The embodiments herein relate generally to water diversion valves used in plumbing systems.
As fresh water resources become scarce and water demands continue to increase around the world, alternative water sources that previously were considered unusable are being captured for reuse. These potential new sources of supply include rainwater, gray water and black water. Rainwater generally refers to waste water deposited on roof tops by way of roof drains or roof leaders. Gray water generally refers to waste water generated from household uses such as remaining water from bathing and washing clothes. Black water refers to heavily contaminated water originating from waste sources such as toilets. As interest grows for capturing rainwater, gray water and black water for treatment and/or reuse, there is a corresponding need for plumbing systems to effectively divert these types of waste water to multiple pipes.
Several fluid diversion devices exist as disclosed in U.S. Pat. No. 4,112,972 and 925,053, and U.S. Patent Application Publication 2006/0096648. These devices include pivotably mounted flaps that connect an inlet pipe to one of two outlet pipes. However, these devices are disadvantageous because the flat-surfaced flaps reduce the cross-sectional flow area at the junction of the inlet pipe and outlet pipe. This disturbs and/or partially blocks the flow of waste water, which may include both liquids and solids.
As such, there is a need in the industry for a waste water diverter apparatus that overcomes the limitations of the prior art.
A waste water diverter apparatus configured to enable an undisturbed flow of fluid and solids in the waste water through the apparatus is provided. The waste water diverter apparatus comprises a substantially Y-shaped valve housing comprising an inlet port, a first outlet port and a second outlet port, and an inner valve member comprising a circular aperture and rotatably mounted to the Y-shaped housing, wherein the circular aperture comprises an angled pathway that extends through the inner valve member, wherein the inner valve member is configured to adjust to a first position to enable the aperture to connect the inlet port to the first outlet port and a second position to enable the aperture to connect the inlet port to the second outlet port.
The detailed description of some embodiments of the invention will be made below with reference to the accompanying figures, wherein the figures disclose one or more embodiments of the present invention.
As depicted in
As depicted in
In one embodiment, inner valve member 34 comprises a cylindrical shape with a circular aperture disposed throughout the member at an angle. Inner valve member 34 comprises a pair of nubs affixed to the side walls, which slidably engage and disengage with corresponding openings disposed within valve housing 22. As a result, inner valve member 34 is rotatably mounted to valve housing 22. A first O-ring 32 is disposed on valve housing 22 and a second O-ring 32 is disposed on inner valve member 34 prior to being covered by cover 24. In a preferred embodiment, O-rings 32 are made from rubber.
Cover 24 is a ring that is secured to valve housing 22 by press fit components. For example, cover 24 comprises four tabs that are configured to slidably engage and disengage with corresponding openings on valve housing 22. It shall be appreciated that any alternative number of tabs on cover 24 and openings on valve housing 22 may be used instead. Once cover 24 is locked, inner valve member 34 is secured in place with knob 26 extending through the central opening of cover 24. In a preferred embodiment, cover 24, knob 26, inner valve member 34 and valve housing 22 are made from plastic such as polyvinyl chloride (PVC) or acrylonitrile butadiene styrene (ABS). However, alternative materials known in the field may be used including, but not limited to, brass, copper, and other metals or alloys.
To operate waste water diverter apparatus 10, a user manually rotates knob 26 by hand to adjust the circular aperture of inner valve member 34 so that the circular aperture connects inlet port 28 with one of the two outlet ports 30. Once the circular aperture is properly aligned with inlet port 28 and one of the two outlet ports 30, the nubs of inner valve member 34 slidably engage with a corresponding pair of openings disposed within valve housing 22. The user can rotate knob 26 as needed to connect inlet port 28 with either outlet port 30 of valve housing 22. As depicted in
As depicted in
Once water level 66 reaches low water sensor 68, low water sensor 68 transmits signals to controller 62, which are forwarded to waste water diverter apparatus 10. The solenoid or motor system then automatically adjusts inner cylindrical valve member 43 such that waste water is diverted to tank 64 via alternate pipe 21 and connecting pipe 65. Once water level 66 reaches high water sensor 67, high water sensor 67 transmits signals to controller 62, which are forwarded to waste water diverter apparatus 10. The solenoid or motor system then automatically adjusts inner cylindrical valve member 43 such that waste water is diverted to sewer pipe 20 instead. Once water level 66 drops below high water sensor 67, controller 62 may be configured to enable waste water diverter apparatus 10 to automatically divert waste water back to tank 64 until water level 66 reaches high water sensor 67. It shall be appreciated that controller 62 may be programmed in any way to enable waste water diverter apparatus 10 to function as desired.
It shall be appreciated that the components of waste water diverter apparatus 10 described in several embodiments herein may comprise any alternative known materials in the field and be of any color, size and/or dimensions. It shall be appreciated that the components of waste water diverter apparatus 10 described herein may be manufactured and assembled using any known techniques in the field.
Persons of ordinary skill in the art may appreciate that numerous design configurations may be possible to enjoy the functional benefits of the inventive systems. Thus, given the wide variety of configurations and arrangements of embodiments of the present invention the scope of the invention is reflected by the breadth of the claims below rather than narrowed by the embodiments described above.
The application claims priority to provisional patent application U.S. Ser. No. 61/871,740 filed on Aug. 29, 2013, the entire contents of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
925053 | Sturgis | Jun 1909 | A |
1549969 | Grindle | Aug 1925 | A |
3473550 | Gadsden, Jr. | Oct 1969 | A |
3826539 | Kunz | Jul 1974 | A |
3935108 | Forgues | Jan 1976 | A |
4044789 | Elmore | Aug 1977 | A |
4112972 | Lajeuness | Sep 1978 | A |
4173234 | Thomas | Nov 1979 | A |
4264244 | Steele | Apr 1981 | A |
4286625 | Tomlin | Sep 1981 | A |
4365366 | Ortega | Dec 1982 | A |
4398562 | Saarem | Aug 1983 | A |
4509719 | Uomala | Apr 1985 | A |
4702269 | Schuler | Oct 1987 | A |
5423343 | Crouch | Jun 1995 | A |
8127793 | Ito | Mar 2012 | B2 |
20060096648 | Guerrier | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
61871740 | Aug 2013 | US |