Hala et al. | Feb 2016 | B2 |
9273846 | Rossi et al. | Mar 2016 | B1 |
9274812 | Doren et al. | Mar 2016 | B2 |
9275388 | Havens et al. | Mar 2016 | B2 |
9277668 | Feng et al. | Mar 2016 | B2 |
9280693 | Feng et al. | Mar 2016 | B2 |
9286496 | Smith | Mar 2016 | B2 |
9297900 | Jiang | Mar 2016 | B2 |
9298964 | Li et al. | Mar 2016 | B2 |
9299013 | Curlander et al. | Mar 2016 | B1 |
9301427 | Feng et al. | Mar 2016 | B2 |
9304376 | Anderson | Apr 2016 | B2 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
9313377 | Todeschini et al. | Apr 2016 | B2 |
9317037 | Byford et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342723 | Liu et al. | May 2016 | B2 |
9342724 | McCloskey | May 2016 | B2 |
9361882 | Ressler et al. | Jun 2016 | B2 |
9365381 | Colonel et al. | Jun 2016 | B2 |
9366861 | Johnson | Jun 2016 | B1 |
9373018 | Colavito et al. | Jun 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
9378403 | Wang et al. | Jun 2016 | B2 |
D760719 | Zhou et al. | Jul 2016 | S |
9360304 | Chang et al. | Jul 2016 | B2 |
9383848 | Daghigh | Jul 2016 | B2 |
9384374 | Bianconi | Jul 2016 | B2 |
9390596 | Todeschini | Jul 2016 | B1 |
9399557 | Mishra et al. | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
9411386 | Sauerwein | Aug 2016 | B2 |
9412242 | Van Horn et al. | Aug 2016 | B2 |
9418269 | Havens et al. | Aug 2016 | B2 |
9418270 | Van Volkinburg et al. | Aug 2016 | B2 |
9423318 | Lui et al. | Aug 2016 | B2 |
9424749 | Reed et al. | Aug 2016 | B1 |
D766244 | Zhou et al. | Sep 2016 | S |
9443222 | Singel et al. | Sep 2016 | B2 |
9454689 | McCloskey et al. | Sep 2016 | B2 |
9464885 | Lloyd et al. | Oct 2016 | B2 |
9465967 | Xian et al. | Oct 2016 | B2 |
9470511 | Maynard et al. | Oct 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
9478983 | Kather et al. | Oct 2016 | B2 |
D771631 | Fitch et al. | Nov 2016 | S |
9481186 | Bouverie et al. | Nov 2016 | B2 |
9486921 | Straszheim et al. | Nov 2016 | B1 |
9488986 | Solanki | Nov 2016 | B1 |
9489782 | Payne et al. | Nov 2016 | B2 |
9490540 | Davies et al. | Nov 2016 | B1 |
9491729 | Rautiola et al. | Nov 2016 | B2 |
9497092 | Gomez et al. | Nov 2016 | B2 |
9507974 | Todeschini | Nov 2016 | B1 |
9519814 | Cudzilo | Dec 2016 | B2 |
9521331 | Bessettes et al. | Dec 2016 | B2 |
9530038 | Xian et al. | Dec 2016 | B2 |
D777166 | Bidwell et al. | Jan 2017 | S |
9558386 | Yeakley | Jan 2017 | B2 |
9572901 | Todeschini | Feb 2017 | B2 |
9595038 | Cavalcanti et al. | Mar 2017 | B1 |
9606581 | Howe et al. | Mar 2017 | B1 |
D783601 | Schulte et al. | Apr 2017 | S |
D785617 | Bidwell et al. | May 2017 | S |
D785636 | Oberpriller et al. | May 2017 | S |
9646189 | Lu et al. | May 2017 | B2 |
9646191 | Unemyr et al. | May 2017 | B2 |
9652648 | Ackley et al. | May 2017 | B2 |
9652653 | Todeschini et al. | May 2017 | B2 |
9656487 | Ho et al. | May 2017 | B2 |
9659198 | Giordano et al. | May 2017 | B2 |
D790505 | Vargo et al. | Jun 2017 | S |
D790546 | Zhou et al. | Jun 2017 | S |
9680282 | Hanenburg | Jun 2017 | B2 |
9697401 | Feng et al. | Jul 2017 | B2 |
9701140 | Alaganchetty et al. | Jul 2017 | B1 |
9709387 | Fujita et al. | Jul 2017 | B2 |
9736459 | Mor et al. | Aug 2017 | B2 |
9741136 | Holz | Aug 2017 | B2 |
9779546 | Hunt et al. | Oct 2017 | B2 |
9828223 | Svensson et al. | Nov 2017 | B2 |
20010027995 | Patel et al. | Oct 2001 | A1 |
20010032879 | He et al. | Oct 2001 | A1 |
20020036765 | McCaffrey | Mar 2002 | A1 |
20020054289 | Thibault et al. | May 2002 | A1 |
20020067855 | Chiu et al. | Jun 2002 | A1 |
20020105639 | Roelke | Aug 2002 | A1 |
20020109835 | Goetz | Aug 2002 | A1 |
20020113946 | Kitaguchi et al. | Aug 2002 | A1 |
20020118874 | Chung et al. | Aug 2002 | A1 |
20020158873 | Williamson | Oct 2002 | A1 |
20020167677 | Okada et al. | Nov 2002 | A1 |
20020179708 | Zhu et al. | Dec 2002 | A1 |
20020186897 | Kim et al. | Dec 2002 | A1 |
20020196534 | Lizotte et al. | Dec 2002 | A1 |
20030038179 | Tsikos et al. | Feb 2003 | A1 |
20030053513 | Vatan et al. | Mar 2003 | A1 |
20030063086 | Baumberg | Apr 2003 | A1 |
20030078755 | Leutz et al. | Apr 2003 | A1 |
20030091227 | Chang et al. | May 2003 | A1 |
20030156756 | Gokturk et al. | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030197138 | Pease et al. | Oct 2003 | A1 |
20030225712 | Cooper et al. | Dec 2003 | A1 |
20030235331 | Kawaike et al. | Dec 2003 | A1 |
20040008259 | Gokturk et al. | Jan 2004 | A1 |
20040019274 | Galloway et al. | Jan 2004 | A1 |
20040024754 | Mane et al. | Feb 2004 | A1 |
20040066329 | Zeitfuss et al. | Apr 2004 | A1 |
20040073359 | Ichijo et al. | Apr 2004 | A1 |
20040083025 | Yamanouchi et al. | Apr 2004 | A1 |
20040089482 | Ramsden et al. | May 2004 | A1 |
20040098146 | Katae et al. | May 2004 | A1 |
20040105580 | Hager et al. | Jun 2004 | A1 |
20040118928 | Patel et al. | Jun 2004 | A1 |
20040122779 | Stickler et al. | Jun 2004 | A1 |
20040132297 | Baba et al. | Jul 2004 | A1 |
20040155975 | Hart et al. | Aug 2004 | A1 |
20040165090 | Ning | Aug 2004 | A1 |
20040184041 | Schopp | Sep 2004 | A1 |
20040211836 | Patel et al. | Oct 2004 | A1 |
20040214623 | Takahashi et al. | Oct 2004 | A1 |
20040233461 | Armstrong et al. | Nov 2004 | A1 |
20040258353 | Gluckstad et al. | Dec 2004 | A1 |
20050006477 | Patel | Jan 2005 | A1 |
20050117215 | Lange | Jun 2005 | A1 |
20050128193 | Popescu et al. | Jun 2005 | A1 |
20050128196 | Popescu et al. | Jun 2005 | A1 |
20050168488 | Montague | Aug 2005 | A1 |
20050187887 | Nicolas et al. | Aug 2005 | A1 |
20050211782 | Martin | Sep 2005 | A1 |
20050240317 | Kienzle-Lietl | Oct 2005 | A1 |
20050257748 | Kriesel et al. | Nov 2005 | A1 |
20050264867 | Cho et al. | Dec 2005 | A1 |
20060036556 | Knispel | Feb 2006 | A1 |
20060047704 | Gopalakrishnan | Mar 2006 | A1 |
20060078226 | Zhou | Apr 2006 | A1 |
20060108266 | Bowers et al. | May 2006 | A1 |
20060109105 | Varner et al. | May 2006 | A1 |
20060112023 | Horhann | May 2006 | A1 |
20060151604 | Zhu et al. | Jul 2006 | A1 |
20060159307 | Anderson et al. | Jul 2006 | A1 |
20060159344 | Shao et al. | Jul 2006 | A1 |
20060213999 | Wang et al. | Sep 2006 | A1 |
20060230640 | Chen | Oct 2006 | A1 |
20060232681 | Okada | Oct 2006 | A1 |
20060255150 | Longacre | Nov 2006 | A1 |
20060269165 | Viswanathan | Nov 2006 | A1 |
20060276709 | Khamene et al. | Dec 2006 | A1 |
20060291719 | Ikeda et al. | Dec 2006 | A1 |
20070003154 | Sun et al. | Jan 2007 | A1 |
20070025612 | Iwasaki et al. | Feb 2007 | A1 |
20070031064 | Zhao et al. | Feb 2007 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20070116357 | Dewaele | May 2007 | A1 |
20070127022 | Cohen et al. | Jun 2007 | A1 |
20070143082 | Degnan | Jun 2007 | A1 |
20070153293 | Gruhlke et al. | Jul 2007 | A1 |
20070165013 | Goulanian et al. | Jul 2007 | A1 |
20070171220 | Kriveshko | Jul 2007 | A1 |
20070177011 | Lewin et al. | Aug 2007 | A1 |
20070181685 | Zhu et al. | Aug 2007 | A1 |
20070237356 | Dwinell et al. | Oct 2007 | A1 |
20070291031 | Konev et al. | Dec 2007 | A1 |
20070299338 | Stevick et al. | Dec 2007 | A1 |
20080013793 | Hillis et al. | Jan 2008 | A1 |
20080035390 | Wurz | Feb 2008 | A1 |
20080047760 | Georgitsis | Feb 2008 | A1 |
20080050042 | Zhang et al. | Feb 2008 | A1 |
20080054062 | Gunning et al. | Mar 2008 | A1 |
20080056536 | Hildreth et al. | Mar 2008 | A1 |
20080062164 | Bassi et al. | Mar 2008 | A1 |
20080065509 | Williams | Mar 2008 | A1 |
20080077265 | Boyden | Mar 2008 | A1 |
20080079955 | Storm | Apr 2008 | A1 |
20080156619 | Patel et al. | Jul 2008 | A1 |
20080164074 | Wurz | Jul 2008 | A1 |
20080204476 | Montague | Aug 2008 | A1 |
20080212168 | Olmstead et al. | Sep 2008 | A1 |
20080247635 | Davis et al. | Oct 2008 | A1 |
20080273191 | Kim et al. | Nov 2008 | A1 |
20080273210 | Hilde | Nov 2008 | A1 |
20080278790 | Boesser et al. | Nov 2008 | A1 |
20090038182 | Lans et al. | Feb 2009 | A1 |
20090046296 | Kilpartrick et al. | Feb 2009 | A1 |
20090059004 | Bochicchio | Mar 2009 | A1 |
20090081008 | Somin et al. | Mar 2009 | A1 |
20090095047 | Patel et al. | Apr 2009 | A1 |
20090114818 | Casares et al. | May 2009 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20090161090 | Campbell et al. | Jun 2009 | A1 |
20090189858 | Lev et al. | Jul 2009 | A1 |
20090195790 | Zhu et al. | Aug 2009 | A1 |
20090225333 | Bendall et al. | Sep 2009 | A1 |
20090237411 | Gossweiler et al. | Sep 2009 | A1 |
20090268023 | Hsieh | Oct 2009 | A1 |
20090272724 | Gubler | Nov 2009 | A1 |
20090273770 | Bauhahn et al. | Nov 2009 | A1 |
20090313948 | Buckley et al. | Dec 2009 | A1 |
20090318815 | Barnes et al. | Dec 2009 | A1 |
20090323084 | Dunn et al. | Dec 2009 | A1 |
20090323121 | Valkenburg | Dec 2009 | A1 |
20100035637 | Varanasi et al. | Feb 2010 | A1 |
20100060604 | Zwart et al. | Mar 2010 | A1 |
20100091104 | Sprigle | Apr 2010 | A1 |
20100113153 | Yen et al. | May 2010 | A1 |
20100118200 | Gelman et al. | May 2010 | A1 |
20100128109 | Banks | May 2010 | A1 |
20100161170 | Sills | Jun 2010 | A1 |
20100171740 | Andersen et al. | Jul 2010 | A1 |
20100172567 | Prokoski | Jul 2010 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100194709 | Tamaki et al. | Aug 2010 | A1 |
20100202702 | Benos et al. | Aug 2010 | A1 |
20100208039 | Stettner | Aug 2010 | A1 |
20100211355 | Horst et al. | Aug 2010 | A1 |
20100217678 | Goncalves | Aug 2010 | A1 |
20100220849 | Colbert et al. | Sep 2010 | A1 |
20100220894 | Ackley et al. | Sep 2010 | A1 |
20100223276 | Al-Shameri et al. | Sep 2010 | A1 |
20100245850 | Lee et al. | Sep 2010 | A1 |
20100254611 | Amz | Oct 2010 | A1 |
20100274728 | Kugelman | Oct 2010 | A1 |
20100303336 | Abraham | Dec 2010 | A1 |
20100315413 | Izadi et al. | Dec 2010 | A1 |
20100321482 | Cleveland | Dec 2010 | A1 |
20110019155 | Daniel et al. | Jan 2011 | A1 |
20110040192 | Brenner et al. | Feb 2011 | A1 |
20110040407 | Lim | Feb 2011 | A1 |
20110043609 | Choi et al. | Feb 2011 | A1 |
20110075936 | Deaver | Mar 2011 | A1 |
20110081044 | Peeper | Apr 2011 | A1 |
20110099474 | Grossman et al. | Apr 2011 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110180695 | Li et al. | Jul 2011 | A1 |
20110188054 | Petronius et al. | Aug 2011 | A1 |
20110188741 | Sones et al. | Aug 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20110234389 | Mellin | Sep 2011 | A1 |
20110235854 | Berger et al. | Sep 2011 | A1 |
20110243432 | Hirsch et al. | Oct 2011 | A1 |
20110249864 | Venkatesan et al. | Oct 2011 | A1 |
20110254840 | Halstead | Oct 2011 | A1 |
20110260965 | Kim et al. | Oct 2011 | A1 |
20110279916 | Brown et al. | Nov 2011 | A1 |
20110286007 | Pangrazio et al. | Nov 2011 | A1 |
20110286628 | Goncalves et al. | Nov 2011 | A1 |
20110288818 | Thierman | Nov 2011 | A1 |
20110297590 | Ackley et al. | Dec 2011 | A1 |
20110301994 | Tieman | Dec 2011 | A1 |
20110303748 | Lemma et al. | Dec 2011 | A1 |
20110310227 | Konertz et al. | Dec 2011 | A1 |
20110310256 | Shishido | Dec 2011 | A1 |
20120014572 | Wong et al. | Jan 2012 | A1 |
20120024952 | Chen | Feb 2012 | A1 |
20120056982 | Katz et al. | Mar 2012 | A1 |
20120057345 | Kuchibhotla | Mar 2012 | A1 |
20120067955 | Rowe | Mar 2012 | A1 |
20120074227 | Ferren et al. | Mar 2012 | A1 |
20120081714 | Pangrazio et al. | Apr 2012 | A1 |
20120082383 | Kruglick | Apr 2012 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120113223 | Hilliges et al. | May 2012 | A1 |
20120126000 | Kunzig et al. | May 2012 | A1 |
20120140300 | Freeman | Jun 2012 | A1 |
20120168509 | Nunnink et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120179665 | Baarman et al. | Jul 2012 | A1 |
20120185094 | Rosenstein et al. | Jul 2012 | A1 |
20120190386 | Anderson | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120197464 | Wang et al. | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120218436 | Rodriguez et al. | Sep 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120224026 | Bayer et al. | Sep 2012 | A1 |
20120224060 | Gurevich et al. | Sep 2012 | A1 |
20120236212 | Itoh et al. | Sep 2012 | A1 |
20120236288 | Stanley | Sep 2012 | A1 |
20120242852 | Hayward et al. | Sep 2012 | A1 |
20120113250 | Farlotti et al. | Oct 2012 | A1 |
20120256901 | Bendall | Oct 2012 | A1 |
20120261474 | Kawashime et al. | Oct 2012 | A1 |
20120262558 | Boger et al. | Oct 2012 | A1 |
20120280908 | Rhoads et al. | Nov 2012 | A1 |
20120282905 | Owen | Nov 2012 | A1 |
20120282911 | Davis et al. | Nov 2012 | A1 |
20120284012 | Rodriguez et al. | Nov 2012 | A1 |
20120284122 | Brandis | Nov 2012 | A1 |
20120284339 | Rodriguez | Nov 2012 | A1 |
20120284593 | Rodriguez | Nov 2012 | A1 |
20120293610 | Doepke et al. | Nov 2012 | A1 |
20120293625 | Schneider et al. | Nov 2012 | A1 |
20120294478 | Publicover et al. | Nov 2012 | A1 |
20120294549 | Doepke | Nov 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120300991 | Mikio | Nov 2012 | A1 |
20120313848 | Galor et al. | Dec 2012 | A1 |
20120314030 | Datta | Dec 2012 | A1 |
20120314058 | Bendall et al. | Dec 2012 | A1 |
20120314258 | Moriya | Dec 2012 | A1 |
20120316820 | Nakazato et al. | Dec 2012 | A1 |
20130019278 | Sun et al. | Jan 2013 | A1 |
20130038881 | Pesach et al. | Feb 2013 | A1 |
20130038941 | Pesach et al. | Feb 2013 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130050426 | Sarmast et al. | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130076857 | Kurashige et al. | Mar 2013 | A1 |
20130093895 | Palmer et al. | Apr 2013 | A1 |
20130094069 | Lee et al. | Apr 2013 | A1 |
20130101158 | Lloyd et al. | Apr 2013 | A1 |
20130156267 | Muraoka et al. | Jun 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130200150 | Reynolds et al. | Aug 2013 | A1 |
20130201288 | Billerbaeck et al. | Aug 2013 | A1 |
20130208164 | Cazier et al. | Aug 2013 | A1 |
20130211790 | Loveland et al. | Aug 2013 | A1 |
20130222592 | Gieseke | Aug 2013 | A1 |
20130223673 | Davis et al. | Aug 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130291998 | Konnerth | Nov 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308013 | Li et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130317642 | Asaria | Nov 2013 | A1 |
20130326425 | Forstall et al. | Dec 2013 | A1 |
20130329012 | Bartos | Dec 2013 | A1 |
20130329013 | Metois et al. | Dec 2013 | A1 |
20130332524 | Fiala et al. | Dec 2013 | A1 |
20130342343 | Harring et al. | Dec 2013 | A1 |
20140001258 | Chan et al. | Jan 2014 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140009586 | McNamer et al. | Jan 2014 | A1 |
20140019005 | Lee et al. | Jan 2014 | A1 |
20140021259 | Moed et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140031665 | Pinto et al. | Jan 2014 | A1 |
20140034731 | Gao et al. | Feb 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140039674 | Motoyama et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140058612 | Wong et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140062709 | Hyer et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140064624 | Kim et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067104 | Osterhout | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071430 | Hansen et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140079297 | Tadayon et al. | Mar 2014 | A1 |
20140091147 | Evans et al. | Apr 2014 | A1 |
20140097238 | Ghazizadeh | Apr 2014 | A1 |
20140097252 | He et al. | Apr 2014 | A1 |
20140098091 | Hori | Apr 2014 | A1 |
20140098243 | Ghazizadeh | Apr 2014 | A1 |
20140098244 | Ghazizadeh | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104664 | Lee | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140125577 | Hoang et al. | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140135984 | Hirata | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140139654 | Taskahashi | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140142398 | Patil et al. | May 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140152975 | Ko | Jun 2014 | A1 |
20140157861 | Jonas et al. | Jun 2014 | A1 |
20140158468 | Adami | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140168380 | Heidemann et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140177931 | Kocherscheidt et al. | Jun 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140192187 | Atwell et al. | Jul 2014 | A1 |
20140192551 | Masaki | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140201126 | Zadeh et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140205150 | Ogawa | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140225918 | Mittal et al. | Aug 2014 | A1 |
20140225985 | Klusza et al. | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140240454 | Lee | Aug 2014 | A1 |
20140247279 | Nicholas et al. | Sep 2014 | A1 |
20140247280 | Nicholas et al. | Sep 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140267609 | Laffargue | Sep 2014 | A1 |
20140268093 | Tohme et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140270361 | Amma et al. | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140306833 | Ricci | Oct 2014 | A1 |
20140307855 | Withagen et al. | Oct 2014 | A1 |
20140313527 | Askan | Oct 2014 | A1 |
20140319219 | Liu et al. | Oct 2014 | A1 |
20140320408 | Zagorsek et al. | Oct 2014 | A1 |
20140320605 | Johnson | Oct 2014 | A1 |
20140333775 | Naikal et al. | Nov 2014 | A1 |
20140347533 | Ovsiannikov et al. | Nov 2014 | A1 |
20140350710 | Gopalkrishnan et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20140379613 | Nishitani et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009100 | Haneda et al. | Jan 2015 | A1 |
20150009301 | Ribnick et al. | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150016712 | Rhoads et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150036876 | Marrion et al. | Feb 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150042791 | Metois et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062160 | Sakamoto et al. | Mar 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150062369 | Gehring et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150070158 | Hayasaka | Mar 2015 | A1 |
20150070489 | Hudman et al. | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150116498 | Vartiainen et al. | Apr 2015 | A1 |
20150117749 | Chen et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150130928 | Maynard et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150163474 | You | Jun 2015 | A1 |
20150178900 | Kim et al. | Jun 2015 | A1 |
20150182844 | Jang | Jul 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204662 | Kobayashi et al. | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150213590 | Brown | Jul 2015 | A1 |
20150213647 | Laffargue et al. | Jul 2015 | A1 |
20150219748 | Hyatt | Aug 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150229838 | Hakim et al. | Aug 2015 | A1 |
20150243030 | Pfeiffer | Aug 2015 | A1 |
20150248578 | Utsumi | Sep 2015 | A1 |
20150253469 | Le Gros et al. | Sep 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150260830 | Ghosh et al. | Sep 2015 | A1 |
20150269403 | Lei et al. | Sep 2015 | A1 |
20150201181 | Herschbach | Oct 2015 | A1 |
20150276379 | Ni et al. | Oct 2015 | A1 |
20150308816 | Laffargue et al. | Oct 2015 | A1 |
20150310243 | Ackley | Oct 2015 | A1 |
20150310389 | Crimm et al. | Oct 2015 | A1 |
20150316368 | Moench et al. | Nov 2015 | A1 |
20150325036 | Lee | Nov 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20150332075 | Burch | Nov 2015 | A1 |
20150332463 | Galera et al. | Nov 2015 | A1 |
20150355470 | Herschbach | Dec 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160169665 | Deschenes et al. | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160048725 | Holz et al. | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160070982 | Li et al. | Feb 2016 | A1 |
20160062473 | Bouchat et al. | Mar 2016 | A1 |
20160063429 | Varley et al. | Mar 2016 | A1 |
20160065912 | Peterson | Mar 2016 | A1 |
20160088287 | Sadi et al. | Mar 2016 | A1 |
20160090283 | Svensson et al. | Mar 2016 | A1 |
20160090284 | Svensson et al. | Mar 2016 | A1 |
20160092805 | Geisler et al. | Mar 2016 | A1 |
20160094016 | Beach et al. | Mar 2016 | A1 |
20160101936 | Chamberlin | Apr 2016 | A1 |
20160102975 | McCloskey et al. | Apr 2016 | A1 |
20160104019 | Todeschini et al. | Apr 2016 | A1 |
20160104274 | Jovanovski et al. | Apr 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue et al. | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160117627 | Raj et al. | Apr 2016 | A1 |
20160117631 | McCloskey et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160138247 | Conway et al. | May 2016 | A1 |
20160138248 | Conway et al. | May 2016 | A1 |
20160138249 | Svensson et al. | May 2016 | A1 |
20160147408 | Bevis et al. | May 2016 | A1 |
20160164261 | Warren | Jun 2016 | A1 |
20160171597 | Todeschini | Jun 2016 | A1 |
20160171666 | McCloskey | Jun 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160171775 | Todeschini et al. | Jun 2016 | A1 |
20160171777 | Todeschini et al. | Jun 2016 | A1 |
20160174674 | Oberpriller et al. | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160178685 | Young et al. | Jun 2016 | A1 |
20160178707 | Young et al. | Jun 2016 | A1 |
20160178915 | Mor et al. | Jun 2016 | A1 |
20160179132 | Harr et al. | Jun 2016 | A1 |
20160179143 | Bidwell et al. | Jun 2016 | A1 |
20160179368 | Roeder | Jun 2016 | A1 |
20160179378 | Kent et al. | Jun 2016 | A1 |
20160180130 | Bremer | Jun 2016 | A1 |
20160180133 | Oberpriller et al. | Jun 2016 | A1 |
20160180136 | Meier et al. | Jun 2016 | A1 |
20160180594 | Todeschini | Jun 2016 | A1 |
20160180663 | McMahan et al. | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160180713 | Bernhardt et al. | Jun 2016 | A1 |
20160185136 | Ng et al. | Jun 2016 | A1 |
20160185291 | Chamberlin | Jun 2016 | A1 |
20160186926 | Oberpriller et al. | Jun 2016 | A1 |
20160187186 | Coleman et al. | Jun 2016 | A1 |
20160187187 | Coleman et al. | Jun 2016 | A1 |
20160187210 | Coleman et al. | Jun 2016 | A1 |
20160188861 | Todeschini | Jun 2016 | A1 |
20160188939 | Sailors et al. | Jun 2016 | A1 |
20160188940 | Lu et al. | Jun 2016 | A1 |
20160188941 | Todeschini et al. | Jun 2016 | A1 |
20160188942 | Good et al. | Jun 2016 | A1 |
20160188943 | Linwood | Jun 2016 | A1 |
20160188944 | Wilz et al. | Jun 2016 | A1 |
20160189076 | Mellott et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160189088 | Pecorari et al. | Jun 2016 | A1 |
20160189092 | George et al. | Jun 2016 | A1 |
20160189284 | Mellott et al. | Jun 2016 | A1 |
20160189288 | Todeschini | Jun 2016 | A1 |
20160189366 | Chamberlin et al. | Jun 2016 | A1 |
20160189443 | Smith | Jun 2016 | A1 |
20160189447 | Valenzuela | Jun 2016 | A1 |
20160189489 | Au et al. | Jun 2016 | A1 |
20160191684 | DiPiazza et al. | Jun 2016 | A1 |
20160191801 | Sivan | Jun 2016 | A1 |
20160192051 | DiPiazza et al. | Jun 2016 | A1 |
20160125873 | Braho et al. | Jul 2016 | A1 |
20160202478 | Masson et al. | Jul 2016 | A1 |
20160202951 | Pike et al. | Jul 2016 | A1 |
20160202958 | Zabel et al. | Jul 2016 | A1 |
20160202959 | Doubleday et al. | Jul 2016 | A1 |
20160203021 | Pike et al. | Jul 2016 | A1 |
20160203429 | Mellott et al. | Jul 2016 | A1 |
20160203641 | Bostick et al. | Jul 2016 | A1 |
20160203797 | Pike et al. | Jul 2016 | A1 |
20160203820 | Zabel et al. | Jul 2016 | A1 |
20160204623 | Haggert et al. | Jul 2016 | A1 |
20160204636 | Allen et al. | Jul 2016 | A1 |
20160204638 | Miraglia et al. | Jul 2016 | A1 |
20160210780 | Paulovich et al. | Jul 2016 | A1 |
20160316190 | McCloskey et al. | Jul 2016 | A1 |
20160223474 | Tang et al. | Aug 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Sewell et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160323310 | Todeschini et al. | Nov 2016 | A1 |
20160325677 | Fitch et al. | Nov 2016 | A1 |
20160327614 | Young et al. | Nov 2016 | A1 |
20160327930 | Charpentier et al. | Nov 2016 | A1 |
20160328762 | Pape | Nov 2016 | A1 |
20160328854 | Kimura | Nov 2016 | A1 |
20160330218 | Hussey et al. | Nov 2016 | A1 |
20160343163 | Venkatesha et al. | Nov 2016 | A1 |
20160343176 | Ackley | Nov 2016 | A1 |
20160364914 | Todeschini | Dec 2016 | A1 |
20160370220 | Ackley et al. | Dec 2016 | A1 |
20160372282 | Bandringa | Dec 2016 | A1 |
20160373847 | Vargo et al. | Dec 2016 | A1 |
20160377414 | Thuries et al. | Dec 2016 | A1 |
20160377417 | Jovanovski et al. | Dec 2016 | A1 |
20170010141 | Ackley | Jan 2017 | A1 |
20170010328 | Mullen et al. | Jan 2017 | A1 |
20170010780 | Waldron et al. | Jan 2017 | A1 |
20170016714 | Laffargue et al. | Jan 2017 | A1 |
20170018094 | Todeschini | Jan 2017 | A1 |
20170046603 | Lee et al. | Feb 2017 | A1 |
20170047864 | Stang et al. | Feb 2017 | A1 |
20170053146 | Liu et al. | Feb 2017 | A1 |
20170053147 | Geramine et al. | Feb 2017 | A1 |
20170053647 | Nichols et al. | Feb 2017 | A1 |
20170055606 | Xu et al. | Mar 2017 | A1 |
20170060316 | Larson | Mar 2017 | A1 |
20170061961 | Nichols et al. | Mar 2017 | A1 |
20170064634 | Van Horn et al. | Mar 2017 | A1 |
20170083730 | Feng et al. | Mar 2017 | A1 |
20170091502 | Furlong et al. | Mar 2017 | A1 |
20170091706 | Lloyd et al. | Mar 2017 | A1 |
20170091741 | Todeschini | Mar 2017 | A1 |
20170091904 | Ventress | Mar 2017 | A1 |
20170092908 | Chaney | Mar 2017 | A1 |
20170094238 | Germaine et al. | Mar 2017 | A1 |
20170098947 | Wolski | Apr 2017 | A1 |
20170100949 | Celinder et al. | Apr 2017 | A1 |
20170103545 | Holz | Apr 2017 | A1 |
20170108838 | Todeschini et al. | Apr 2017 | A1 |
20170108895 | Chamberlin et al. | Apr 2017 | A1 |
20170115490 | Hsieh et al. | Apr 2017 | A1 |
20170115497 | Chen et al. | Apr 2017 | A1 |
20170116462 | Ogasawara | Apr 2017 | A1 |
20170118355 | Wong et al. | Apr 2017 | A1 |
20170121158 | Wong | May 2017 | A1 |
20170123598 | Phan et al. | May 2017 | A1 |
20170124369 | Rueblinger et al. | May 2017 | A1 |
20170124396 | Todeschini et al. | May 2017 | A1 |
20170124687 | McCloskey et al. | May 2017 | A1 |
20170126873 | McGary et al. | May 2017 | A1 |
20170126904 | d'Armancourt et al. | May 2017 | A1 |
20170132806 | Balachandreswaran | May 2017 | A1 |
20170139012 | Smith | May 2017 | A1 |
20170139213 | Schmidtlin | May 2017 | A1 |
20170140329 | Bernhardt et al. | May 2017 | A1 |
20170140731 | Smith | May 2017 | A1 |
20170147847 | Berggren et al. | May 2017 | A1 |
20170148250 | Angermayer | May 2017 | A1 |
20170150124 | Thuries | May 2017 | A1 |
20170018294 | Hardy et al. | Jun 2017 | A1 |
20170169198 | Nichols | Jun 2017 | A1 |
20170171035 | Lu et al. | Jun 2017 | A1 |
20170171703 | Maheswaranathan | Jun 2017 | A1 |
20170171803 | Maheswaranathan | Jun 2017 | A1 |
20170180359 | Wolski et al. | Jun 2017 | A1 |
20170180577 | Nguon et al. | Jun 2017 | A1 |
20170181299 | Shi et al. | Jun 2017 | A1 |
20170190192 | Delario et al. | Jul 2017 | A1 |
20170193432 | Bernhardt | Jul 2017 | A1 |
20170193461 | Jonas et al. | Jul 2017 | A1 |
20170193727 | Van Horn et al. | Jul 2017 | A1 |
20170200108 | Au et al. | Jul 2017 | A1 |
20170200275 | McCloskey et al. | Jul 2017 | A1 |
20170200296 | Jones et al. | Jul 2017 | A1 |
20170309108 | Sadovsky et al. | Oct 2017 | A1 |
20170336870 | Everett et al. | Nov 2017 | A1 |
20180018627 | Ross | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2004212587 | Apr 2005 | AU |
201139117 | Oct 2008 | CN |
3335760 | Apr 1985 | DE |
10210813 | Oct 2003 | DE |
102007037282 | Mar 2008 | DE |
1111435 | Jun 2001 | EP |
1443312 | Aug 2004 | EP |
1112483 | May 2006 | EP |
1232480 | May 2006 | EP |
2013117 | Jan 2009 | EP |
2216634 | Aug 2010 | EP |
2286932 | Feb 2011 | EP |
2372648 | Oct 2011 | EP |
2381421 | Oct 2011 | EP |
2533009 | Dec 2012 | EP |
2562715 | Feb 2013 | EP |
2722656 | Apr 2014 | EP |
2779027 | Sep 2014 | EP |
2833323 | Feb 2015 | EP |
2843590 | Mar 2015 | EP |
2845170 | Mar 2015 | EP |
2966595 | Jan 2016 | EP |
3006893 | Mar 2016 | EP |
3012601 | Mar 2016 | EP |
3007096 | Apr 2016 | EP |
3270342 | Jan 2018 | EP |
2503978 | Jan 2014 | GB |
2525053 | Oct 2015 | GB |
2531928 | May 2016 | GB |
H04129902 | Apr 1992 | JP |
200696457 | Apr 2006 | JP |
2007084162 | Apr 2007 | JP |
2008210276 | Sep 2008 | JP |
2014210646 | Nov 2014 | JP |
2015174705 | Oct 2015 | JP |
20100020115 | Feb 2010 | KR |
20110013200 | Feb 2011 | KR |
20110117020 | Oct 2011 | KR |
20120028109 | Mar 2012 | KR |
9640452 | Dec 1996 | WO |
0077726 | Dec 2000 | WO |
0114836 | Mar 2001 | WO |
2006095110 | Sep 2006 | WO |
2007015059 | Feb 2007 | WO |
200712554 | Nov 2007 | WO |
2011017241 | Feb 2011 | WO |
2012175731 | Dec 2012 | WO |
2013021157 | Feb 2013 | WO |
2013033442 | Mar 2013 | WO |
2013163789 | Nov 2013 | WO |
2013166368 | Nov 2013 | WO |
20130184340 | Dec 2013 | WO |
2014023697 | Feb 2014 | WO |
2014102341 | Jul 2014 | WO |
2014149702 | Sep 2014 | WO |
2014151746 | Sep 2014 | WO |
2015006865 | Jan 2015 | WO |
2016020038 | Feb 2016 | WO |
2016061699 | Apr 2016 | WO |
2016061699 | Apr 2016 | WO |
2016085682 | Jun 2016 | WO |
Entry |
---|
European Extended Search Report in related EP Application No. 17201794.9, dated Mar. 16, 2018, 10 pages [Only new art cited herein]. |
European Extended Search Report in related EP Application 17205030.4, dated Mar. 22, 2018, 8 pages. |
European Exam Report in related EP Application 16172995.9, dated Mar. 15, 2018, 7 pages (Only new art cited herein). |
United Kingdom Combined Search and Examination Report dated Mar. 21, 2018, 5 pages (Art has been previously cited). |
European extended Search Report in related Application No. 17207882.6 dated Apr. 26, 2018, 10 pages. |
Ulusoy, Ali Osman et al.; “One-Shot Scanning using De Bruijn Spaced Grids”, Brown University; 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1786-1792 [Cited in EPO Search Report dated Dec. 5, 2017}. |
Extended European Search report in related EP Application No. 17189496.7 dated Dec. 5, 2017; 9 pages. |
Extended European Search report in related EP Application No. 17190323.0 dated Jan. 19, 2018; 6 pages [Only new art cited herein]. |
Examination Report in related GB Application No. GB1517843.7, dated Jan. 19, 2018, 4 pages [Only new art cited herein]. |
Examination Report in related EP Application No. 15190315, dated Jan. 26, 2018, 6 pages [Only new art cited herein]. |
United Kingdom Further Exam Report in related application GB1607394.2 dated Oct. 5, 2018; 5 pages {Only new art cited here in]. |
European Extended Search Report in related EP application 18184864.9, dated Oct. 30, 2018, 7 pages. |
United Kingdom Further Examination Report in related GB Patent Application No. 1517842.9 dated Jul. 26, 2018; 5 pages [Cited art has been previously cited in this matter]. |
United Kingdom Further Examination Report in related GB Patent Application No. 1517112.7 dated Jul. 17, 2018; 4 pages [No art cited]. |
United Kingdom Further Examination Report in related GB Patent Application No. 1620676.5 dated Jul. 17, 2018; 4 pages [No art cited]. |
Padzensky, Ron; “Augmera; Gesture Control”, Dated Apr. 18, 2015, 15 pages [Examiner Cited Art in Office Action dated Jan. 20, 2017 in related Application.]. |
Grabowski, Ralph; “New Commands in AutoCADS 2010: Part 11 Smoothing 3D Mesh Objects” Dated 2011 (per examiner who cited reference), 6 pages, [Examiner Cited Art in Office Action dated Jan. 20, 2017 in related Application.]. |
Theodoropoulos, Gabriel; “Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe, and Tap Gestures” dated Aug. 25, 2014, 34 pages, [Examiner Cited Art in Office Action dated Jan. 20, 2017 in related Application.]. |
Boavida et al., “Dam monitoring using combined terrestrial imaging systems”, 2009 Civil Engineering Survey Dec./Jan. 2009, pp. 33-38 {Cited in Notice of Allowance dated Sep. 15, 2017 in related matter}. |
Ralph Grabowski, “Smothing 3D Mesh Objects,” New Commands in AutoCAD 2010: Part 11, Examiner Cited art in related matter Non Final Office Action dated May 19, 2017; 6 pages. |
Wikipedia, “Microlens”, Downloaded from https://en.wikipedia.org/wiki/Microlens, pp. 3. {Feb. 9, 2017 Final Office Action in related matter}. |
Fukaya et al., “Characteristics of Speckle Random Pattern and Its Applications”, pp. 317-327, Nouv. Rev. Optique, t.6, n.6. (1975) {Feb. 9, 2017 Final Office Action in related matter: downloaded Mar. 2, 2017 from http://iopscience.iop.org}. |
Thorlabs, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6430, 4 pages. |
Eksma Optics, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from http://eksmaoptics.com/optical-systems/f-theta-lenses/f-theta-lens-for-1064-nm/, 2 pages. |
Sill Optics, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, http://www.silloptics.de/1/products/sill-encyclopedia/laser-optics/f-theta-lenses/, 4 pages. |
European Extended Search Report in related EP Application No. 16190017.0, dated Jan. 4, 2017, 6 pages. |
European Extended Search Report in related EP Application No. 16173429.8, dated Dec. 1, 2016, 8 pages [US 2013/0038881 cited on separate IDS filed concurrently herewith]. |
Extended European Search Report in related EP Application No. 16175410.0, dated Dec. 13, 2016, 5 pages. |
European extended search report in related EP Application 16190833.0, dated Mar. 9, 2017, 8 pages [US Publication 2014/0034731 cited on separate IDS filed concurrently herewith]. |
United Kingdom Combined Search and Examination Report in related Application No. GB1620676.5, dated Mar. 8, 2017, 6 pages [References cited on separate IDS filed concurrently herewith; WO2014/151746, WO2012/175731, US 2014/0313527, GB2503978]. |
European Exam Report in related , EP Application No. 16168216.6, dated Feb. 27, 2017, 5 pages, [cited on separate IDS filed concurrently herewith; WO2011/017241 and US 2014/0104413]. |
EP Search Report in related EP Application No. 17171844 dated Sep. 18, 2017. 4 pages [Only new art cited herein; some art has been cited on separate IDS filed concurrently herewith}. |
EP Extended Search Report in related EP Applicaton No. 17174843.7 dated Oct. 17, 2017, 5 pages {Only new art cited herein; some art has been cited on separate IDS filed concurrently herewith}. |
UK Further Exam Report in related UK Application No. GB1517842.9, dated Sep. 1, 2017, 5 pages (only new art cited herein; some art cited on separate IDS filed concurrently herewith). |
European Exam Report in related EP Application No. 15176943.7, dated Apr. 12, 2017, 6 pages [Art cited on separate IDS filed concurrently herewith]. |
European Exam Report in related EP Application No. 15188440.0, dated Apr. 21, 2017, 4 pages [Art has been cited on separate IDS filed concurrently herewith.]. |
European Examination report in related EP Application No. 14181437.6, dated Feb. 8, 2017, 5 pages [References cited on separate IDS filed concurrently herewith]. |
Chinese Notice of Reexamination in related Chinese Application 201520810313.3, dated Mar. 14, 2017, English Computer Translation provided, 7 pages [References cited on separate IDS filed concurrently herewith]. |
Extended European search report in related EP Application 16199707.7, dated Apr. 10, 2017, 15 pages. |
Ulusoy et al., One-Shot Scanning using De Bruijn Spaced Grids, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 7 pages [Cited in EP Extended search report dated Apr. 10, 2017; NPL 14]. |
European Exam Report in related EP Application No. 16152477.2, dated Jun. 20, 2017, 4 pages [References cited on separate IDS filed concurrently herewith]. |
European Exam Report in related EP Applciation 16172995.9, dated Jul. 6, 2017, 9 pages [References cited on separate IDS filed concurrently herewith]. |
United Kingdom Search Report in related Application No. GB1700338.5, dated Jun. 30, 2017, 5 pages. |
European Search Report in related EP Application No. 17175357.7, dated Aug. 17, 2017, pp. 1-7 [References cited on separate IDS filed concurrently herewith]. |
EP Search Report in related EP Application No. 17171844 dated Sep. 18, 2017. 4 pages [Only new art cited herein}. |
EP Extended Search Report in related EP Applicaton No. 17174843.7 dated Oct. 17, 2017, 5 pages {Only new art cited herein}. |
UK Further Exam Report in related UK Application No. GB1517842.9, dated Sep. 1, 2017, 5 pages (only new art cited herein). |
Office Action in counterpart European Application No. 13186043.9 dated Sep. 30, 2015, pp. 1-7. |
Lloyd et al., “System for Monitoring the Condition of Packages Throughout Transit”, U.S. Appl. No. 14/865,575, filed Sep. 25, 2015, 59 pages, not yet published. |
McCloskey et al., “Image Transformation for Indicia Reading,” U.S. Appl. No. 14/928,032, filed Oct. 30, 2015, 48 pages, not yet published. |
Great Britain Combined Search and Examination Report in related Application GB1517842.9, dated Apr. 8, 2016, 8 pages. |
Search Report in counterpart European Application No. 15182675.7, dated Dec. 4, 2015, 10 pages. |
Wikipedia, “3D projection” Downloaded on Nov. 25, 2015 from www.wikipedia.com, 4 pages. |
M.Zahid Gurbuz, Selim Akyokus, Ibrahim Emiroglu, Aysun Guran, An Efficient Algorithm for 3D Rectangular Box Packing, 2009, Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, pp. 131-134. |
European Extended Search Report in Related EP Application No. 16172995.9, dated Aug. 22, 2016, 11 pages. |
European Extended search report in related EP Application No. 15190306.9, dated Sep. 9, 2016, 15 pages. |
Collings et al., “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices”, Journal of Display Technology, IEEE Service Center, New, York, NY, US, vol. 7, No. 3, Mar. 1, 2011 (Mar. 1, 2011), pp. 112-119. |
European extended Search report in related EP Application 13785171.3, dated Sep. 19, 2016, 8 pages. |
El-Hakim et al., “Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering”, published in Optical Engineering, Society of Photo-Optical Instrumentation Engineers, vol. 32, No. 9, Sep. 1, 1993, 15 pages. |
El-Hakim et al., “A Knowledge-based Edge/Object Measurement Technique”, Retrieved from the Internet: URL: https://www.researchgate.net/profile/Sabry_E1 -Hakim/ publication/44075058_A_Knowledge_Based_EdgeObject_Measurement_Technique/links/00b4953b5faa7d3304000000.pdf [retrieved on Jul. 15, 2016] dated Jan. 1, 1993, 9 pages. |
H. Sprague Ackley, “Automatic Mode Switching in a Volume Dimensioner”, U.S. Appl. No. 15/182,636, filed Jun. 15, 2016, 53 pages, Not yet published. |
Bosch Tool Corporation, “Operating/Safety Instruction for DLR 130”, Dated Feb. 2, 2009, 36 pages. |
European Search Report for related EP Application No. 16152477.2, dated May 24, 2016, 8 pages. |
Mike Stensvold, “get the Most Out of Variable Aperture Lenses”, published on www.OutdoorPhotogrpaher.com; dated Dec. 7, 2010; 4 pages, [As noted on search report retrieved from URL: http;//www.outdoorphotographer.com/gear/lenses/get-the-most-out-ofvariable-aperture-lenses.html on Feb. 9, 2016]. |
Houle et al., “Vehical Positioning and Object Avoidance”, U.S. Appl. No. 15/007,522 [not yet published], filed Jan. 27, 2016, 59 pages. |
United Kingdom combined Search and Examination Report in related GB Application No. 1607394.2, dated Oct. 19, 2016, 7 pages. |
European Search Report from related EP Application No. 16168216.6, dated Oct. 20, 2016, 8 pages. |
Peter Clarke, Actuator Developer Claims Anti-Shake Breakthrough for Smartphone Cams, Electronic Engineering Times, p. 24, May 16, 2011. [Previously cited and copy provided in parent application]. |
Spiller, Jonathan; Object Localization Using Deformable Templates, Master's Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2007; 74 pages [Previously cited and copy provided in parent application]. |
Leotta, Matthew J.; Joseph L. Mundy; Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model; IEEE Conference on Computer Vision and Pattern Recognition, 2009; 8 pages. [Previously cited and copy provided in parent application]. |
European Search Report for application No. EP13186043 dated Feb. 26, 2014 (now EP2722656 (Apr. 23, 2014)): Total pages 7 [Previously cited and copy provided in parent application]. |
International Search Report for PCT/US2013/039438 (WO2013166368), dated Oct. 1, 2013, 7 pages [Previously cited and copy provided in parent application]. |
Lloyd, Ryan and Scott McCloskey, “Recognition of 3D Package Shapes for Singe Camera Metrology” IEEE Winter Conference on Applications of computer Visiona, IEEE, Mar. 24, 2014, pp. 99-106, {retrieved on Jun. 16, 2014}, Authors are employees of common Applicant [Previously cited and copy provided in parent application]. |
European Office Action for application EP 13186043, dated Jun. 12, 2014(now EP2722656 (Apr. 23, 2014)), Total of 6 pages [Previously cited and copy provided in parent application]. |
Zhang, Zhaoxiang; Tieniu Tan, Kaiqi Huang, Yunhong Wang; Three-Dimensional Deformable-Model-based Localization and Recognition of Road Vehicles; IEEE Transactions on Image Processing, vol. 21, No. 1, Jan. 2012, 13 pages. [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/801,023, Tyler Doomenbal et al., filed Jul. 16, 2015, not published yet, Adjusting Dimensioning Results Using Augmented Reality, 39 pages [Previously cited and copy provided in parent application]. |
Wikipedia, YUV description and definition, downloaded from http://www.wikipeida.org/wiki/YUV on Jun. 29, 2012, 10 pages [Previously cited and copy provided in parent application]. |
YUV Pixel Format, downloaded from http://www.fource.org/yuv.php on Jun. 29, 2012; 13 pages. [Previously cited and copy provided in parent application]. |
YUV to RGB Conversion, downloaded from http://www.fource.org/fccyvrgb.php on Jun. 29, 2012; 5 pages [Previously cited and copy provided in parent application]. |
Benos et al., “Semi-Automatic Dimensioning with Imager of a Portable Device,” U.S. Appl. No. 61/149,912, filed Feb. 4, 2009 (now expired), 56 pages. [Previously cited and copy provided in parent application]. |
Dimensional Weight—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensional_weight, download date Aug. 1, 2008, 2 pages. [Previously cited and copy provided in parent application]. |
Dimensioning—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensioning, download date Aug. 1, 2008, 1 page [Previously cited and copy provided in parent application]. |
European Patent Office Action for Application No. 14157971.4-1906, dated Jul. 16, 2014, 5 pages. [Previously cited and copy provided in parent application]. |
European Patent Search Report for Application No. 14157971.4-1906, dated Jun. 30, 2014, 6 pages. [Previously cited and copy provided in parent application]. |
Caulier, Yannick et al., “A New Type of Color-Coded Light Structures for an Adapted and Rapid Determination of Point Correspondences for 3D Reconstruction.” Proc. of SPIE, vol. 8082 808232-3; 2011; 8 pages [Previously cited and copy provided in parent application]. |
Kazantsev, Aleksei et al. “Robust Pseudo-Random Coded Colored STructured Light Techniques for 3D Object Model Recovery”; ROSE 2008 IEEE International Workshop on Robotic and Sensors Environments (Oct. 17-18, 2008) , 6 pages [Previously cited and copy provided in parent application]. |
Mouaddib E. et al. “Recent Progress in Structured Light in order to Solve the Correspondence Problem in Stereo Vision” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Apr. 1997; 7 pages [Previously cited and copy provided in parent application]. |
Proesmans, Marc et al. “Active Acquisition of 3D Shape for Moving Objects” 0-7803-3258-X/96 1996 IEEE; 4 pages [Previously cited and copy provided in parent application]. |
Salvi, Joaquim et al. “Pattern Codification Strategies in Structured Light Systems” published in Pattern Recognition; The Journal of the Pattern Recognition Society, Received Mar. 6, 2003; Accepted Oct. 2, 2003; 23 pages [Previously cited and copy provided in parent application]. |
EP Search and Written Opinion Report in related matter EP Application No. 14181437.6, dated Mar. 26, 2015, 7 pages. [Previously cited and copy provided in parent application]. |
Hetzel, Gunter et al.; “3D Object Recognition from Range Images using Local Feature Histograms,”, Proceedings 2OO1 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec. 8-14, 2001; pp. 394-399, XP010584149, ISBN: 978-0-7695-1272-3. [Previously cited and copy provided in parent application]. |
Second Chinese Office Action in related CN Application No. 201520810685.6, dated Mar. 22, 2016, 5 pages, no references. [Previously cited and copy provided in parent application]. |
European Search Report in related EP Application No. 15190315.0, dated Apr. 1, 2016, 7 pages [Previously cited and copy provided in parent application]. |
Second Chinese Office Action in related CN Application No. 2015220810562.2, dated Mar. 22, 2016, 5 pages. English Translation provided [No references] [Previously cited and copy provided in parent application]. |
European Search Report for related Application EP 15190249.1, dated Mar. 22, 2016, 7 pages. [Previously cited and copy provided in parent application]. |
Second Chinese Office Action in related CN Application No. 201520810313.3, dated Mar. 22, 2016, 5 pages. English Translation provided [No references]. |
U.S. Appl. No. 14/800,757 , Eric Todeschini, filed Jul. 16, 2015, not published yet, Dimensioning and Imaging Items, 80 pages [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/747,197, Serge Thuries et al., filed Jun. 23, 2015, not published yet, Optical Pattern Rojector; 33 pages [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/747,490, Brian L. Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages [Previously cited and copy provided in parent application]. |
Search Report and Opinion in related GB Application No. 1517112.7, dated Feb. 19, 2016, 6 pages [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/793,149, H. Sprague Ackley, filed Jul. 7, 2015, not published yet, Mobile Dimensioner Apparatus for Use in Commerce; 57 pages [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/740,373, H. Sprague Ackley et al., filed Jun. 16, 2015, not published yet, Calibrating a Volume Dimensioner; 63 pages [Previously cited and copy provided in parent application]. |
Intention to Grant in counterpart European Application No. 14157971.4 dated Apr. 14, 2015, pp. 1-8 [Previously cited and copy provided in parent application]. |
Decision to Grant in counterpart European Application No. 14157971.4 dated Aug. 6, 2015, pp. 1-2 [Previously cited and copy provided in parent application]. |
Leotta, Matthew, Generic, Deformable Models for 3-D Vehicle Surveillance, May 2010, Doctoral Dissertation, Brown University, Providence RI, 248 pages [Previously cited and copy provided in parent application]. |
Ward, Benjamin, Interactive 3D Reconstruction from Video, Aug. 2012, Doctoral Thesis, Univesity of Adelaide, Adelaide, South Australia, 157 pages [Previously cited and copy provided in parent application]. |
Hood, Frederick W.; William A. Hoff, Robert King, Evaluation of an Interactive Technique for Creating Site Models from Range Data, Apr. 27-May 1, 1997 Proceedings of the ANS 7th Topical Meeting on Robotics & Remote Systems, Augusta GA, 9 pages [Previously cited and copy provided in parent application]. |
Gupta, Alok; Range Image Segmentation for 3-D Objects Recognition, May 1988, Technical Reports (CIS), Paper 736, University of Pennsylvania Department of Computer and Information Science, retrieved from Http://repository.upenn.edu/cis_reports/736, Accessed May 31, 2015, 157 pages [Previously cited and copy provided in parent application]. |
Reisner-Kollmann,Irene; Anton L. Fuhrmann, Werner Purgathofer, Interactive Reconstruction of Industrial Sites Using Parametric Models, May 2010, Proceedings of the 26th Spring Conference of Computer Graphics SCCG ″10, 8 pages [Previously cited and copy provided in parent application]. |
Drummond, Tom; Roberto Cipolla, Real-Time Visual Tracking of Complex Structures, Jul. 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 7; 15 pages. [Previously cited and copy provided in parent application]. |
European Search Report for Related EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages [Previously cited and copy provided in parent application]. |
Santolaria et al. “A one-step intrinsic and extrinsic calibration method for laster line scanner operation in coordinate measuring machines”, dated Apr. 1, 2009, Measurement Science and Technology, IOP, Bristol, GB, vol. 20, No. 4; 12 pages [Previously cited and copy provided in parent application]. |
Search Report and Opinion in Related EP Application 15176943.7, dated Jan. 8, 2016, 8 pages [Previously cited and copy provided in parent application]. |
European Search Report for related EP Application No. 15188440.0, dated Mar. 8, 2016, 8 pages. [Previously cited and copy provided in parent application]. |
United Kingdom Search Report in related application GB1517842.9, dated Apr. 8, 2016, 8 pages [Previously cited and copy provided in parent application]. |
Great Britain Search Report for related Application On. GB1517843.7, dated Feb. 23, 2016; 8 pages [Previously cited and copy provided in parent application]. |
Combined Search and Examination Report in related UK Application No. GB1900752.5 dated Feb. 1, 2019, pp. 1-5. |
Examination Report in related UK Application No. GB1517842.9 dated Mar. 8, 2019, pp. 1-4. |
Examination Report in related EP Application No. 13193181.8 dated Mar. 20, 2019, pp. 1-4. |
First Office Action in related CN Application No. 201510860188.1 dated Jan. 18, 2019, pp. 1-14 [All references previously cited.]. |
Examination Report in related EP Application No. 13785171.3 dated Apr. 2, 2019, pp. 1-5. |
Lowe David G., “Filling Parameterized Three-Dimensional Models to Images”, IEEE Transaction on Pattern Analysis and Machine Intelligence, IEEE Computer Society, USA, vol. 13, No. 5, May 1, 1991, pp. 441-450. |
Combined Search and Examination Report in related UK Application No. GB1817189.2 dated Nov. 14, 2018, pp. 1-4 [Reference previously cited]. |
Examination Report in related UK Application No. GB1517842.9 dated Dec. 21, 2018, pp. 1-7 [All references previously cited.]. |
Examination Report in European Application No. 16152477.2 dated Jun. 18, 2019, pp. 1-6. |
Examination Report in European Application No. 17175357.7 dated Jun. 26, 2019, pp. 1-5. |
Examination Report in European Application No. 19171976.4 dated Jun. 19, 2019, pp. 1-8. |
Examination Report in GB Application No. 1607394.2 dated Jul. 5, 2019, pp. 1-4. |
Number | Date | Country | |
---|---|---|---|
20180018820 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13464799 | May 2012 | US |
Child | 15718593 | US |