The present invention is concerned with a human machine interface for displaying the water level relative to a vehicle body. More particularly, but not exclusively, the present invention is concerned with display of the water level of a wading vehicle and providing such information to a driver of the vehicle. Aspects of the invention relate to vehicle comprising a wading information display, a method and a system.
An off-road vehicle may be defined as a road vehicle having some off road capability—such as the provision of all wheel drive. Off road vehicles are often required to travel through water to reach their intended destination. Travel through deep water (typically over about 0.3 m in depth) is known as “wading”. Known off-road vehicles are design to wade, and comprise suitably sealed closures to avoid ingress of water into the passenger compartment. The engine air intake is positioned at an elevated position (normally directly in front of and below the windscreen) to prevent water being ingested into the engine, and this intake will often dictate the maximum level of water relative to the body that the vehicle can wade through.
Prior art methods of determining if the water level is safe to wade through include referring to depth gauges, e.g. permanent graduated poles situated within the water in the case of fords and measurement of the depth by the driver using a partially submerged stick or pole.
As discussed, the maximum wading depth is determined by the position of a point on the vehicle body (e.g. the engine air intake). Because the ride height of the vehicle is often variable (due to the variable height of the suspension system) the permissible absolute depth of water which the vehicle can wade through varies depending on the selected ride height of the suspension system.
The behaviour of the water around a wading vehicle is influenced by the vehicle's speed. The driver will typically want to travel as fast as possible (to reach a destination) but high speed travel whilst wading is not advisable. Waves from the vehicle may damage surrounding structures (and lap over e.g. flood defences) and excessive speed may cause waves to lap over the vehicle itself, entering e.g. the engine air intake. Evidently the maximum speed at which the wading vehicle can travel whilst avoiding these effects depends on factors such as water depth and pitch of the ground surface, but unless the driver is highly experienced in wading there is a significant risk that the maximum speed may be exceeded for a given set of wading conditions. Very low speed wading may be indicated in urban environments to avoid damage due to the vehicle's wash.
An aim of the present invention is to at least mitigate the above mentioned problems by providing better information to the driver.
Aspects of the invention relate to vehicle comprising a wading information display, a method and a system as claimed in the appended claims.
According to an aspect of the present invention for which protection is sought there is provided a vehicle comprising means for determining a depth of water through which the vehicle is wading and a display configured to indicate the current water level.
In one embodiment the display comprises an elevation of the vehicle on which is indicated the current wading depth, typically in the form of a line or a colour wash. By “elevation” is meant an image, picture or other representation. The display may further illustrate the water level by reference to an icon on the display at the water level, for example a duck icon having the appearance of floating on the line or colour wash. In one embodiment the water level is displayed in increments which decrease as the wading depth approaches the maximum wading depth.
Wading depth can be provided to a vehicle control unit from any suitably enabled sensor, or by reference to topographical data and information about vehicle position, for example from GPS.
The decrease in increment size means that the display will provide increasingly accurate readings to the driver as the maximum level approaches. This is beneficial because the water level is far more critical as it approaches the permitted maximum. Displaying larger increments at lower depth levels prevents the display causing an unnecessary distraction with frequent non-critical updates, according to the refresh rate of the system.
The information may also be configured to advise the driver of the activation of relevant driving aids such as adjustment of ride height to a maximum, or activation of an off-road mode. It may also offer advice in message form, such as advice to check that the water exit is clear.
In an embodiment of the present invention there is provided a memory and a processor, the memory containing a program configured to run on the processor to calculate the maximum wading depth of the vehicle from the vehicle ride height, and to display the maximum wading depth on the display.
Advantageously, an accurate display of maximum wading depth can be displayed which accounts for variable height suspension. The driver can then make an informed decision on whether to enter or continue thorough water of a known depth (the depth being known from a roadside gauge, or measured by the driver or onboard vehicle systems).
The display may comprise an elevation of the vehicle on which is superimposed a line indicative of maximum wading depth. The position of the line on the vehicle may change according to a selected vehicle ride height.
In an embodiment both maximum wading depth and real time wading depth are simultaneously displayed, for example by reference to a vehicle elevation. The elevation may be front/rear and/or from the side, and driver selectable or simultaneous.
The maximum wading depth may be adjusted depending on the movement and or orientation of the vehicle. For example, when travelling forward the maximum depth may be the height of the engine intake. When travelling rearwardly at a negative inclination (e.g. down a slipway) the maximum depth may be the bottom of the tailgate glazing.
The display may for example show an elevation of the vehicle at the real time pitch or roll angle, with superimposed lines or colour washes indicative of maximum wading depth, and actual wading depth.
In one embodiment of the present invention, the memory contains a program configured to run on the processor to calculate an advised maximum wading speed of the vehicle from at least one of (i) the water level through which the vehicle is wading, (ii) the pitch of the vehicle and (iii) the angle of the terrain on which the vehicle is travelling, and to display the advised maximum wading speed on the display.
The provision of an advised maximum wading speed assists the driver in minimising any damage due to excessive speed.
The advised maximum speed may be displayed in a dedicated display area on the dashboard. Optionally, the advised maximum speed may be displayed or overlaid on the vehicle speedometer.
According to another aspect of the present invention for which protection is sought, there is provided a method of displaying current wading depth of a vehicle to a vehicle driver and comprising the steps of determining wading depth from a wading sensor, and displaying an elevation of a vehicle on which is superimposed the current wading depth.
The method may further comprise the steps of calculating the maximum wading depth of the vehicle according to the ride height thereof, and displaying on said elevation a superimposed indication of maximum wading depth.
Optionally, the method further includes the step of simultaneously displaying on said elevation an advisory speed for the vehicle, said speed being determined according to the wading depth indicated by a wading depth sensor.
In some embodiments the method includes the step of adjusting said advisory speed according to the inclination of the vehicle indicated by an inclination sensor thereof.
According to still another aspect of the present invention for which protection is sought, there is provided a wading vehicle system comprising a wading information display comprising an elevation of a vehicle and a wading depth indicator, said display showing the current water level on said elevation.
According to a further aspect of the present invention for which protection is sought, there is provided a computer program stored on a memory device for execution on a processor, the program comprising: determining the current wading depth of a vehicle from data provided by means of a wading sensor; and displaying an elevation of the vehicle on which is superimposed the current wading depth.
Within the scope of this application it is envisaged that the various aspects, embodiments, examples, features and alternatives set out in the preceding paragraphs, in the claims and/or in the following description and drawings may be taken independently or in any combination thereof. For example, features described in connection with one embodiment are applicable to all embodiments unless there is incompatibility of features.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying Figures in which:
Referring to
The wheels 104, 106 can move relative to the body 102 to define a ride height R between the lowermost point of the tyres (where they contact the ground) and the lowermost point on the body. The ride height R varies with suspension travel and may be varied by the driver (for example to move from an on-road mode when R is small to an off-road mode when R is large).
The body 102 comprises a windscreen 108 and a bonnet (or hood) 110 covering an engine bay. On the body 102 between the windscreen 108 and the bonnet 110 there is defined and engine intake orifice 112. The orifice 112 is connected to an air filter and intake manifold of the engine (not shown). The intake orifice 112 is positioned at a height H from the lowermost part of the body 102.
The vehicle 100 is shown wading through water 120 at a water depth D from a ground level 130. The water depth D should be distinguished from the water level represented by L which is the level of the water 120 above the lowermost point on the body 102.
It will be noted that although D can be measured (by a roadside gauge or a measuring stick); the distance L is generally unknown (as R can vary).
Turning to
The vehicle 100 comprises an onboard ride height sensor (not shown) of known type. Turning to
In an alternative embodiment there is provided a display 1500 as illustrated in
Turning to
Turning to
Referring to
The display 2008 is a speedometer displayed on a vehicle multi-function display. A wading indicator 2010 is provided which is illuminated if a wading event is detected. A safe speed range indicator 2012 is also illuminated which highlights a range of speeds (typically 0 to Smax) at which it is safe to travel without causing damage to surrounding objects or the vehicle 100 itself. In
Four different terrain response icons 35 are shown below the vehicle representation; the mode which is engaged (left most) being illuminated.
The present application claims priority to UK patent application numbers filed by the present applicant on 15 Dec. 2010 having the application numbers GB1021268.6, GB1021278.5, GB1021272.8, GB1021297.5, GB1021295.9 and GB1027296.7, the contents of each of which are expressly incorporated by reference in their entirety.
The present application is related to the PCT applications, filed concurrently with the present application, and naming at least one inventor in common with the present application, which are listed below:
1. PCT application No. PCT/EP2011/072998 to Thuy-Yung TRAN and Edward HOARE filed 15 Dec. 2011, entitled “Ultrasonic Wading Detection System for a Vehicle”;
2. PCT application No. PCT/EP2011/072999 to Thuy-Yung TRAN and Edward HOARE, filed 15 Dec. 2011, entitled “Wading Detection System for a Vehicle”;
3. PCT application No. PCT/EP2011/072986 to Thuy-Yung TRAN, Edward HOARE and Nigel CLARKE, filed 15 Dec. 2011, entitled “Vehicle Control System”;
4. PCT application No. PCT/EP2011/072997 to Thuy-Yung TRAN, Edward HOARE and Nigel CLARKE, filed 15 Dec. 2011, entitled “Wading Depth Estimation For A Vehicle”;
5. PCT application No. PCT/EP2011/072988 to “Thuy-Yung TRAN, Edward HOARE and Nigel CLARKE”, filed 15 Dec. 2011, entitled “Wading Vehicle Depth Measurement Apparatus”;
6. PCT application No. PCT/EP2011/072990 to Thuy-Yung TRAN, Edward HOARE and Nigel CLARKE, filed 15 Dec. 2011, entitled “Vehicle Orientation Device and Method”;
7. PCT application No. PCT/EP2011/072991 to Thuy-Yung TRAN, Edward HOARE and Nigel CLARKE, filed 15 Dec. 2011, entitled “Wading Vehicle Depth Measurement Apparatus”;
8. PCT application No. PCT/EP2011/072992 to Thuy-Yung TRAN, Edward HOARE, Anthony JONES, Simon THOMSON and Ashutosh TOMAR, filed 15 Dec. 2011, entitled “Wading Vehicle Water Level Display”;
9. PCT application No. PCT/EP2011/072996 to Thuy-Yung TRAN, Edward HOARE, Anthony JONES, Simon THOMSON and Ashutosh TOMAR, filed 15 Dec. 2011, entitled “Wading Vehicle Advisory Speed Display”.
The contents of the above referenced PCT applications (and corresponding UK applications, filed concurrently and having the same ownership, inventorship and Title as the above listed PCT applications) are hereby expressly incorporated by reference in their entirety into the present application.
Number | Date | Country | Kind |
---|---|---|---|
1021268.6 | Dec 2010 | GB | national |
1021272.8 | Dec 2010 | GB | national |
1021278.5 | Dec 2010 | GB | national |
1021295.9 | Dec 2010 | GB | national |
1021296.7 | Dec 2010 | GB | national |
1021297.5 | Dec 2010 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/072994 | 12/15/2011 | WO | 00 | 5/27/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/080435 | 6/21/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3392694 | Appleton | Jul 1968 | A |
4107994 | Sogo | Aug 1978 | A |
4144517 | Baumoel | Mar 1979 | A |
5173692 | Shapiro et al. | Dec 1992 | A |
5521594 | Fukushima | May 1996 | A |
5978736 | Greendale | Nov 1999 | A |
6430985 | Drees | Aug 2002 | B1 |
6650244 | Chen | Nov 2003 | B1 |
8473173 | Robles | Jun 2013 | B1 |
9026310 | Tran et al. | May 2015 | B2 |
20030005765 | Brudis et al. | Jan 2003 | A1 |
20050170710 | Darby et al. | Aug 2005 | A1 |
20050284218 | Lagergren | Dec 2005 | A1 |
20060113129 | Tabata | Jun 2006 | A1 |
20070007056 | Bowers et al. | Jan 2007 | A1 |
20070167092 | Rees et al. | Jul 2007 | A1 |
20070221430 | Allison, Sr. | Sep 2007 | A1 |
20070244606 | Zhang et al. | Oct 2007 | A1 |
20080030313 | Obradovich | Feb 2008 | A1 |
20080251000 | Blakesley | Oct 2008 | A1 |
20080319618 | Sjogren et al. | Dec 2008 | A1 |
20090030581 | Pollklas et al. | Jan 2009 | A1 |
20090150035 | Soliman et al. | Jun 2009 | A1 |
20090159020 | Hall | Jun 2009 | A1 |
20100057324 | Glugla et al. | Mar 2010 | A1 |
20100085198 | Boss | Apr 2010 | A1 |
20100101226 | Shutty et al. | Apr 2010 | A1 |
20100112387 | Nagasawa | May 2010 | A1 |
20100328055 | Fong | Dec 2010 | A1 |
20120232719 | Salmon | Sep 2012 | A1 |
20130307679 | Tran et al. | Nov 2013 | A1 |
20130336090 | Tran et al. | Dec 2013 | A1 |
20140085066 | Tran et al. | Mar 2014 | A1 |
20140156126 | Tran et al. | Jun 2014 | A1 |
20140184247 | Tran et al. | Jul 2014 | A1 |
20140288793 | Tran et al. | Sep 2014 | A1 |
20140293746 | Tran et al. | Oct 2014 | A1 |
20150033846 | Tran et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
19941126 | Apr 2001 | DE |
102004028157 | Jan 2006 | DE |
102005038345 | Feb 2007 | DE |
102008042016 | Mar 2010 | DE |
2622639 | May 1989 | FR |
2356602 | May 2001 | GB |
2376929 | Dec 2002 | GB |
20110109614 | Oct 2011 | KR |
20110109618 | Oct 2011 | KR |
1011780 | Oct 2000 | NL |
2168419 | Jun 2001 | RU |
03002378 | Jan 2003 | WO |
2009013606 | Jan 2009 | WO |
Entry |
---|
International Search Report for PCT/EP2011/072994 dated May 29, 2012, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20140347178 A1 | Nov 2014 | US |