The present invention relates to hermetic sealing of an implantable medical device, and particularly to a wafer level hermetic seal for an implantable medical device that employs a microelectromechanical system (MEMS).
Implantable medical devices (IMDs) employ internal electronic circuitry that is hermetically sealed in a biostable package. This internal electronic circuitry is typically implemented as one or more integrated circuits (ICs). More recently, the prospect of implementing switching circuitry as a MEMS system has been considered, as discussed in U.S. application Ser. No. 10/973,117 filed Oct. 26, 2004 for “MEMS Switching Circuit and Method for an Implantable Medical Device” by R. Receveur et al., which is hereby incorporated by reference. However, a MEMS is more difficult to employ in an implantable medical device than a system that employs only ICs, at least in part because of the more stringent packaging requirements to provide a particular environment around the MEMS. In addition, a MEMS package may need to redistribute electrical signals, provide mechanical support, handle power and provide thermal management functions. These considerations present challenges in designing an effective and efficiently manufacturable sealed MEMS package for an IMD.
Accordingly, there is a need in the art for an improved packaging solution for MEMS devices employed in implantable medical devices.
The present invention provides a hermetically sealed MEMS package and a method of forming that package. The MEMS package includes a MEMS switch having a movable portion and a stationary portion with an electrical contact thereon. A glass lid is anodically bonded to the MEMS switch to form a sealed cavity over the movable portion of the MEMS switch. The glass lid includes a contact aperture to allow access to the electrical contact on the stationary portion of the MEMS switch.
MEMS switch 16 is illustrated schematically in
MEMS switch 16 is housed in cavity 30 that includes a controlled, preserved interior atmosphere where movable parts 18 are free to move. This atmosphere is provided by glass lid 26, which forms hermetically sealed cavity 30 around MEMS switch 16. Glass lid 26 has standoff portions 32 around movable parts 18 of MEMS switch 16 and a recessed area above movable parts 18 of MEMS switch 16, so that free movement within the resulting cavity 30 inside of glass lid 26 is possible. In addition, glass lid 26 is formed with contact aperture 28, which allows electrical contact-to-contact metallization 24 on stationary part 20 of MEMS switch 16.
In one embodiment, glass lid 26 is secured to the silicon structure of MEMS switch 16 by anodic (i.e., electrostatic) bonding. A covalent bond is formed between the surface atoms of glass lid 26 and the silicon of MEMS switch 16 when both structures are pressed together under application of a voltage at an elevated temperature, creating a hermetic seal between the structures. In a typical embodiment, glass lid 26 is composed of a material that has a thermal coefficient of expansion (TCE) similar to that of silicon, such as Pyrex or a similar material. The silicon material of MEMS switch 16 may be composed of a fine grain polysilicon layer, a silicon-on-insulator (SOI) layer, or another semiconductive material known in the art.
An example of an anodic bonding process for securing glass lid 26 to the silicon material of MEMS switch 16 is performed at a temperature in the range of 300-450° C. at a voltage in the range of 200-2000 Volts. The bond width is typically at least 250 micro-meters (μm), and the processing time is typically about 10-20 minutes. A bond strength of greater than 20 mega-Pascals (Mpa) can be achieved by anodically bonding glass lid 26 to the silicon material of MEMS switch 16, which provides an excellent hermetic seal suitable for use in an implantable medical device.
An example of a process of fabricating MEMS packaging 10 will now be described. MEMS switch 16 is fabricated on SOI layer 12, supported by silicon dioxide features 14, in a manner generally known in the art. After MEMS switch 16 has been formed, a shadow mask technique is used to selectively deposit contact metallization layer 24 and switch metallization layers 22 and 23 while keeping the areas where glass lid 26 is to contact MEMS switch 16 clean, for subsequent anodic bonding. To form the shadow mask, a silicon wafer is etched (such as by potassium hydroxide (KOH) etching) with through holes for formation of metallization regions. The silicon wafer is temporarily attached to portions of the SOI layer forming MEMS switch 16, such as by wax, and is aligned so that the through holes are located in the areas where contact metallization layer 24 and switch metallization layers 22 and 23 are to be formed. Next, a metal deposition step is performed, with a metallization material such as Titanium-Ruthenium (where Titanium is the adhesion layer for the Ruthenium) being deposited through the through holes of the silicon wafer to form contact metallization layer 24 and switch metallization layers 22 and 23. Finally, the silicon wafer that forms the shadow mask is detached from MEMS switch 16, such as by heating the wax that attaches the two structures, leaving contact metallization layer 24 and switch metallization layers 22 and 23 formed on MEMS switch 16. This stage of the process is illustrated in
Next, glass lid 26 is pre-etched and aligned in the proper position with respect to MEMS switch 16, for anodic bonding. In an example of the process, glass lid 26 is pressed toward MEMS switch 16 with 250 kilo-grams (kg) of pressure, at a temperature of 365° C. and with application of a voltage of 230 V. In consideration of these parameters, MEMS switch 16 is designed to have an actuation voltage (that is, the voltage applied in order to close the switch) that is not significantly lower than the anodic bonding voltage (which is 230 V in this example). For example, the actuation voltage may be within 100 V of the anodic bonding voltage. One way to achieve this relatively high actuation voltage is to design the number of comb fingers and the size of the springs of MEMS switch 16 in such a manner that MEMS switch 16 has a stiffness that requires a relatively high voltage (such as about 150 V, for example) to actuate. This design is different than many typical existing MEMS switch designs, which are actuated by a voltage in the range of 10-20 V. In addition, MEMS switch 16 (and specifically contact metallization layer 24 and switch metallization layer 22 and 23) is designed so that the anodic bonding temperature (in this example, 365° C.) does not have a negative effect on the metallization. For example, Titanium-Ruthenium metallization layers may be used, as this material remains a good electrical contact material with low electrical resistance at high temperatures such as a 365° C. anodic bonding temperature.
In a typical process, a plurality of MEMS switches 16 and glass lids 26 are formed simultaneously on a wafer. Thus, once each glass lid 26 is bonded to each MEMS switch 16, the wafer is diced into individual hermetically sealed switches. As a result, it is relatively simple to manufacture high quantities of hermetically sealed MEMS packaging 10.
Hermetically sealed MEMS packaging 10, fabricated in the manner described in the examples above, was tested to confirm that the bond strength and hermeticity was acceptable for use in an implantable medical device. Using MIL-STD-883 standard test methods, a shear strength of 114 Newtons±26 Newtons and a Helium leak rate of better than 2×10−8 cubic centimeters per second were measured in 31 of 37 samples tested. 16 of the 31 samples were then subjected to thermal stress tests (thermal cycling), and 14 samples survived. The other 15 samples were subjected to mechanical stress tests (shock and vibration), and 13 samples survived. Thus, MEMS packaging samples were obtained that provide excellent bond strength, hermeticity, thermal stress resistance and mechanical stress resistance, at a rate of greater than 70% yield. These results confirm that MEMS packaging 10 is acceptable for use in implantable medical devices. It is expected that further refinement of the quality of the process and material conditions employed could result in further improvement of the yield rate as well.
The present invention provides a hermetically sealed MEMS package suitable for use in an implantable medical device, for example. A glass lid is anodically bonded to a MEMS switch, forming a sealed interior cavity for free movement of the MEMS switch. A contact aperture is provided in the glass lid to allow electrical contact to a metallization layer that is formed on a stationary portion of the MEMS switch. This design provides excellent mechanical stability and hermeticity, and is efficient to manufacture, with all aspects fabricated at the wafer level.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4291293 | Yamada et al. | Sep 1981 | A |
5638946 | Zavracky | Jun 1997 | A |
5866469 | Hays | Feb 1999 | A |
5993414 | Haller | Nov 1999 | A |
6194678 | Yoshikawa et al. | Feb 2001 | B1 |
6391742 | Kawai | May 2002 | B2 |
6465854 | Muenzel et al. | Oct 2002 | B1 |
6486425 | Seki | Nov 2002 | B2 |
6489670 | Peterson et al. | Dec 2002 | B1 |
6559530 | Hinzel et al. | May 2003 | B2 |
6603238 | Sakata et al. | Aug 2003 | B2 |
6621135 | Sridhar et al. | Sep 2003 | B1 |
6633079 | Cheever et al. | Oct 2003 | B2 |
6660564 | Brady | Dec 2003 | B2 |
6762072 | Lutz | Jul 2004 | B2 |
6804552 | Thompson et al. | Oct 2004 | B2 |
6828640 | Delapierre | Dec 2004 | B2 |
6841861 | Brady | Jan 2005 | B2 |
6872319 | Tsai | Mar 2005 | B2 |
6930367 | Lutz et al. | Aug 2005 | B2 |
7098117 | Najafi et al. | Aug 2006 | B2 |
7153718 | Fischer et al. | Dec 2006 | B2 |
20020164111 | Mirza | Nov 2002 | A1 |
20020164833 | Cho et al. | Nov 2002 | A1 |
20020190267 | Robertson | Dec 2002 | A1 |
20030073292 | Bartlett et al. | Apr 2003 | A1 |
20030143775 | Brady | Jul 2003 | A1 |
20030160021 | Platt et al. | Aug 2003 | A1 |
20030183920 | Goodrich et al. | Oct 2003 | A1 |
20030233133 | Greenberg et al. | Dec 2003 | A1 |
20040077117 | Ding et al. | Apr 2004 | A1 |
20040155290 | Mech et al. | Aug 2004 | A1 |
20040180464 | Horning et al. | Sep 2004 | A1 |
20040188821 | Chen et al. | Sep 2004 | A1 |
20040216988 | Receveur et al. | Nov 2004 | A1 |
20040259325 | Gan | Dec 2004 | A1 |
20050139967 | Eskridge et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
1167979 | Jan 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20060192272 A1 | Aug 2006 | US |