The present invention relates generally to volumetric optically variable devices (VOVDs) and methods for making the same. More specifically, the present invention relates to VOVDs and methods for making the same that include both volumetric periodic/non-periodic structure formation and surface micromachining steps.
Conventionally, a variety of techniques for producing holograms and other optically variable devices (OVDs) have been developed. These techniques generally involve utilizing the interference of two or more beams of coherent monochromatic light at the surface of a photosensitive material where the hologram or other OVD is produced. The monochromatic light is typically produced by a laser and, depending upon the desired result, the photosensitive material is chosen to produce a surface relief, gray scale, phase, or polarization holographic pattern. An OVD or VOVD is an iridescent image that exhibits various optical effects, such as movement and/or color changes. Advantageously, VOVDs cannot be photocopied or scanned, nor can they be accurately replicated or reproduced. Thus, VOVDs are often used as security devices and anti-counterfeiting measures on money, credit cards, government-issued identification cards, and the like. VOVDs are typically created through a combination of printing and embossing, and function via diffractive optical structures. Thus, different patterns, designs, and colors are created depending upon the amount of light striking a VOVD and the angle the VOVD is viewed at. Again, holograms are a type of VOVD.
VOVDs, in general, are optical devices that diffract, refract, transmit, absorb, and/or scatter light, and whose optical properties can vary within. Examples of VOVDs include holographic films, holograms, diffraction gratings, embossed films, embossing rolls, original artwork, replicas, and the like. Optically variable media (OVM) are optical media that diffract, refract, transmit, absorb, and/or scatter light and whose optical properties can vary within. Examples of OVMs, which can be used to make VOVDs, include polymers, polymer films, multilayer films, films with inclusions, films with embossing layers, photoresist, epoxies, silicones, lacquers, cellulose triacetate, glasses, and other optical materials.
Holograms of a variety of objects and patterns have been made using a single exposure to produce the desired final result. However, due to the expense and impracticality of the large optical systems needed, the size of these holograms is typically limited to about 1 square foot in size or smaller. Larger area holograms can be produced by a step-and-repeat procedure that tiles the object or pattern across the surface of the photosensitive material. This tiling, however, introduces seams or discontinuities between the adjacent areas, which are undesirable. To solve some of these problems, dot matrix holography was developed. In dot matrix holography, a larger holographic pattern is constructed by producing a large number of small holographic dots or pixels in a regular two-dimensional array. These holographic dots are on the order of 10's to 100's of microns in size, and there can be as few as 100 dots per linear inch or many as 2,000 or more dots per linear inch (i.e. 4,000,000 or more dots per square inch).
The fundamental principle of current dot matrix holography involves the use of a laser beam, which is first split into two beams. These two beams are then recombined at the recording material to create an interference pattern in a small area (i.e. holographic dots). Changing the angle and orientation of the intersecting beams controls the period and orientation of the resultant gratings produced in the recording material. Writing many thousands of these dots with the desired properties, in a similar manner to how a dot matrix printer formerly created a printed image, produces complex dot matrix holographic designs. The system, which produces the dot matrix holograms, is typically computer controlled. In each dot, a grating is written with a desired grating period, grating depth, and/or grating orientation. In this manner, virtually any pattern can be produced. Because, each dot is controlled, the viewing angle, brightness, and/or color content of each dot can be adjusted. This allows a variety of visual effects to be produced. Brightness control, for example, allows gray scale or color images to be made. Kinetic effects can make an image appear to move or change as the hologram is tilted or the viewer shifts position. Three-dimensional effects can be made which make an image appear to come out of or be recessed into the surface of the hologram.
Current dot matrix holography, however, has numerous important limitations with respect to viewing angle, number of lines on the OVM, color, and the like that may be achieved. Thus, what are still needed in the art are devices and methods that allow more robust and flexible holograms and other OVDs to be produced, in an efficient and practical manner.
In various exemplary embodiments, the present invention provides VOVDs and methods for making the same that include both volumetric periodic/non-periodic structure formation and surface micromachining steps, such that more robust and flexible holograms and other OVDs are produced, in an efficient and practical manner.
In one exemplary embodiment, the present invention provides a method for creating an optical feature, including: providing a substrate; creating one or more volumetric periodic/non-periodic structures on the substrate; and micromachining the one or more volumetric periodic/non-periodic structures on the substrate to create the optical feature. Optionally, the substrate is a photomaterial. The one or more volumetric periodic/non-periodic structures are aligned one or more of substantially perpendicular to, substantially parallel to, and substantially at an angle to the substrate. The one or more volumetric periodic/non-periodic structures have a predetermined frequency, orientation, and playback angle. Optionally, different portions of the one or more volumetric periodic/non-periodic structures are subjected to different degrees and/or shapes of micromachining. The one or more volumetric periodic/non-periodic structures are created on the substrate by, for example, a setup using the Denisiyk technique, which includes two beams interacting with a photomaterial from the opposite side—with beam structure, orientation, and angle being variable. The micromachining of the one or more volumetric periodic/non-periodic structures is performed by laser, mechanical, and/or chemical techniques, for example.
In another exemplary embodiment, the present invention provides a method for creating an optical feature, including: providing a substrate; micromachining the substrate; and creating one or more volumetric periodic/non-periodic structures on the micromachined substrate to create the optical feature. Optionally, the substrate is a photomaterial. The one or more volumetric periodic/non-periodic structures are aligned one or more of substantially perpendicular to, substantially parallel to, and substantially at an angle to the micromachined substrate. The one or more volumetric periodic/non-periodic structures have a predetermined frequency, orientation, and playback angle. Optionally, different portions of the substrate are subjected to different degrees and/or shapes of micromachining. The one or more volumetric periodic/non-periodic structures are created on the micromachined substrate by, for example, a setup using the Denisiyk technique, which includes two beams interacting with a photomaterial from the opposite side—with beam structure, orientation, and angle being variable. The micromachining of the one or more volumetric periodic/non-periodic structures is performed by laser, mechanical, and/or chemical techniques, for example.
In a further exemplary embodiment, the present invention provides a system for creating an optical feature, including: a substrate; a first device operable for creating one or more volumetric periodic/non-periodic structures on the substrate; and a second device operable for micromachining the one or more volumetric periodic/non-periodic structures on the substrate to create the optical feature. Optionally, the substrate is a photomaterial. The first device operable for creating one or more volumetric periodic/non-periodic structures on the substrate includes, for example, a setup using the Denisiyk technique, which includes two beams interacting with a photomaterial from the opposite side—with beam structure, orientation, and angle being variable. The second device operable for micromachining the one or more volumetric periodic/non-periodic structures includes a laser, mechanical, and/or chemical setup, for example. Optionally, the first device and the second device are the same device operated in different modes.
In a still further exemplary embodiment, the present invention provides a system for creating an optical feature, including: a substrate; a first device operable for micromachining the substrate; and a second device operable for creating one or more volumetric periodic/non-periodic structures on the micromachined substrate to create the optical feature. Optionally, the substrate is a photomaterial. The second device operable for creating the one or more volumetric periodic/non-periodic structures on the micromachined substrate includes, for example, a setup using the Denisiyk technique, which includes two beams interacting with a photomaterial from the opposite side—with beam structure, orientation, and angle being variable. The first device operable for micromachining the substrate includes a laser, mechanical, and/or chemical setup, for example. Optionally, the first device and the second device are the same device operated in different modes.
The present invention is illustrated and described herein with reference to the various drawings, in which like reference numbers are used to denote like device components/method steps, as appropriate, and in which:
In various exemplary embodiments, the present invention relates to the creation of VOVDs utilizing a multi-step approach, including both volumetric periodic/non-periodic structure creation and surface micromachining. Thus, the present invention relates to a new type of VOVD structure, and a method for forming the same, based on a combination of dot matrix, volumetric holography, and laser selective micromachining concepts. The present invention introduces a method for originating a new class of VOVD micro/nanostructures by applying a two-step process—volumetric periodic/non-periodic structure recording and selective surface micromachining, both utilizing specific, controlled parameters.
Referring to
The computer 12 is a digital computer that, in terms of hardware architecture, generally includes a processor 22, input/output (I/O) interfaces 24, a network interface 26, a data store 28, and a memory 30. It will be appreciated by those of ordinary skill in the art that
The network interface 26 is used to enable the computer 12 to communicate on a network, such as the Internet, a wide area network (WAN), a local area network (LAN), and/or the like. In an exemplary embodiment, the optical VOVD creation devices 14 and 16 are communicatively coupled to the network interface 26, either directly or indirectly, via intervening equipment. A data store 28 is used to store data. The data store 28 may include any of volatile memory elements, nonvolatile memory elements, and combinations thereof. The memory 30 may include any of volatile memory elements, nonvolatile memory elements, and combinations thereof. The software in the memory 30 may include one or more software programs, each of which includes an ordered listing of executable instructions for implementing logical functions. The software in the memory 30 includes, for example, a suitable operating system (OS) 34 and one or more other programs 36. The OS 34 essentially controls the execution of other computer programs, such as the one or more other programs 36, and provides scheduling, input-output control, file and data management, memory management, and communication control and related services. The one or more programs 36 may be configured to implement the various processes, algorithms, methods, techniques, etc. described herein associated with controlling the optical VOVD creation devices 14 and 16.
The first VOVD creation device 14 is configured to create volumetric periodic/non-periodic structures on the material 18 in a specific manner or pattern, as controlled by the computer 12. The first VOVD creation device 14 includes, for example, a setup using the Denisiyk technique, which includes two beams interacting with a photomaterial from the opposite side—with beam structure, orientation, and angle being variable. The second VOVD creation device 16 is configured to micromachine the material 18 in a specific manner or pattern, as also controlled by the computer 12. The second VOVD creation device 16 includes a laser, mechanical, and/or chemical setup, for example, such as a light source, a light intensity modulation device, and a beam positioning device. In an exemplary embodiment, the first VOVD creation device 14 is configured to create the volumetric periodic/non-periodic structures, and then the second VOVD creation device 16 is configured to micromachine the volumetric periodic/non-periodic structures. In another exemplary embodiment, the second VOVD creation device 16 is configured to micromachine the material 18, and then the first VOVD creation device 14 in configured to create the volumetric periodic/non-periodic structures on the micromachined material. Micromachining can be based on a chemical reaction with or following the development of the material 18, or by mechanical or laser ablation of the surface of the material 18, for example. Note, while shown in
Referring to
The VOVD method 40 of the present invention may be utilized to create new types of VOVDs based on the selective micromachining of individual pixels, or groups of pixels, recorded by dot matrix techniques or the like, with the goal to create a blazed grating profile for sending all light to one order, for example. The VOVD method 40 of the present invention may also be utilized to create new types of VOVDs based on a dot matrix blazed structure or the like, with an ability to create sharp channel separation for multichannel images, or color switch effects with sharp color separation.
In general, the volumetric periodic/non-periodic structures are utilized to make an image and the color associated therewith. In particular, the volumetric periodic/non-periodic structures are formed over specific areas with selected individual optical characteristics such as, but not limited to, grating frequency, orientation, and playback angle. In an exemplary embodiment of the present invention, to adjust the playback angle and/pre-send different colors in the same direction, the second step 44 is applied, i.e. micromachining of the surface, with the goal of achieving a specific angle needed for color matching on an image or pattern appearance.
Referring to
In an exemplary embodiment, the first VOVD creation device 14 may include a plurality of beams for projection onto the surface of the material 18. The image or pattern or specific optical or non-optical structure is recorded into the material 18 in a pixel-by-pixel fashion. HFVGs can be recorded first, and second the pixel surface can micromachined, or the pixel surface can be micromachined first, and the volumetric periodic/non-periodic structures recorded second. Lastly, exposed and/or unexposed areas of the material 18 are removed, based upon the particular material, by developing it or by ablating it.
Referring to
Referring to
Advantageously, the volumetric periodic/non-periodic structure VOVDs and methods of the present invention may be utilized in various applications to create high-frequency VOVDs (3-4,000 l/mm, for example) with tilted pixels, with an entire image being the same color, and/or the like. Using the systems and methods described herein, micro-optical elements and colored optical elements can be created—such as lenses, prisms, mirrors, etc. of specific colors, for example. Additionally, using the systems and methods described herein, waveguides with special functions, e.g. optical frequency separation, can be created.
Although the present invention has been illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the present invention, are contemplated thereby, and are intended to be covered by the following claims.
The present patent application/patent claims the benefit of priority of co-pending U.S. Provisional Patent Application No. 61/525,894, filed on Aug. 22, 2011, and entitled “VOLUME OPTICAL VARIABLE DEVICES AND METHODS FOR MAKING,” the contents of which are incorporated in full by reference herein.
Number | Date | Country | |
---|---|---|---|
61525894 | Aug 2011 | US |