This invention relates to electrically powered devices, and, more particularly, to electrically powered devices with the potential to cause injury after electrical power has been disconnected from the device.
A variety of electrically powered heating devices are in existence to provide a wide variety of functions. For example, electric stoves, frying pans and clothes irons are commonly used in homes. Soldering irons, temperature test chambers, and temperature calibration devices are commonly used in industry.
It is sometimes difficult to determine if an electrically heated surface is hot enough to cause injury. This is particularly true after the heated surface is no longer being heated. Such surfaces can remain very hot for a considerable period after heating power has been terminated. A variety of techniques have been developed to address this problem. One approach is to coat the heated surface with a material that changes color with temperature. While this is feasible in some cases, heated surfaces can sometimes be too large to make this approach practical. Also, temperature indicating materials cannot provide an indication of whether a heated surface that can be touched but not seen is too hot to touch. For example, this approach cannot provide an indication whether a heated surface inside a device is too hot to touch before one begins to disassemble the device.
Another approach to providing an indication that an electrically heated surface is too hot to touch is to use an electrical temperature sensor coupled to a warning light or the like. For example, electric stoves having a glass cooktop commonly include a warning light that is readily visible when the temperature of the cooktop is too hot to touch. This high temperature warning system can be very useful since, it is not readily apparent that the cooktop is at a high temperature after the underlying burner is no longer receiving electrical power. Furthermore, a temperature sensor and indicator can provide a warning that an internal surface, such as a cooking oven, is too hot. Also, this approach works well regardless of the temperature to which the surface was heated or the amount of time required for the surface to cool sufficiently that it is safe to touch. Unfortunately, the use of a temperature sensor and indicator is only practical if, after the surface is no longer being heated, electrical power continues to be applied to the device since the operation of the temperature sensor and indicator requires a continued supply of electrical power.
One class of electrically heated devices that presents a particular challenge to providing an indication of dangerous temperatures are temperature calibration devices or “dry well” calibrators which are used in calibrating temperature probes and sensors. Conventional dry well calibrators include removable inserts having bores therein that receive the temperature probes that are to be calibrated. These inserts are often changed with inserts of varying hole sizes to accommodate different temperature probe diameters. Heating elements thermally coupled to the insert heat the probes to a temperature that is set by a user. The insert and surfaces surrounding its opening as well as internal components of these dry well calibrators can become very hot while calibrating temperature probes at high temperatures. When a user is done with a probe calibration he might unplug the drywell calibrator from it's AC power source and leave it unattended while the calibrator is still very hot. A second user may remove the hot insert to set up the calibrator for another test, thereby causing an injury if touched. Unfortunately, if a dry well calibrator is disconnected from external power before the next user changes the insert for a different size, there is no warning to him of an unsafe temperature condition.
The above-described techniques for warning of excessive temperatures do not lend themselves well to warning of excessive temperatures of the internal components of dry well calibrators. The use of a temperature indication material is impractical because of the large amount of surface area that can be at a high temperature. Also, it would not be possible to see the temperature indicating material until the internal component or outer case was removed from the dry well calibrator, thereby potentially exposing the heated surfaces to inadvertent contact.
The other approach described above, i.e., using a temperature sensor and indicating light, would provide an indication that some internal surfaces are too hot to touch, but it would provide this indication only while the dry well calibrator was plugged into an AC power receptacle. Unfortunately, because of the relatively light weight and small size of conventional dry well calibrators, they are frequently unplugged and moved to different locations. For example, a dry well calibrator may be unplugged and moved from a calibration facility to a repair facility. Therefore, as a practical matter, the use of a temperature sensor and indicating lamp is not likely to be effective in providing adequate high temperature warnings.
Accidental burn injuries may also occur with other types of devices that are electrically heated by external power that may be disconnected from the devices. For example, clothes irons, curling irons, soldering irons and other similar devices can be inadvertently touched by users after they have been unplugged yet while they are still sufficiently hot to cause injury.
Similar safety problems can also exist with other types of electrically powered devices that can cause injury after power has been disconnected from the device. For example, hydraulic devices may include a pressure pump that raises the pressure of hydraulic fluid to a very high level. After power has been disconnected from the hydraulic device, the high pressure of the hydraulic fluid may remain present in the device. However, the presence of the high pressure may not be apparent, and injury may result if the pressure is inadvertently released.
There is therefore a need for a system and method that can provide an externally visible indication of dangerous internal temperatures and other unsafe conditions in electrically powered devices such as dry well calibrators even after external power has been removed from such devices.
A warning system and method for an electrical device powered by external electric power can warn of an unsafe condition even after the electrical device has been disconnected from the external electrical power source. A capacitor or other energy storage device within the electrical device stores electrical energy from the external electrical power. As a result, the energy storage device can provide electrical power after the electrical device has been disconnected from the external electrical power. A property that may result in the unsafe condition is monitored by a sensor and used to set a rate at which the stored electrical energy is depleted from the energy storage device. The electrical energy stored in the energy storage device is used to supply power to a warning device. The warning device therefore provides warning of the unsafe condition until the stored electrical energy has been depleted below a predetermined level. The energy storage device is therefore used as both a source of electrical power and a timing element to set the duration of the warning based on the nature of the sensed property when power was removed from the electrical device.
Embodiments of the present invention are directed to systems for warning of unsafe conditions in electrically powered devices that can cause injury after the devices have been disconnected from the electrical power. Certain details are set forth below to provide a sufficient understanding of the invention. However, it will be clear to one skilled in the art that the invention may be practiced without these particular details. In other instances, well-known circuits, control signals, and timing protocols have not been shown in detail in order to avoid unnecessarily obscuring the invention.
The internal components of a dry well calibrator heating block assembly 10 according to one example of the invention are shown in
The insert 14 fits into a cylindrical bore 18 formed in a heated block 20 of a suitable material, such as a metal with good thermal conduction properties. The block 20 has a configuration that is rectangular in both vertical and horizontal cross-section, although, of course, it may also have a square, round or other configuration. The inside diameter of the bore 18 is only slightly larger than the outside diameter of the insert 14 to ensure good heat conduction from the block 20 to the insert 14.
With further reference to
With reference also to
As best shown in
In operation, the keypad 90 (
One embodiment of a system 100 for controlling the operation of the temperature calibration device 10 shown in
In normal operation, the user enters commands through the keypad 90, thereby causing the controller 110 to apply the temperature control voltage VTC to the heating elements 30, 32, 36, 38 through the driver 114. During these keypad entries, the controller 110 can apply the appropriate signals to the display 94 to assist the user in operating the control system 100. The temperature of the block 20 will then increase or decrease depending on the polarity of the temperature control voltage VTC. As the block 20 is heated, the temperature of the block 20 is monitored by the temperature sensor 104 to provide feedback to the controller 110. The controller 110 can then regulate the temperature control voltage VTC to ensure that the temperature of the block 20 reaches the temperature set by the user using the keypad 90. The control system 100 may also be capable of controlling the rate that the temperature of the block 20 increases or decreases to the set temperature as well as the rate that the temperature of the block 20 returns to an ambient temperature.
After the temperature calibration device 10 has been used to calibrate a temperature probe P (
The warning system 102 includes a large capacitor 130 receiving the supply voltage V+ from the power supply 120 through a diode 134. When the power supply 120 is disconnected from AC power, the diode 134 isolates the capacitor 130 from the power supply 120. However, the capacitor 130 continues to supply a voltage VCAP for a period that is determined by the capacitance of the capacitor 130 and the rate at which current is drawn from the capacitor 130.
The voltage VCAP from the capacitor 130 is applied to a switch 140 that is controlled by the controller 110. The controller 110 causes the switch 140 to couple the voltage VCAP to one of four resistors 142, 144, 146, 148. The resistance of the four resistors 142-148 are different from each other so that the capacitor 130 is discharged at different rates depending upon which resistor 142-148 is coupled to the capacitor 130 after the power supply 120 is no longer receiving AC power. The switch 140 is powered by the voltage VCAP so that it continues to couple the capacitor 130 to one of the resistors 142-148 after AC power has been removed from the power supply 120.
In operation, the discharge rate of the capacitor 130 is determined by the controller 110 during the operation of the system 100 when power is still being applied to the power supply 120. The discharge rate is set by the controller 110 as a function of the current temperature of the block 20. If the block 20 is very hot, the controller 110 may cause the switch 140 to couple the capacitor 130 to the resistor 148 having the highest resistance, thereby minimizing the discharge rate of the capacitor 130. If the temperature of the block 20 is below a predetermined temperature, the controller 110 may cause the switch 140 to couple the capacitor 130 to the resistor 142 having the lowest resistance, thereby maximizing the discharge rate of the capacitor 130. Intermediate temperatures of the block 20 cause the switch 140 to couple the capacitor 130 to one of the other resistors 144, 146.
The high temperature warning system 102 also includes an oscillator powered by the voltage VCAP from the capacitor 130. When the oscillator 150 is enabled by a low enables signal from the controller 110, it periodically drives a cathode of a light-emitting diode 160 low. The anode of the light-emitting diode also receives the voltage VCAP from the capacitor 130. Therefore, during normal operation of the system 100 when the oscillator 150 is enabled by the controller 110, the light-emitting diode 160 periodically emits light to warn a user that the block 20 and other internal components are too hot to touch. As shown in
When the power supply 120 is disconnected from the source of AC power, the controller 110 no longer receives the supply voltage V+ so that the controller 100 applies a low enables signal to the oscillator 150. Insofar as the oscillator 150 is still powered by the voltage VCAP from the capacitor 130, the oscillator 150 continues to periodically drive a cathode of the light-emitting diode 160 low. Also, since the anode of the light-emitting diode 160 is powered by the voltage VCAP from the capacitor 130, the light-emitting diode 160 continues to periodically emit light. The light-emitting diode 160 continues to periodically emit light as long as the voltage VCAP from the capacitor 130 is above a predetermined voltage. The duration of this period is, in turn, determined by the discharge rate of the capacitor 130. As explained above, the discharge rate is determined by the temperature of the block 20 when AC power was removed from the power supply 120. Therefore, the duration of the period during which the light-emitting diode 150 periodically emits light is determined by the temperature of the block 20 when the system 100 is disconnected from AC power. If the block 20 is very hot when AC power is removed from the system 100, the light-emitting diode 160 will continue to blink for a long period commensurate with the time required for the block 20 to cool to a sufficiently low temperature. If the temperature of the block 20 is below a predetermined temperature value when AC power is removed, the light-emitting diode 160 will blink for a much shorter period of time commensurate with the time required for the block 20 to cool to a sufficiently low temperature. Intermediate temperatures of the block 20 cause the light-emitting diode 160 to blink for periods of intermediate durations. Therefore, the capacitor 130 is used not only as an energy storage device to apply power to the light-emitting diode 160 when AC power has been removed from the system 100, but it is also used as a timing element to control the duration during which the light-emitting diode 160 is periodically illuminated.
While the warning system 102 according to the present invention has been described in the context of a system for warning of a high temperature in a specific temperature calibration device, it can be used to warn of other unsafe temperature conditions in other devices. The warning system 102 can also be used to provide a high temperature warning in devices such as soldering irons, clothes irons, curling irons, electric fry pans and other similar devices. The warning system can also be used to provide warnings of unsafe conditions other than high temperature. In such case, the temperature sensor 104 (
Although the present invention has been described with reference to the disclosed embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For example, although the warning provided by the system described herein is a visual warning provided by the light-emitting diode 160, it will be understood that a different type of warning may be provided, such as an audible warning. Further, although the capacitor 130 is used to store energy from the externally applied AC power, it will be understood that other types of energy storage devices may be used in place of the capacitor 130. Such modifications are well within the skill of those ordinarily skilled in the art. Accordingly, the invention is not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4985695 | Wilkinson et al. | Jan 1991 | A |
6399919 | Wu | Jun 2002 | B1 |
6548785 | Rius et al. | Apr 2003 | B1 |
7220015 | Dowling | May 2007 | B2 |
20060002218 | Jain | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070290871 A1 | Dec 2007 | US |